Development of a unified model for flow-material interaction applied to porous charring ablators

J. Coheur 1,2 , A. Turchi², P. Schrooyen³, T. Magin²

¹Université de Liège, Liège, Belgium
²von Karman Institute for Fluid Dynamics, Brussels, Belgium
³Cenaero, Gosselies, Belgium

47th AIAA Thermophysics Conference, June 5–9, 2017 Denver, Colorado, USA TP-04, Ablation II

Atmospheric reentry: an uncertain multiphysics problem

Main goal: Uncertainty quantification on simulations in order to assess the reliability of thermal protection systems during their design

Atmospheric reentry: an uncertain multiphysics problem

Main goal: Uncertainty quantification on simulations in order to assess the reliability of thermal protection systems during their design

Atmospheric reentry: a complex multiphysics problem

 Need for accurate characterization of TPS for maximizing payload, ensuring safety and the success of the mission

Atmospheric reentry: a complex multiphysics problem

 Need for accurate characterization of TPS for maximizing payload, ensuring safety and the success of the mission

- Typical mission killers
 - → Non-equilibrium effects in the shock and boundary layers
 - → Gas-surface interactions
 - → Flow-transition from laminar to turbulent

 Our goal: develop higher fidelity tools to model those mission killers and better assist TPS design

Table of Contents

Methodology

- Physical context
- Mathematical model
- Numerical modelling

2 Numerical results

- Pyrolysis verification test cases
- Simulation of Plasmatron experiments on carbon phenol

Conclusion and outlook

Table of Contents

Methodology

- Physical context
- Mathematical model
- Numerical modelling

2 Numerical results

- Pyrolysis verification test cases
- Simulation of Plasmatron experiments on carbon phenol

Conclusion and outlook

Materials for TPS design

- Ablative thermal protection materials (TPMs) will allow future sample return missions and high speed re-entries!
- Investigated here: lightweight, highly porous ablative materials (like PICA in the US, Asterm in the EU)

Carbon/phenol material = Carbon preform + phenolic resin

▶ When heated, the TPM is transformed and removed by two phenomena

- ▶ pyrolysis → thermal decomposition
- ► ablation → gas-solid reactions and transport of products, sublimation, spallation

▶ When heated, the TPM is transformed and removed by two phenomena

- ► pyrolysis → thermal decomposition
- \blacktriangleright ablation \rightarrow gas-solid reactions and transport of products, sublimation, spallation

- 4. Partially ablated
- 3. Charred
- 2. Partially pyrolyzed
- 1. Virgin material

▶ When heated, the TPM is transformed and removed by two phenomena

- ► pyrolysis → thermal decomposition
- \blacktriangleright ablation \rightarrow gas-solid reactions and transport of products, sublimation, spallation

- Partially ablated
- 3. Charred
- 2. Partially pyrolyzed
- 1. Virgin material

▶ When heated, the TPM is transformed and removed by two phenomena

- ► pyrolysis → thermal decomposition
- ▶ ablation → gas-solid reactions and transport of products, sublimation, spallation

- 4. Partially ablated
- 3. Charred
- 2. Partially pyrolyzed
- 1. Virgin material

▶ When heated, the TPM is transformed and removed by two phenomena

- ▶ pyrolysis → thermal decomposition
- ▶ ablation → gas-solid reactions and transport of products, sublimation, spallation

- 4. Partially ablated
- 3. Charred
- 2. Partially pyrolyzed
- 1. Virgin material

When heated, the TPM is transformed and removed by two phenomena

- ► pyrolysis → thermal decomposition: today
- ► ablation → gas-solid reactions and transport of products:

yesterday (TP-02, Ablation I)

- 4. Partially ablated
- 3. Charred
- 2. Partially pyrolyzed
- 1. Virgin material

