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Abstract: Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are
characterised by aberrant immunological responses leading to chronic inflammation without tissue
regeneration. These two diseases are considered distinct entities, and there is some evidence that
neutrophil behaviour, above all other aspects of immunity, clearly separate them. Neutrophils are the
first immune cells recruited to the site of inflammation, and their action is crucial to limit invasion
by microorganisms. Furthermore, they play an essential role in proper resolution of inflammation.
When these processes are not tightly regulated, they can trigger positive feedback amplification
loops that promote neutrophil activation, leading to significant tissue damage and evolution toward
chronic disease. Defective chemotaxis, as observed in Crohn’s disease, can also contribute to the
disease through impaired microbe elimination. In addition, through NET production, neutrophils
may be involved in thrombo-embolic events frequently observed in IBD patients. While the role of
neutrophils has been studied in different animal models of IBD for many years, their contribution
to the pathogenesis of IBD remains poorly understood, and no molecules targeting neutrophils
are used and validated for the treatment of these pathologies. Therefore, it is crucial to improve
our understanding of their mode of action in these particular conditions in order to provide new
therapeutic avenues for IBD.
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1. Introduction

Inflammatory bowel diseases (IBD) are characterised by chronic uncontrolled inflammation
affecting the gastro-intestinal tract and leading to multiple symptoms such as weight loss, abdominal
pain, recurrent diarrhoea and bleeding [1]. The two major forms are ulcerative colitis (UC) and
Crohn’s disease (CD), which have distinct clinical, histopathological, endoscopic and radiological
features. The etiologies and pathogenesis of these disorders clearly differ, and are not fully understood;
they include complex interconnexion between enteric commensal microbiota and the host immune
response, with genetic predisposition that can influence the disease development [1,2]. The aberrant
immunological responses that take place in the gut can affect the epithelial barrier, increase intestinal
permeability for novel antigens and further lead to a persistent chronic inflammation without
tissue regeneration.

In normal conditions, the single-layered intestinal epithelium constitutes a physical and
immunological barrier that prevents direct contact between luminal microbiota and intestinal mucosa.
In this context, when epithelium is injured, neutrophils are crucial to protect from invading pathogens.
Neutrophils can be recruited to the site of infection, recognise, phagocytose and kill pathogens by
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producing reactive oxygen species (ROS) with antimicrobial potential, by releasing lytic enzymes from
their granules, and also by liberating neutrophil extracellular traps (NETs).

In humans, neutrophils account for 50%–70% of circulating leukocytes, whereas only 10%–25% of
leukocytes are neutrophils in mice [3]. Under physiological conditions, neutrophils are cleared from
the circulation in the liver, the spleen and bone marrow; these cells are absent from healthy human
intestinal mucosa. When not properly eliminated, neutrophils can contribute to significant tissue
damages during acute and chronic diseases. This destructive potential of neutrophils requires a tight
control of their recruitment and action into tissues.

Neutrophil contribution to the pathogenesis of IBD remains controversial, and likely differs
between CD and UC [4].

In experimental animal models of IBD, while some studies showed that neutrophil depletion
using anti-neutrophil antibodies ameliorates colitis induced by dextran sulphate sodium (DSS) or
trinitrobenzene sulphonic acid (TNBS) in the rat [5,6], others indicated a beneficial role of neutrophils
during colitis, with exacerbation of inflammation after their depletion [7,8]. This discrepancy is
probably due to the use of different rodent models of colitis. They induce colitis by different
mechanisms, either by direct toxicity on epithelial cells and disruption of intestinal barrier integrity
(DSS and TNBS) or by dysregulating immune homeostasis (transfer of CD45RBhigh naïve T cells) (see
below). It can also be due to the use of anti-Gr1 antibody that not only depletes neutrophils but also
monocytes. Indeed, macrophages, concurrently with dendritic cells, have a crucial role in the limitation
of neutrophil infiltration during colitis [9]. In addition, resident macrophages in the gut display a
non-inflammatory phenotype and may have an immuno-suppressive role [10].

In patients, the role of neutrophils in IBD has been difficult to assess. In ulcerative colitis, the
extent of neutrophil infiltration correlates with the severity of the disease, and is included in the
scoring system of UC severity [11]. Neutrophil-to-lymphocyte ratio (NLR) is increased in the blood of
patients with active UC compared to controls [12]. Nevertheless, NLR fails to discriminate between
active and non-active UC. In addition, some neutrophil functions, such as chemotaxis and ROS
production, are elevated in UC [13–15]. While over-activation of neutrophils seems to be central
in UC, their contribution is not so clear in CD. In CD [16], some researchers postulate that patients
have a predisposition to an increased activity of their innate immune system that results in intestinal
inflammation, while others consider that an inadequate innate immune response can be the main
cause of CD. Indeed, several studies have reported neutrophil and/or macrophage dysfunction in CD
patients [17–20]. An impaired innate immune response can lead to a delayed or incomplete removal of
bacterial antigens in tissues. Subsequent persistence of these foreign constituents results in a secondary
uncontrolled immune response and granulomatous reaction in the gut. Another argument in favour of
this paradoxical view is the association of defective neutrophil function with IBD-like diseases [21,22].

Above these considerations, controversy possibly arises from the fact that neutrophils display
themselves dual roles, either beneficial for the resolution of inflammation, or detrimental when
over-activated, leading to collateral tissue damage. In other words, it has become clear that both
functional deficiency and hyper-reactivity of neutrophils can cause intestinal inflammation, functional
neutrophils being critical to maintain intestinal homeostasis. This review will give an overview of
preclinical and clinical studies that have addressed neutrophil function in IBD, focusing on how a
unique cell type could exert dual roles in disease progression.

