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Atmospheric reentry: an uncertain multiphysics problem
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Main goal: Uncertainty quantification on simulations in order to
assess the reliability of thermal protection systems during their design
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Atmospheric reentry: a complex multiphysics problem

I Need for accurate characterization
of TPS for maximizing payload,
ensuring safety and the success of
the mission

Credit: NASA

I Typical mission killers
Ô Non-equilibrium effects in the

shock and boundary layers
Ô Gas-surface interactions

Ô Flow-transition from laminar
to turbulent

I Our goal: develop higher fidelity tools to model those mission killers and
better assist TPS design
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Materials for TPS design

I Ablative thermal protection materials (TPMs) will allow future sample
return missions and high speed re-entries!

I Investigated here: lightweight, highly porous ablative materials (like PICA
in the US, Asterm in the EU)

Carbon preform

Credit: Mersen Scotland

Carbon/phenol composite

Credit: Airbus DS

I Carbon/phenol material = Carbon preform + phenolic resin
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Pyrolysis-ablation problem

I When heated, the TPM is transformed and removed by two phenomena
I pyrolysis Ô thermal decomposition
I ablation Ô gas-solid reactions and transport of products,

sublimation, spallation

Heat flux

Credits: (left) Stackpoole et al. (2010)
(right) Lachaud et al. (2008)
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Pyrolysis-ablation problem

I When heated, the TPM is transformed and removed by two phenomena
I pyrolysis Ô thermal decomposition: today
I ablation Ô gas-solid reactions and transport of products:

yesterday (TP-02, Ablation I)

Pyrolysis gas

Heat flux

Credits: (left) Stackpoole et al. (2010)
(right) Lachaud et al. (2008)
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Strategies for studying gas-surface interaction

Ground test facilities

VKI Plasmatron test on carbon-phenolic
B. Helber, 2016

Numerical simulations

Unified flow-material approach
P. Schrooyen, 2015

Numerical approaches for studying ablation
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How to treat multiphase flows?

Fluid

Fibers

Flow field 
Lc ~ 1 m

Porous medium 
Lc ~ 1e-6 m

I Navier-Stokes equations for
multicomponent flows valid
everywhere in the fluid phase

I Chemical reactions with the solid
phase

Ô Resolution too costly!

Ô Coupling the solid phase(s) with
CFD not easy!

I Perform local volume averaging for a “more homogeneous” description
(mesoscopic scale)

I New set of PDEs valid everywhere in the domain: Volume-Averaged
Navier-Stokes (VANS) equations and chemical reaction laws
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VANS equations for non-pyrolyzing media

Mass

∂t (εg〈ρi〉g) + divx (εg〈ρi〉g〈u〉g) =

−divx〈Ji〉+ 〈ω̇ihom〉+ 〈ω̇ihet〉 (1)

∂t〈ρs〉 = −〈ω̇het〉 (2)

Momentum

∂t(εg〈ρu〉g) + divx(εg〈ρ〉g〈u〉g〈u〉g) =
−εg∇〈p〉g + divx〈τ 〉+ Fgs (3)

Energy

∂t〈ρEtot〉+ divx(εg〈ρ〉g〈H〉g〈u〉g)
= divx(keff∇〈T 〉) + divx(〈τ ·u〉) (4)

~ns,g g-phase

V = Vg + Vs

s-phase

Porous medium

• Volume fractions

εg = Vg

V
, εs = 1− εg

• Intrinsic average operator

〈α〉γ = 1
Vγ

∫
Vγ

αdV
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Heterogeneous chemical reactions

〈ω̇het
i 〉 = 1

dV

∮
∂Ωg

k
i,C(s)
f 〈ρi〉gs︸ ︷︷ ︸

constant along fiber surface

dS

= k
i,C(s)
f 〈ρi〉gs

1
dV

∮
∂Ωg

dS︸ ︷︷ ︸
=Aw/dV ≡Sf

~er

~eθ

dV

rf,0
dLf

Cylindrical recession

Sf = 2
rf,0

√
εs,0εs

Non-constant fiber reactivity

Sf = γ
Aw

dV

(see Schrooyen et al., 2016)
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Implementation of a model for pyrolysis