Strategies for studying gas-surface interaction

Ground test facilities

VKI Plasmatron test on carbon-phenolic B. Helber, 2016

Numerical simulations

P. Schrooyen, 2015

Strategies for studying gas-surface interaction

VKI Plasmatron test on carbon-phenolic B. Helber, 2016

Numerical simulations

Unified flow-material approach P. Schrooyen, 2015

Numerical approaches for studying ablation

Strategies for studying gas-surface interaction

VKI Plasmatron test on carbon-phenolic B. Helber, 2016

Numerical simulations

Unified flow-material approach P. Schrooyen, 2015

Numerical approaches for studying ablation

Table of Contents

$\textcircled{0} Methodology}$

- Physical context
- Mathematical model
- Numerical modelling

2 Numerical results

- Pyrolysis verification test cases
- Simulation of Plasmatron experiments on carbon phenol

Conclusion and outlook

How to treat multiphase flows?

- Navier-Stokes equations for multicomponent flows valid everywhere in the fluid phase
- Chemical reactions with the solid phase
- → Resolution too costly!
- → Coupling the solid phase(s) with CFD not easy!
- Perform local volume averaging for a "more homogeneous" description (mesoscopic scale)
- New set of PDEs valid everywhere in the domain: Volume-Averaged Navier-Stokes (VANS) equations and chemical reaction laws

VANS equations for non-pyrolyzing media

Mass

$$\begin{aligned} \partial_t \left(\varepsilon_{\mathbf{g}} \langle \rho_i \rangle_{\mathbf{g}} \right) + \mathsf{div}_{\mathbf{x}} \left(\varepsilon_{\mathbf{g}} \langle \rho_i \rangle_{\mathbf{g}} \langle \boldsymbol{u} \rangle_{\mathbf{g}} \right) &= \\ -\mathsf{div}_{\mathbf{x}} \langle \boldsymbol{J}_i \rangle + \langle \dot{\omega_i}^{\,\mathrm{hom}} \rangle + \langle \dot{\omega_i}^{\,\mathrm{het}} \rangle \qquad (1) \\ \partial_t \langle \rho_{\mathbf{s}} \rangle &= -\langle \dot{\omega}^{\,\mathrm{het}} \rangle \end{aligned}$$

Momentum

$$\partial_t (\varepsilon_{\mathbf{g}} \langle \rho \boldsymbol{u} \rangle_{\mathbf{g}}) + \mathsf{div}_{\mathbf{x}} (\varepsilon_{\mathbf{g}} \langle \rho \rangle_{\mathbf{g}} \langle \boldsymbol{u} \rangle_{\mathbf{g}} \langle \boldsymbol{u} \rangle_{\mathbf{g}}) = -\varepsilon_{\mathbf{g}} \nabla \langle p \rangle_{\mathbf{g}} + \mathsf{div}_{\mathbf{x}} \langle \boldsymbol{\tau} \rangle + F_{\mathbf{gs}}$$
(3)

Energy

$$\begin{split} \partial_t \langle \rho E_{\rm tot} \rangle &+ {\rm div}_{\mathbf{x}}(\boldsymbol{\varepsilon}_{\mathbf{g}} \langle \rho \rangle_{\mathbf{g}} \langle H \rangle_{\mathbf{g}} \langle \boldsymbol{u} \rangle_{\mathbf{g}}) \\ &= {\rm div}_{\mathbf{x}}(k_{\rm eff} \nabla \langle T \rangle) + {\rm div}_{\mathbf{x}}(\langle \boldsymbol{\tau} \cdot \boldsymbol{u} \rangle) \qquad \text{(4)} \end{split}$$

• Volume fractions

$$\varepsilon_{\rm g} = \frac{V_{\rm g}}{V}, \quad \varepsilon_{\rm s} = 1 - \varepsilon_{\rm g}$$

• Intrinsic average operator

$$\langle \alpha \rangle_{\gamma} = \frac{1}{V_{\gamma}} \int_{V_{\gamma}} \alpha \, dV$$