2. Rodent Models of Inflammatory Bowel Disease (IBD)

The relevance of experimental animal models to IBD pathogenesis has been debated [23,24].
During the last two decades, a large number of therapies for IBD emerging from preclinical
investigation failed to show beneficial effects in patients. This failure is probably not surprising
regarding the differences that exist between humans and animals. For instance, IBD patients can be
seen as a heterogeneous population where each person carries his own combination of genetic variants,
his unique gut microbiome, and has been exposed to specific environmental factors. Nevertheless,
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because of practical and ethical issues, animal models appear to be a reasonable alternative to
experimental studies that cannot be performed in humans. For instance, mice are born and kept in a
controlled environment, especially in pathogen-free conditions, and have the same genetic background.
The animals allow the production of homogeneous results that are easier to interpret and reproduce.
In addition, genetically engineered mice provide the advantage to dissect and individually understand
the contribution of each pathway in intestinal inflammation. Animal models also give the opportunity
to monitor disease development from symptomless early stages to the established pathology.

As IBDs are complex and multifactorial, rodent models cannot recapitulate completely human
disease, but they can still be useful to understand pathogenesis and identify new potential therapeutic
avenues. Like for any other disease, important biological differences between animals and humans
cannot be ignored and must be taken into account by researchers to translate findings from the bench
to bedside. Human clinical trials should still consider specific circumstances under which efficacy has
been observed in animals.

In this review, we will discuss the most widely used rodent models of IBD, the chemically induced
colitis models, caused by dextran sulphate sodium (DSS) or trinitrobenzene sulphonic acid (TNBS),
and the adoptive transfer model in mice [24–27].

DSS-induced colitis is one of the most widely used models of IBD because of its simplicity and
the high degree of uniformity and reproducibility of colonic lesions. DSS is administered in drinking
water of mice or rats. Depending on the molecular weight used, the concentration, the duration, and
the frequency of administration, animals will display acute or chronic colitis. Furthermore, in the
same model, mice display differential susceptibilities to colitis due to genetic (strain, gender) and
microbiologic variations (intestinal flora).

The mechanisms by which DSS induces colitis are not clearly elucidated. DSS is toxic for
colonic epithelial cells and can induce the loss of intestinal barrier integrity, leading to an increased
permeability for some molecules like DSS itself, and luminal antigens or microorganisms. This leads to
an inflammatory reaction that is morphologically and symptomatically similar to the one observed in
ulcerative colitis in humans.

The second compound used is TNBS. TNBS is dissolved in ethanol and administered intra-rectally
in rodents. Ethanol is not only a solvent but is also needed to disrupt intestinal barrier. TNBS
is considered to be a hapten that, when coupled to high molecular weight proteins, renders them
immunogenic to the host immune system. Variations in the dosage of TNBS and ethanol cause
differences in colitis severity. In mice, doses used usually mimic characteristics of Crohn’s disease.
Finally, colitis can be initiated by adoptive transfer of syngeneic splenic CD4+CD45RBhigh T cells into T
and B cell-deficient recipient mice [28]. CD4+CD45RBhigh T cells consist of naive T cells able to induce
chronic intestinal inflammation by disruption of T cell homeostasis. In the colon, mononuclear and
polymorphonuclear cell infiltration, crypt abscesses and epithelial cell hyperplasia and erosions can be
observed. This model allows the analysis of the earliest immune mechanisms involved in the induction
of gut inflammation as well as in the installation of a chronic disease.

3. Effects of Targeting Neutrophil Chemotaxis and Extravasation

Neutrophil migration into the colon mucosa is a hallmark of inflammatory bowel diseases, but
still differences exist between UC and CD [29]. In UC, neutrophil accumulation in stool of patients
positively correlates with active disease [30] and neutrophil infiltration is associated with the severity
of the disease [11]. In contrast, using skin window chambers, several studies report a defect in
neutrophil recruitment in CD patients that is not observed in UC patients [17,18,31,32]. In vitro tests
show that neutrophils themselves are competent and that the decreased accumulation of these cells
can be attributed to the presence of circulating inhibitors of chemotaxis in patient serum or to an
inappropriate release of chemotactic mediators by resident macrophages [17,18,33]. Even if these
findings seem surprising, the subsequent establishment of chronic inflammation can be explained as
follows: reduced recruitment of neutrophils to sites of pathogen invasion causes persistence of bacteria
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into tissues and possibly within macrophages. Inefficient clearance of bacteria by macrophages drives
the formation of granulomas found in CD, leading to an upregulated adaptive immune response.
However, the mechanisms by which neutrophils migrate into the colonic mucosa are incompletely
understood. Elucidating these pathways could provide new therapeutic opportunities to modulate
neutrophil migration without eliminating it, therefore preserving host-defence.

In a general manner, extravasation of neutrophils from the vasculature to inflamed tissue follows
sequential steps: tethering, rolling, adhesion, crawling, and then transmigration (reviewed in details
in [3,34]).

At the site of inflammation, resident sentinel cells, such as macrophages, are activated by diverse
stimuli, including pathogen-associated molecular pattern (PAMPs), and damage-associated molecular
pattern (DAMPs) molecules. Then, these cells release pro-inflammatory mediators and chemokines
to initiate neutrophil mobilisation and recruitment. This is first allowed by expression of adhesion
molecules by the endothelium, P-, L- and E-selectins. These molecules bind their carbohydrate
ligands, including P-Selectin Glycoprotein Ligand 1 (PSGL-1), leading to the tethering and then
rolling of circulating neutrophils through weak and reversible interactions. In experimental colitis,
P-selectins mediate rolling and recruitment of leukocytes in the colon [35]. Indeed, leukocyte rolling
and adhesion in colonic venules is reduced in P-selectin-deficient mice compared to WT mice and
after immune-blockage of P-selectin. This is also accompanied by a decreased neutrophil infiltration
and colonic myeloperoxidase (MPO) activity [35]. The same results are obtained after blockage of
PSGL-1 [36].

During rolling, neutrophils remain close to chemokines trapped by heparan sulphates on the
endothelium surface [37]. These chemokines activate neutrophils and promote their firm arrest on the
endothelium. For example, CXCL8 (or IL-8) in humans, and three chemokines, CXCL1, CXCL2 and
CXCL5, in mice can activate neutrophils via the CXCR2 receptor. CXCR2-deficient mice display a lower
susceptibility to acute and chronic colitis induced by DSS, with less inflammatory cell infiltration and
less ulcer formation [38,39]. Similarly, blocking CXCR2 with antibodies or with antagonists dampens
colitis [39,40], as knockdown or blockage of some other CCR and CXC receptors [41–43].