I Mass conservation equation for a species i in
gaseous phase

∂t (εg〈ρi〉g) + divx(εg〈ρi〉g〈u〉g) = −divx〈Ji〉+ 〈ω̇i〉g + Πi

Pyrolysis gas

Heat flux

Challenges
I Modeling the decomposition of solid phases: thermal degradation, char

material, protection of the fibers until resin is depleted, ...
I Treatment of several solid phases
I Characterization of the evolution of the composite porous medium

I Thermo. and transport properties
I Tortuosity, permeability, ...
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Model for the pyrolysis decomposition

I During pyrolysis, resin matrix converts into carbon (∼ 60 %), releasing
gaseous products (∼ 40 %)

ρv
m → ρg + ρc

q pg

I Goldstein (1969): pyrolysis of the phenolic takes place in two main reactions
∂〈ρI〉
∂t

= −A0,I〈ρv
I〉
(
〈ρI〉 − 〈ρc

I〉
〈ρv

I〉

)nI

exp
(
−EI

RT

)
, I = A,B

I Trick, Saliba, Sandhu (1995, 1997): 4 decomposition reactions in the
process!

I Local and global pyrolysis reaction advancement coefficient

ξI = 〈ρ
v
I〉 − 〈ρI〉
〈ρv

I〉 − 〈ρc
I〉
, ξ =

∑
I

F v
I ξI
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Model decomposition for charred material

I Models for charring material (Lachaud et al., 2010)

Phenolic resin

Approach I Approach II

Charred
material

Credit: Helber et al., 2015

Credit: Lawson et al., 2010 

er

e

I Matrix surrounding
the fibers

I Pore-filling matrix
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Matrix surrounding the fibers

~er

~eθ

rf,0

re

Fibers fraction, εf
Charred matrix fraction, εm

Solid fraction
εs = εf + εm

I Equivalent fibers radius

re = rf,0 + ec

re = rf,0

√
εs

εf,0

I Specific surface

Sf = 2
rf,0

√
εf,0εs

∂

∂t
(εs〈ρs〉s) = ω̇het

⇔ ∂

∂t
(εf〈ρf〉f + εm〈ρm〉m) = ω̇het

ω̇het = −Sfkf〈ρi〉g
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Numerical modeling

I DGAblation module of Argo
I Space discretization: Discontinuous Galerkin Method (DGM)

FV

FEM inside elements

u =
∑p

j=0
UjNj

p + 1 dof

element n element n + 1

between elements

per elements

I Local conservation of physical
quantities

I High order of accuracy
I Low numerical dissipation and

dispersion
I Fully implicit

Hillewaert (2013), Schrooyen (2015).
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Weak formulation of the convection-diffusion-reaction problem

FV

FEM inside elements
u =
∑p

j=0
UjNj

p + 1 dof

element n element n + 1

between elements

per elements

Schrooyen et al. (2016)

∀v ∈ V, ∀m ∈ Nv,

∫
Ω

vLm(u)dΩ = 0 =
∑
Ωe∈Ω

∫
Ωe

v
∂um

∂t
dΩe︸ ︷︷ ︸

Tv

−
∑
Ωe∈Ω

∫
Ωe

∂v

∂xk
F
c,k
m (u)dΩe︸ ︷︷ ︸

Cv

+
∑
Ii∈I

∮
Ii

[v]k nkHm(u+
,u
−
,n)dS

︸ ︷︷ ︸
Ci

+
∑
Ωe∈Ω

∫
Ωe

∂v

xk
(Fd,km (u))dΩe︸ ︷︷ ︸

Dv

−
∑
Ii∈I

∮
Ii

〈Dklmn
∂un

∂xl
〉 [v]k dS

︸ ︷︷ ︸
Di

− θ
∑
Ii∈I

∮
Ii

〈Dklmn
∂v

∂xl
〉 [um]k dS

︸ ︷︷ ︸
Dt

+α

∑
Ii∈I

∮
Ii

[v]k [um]k dS

︸ ︷︷ ︸
Dp

−
∑
Ωe∈Ω

∫
Ωe

vS(u,∇u)dΩe︸ ︷︷ ︸
Sv 14 / 23
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Verification test case