Heterogeneous chemical reactions

$$\begin{split} \langle \dot{\omega}_i^{\text{het}} \rangle &= \frac{1}{dV} \oint_{\partial \Omega_g} \underbrace{k_f^{i,C(s)} \langle \rho_i \rangle_{\text{gs}}}_{\text{constant along fiber surface}} dS \\ &= k_f^{i,C(s)} \langle \rho_i \rangle_{\text{gs}} \underbrace{\frac{1}{dV} \oint_{\partial \Omega_g} dS}_{=A_{\text{w}}/dV \equiv S_f} \end{split}$$

Cylindrical recession

$$S_f = \frac{2}{r_{f,0}} \sqrt{\varepsilon_{s,0} \varepsilon_s}$$

Non-constant fiber reactivity

$$S_f = \gamma \frac{A_w}{dV}$$

(see Schrooyen et al., 2016)

Implementation of a model for pyrolysis

 Mass conservation equation for a species i in gaseous phase

$$\partial_t \left(\epsilon_g \langle \rho_i \rangle_g \right) + \mathsf{div}_{\mathbf{x}} (\epsilon_g \langle \rho_i \rangle_g \langle \boldsymbol{u} \rangle_g) = -\mathsf{div}_{\mathbf{x}} \langle \boldsymbol{J}_i \rangle + \langle \dot{\omega}_i \rangle_g + \Pi_i$$

Challenges

- Modeling the decomposition of solid phases: thermal degradation, char material, protection of the fibers until resin is depleted, ...
- Treatment of several solid phases
- Characterization of the evolution of the composite porous medium
 - Thermo. and transport properties
 - Tortuosity, permeability, ...

Model for the pyrolysis decomposition

 $\rho_m^v \to \rho_q + \rho_c$

 During pyrolysis, resin matrix converts into carbon (~ 60 %), releasing gaseous products (~ 40 %)

Goldstein (1969): pyrolysis of the phenolic takes place in two main reactions

$$\frac{\partial \langle \rho_I \rangle}{\partial t} = -A_{0,I} \langle \rho_I^{\rm v} \rangle \left(\frac{\langle \rho_I \rangle - \langle \rho_I^{\rm c} \rangle}{\langle \rho_I^{\rm v} \rangle} \right)^{n_I} \exp\left(\frac{-E_I}{RT} \right), \quad I = A, B$$

- Trick, Saliba, Sandhu (1995, 1997): 4 decomposition reactions in the process!
- Local and global pyrolysis reaction advancement coefficient

$$\xi_I = \frac{\langle \rho_I^{\rm v} \rangle - \langle \rho_I \rangle}{\langle \rho_I^{\rm v} \rangle - \langle \rho_I^{\rm c} \rangle}, \quad \xi = \sum_I F_I^{\rm v} \xi_I$$

Model decomposition for charred material

Models for charring material (Lachaud et al., 2010)

11/23

Matrix surrounding the fibers

Equivalent fibers radius

$$r_{\rm e} = r_{\rm f,0} + e_{\rm c}$$
$$r_{\rm e} = r_{\rm f,0} \sqrt{\frac{\varepsilon_{\rm s}}{\varepsilon_{\rm f,0}}}$$

Specific surface

$$S_{\rm f} = \frac{2}{r_{\rm f,0}} \sqrt{\varepsilon_{\rm f,0} \varepsilon_{\rm s}}$$

$$\begin{aligned} \frac{\partial}{\partial t} \left(\varepsilon_{\rm s} \langle \rho_{\rm s} \rangle_{\rm s} \right) &= \dot{\omega}_{\rm het} \\ \Leftrightarrow \frac{\partial}{\partial t} \left(\varepsilon_{\rm f} \langle \rho_{\rm f} \rangle_{\rm f} + \varepsilon_{\rm m} \langle \rho_{\rm m} \rangle_{\rm m} \right) &= \dot{\omega}_{\rm het} \\ \dot{\omega}_{\rm het} &= -S_{\rm f} k_{\rm f} \langle \rho_{\rm i} \rangle_{\rm g} \end{aligned}$$