In humans, IL-8 is over-expressed in colonic tissues of UC patients. Its level correlates with the
number of infiltrated neutrophils and with the severity of the disease [44,45]. In UC, IL-8 is not only
responsible for attraction but also activation of neutrophils. IL-8 concentration is correlated with MPO
concentration in colon and is responsible for an increased CD11b expression and ROS production by
neutrophils [13,14]. In contrast, Marks et al. showed a defect in neutrophil recruitment associated
with a reduced IL-8 production in patients with Crohn’s disease [32,46]. Neutrophil accumulation
and IL-8 production are reduced in the intestine of CD patients compared to UC patients and controls.
They observed the same results after subcutaneous injection of heated-killed E. coli in the forearm
(skin window chambers) of individuals, suggesting a systemic constitutional abnormality. Addition
of exogenous IL-8 into the skin restored neutrophil recruitment indicating that these cells are able
to respond in the presence of an appropriate stimulus. The defect of neutrophil recruitment in CD
can thus be attributed to a lower release of IL-8 by resident macrophages. Indeed, in response to
pro-inflammatory stimulus in vitro, the authors demonstrated that macrophages from CD patients
produce less IL-8 than control cells.

Notably, chemokines can also be released from circulating activated platelets and promote
leukocyte recruitment. A significant proportion of neutrophil extravasation in inflamed colon is
regulated by platelets. In addition to support monocyte recruitment to inflamed endothelia, CCL5
derived from platelets mediate neutrophil recruitment in inflamed colon [47,48]. After platelet
depletion or immunodepletion of CCL5, disease activity index, tissue damage, and neutrophil
infiltration is reduced in mice with acute colitis [49]. CCL5 has also been implicated in colitis
development in rats [50].

Chemokines stimulate GPCR receptors and allow conformational change of neutrophil surface
integrins through an inside-out signalling process [51,52]. This induces an increased affinity for
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their ligands on endothelium and thus firm arrest of neutrophils on it. Neutrophils mainly express
integrins LFA-1 (or α1β2; CD11a/CD18) and Mac-1 (or α2Mβ2; CD11b/CD18) that can interact with
ICAM-1 and ICAM-2 on activated endothelium, respectively. Along the endothelium, chemokines
also create a gradient, which guides neutrophils during crawling to the preferential sites of emigration.
Transmigration can be paracellular (at endothelial cell-cell junctions) or transcellular (through an
endothelial cell) [53,54]. Neutrophils preferentially use the paracellular route. Transmigration also
requires integrins and CAM molecules (ICAM-1/2, vascular cell adhesion protein 1 (VECAM-1),
platelet-endothelial cell adhesion molecule 1 (PECAM-1)).

Cell adhesion molecules are critical for the migration of leukocytes from the circulation toward
the colonic epithelium. In rats, inhibition of CD11b/CD18 (Mac-1) integrin leads to a reduction of
damage score in the colon induced by TNBS, with a smaller number of ulcerations in addition to less
infiltrating monocytes and leucocytes in the submucosa associated with a decrease in MPO activity [55].
In mice, the role of integrins seems to be more complex. While CD18 and CD11a null mice show
a lower disease activity index during colitis, surprisingly CD11b knock-out mice exhibit enhanced
DSS-induced colitis. The colons of CD18 null mice show the fewest numbers of neutrophils followed by
the colons of CD11a null mice. Interestingly, absence of CD11b causes a small but significant decrease
in neutrophil infiltrates in the colon but also an increase in plasma cell infiltration in response to DSS,
suggesting that this molecule may influence plasma cell function during intestinal inflammation. This
study demonstrates that loss of CD18/CD11a integrin blocks several adhesion pathways that are
necessary for neutrophil recruitment during colitis and subsequent tissue damage, which remain more
or less intact in CD11b null mice [56]. The role of ICAM-1 has been investigated too. Deletion or
immunoblockage of this molecule reduces neutrophil infiltration and colonic damage during colitis in
mice and rats [57,58].

In UC patients, CD11b, CD18, and ICAM-2 seem to be important for neutrophil transepithelial
migration [59]. CD11b is expressed on neutrophils in contact with the colonic epithelium or in crypt
abscesses whereas CD18 is expressed in epithelial basement membrane [59]. Neutrophils from UC
patient seem to be less sensitive to blockage of migration with anti-CD11b monoclonal antibody toward
ICAM-1 than neutrophils from control individuals. These results indicate that, in UC, neutrophils may
have a constitutive change in their migratory capacities, being somehow hyper-reactive [60].

In view of potential importance of leukocyte trafficking in pathogenesis of IBD, some biomolecules
have been designed with the aim to modulate leukocyte recruitment and retention into the intestine.
Two current treatments that target integrins in IBD are vedolizumab and etrolizumab [61]. The first one
is a monoclonal antibody directed against α4β7 integrin that provides good results for the treatment of
UC and CD patients. α4β7 is expressed by leukocytes except neutrophils [62,63]. However, neutrophils
can express integrin α4β1 (VLA-4) under certain inflammatory conditions, such as sepsis [64,65]. α4β1
is implicated in the rolling of neutrophils along the endothelium and thus can affect the latter stage
of transmigration [66]. The monoclonal antibody targeting the α4 integrin subunit, natalizumab, has
demonstrated a good response with improved clinical remission in CD treatment [67].

While neutrophil accumulation is increased in UC, CD seems to result from an impaired
recruitment of these cells. In this context, stimulating immune system rather than suppressing
it may calm the subsequent excessive adaptive response. Defective neutrophil recruitment
resulting from alterations in macrophage function can be counteracted by granulocyte-macrophage
colony-stimulating factor (GM-CSF) administration [68]. Based on this postulate and on beneficial
effects of GM-CSF therapy in glycogen storage disease type Ib, a hereditary metabolic disorder
characterised by neutrophil dysfunction and intestinal inflammation, clinical trials with GM-CSF
have been undertaken in CD [69–71]. While this treatment has been shown to be safe and effective,
Roth et al. report no difference with placebo induction on clinical remission and improvement of active
CD [72]. However, further investigations are required due to limited numbers of patients who have
been randomised in the explorative studies, and to important heterogeneity in results between trials in
addition to the lack of data on patient outcomes.
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4. Role of Neutrophil-Derived Molecules

The presence of neutrophils is crucial for innate immunity and resistance to pathogens, as
illustrated by patients with congenital or acquired abnormalities in neutrophil number and function
suffering from recurrent infections [73]. Neutrophils harbour different strategies to attack invaded
microorganisms: phagocytosis, release of reactive oxygen species (ROS) or soluble antimicrobials
(including granule proteins), and generation of neutrophil extracellular traps (NETs). They are also able
to secrete pro-inflammatory mediators affecting their own action but also other leukocyte functions.

There are three types of granules formed consecutively during neutrophil maturation. Primary or
azurophilic granules comprise myeloperoxidase (MPO), neutrophil elastase (NE), cathespin G and
lysozyme. Secondary or specific granules are composed of a wide variety of different components such
as lactoferrin and collagenase (i.e., MMP-8). Finally, tertiary granules contain, for instance, gelatinase
B (i.e., MMP-9). These factors have either beneficial effect when released at the right place, and at
the right moment, or detrimental effect when pathological mechanisms modify their mode of action
(Figure 1 and Table 1). Interestingly, the study by Dwarakanath et al. [74] reported an increased ratio
of faecal lactoferrin to myeloperoxidase in IBD, but not in patients with infective diarrhoea, suggesting
the occurrence of relatively selective triggering of secondary granule responses in IBD, possibly via
bacterial peptides.
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Figure 1. Dual role of neutrophils in intestinal inflammation. Excessive or prolonged neutrophil
activation can lead to chronic inflammation in inflammatory bowel disease (IBD). Reactive oxygen
species (ROS) production causes damage to DNA, lipids and proteins, altering their function.
Paradoxically, ROS is also essential for the maintenance of intestinal homeostasis. Upon neutrophil
activation, some proteases such as elastase, MMP-8 or MMP-9 are produced, leading to structural
tissue damage and amplification of the inflammatory response through release of pro-inflammatory
cytokines and chemokines from extra-cellular matrix (ECM). The enzyme 5-lipoxigenase (5-LO) is
involved in the synthesis pro-inflammatory lipid mediators like LTB4 as well as in the production of
pro-resolving lipid mediator generation, including lipoxin A4, resolvin E1 and protectin D1, during
the resolution of inflammation. Annexin A1 is expressed by apoptotic neutrophils and triggers
neutrophil apoptosis, neutrophil engulfment by macrophages and negatively regulates neutrophil
transmigration. Finally, neutrophils can be responsible for increased risk of thrombosis in IBD through
neutrophil extracellular traps (NET) release. Abbreviations: Nox: NADPH oxidase; ROS: reactive
oxygen species; MPO: myeloperoxidase; MMP: matrix metalloprotease; LTB4: leukotriene B4; NETs:
neutrophil extracellular traps.
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Table 1. Summary of beneficial and detrimental roles of factors brought by neutrophils in
inflamed tissues.

Beneficial Roles Detrimental Roles

NADPH oxidase (ROS) Pathogen killing
Epithelial barrier disruption and structural
damages (lipid peroxidation in epithelial
cell membrane)

Resolution of inflammation
(neutrophil apoptosis)

MMPs Angiogenesis in hypoxic tissue Amplification of inflammatory response and
subsequent neutrophil recruitment

Elastase
Epithelial barrier disruption and structural
damages (degradation of E-cadherins and
zonula occludens-1)
Thrombosis (inhibition of TFPI)

5-lipoxygenase

Resolution of inflammation
Pro-resolving lipid mediator
generation (lipoxin A4; resolvin E1;
protectin D1)

Amplification of inflammatory response
Pro-inflammatory lipid mediators
generation (LTB4)

NETs Pathogen killing Thrombosis (pro-thrombotic components)

4.1. Reactive Oxygen Species

When activated, neutrophils secrete reactive oxygen species (ROS). ROS are small molecules,
including the oxygen radicals (superoxide anion (O2

−) and hydroxyl (•OH)) and non-radicals such
as hypochlorous acid (HOCl), singlet oxygen (1O2) and hydrogen peroxide (H2O2). Oxygen radicals
are unstable and can react with proteins, lipids or DNA. NO-derived compounds, called reactive
nitrogen metabolites (RNMs) can also be formed and damage a lot of cell and tissue components. For
example, peroxynitrite, resulting from the reaction between superoxide and NO, is extremely reactive.
To counteract any harmful effects of ROS, tissues such as intestinal mucosa possess an efficient
antioxidant protection system. Superoxide can be converted to more stable H2O2 by superoxide
dismutase (SOD) in the mitochondria. In turn, H2O2 can be transformed in water and O2 by catalase
or in water by glutathione peroxidase. H2O2 can also react non-enzymatically with O2

− to form •OH
during the Fenton reaction in the presence of Fe2+.

IBDs are characterised by an imbalance between the production of ROS and antioxidants, thereby
affecting gut homeostasis [75,76]. Dysfunction of mechanisms that regulate levels of ROS production
can lead to persistent inflammation in intestinal tissue. Prolonged production of high concentrations
of ROS causes DNA damage, lipid peroxidation and protein oxidation, altering the function of these
molecules. For example, ROS can degrade polyunsaturated acids within the membrane of intestinal
epithelial cells, which results in disruption of cell membrane and increased mucosal permeability [77].
Lipid peroxidation is significantly increased in colonic mucosa during DSS or TNBS treatment,
suggesting that the induction of lipid peroxidation is an early critical event in these experimental
models of IBD [77].

In support of an ROS deleterious effect, treatment of mice by free radical scavengers or
antioxidants reduces the severity of chemically induced colitis [78]. Likewise, administration of
a superoxide dismutase/catalase mimetic nanomedicine comprising a hydrogen peroxide-eliminating
nanomatrix and a free radical scavenger (Tempol) suppresses the expression of pro-inflammatory
mediators in different mouse models of colitis [79]. In rats, treatment with different doses of SOD
attenuates colonic tissue damages and lipid peroxidation in a dose dependent manner and reduces
rolling and adhesion of leukocytes in venules [80]. Alpha lipoic acid, as a potent antioxidant
and anti-inflammatory agent, reduced plasma levels of lipopolysaccharides (LPS) and systemic
inflammation in mice with colitis [81].