Table of Contents

Methodology

- Physical context
- Mathematical model
- Numerical modelling

2 Numerical results

- Pyrolysis verification test cases
- Simulation of Plasmatron experiments on carbon phenol

Conclusion and outlook

Numerical modeling

- DGAblation module of Argo
- Space discretization: Discontinuous Galerkin Method (DGM)

- Local conservation of physical quantities
- High order of accuracy
- Low numerical dissipation and dispersion
- Fully implicit

Weak formulation of the convection-diffusion-reaction problem

$$\forall v \in \mathcal{V}, \quad \forall m \in N_v, \quad \int_{\Omega} v \mathcal{L}_m(u) d\Omega = 0 = \sum_{\Omega_e \in \Omega} \int_{\Omega_e} v \frac{\partial u_m}{\partial t} d\Omega_e$$

$$\text{FEM inside elements}$$

$$u = \sum_{j=0}^{p} U_j N_j$$

$$- \sum_{\Omega_e \in \Omega} \int_{\Omega_e} \frac{\partial v}{\partial x^k} F_m^{c,k}(u) d\Omega_e + \sum_{I_i \in I} \oint_{I_i} [v]^k n^k \mathcal{H}_m(u^+, u^-, n) dS$$

$$- \sum_{\Omega_e \in \Omega} \int_{\Omega_e} \frac{\partial v}{\partial x^k} (F_m^{d,k}(u)) d\Omega_e - \sum_{I_i \in I} \int_{I_i} (D_{mn}^{kl} \frac{\partial u_n}{\partial x^l}) [v]^k dS$$

$$- \theta \sum_{I_i \in I} \oint_{I_i} (D_{mn}^{kl} \frac{\partial v}{\partial x^l}) [u_m]^k dS + \alpha \sum_{I_i \in I} \int_{I_i} [v]^k [u_m]^k dS$$

$$- \sum_{\Omega_e \in \Omega} \int_{\Omega_e} vS(u, \nabla u) d\Omega_e$$

Table of Contents

Methodology

- Physical context
- Mathematical model
- Numerical modelling

2 Numerical results

- Pyrolysis verification test cases
- Simulation of Plasmatron experiments on carbon phenol

Conclusion and outlook

Pure conduction on a composite material

Nb of	Nb of	Nb of	Nb of	CPU
time step	elemts	DOF	CPUs	time
60000	160	$\begin{array}{c} 160 \times 3 \times 7 \\ (= 3360) \end{array}$	1	$\approx 5~{\rm hours}$

Pure conduction on a composite material

Nb of	Nb of	Nb of	Nb of	CPU
time step	elemts	DOF	CPUs	time
60000	160	$\begin{array}{c} 160 \times 3 \times 7 \\ (= 3360) \end{array}$	1	$\approx 5~{\rm hours}$

 Code-to-code verification against state-of-the art Echion solver for simple test case, using material properties of TACOT

Pyrolysis of the material

Nb of	Nb of Nb of Nb o		Nb of	CPU
time step	ime step elemts DOF		CPUs	time
60000	160	$\begin{array}{c} 160 \times 3 \times 7 \\ (= 3360) \end{array}$	1	$\approx 5~{\rm hours}$

Pyrolysis of the material

 Code-to-code verification against state-of-the art Echion solver for simple test case, using material properties of TACOT

- Pyrolysis of the material (cont'd)
- Comparison of pyrolysis gas blowing, char and virgin recession

 Discrepancies accorded to the difference in momentum equations implemented inside Argo and Echion

VKI 1.2 MW Plasmatron wind tunnel

Most powerful inductively-coupled plasma facility in the world

Test chamber

Test on a carbon-phenolic

Test case under consideration: carbon preform sample

Test name	gas	$p_{ m s}$ hPa	$\dot{q}_{ m cw} \ { m kW/m^2}$	aus	$egin{array}{c} T_{ m w} \ { m K} \end{array}$	$\dot{s} \ \mu$ m/s	\dot{m} mg/s
HS-A2a	air	200	1016	90.4	1845	36 ± 3	60.4

B. Helber. "Material Response Characterization of Low-Density Ablators in Atmospheric Entry Plasmas", Vrije Universiteit Brussel & von Karman Institute, 2015 (PhD Thesis).