ROS production is augmented in colonic mucosa of patients with IBD [76]. In both CD and
UC patients, an imbalance between the different antioxidant enzymes coupled with an inefficient
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endogenous antioxidant response results in an increased formation of ROS and RNMs within the
colon. However, to date, there is little evidence that these species contribute to the pathogenesis and
the maintenance of inflammatory process in patients [82]. The level of malondialdehyde (MDA), an
end product of lipid peroxidation, is higher in CD and UC mucosa compared to non-inflamed and
control mucosa [76]. In the same study, 3-nitro-L-tyrosine (3-NT), an index of peroxynitrite-mediated
protein nitration expressed by lamina propria neutrophils, was significantly higher in UC than in CD.
Notably, a defect in neutrophil respiratory burst and reduced cell viability are also observed in CD
patients [83]. This may be related to a decreased defensive potential of neutrophils against luminal
microbes, leading to the recruitment of other inflammatory cells, and to the establishment of chronic
inflammation [84]. Importantly, in addition to deleterious effect, ROS can mediate appropriate healing
responses. In particular, production of ROS by neutrophils can create a hypoxic niche by oxygen
consumption, which may aid in the resolution of inflammation [85]. Moreover, ROS generated by
NADPH oxidase are also important for neutrophil apoptosis, and subsequent restoration of tissue
homeostasis [86].

The importance of physiological levels of ROS in the gut is also highlighted by chronic intestinal
inflammation affecting patients with inactivating gene defects in NADPH oxidase [22,87]. Chronic
granulomatous disease (CGD) is an inherited immunodeficiency disorder caused by inactivating
mutations in the genes encoding the NOX-2 complex, one of the NADPH oxidase (NOX) isoforms.
This disease is characterised by recurrent bacterial and fungal infections that are often life-threatening.
These patients display abundant granulomas in a lot of organs, including the intestine. Granulomatous
colitis is similar to the one observed in CD patients [22,87].

NOX-2 oxidase is mainly expressed by neutrophils. It comprises different sub-units, including
p40phox, p47phox, p67phox, forming a complex in the cytosol, plus p22phox, and gp91phox, located in the
membranes of secretory vesicles and specific granules [76]. The role of NOX-2 in IBD development
seems to be complex as p47phox knock-out mice do not spontaneously develop colitis, but they display
increased susceptibility to DSS colitis, while mice lacking p91phox develop less severe colitis than WT
mice following DSS treatment [88,89]. NOX-1, which is often called “colon NADPH oxidase” because
of its high expression in colonic epithelium, is also required for healing after colitis [90].

ROS can also be generated by mitochondria (mtROS). During energy production, ATP molecules
are produced thanks to an electrochemical proton gradient maintained by the transfer of electrons to
protein carriers in the mitochondrial membrane called Complex I–IV. During this process, electrons
can leak out from the electron transport chain and be aberrantly transferred to O2 to form superoxide
radicals. Increased mtROS levels are observed in IBD patients, and decreasing mtROS dampens
colitis [91].

4.2. Matrix Metalloproteases

After passing through the endothelial cell layer, neutrophils have to cross the basement membrane
to progress into tissue and reach the inflammatory site. Neutrophils express proteases, including serine
proteases (like elastase), and matrix metalloproteases (MMPs) that degrade the extracellular matrix
(ECM) [3,92]. MMPs are involved in cellular matrix turnover during normal growth, development and
reproduction. These proteases also permit the release of cytokines, and control their concentration into
tissue concurrently to the regulation of the activity of ECM-associated chemokines.

MMP-9, also known as gelatinase B, is one of the main MMP secreted by neutrophils. In MMP-9
knock-out mice, DSS-induced colitis and the associated increase of intestinal permeability are
attenuated [93]. Accordingly, selective inhibition of MMP-9 reduces disease severity in mice [94].
However, the use of total knock-out animals does not allow to discriminate the role of neutrophil MMP
from MMP expressed by other cell types. Indeed, it has been demonstrated that epithelial and not
neutrophil-derived MMP-9 mediates tissue damage during colitis [95]. Notwithstanding, a detrimental
effect of neutrophil MMP-9 has been shown in several inflammatory diseases like COPD, as well as in
stroke and cancer propagation [96–98]. During the inflammatory process, degradation of collagen by
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MMP-9 contributes to chronic neutrophilic infiltration [99]. In inflamed intestine, combined action
of MMP-8, MMP-9 and prolyl oligopeptidase (PE) allows the release of collagen-derived fragments,
proline-glycin-proline (PGP), that have an important chemotactic effect on neutrophils. Neutrophils
recruited can then release more MMPs and generate more PGPs, establishing a vicious circle that
exaggerates the disease [100]. In the same manner, neutrophils can potently affect the inflammatory
conditions through the modification of cytokines and chemokines that have important roles in the
recruitment of additional effector cells. For instance, neutrophil-derived MMP-9 is able to cleave
CXCL-8 rendering it 10- to 27-fold more effective in neutrophil activation, while cleavage of platelet
factor 4 (PF4) and CXCL-1 leads to their inactivation [101]. Neutrophil-derived MMP-8, also known
as collagenase, can also modulate the activity of several chemokines [102]. The activation of these
chemokines promotes more neutrophil infiltration and propagates the inflammation. Thus, increased
levels of MMPs can not only mediate structural damage to the tissue, but they may also propagate an
excessive immune response.

In IBD patients, reports have demonstrated an increased level of several MMPs in inflamed
intestine, which is often accompanied by an insufficient level of the endogenous MMP inhibitors
such as tissue inhibitor of metalloproteinases (TIMPs) [103–105]. The activity of some MMPs (MMP-1,
2, 3 and 9) is also augmented in colon of IBD patients and is correlated with MPO level and tissue
damage [106]. Strong associations are shown between faecal MMP-9 and clinical, endoscopic, and
histologic activities of UC, but no correlation are found between this biomarker and activity indices of
CD [107].

In mice and rats treated with DSS or TNBS, immune infiltration is associated with an upregulation
of MMPs, and the mucosal damage can be reversed by application of MMP inhibitors [108–110].
While some of these drugs show signs of efficacy in patients, all MMP-targeted inhibitors have been
unsuccessful because of dose-limiting side effects and/or insufficient clinical benefit, probably due
to their lack of specificity [111,112]. In UC patients, administration of a fully humanised anti-MMP-9
monoclonal antibody causes clinical remission in 14% of cases [113].

Paradoxically, MMPs can also have beneficial effects within tissues. MMP-9 itself activates
pro-angiogenic vascular endothelial growth factor (VEGF), which promotes revascularisation at injured
site [114–116]. MMPs produced by other cells are also important to resolve inflammation. MMP-10,
that is produced predominantly by infiltrating myeloid cells in both murine and human colitis, is
required for resolution of chronic colitis [117]. In addition, absence of MMP-19 leads to severe tissue
destruction, and failure to resolve inflammation, which is attributed to a delayed but sustained
neutrophil infiltration associated with higher MMP-2 and MMP-9 activities [118].

4.3. Neutrophil Elastase

Like MMPs, neutrophil elastase (NE) is able to degrade collagen, elastin and fibronectin, and thus,
can release mediators trapped in ECM. In addition, elastase from neutrophils degrades TIMPs and
activate MMPs, and so may contribute to the imbalance between these two types of enzymes observed
in IBD [119]. Elastase has mainly been studied in UC. The enzymatic activity of NE is elevated in both
plasma and colon of UC patients compared to healthy controls, as in mice under DSS treatment [120].
NE released in situ may impair mucosal repair through inhibiting epithelial cell proliferation in patients
with UC [121]. NE may also disrupt the epithelial cell monolayer by degrading E-cadherins and zonula
occludens-1 during transmigration, a process that can participate in the loss of intestinal barrier [122].
However, there is no clear evidence that NE contributes to IBD pathophysiology.

A NE-specific inhibitor, ONO-5046, reduces ulceration and inflammatory cell infiltration in the
colon of DSS-treated mice [120]. Despite the fact that therapeutic inhibition of NE has demonstrated
promising results in preclinical models of inflammatory bowel diseases, and in other models where
this enzyme has an important implication (for instance, inflamed lung and ischaemia-reperfusion
injury), translation to positive results in clinical trials remains challenging due to the complexity of
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regulatory mechanisms of elastase activity, and its interactions with endogenous inhibitors in disease
conditions [123].

4.4. Other Pro-Inflammatory Mediators Released by Neutrophils

Besides MMPs, neutrophils release a lot of extracellular mediators that amplify neutrophil
response in an autocrine and paracrine manner [124]. During their activation, neutrophils produce
several cytokines and chemokines [125]. One of most abundant chemokines secreted by neutrophils is
IL-8. As mentioned before, the levels of this potent chemokine correlate with the number of neutrophils
infiltrated in the colon of UC patients, while its production is impaired in CD resulting in reduced
chemotaxis [18,44,45]. Another potent chemoattractant and activator of neutrophils that is released by
neutrophils themselves is CXCL-1 (also known as GRO-α). This chemokine is elevated in colonic tissue
of UC patients compared to controls [126]. The CXCL-1-induced recruitment of neutrophils also plays
a protective role since mice lacking this molecule display exaggerated colitis after DSS treatment [127].
The authors suggest that blocking a single chemokine may affect beneficial neutrophil recruitment that
is required for the maintenance and the restoration of mucosal homeostasis. Neutrophils are able to
secrete several other chemokines involved in monocyte recruitment, such as CCL-3 (MIP-1α) or CCL-4
(MIP-1β). Thus, neutrophil-derived chemokines can participate in the amplification of the innate and
adaptive immune responses that take place in IBD, and in other immune-mediated inflammatory
diseases [125].

Importantly, neutrophils produce pro-inflammatory cytokines that have a central role in the
pathogenesis of IBD, like TNF-α. TNF-α levels are increased in the mucosa of IBD patients.
It contributes to redox imbalance by inducing the expression of some NADPH oxidase isoforms
within the colon, and in particular, infiltration of NOX-2-expressing cells such as neutrophils [128,129].
Anti-TNF-α therapy (infliximab) is currently used in IBD patients, as it shows beneficial effect both in
CD and UC [130].

Neutrophils are also a source of lipid pro-inflammatory mediators. Leukotriene B4 (LTB4) is
one of the best examples of the feedback amplification response induced by neutrophils themselves.
This factor is synthetised through the action of the enzyme 5-lipoxygenase (5-LO) [131]. LTB4 is
involved in neutrophil recruitment, particularly the second wave of recruitment, in different conditions
such as dermatitis and arthritis [132–134]. In IBD patients with active disease, some enzymes
involved in leukotriene pathway are significantly increased in colonic mucosa, and mice lacking
5-LO display reduced colitis induced by TNBS, in association with a decreased colonic neutrophil
infiltration [135,136]. Nevertheless, while LTB4 has been demonstrated to be an important stimulus
for neutrophil chemotaxis in IBD, with the chemotactic response being higher in UC than in CD,
other studies have shown a decreased neutrophil sensibility to LTB4 in both UC and CD [137,138].
In accordance with this latest finding and with the defect function of neutrophils in CD, the number of
LTB4 receptors in neutrophils from CD patients has been shown to be reduced compared to healthy
controls contributing to a depressed chemotaxis in response to this lipid mediator [139].

Thus, understanding the mechanisms causing an excessive neutrophil activity, in particular
through amplification activating loops, may be relevant to find new therapeutic targets in chronic
IBD disorders.

5. Contribution of Neutrophils to IBD-Associated Thrombo-Embolic Events

Inflammatory bowel diseases are associated with a hyper-coagulant state and an increased risk of
thrombo-embolic events [140,141]. Thrombosis is an extra-intestinal complication that can significantly
contribute to the morbidity and mortality in IBD patients. The pathogenesis of thrombosis in these
patients seems to be multifactorial and is not fully elucidated. It is believed that neutrophils may have
an important role in these events due to their ability to promote thrombus formation.