Definition of material properties and BC

Plasmatron 200 hPa, 1 MW/m² experiment

Material properties

- Asterm (carbon-phenolic)
- Hemispherical shape (R = 25 mm)
- Porosity = 0.8
- Permeability = 1.2e-11
- Tortuosity = 1.2
- Emissivity = 0.97

- ▶ Inlet: $U_{in} = 37 \text{ m s}^{-1}$, $T_{in} = 6088$, Air₅ (O, O₂, N, N₂, NO) at T_{in}
- ▶ Outlet: $p_{out} = 200 \text{ hPa}$

>
$$T_{\rm w} = 298 \,\,{\rm K}$$

Material properties for unified flow approach

- No thermodynamics properties for the pure solid phase are available in open literature
- → Adaptation of the usual TACOT properties using Mutation++ with air

Results: flow fields after t = 0.4 s

Nb of	Nb of	Nb of	Nb of	CPU
time steps	elemts	DOFs	CPUs	time
81198	2250	$2250 \times 3 \times 12$ (= 81000)	12	≈ 2 weeks

Results: total pressure and mass fractions

Results: total pressure and mass fractions

Table of Contents

1 Methodology

- Physical context
- Mathematical model
- Numerical modelling

2 Numerical results

- Pyrolysis verification test cases
- Simulation of Plasmatron experiments on carbon phenol

Conclusion and outlook

Conclusion and outlook

Implementation of a new module for pyrolysis using the unified approach:

- One mass conservation equation per resin compounds
- Pure conduction/pyrolysis decomposition model verified on state-of-the-art test cases
- Model for charred material surrounding the fibers implemented
- Preliminary simulations of Plasmatron experiments on pyrolyzing materials
- \rightarrow One of the first unified flow-material solver featuring pyrolysis

Conclusion and outlook

Implementation of a new module for pyrolysis using the unified approach:

- One mass conservation equation per resin compounds
- Pure conduction/pyrolysis decomposition model verified on state-of-the-art test cases
- Model for charred material surrounding the fibers implemented
- Preliminary simulations of Plasmatron experiments on pyrolyzing materials
- \rightarrow One of the first unified flow-material solver featuring pyrolysis

Outlook:

- Verification and validation of the charred model
- Simulations with real material properties/pyrolysis gas composition
- Comparison with Plasmatron experiments on carbon phenol materials

Development of a unified model for flow-material interaction applied to porous charring ablators

J. Coheur 1,2 , A. Turchi², P. Schrooyen³, T. Magin²

¹Université de Liège, Liège, Belgium
²von Karman Institute for Fluid Dynamics, Brussels, Belgium
³Cenaero, Gosselies, Belgium

47th AIAA Thermophysics Conference, June 5–9, 2017 Denver, Colorado, USA TP-04, Ablation II

Bibliography

- G. Duffa. Ablative Thermal Protection Systems Modeling. American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, 2013.
- J. Lachaud, I. Cozmuta, N. N. Mansour. Multiscale Approach to Ablation Modeling of Phenolic Impregnated Carbon Ablators. Journal of Spacecraft and Rockets, Vol. 47, No. 6 (2010), pp. 910-921.
- J. Lachaud, T.E. Magin, I. Cozmuta and N.N. Mansour. A Short Review of Ablative-Materials Response Models and Simulation Tools. 7th European Symposium on Aerothermodynamics, Brugge, Belgium, 2011.
- P. Schrooyen. Numercial Simulation of Aerothermal Flows Through Ablative Thermal Protection Systems. PhD Thesis. UCL & VKI, 2015.
- B. Helber. Material Response Characterization of Low-Density Ablators in Atmospheric Entry Plasmas. PhD Thesis. ULB & VKI, 2015.