Indeed, it has been demonstrated that neutrophils are essential for thrombus formation in a
deep vein thrombosis model in mice [142]. Furthermore, in mouse arterioles, they are the first
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cells to be recruited to the activated endothelium, where they promote platelet activation and fibrin
generation [143]. Neutrophils can promote thrombus propagation by different ways. Maugeri et al.
have demonstrated that they express tissue factor (TF) upon activation [144]. In a mouse model of
laser-induced injury in cremaster muscle arterioles, neutrophils represent the main source of TF at the
site of injury [143]. TF is also expressed on microparticles (MPs) derived from monocytes or neutrophils.
In addition, neutrophils can produce two pro-coagulant enzymes, elastase and cathepsin G. Upon
FeCl3-induced vessel injury, these enzymes are responsible for the cleavage, and thus, inactivation
of the tissue factor pathway inhibitor (TFPI) [145]. All these processes promote coagulation cascade
activation and thrombin generation that, in turn, activate platelets.

In mice, TF contributes to the pathogenesis of intestinal inflammation and to the associated
thrombotic events. Indeed, DSS treatment leads to enhanced thrombus formation in cremaster muscle
arterioles, and to an elevation of plasma levels of thrombin-antithrombin (TAT) complexes, all of these
events being reduced by TF inhibition [146]. TF inhibition also causes a decrease of the numbers of
adherent platelets and leukocytes along colonic venules and less tissue damage.

Neutrophils also participate in thrombus formation by releasing neutrophil extracellular traps
(or NETs). This process, called NETosis, is usually initiated by ligand binding to neutrophil toll-like
receptors and receptors for IgG–Fc complexes [146]. NETs are made of chromatin fibres that serve as
a platform for granular proteins such as neutrophil elastase, cathespin G, myeloperoxidase or high
mobility group protein B1 (HMGB1). These components are responsible for NETs’ pro-inflammatory
and pro-coagulant properties. Hence, NETs trap pathogens and prevent their dissemination by
exposing them to a high concentration of anti-microbial factors, but are also able to induce platelet
adhesion, activation and aggregation [131]. NETs are also involved in the thrombosis process in both
veins and arteries in vivo [142,145,147].

One proteomic study has revealed that some proteins associated with neutrophils and NETs,
including MPO, NE, MMP-9 or cathepsin G, are increased in biopsies of UC patients compared to
controls [148]. These data have been validated by microscopy and show the presence of NETs in UC
colon tissues.

Recently, it has been demonstrated that neutrophils from IBD patients release more NETs than
controls [149]. The authors propose that NETs, and also the elevated phosphatidylserine (PS) exposure
on MPs from different cell origins, could be the link between IBD and the hypercoagulable state
observed in these conditions. In the same study, treatment of control neutrophils with sera from
patients with active disease leads to elevated NET release. This suggests that these patients possess
a serum microenvironment that is able to induce neutrophil-derived NETs. This could be due to
anti-neutrophil cytoplasmic antibodies (ANCAs) found in serum of patients [150]. ANCAs can
indeed be directed against NET components, such as MPO, NE, cathespin G or proteinase 3. Thus,
as also observed in systemic lupus erythematous (SLE), ANCAs may trigger the release of NETs from
neutrophils and participate in the amplification of ANCA generation by exposing new antigenic
proteins [149,151].

Importantly, the capacity of neutrophils to promote thrombosis can also be associated with
bleeding events. This idea is well illustrated in sepsis where an excessive coagulation activation
(disseminated intravascular coagulation) leads to platelet and coagulation factor consumption,
responsible for subsequent haemorrhages [152]. In IBD, patients display gastro-intestinal bleeding
resulting in anaemia. However, the etiology of these bleeding events is not elucidated [153].

It has been demonstrated that neutrophils are responsible for bleeding in thrombocytopenia [154,155].
Furthermore, a higher neutrophil-to-lymphocyte ratio (NLR) is associated with a poor prognosis in
patients presenting with intra-cerebral haemorrhage, or with symptomatic intracerebral haemorrhage
after rtPA treatment for ischemic stroke [156,157]. Neutrophils could also be responsible for bleeding
in the gastro-intestinal tract. Indeed, an increased number of macrophages and neutrophils is observed
in the ulcer margin in patients with stomach ulcer that undergoes re-bleeding [158]. In UC, NLR
correlates with disease severity calculated by a score comprising the extent of intestinal bleeding [159].
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In addition to their pro-thrombotic phenotype, NETs also contribute to small vessel vasculitis that can
result in tissue damage and subsequent haemorrhages [151].

Thus, though not demonstrated yet, neutrophils could contribute to both gastro-intestinal bleeding
and pro-thrombotic phenotype in IBD patients.

6. Essential Role of Neutrophils in the Resolution of Inflammation

Despite neutrophils being the first immune cells recruited to the site of inflammation, their activity
needs to be tightly regulated to limit collateral damage to the tissue and avoid evolution toward
chronic diseases [160–162].

Neutrophils are regarded as short-lived cells with a half-life in the circulation of around 1.5 h in
mice and 8–20 h in humans [3,160]. However, recent data suggest that their circulatory lifespan can
be up to 12.5 h, and 5.4 days in healthy mice and humans, respectively [163]. Even if these results
are a matter of controversy [164], it is clear that an increased neutrophil lifespan is observed under
inflammatory conditions, which contributes to an efficient clearance of invading pathogens [165]. After
completing their action, neutrophils normally undergo apoptosis; apoptotic neutrophils are ingested
by macrophages during a process called efferocytosis. In addition, neutrophil efferocytosis leads to
macrophage polarisation to a M2 phenotype [166,167]. Abnormally prolonged neutrophil lifespan due
to a reduced apoptotic capacity is observed in chronic inflammation, including IBD, and results in
increased disease severity.

Dying cells express find me signals to attract scavengers and then eat me signals, surface markers
that allow their identification. One of the important eat me signals expressed by neutrophils is
Annexin A1 (AnxA1). This molecule increases neutrophil engulfment by macrophages [168,169].
Importantly, AnxA1 also contributes to the resolution of inflammation by negatively regulating
neutrophil transmigration, and exogenous administration of AnxA1 causes neutrophil apoptosis in
inflamed lungs of humans and mice [170–173]. With all these properties, it is not surprising that
AnxA1-deficient animals exhibit increased susceptibility to DSS-induced colitis, with larger mucosal
injury [174]. This anti-inflammatory protein is also needed for efficient anti-TNF-α treatment, as
shown by the prevention of DSS-induced rectal bleeding, diarrhoea, epithelial damage, and collagen
degradation following infliximab treatment only in WT but not in AnxA1 knock-out mice [175].
A reduction of AnxA1 protein plasma levels is observed in IBD patients, and their expression is
upregulated during anti-TNF-α therapy in patients with a successful intervention but not in clinical
non-responders [176].

Neutrophils also actively contribute to the restoration of tissue homeostasis by secreting
growth factors, such as VEGF, and pro-resolving lipid mediators. During inflammation, a switch
in lipid mediator profile occurs. As mentioned before, neutrophils release pro-inflammatory
lipid mediators (for example, prostaglandin I2 and LTB4) at the onset of inflammation, before
producing pro-resolving lipid mediators, such as lipoxins, resolvins and protectins [177]. Lipoxin A4
(LXA4) is an anti-inflammatory agent that inhibits neutrophil recruitment and their transepithelial
migration [177,178]. Patients with severe UC display lipoxin biosynthesis deficiency in the colon,
characterised by low to absent synthesis of LXA4 [179]. Accordingly, lipoxin A4 analogues
dampen colitis induced by TNBS or DSS [180,181]. Similar to LXA4, resolvin E1 reduces
neutrophil transepithelial migration, and treatment with resolvin E1 reduces damage after TNBS
administration [182,183]. These mediators, including protectin D1, promote phagocytosis of apoptotic
neutrophils [184]. They also mediate the upregulation of CCR5 receptors on apoptotic neutrophils that
sequester pro-inflammatory chemokines such as CCL3 and CCL5, leading to neutrophil clearance at
sites of inflammation [185].

Finally, neutrophils secrete proteins that have important functions in modulating the inflammatory
response, and preventing undesired tissue damage. Pentraxin (PTX)3, a member of the PTX family, is
stored in neutrophil granules and is released in response to microbial recognition [186]. Upon release,
PTX3 also co-localises with NETs. This protein has a pro-inflammatory role by activating complement
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cascade and stimulating opsonisation [187,188]. However, PTX3 can also bind to P-selectin and impair
neutrophil rolling and recruitment in vivo [189]. Mice lacking PTX3 exhibit increased leukocyte rolling
in thrombin-stimulated mesenteric venules, and increased leukocyte recruitment in a model of acute
lung injury [189]. Neutrophils are the main source of PTX3 in UC patients and their expression levels
correlate with the histological grade of inflammation [190]. Plasma levels of PTX3 are also higher in
patients with active disease than in normal subjects and patients with inactive disease [191].

Thus, by inhibiting their own recruitment and promoting their own removal, neutrophils
contribute to the resolution of inflammation and tissue repair. Neutrophil clearance by itself allows
the inflammation resolution by reducing the number of pro-inflammatory cells. However, apoptotic
neutrophils are also required for proper resolution. This indicates that simply depleting neutrophils
would not be protective against intestinal inflammation since the action of neutrophils is mandatory to
clear infection, to avoid runaway immune responses, and to restore tissue homeostasis.

Therapeutic strategies that promote neutrophil apoptosis have emerged in different inflammatory
models, but, to date, no such molecules are used and validated for treatment of IBD [160]. We can
postulate that a long-term treatment that induces neutrophil apoptosis or shortens neutrophil life span
during inflammation may attenuate detrimental innate immune responses.

7. Conclusions

In summary, though not fully elucidated yet, the role of neutrophils in the pathogenesis of
IBD would be dual. It may differ between Crohn’s disease (CD) and ulcerative colitis (UC). In UC,
unrestricted neutrophil activation may cause significant tissue damage that further leads to chronic
pathology, whereas in CD, defective neutrophils may not be able to limit invasion by microorganisms,
leading to subsequent uncontrolled inflammatory reaction. Each component brought by neutrophils
are essential for their normal action, and they can also trigger positive feedback amplification loops that
promote neutrophil recruitment and activation, contributing to the pathogenesis of several diseases
such as autoimmune and chronic diseases [124,192]. In addition, some neutrophil-derived factors
can be detrimental by inducing tissue damage, while they can also be essential to maintain tissue
homeostasis. This concept is illustrated by chronic granulomatous disease (CGD) patients who display
inflammatory bowel disease (IBD)-like disease, even though reactive oxygen species (ROS) production
is often related to DNA damage, lipid peroxidation, and protein oxidation, as well as to the aging
process. Another example is matrix metalloprotease-9 (MMP-9), which is required for angiogenesis
and tissue regeneration, but can also create important structural damage, and promote a second wave
of neutrophil recruitment at a later stage of the inflammatory process. Importantly, neutrophils also
actively participate in the resolution of inflammation. All these considerations can explain some
controversial observations when using different agents blocking neutrophil action during colitis.
Consequently, drugs that respect neutrophil normal action while limiting their “hyper-action” may be
preferred to full neutrophil depletion.

Finally, the duality in neutrophil action during colitis may also be explained by the appearance of
distinct neutrophil populations in diseased conditions. Indeed, like other immune cells, neutrophils are
a heterogeneous population of cells comprising pro-inflammatory and anti-inflammatory neutrophils.
Different neutrophil subsets have been observed in cancer, where anti- (N1) and pro-tumoral (N2)
neutrophils can be found, but also in autoimmune diseases like lupus and Methicillin-resistant
Staphylococcus aureus infection in mice [193–196]. Thus, from short-lived cells with limited capacities,
neutrophils emerge to be a heterogeneous population with prolonged lifespan and functional versatility.
Under hypoxic conditions, a specific subset of MMP-9 delivering neutrophils can be recruited to
promote angiogenesis [115]. Some subsets may also display the ability to supress T cell responses,
which can be critical in the pathogenesis of IBD [197].

Therefore, the understanding of the mechanisms governing neutrophil activity, and the origin
and function of different neutrophil subsets all require further investigations in order to provide new
therapeutic avenues for IBD.
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