I Pure conduction on a composite material

Nb of Nb of Nb of Nb of CPU
time step elemts DOF CPUs time

60000 160 160× 3× 7 1 ≈ 5 hours(= 3360)

Adiabatic wall

Porous domain
filled with resin

5 cm

p = 1 atm

Slip adiabatic
walls

0 20 40 60
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I Code-to-code verification against state-of-the art Echion solver for simple
test case, using material properties of TACOT
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Verification test case

I Pyrolysis of the material
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Verification test case

I Pyrolysis of the material (cont’d)
I Comparison of pyrolysis gas blowing, char and virgin recession

0 30 60
0

0.07

0.14

Injection Time, s

CO
bl
ow

in
g,

kg
/m

2
/s

Argo
Echion

0 30 60
0

0.008

0.016

Injection Time, s

D
ep
th
,m

Argo
Echion

Virgin 98%

Char 2%

I Discrepancies accorded to the difference in momentum equations
implemented inside Argo and Echion
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VKI 1.2 MW Plasmatron wind tunnel

I Most powerful inductively-coupled plasma facility in the world

Test chamber Test on a carbon-phenolic

I Test case under consideration: carbon preform sample

Test name gas ps q̇cw τ Tw ṡ ṁ
hPa kW/m2 s K µm/s mg/s

HS-A2a air 200 1016 90.4 1845 36± 3 60.4

B. Helber. “Material Response Characterization of Low-Density Ablators in Atmospheric Entry Plasmas”, Vrije Universiteit
Brussel & von Karman Institute, 2015 (PhD Thesis).

18 / 23



Definition of material properties and BC

I Plasmatron 200 hPa, 1 MW/m2 experiment

Material properties
I Asterm (carbon-phenolic)
I Hemispherical shape (R = 25

mm)
I Porosity = 0.8
I Permeability = 1.2e-11
I Tortuosity = 1.2
I Emissivity = 0.97

Subsonic

outlet

Symmetric condition

Slip-wall (far- eld)

Isothermal

walls

Subsonic

inlet

Boundary conditions
I Inlet: Uin = 37 m s−1, Tin = 6088, Air5

(O, O2, N, N2, NO) at Tin

I Outlet: pout = 200 hPa
I Tw = 298 K
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Material properties for unified flow approach

I No thermodynamics properties for the pure solid phase are available in open
literature

Ô Adaptation of the usual TACOT properties using Mutation++ with air

: Modified virgin properties
: Modified charred properties

: Vrigin TACOT properties
: Charred TACOT properties

1000 2000 3000
0

4

8

12

Temperature, K

T
he
rm

al
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nd

uc
tiv

ity
,W

/m
/K

1000 2000 3000
-2e+06

0

3e+06

6e+06

Temerature, K

En
th
al
py
,J

/K
g
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Results: flow fields after t = 0.4 s
Nb of Nb of Nb of Nb of CPU

time steps elemts DOFs CPUs time

81198 2250 2250× 3× 12 12 ≈ 2 weeks(= 81000)

6088 K

298 K

Temperature and
vector flow field

298 K

6088 K
37 m/s

pCO

5510 Pa

0 Pa ∼ 300 µm/s

CO pressure field
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Results: total pressure and mass fractions

I Total pressure along stagnation line
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Conclusion and outlook

Implementation of a new module for pyrolysis using the unified approach:

I One mass conservation equation per resin compounds
I Pure conduction/pyrolysis decomposition model verified on state-of-the-art

test cases
I Model for charred material surrounding the fibers implemented
I Preliminary simulations of Plasmatron experiments on pyrolyzing materials

Ô One of the first unified flow-material solver featuring pyrolysis

Outlook:

I Verification and validation of the charred model
I Simulations with real material properties/pyrolysis gas composition
I Comparison with Plasmatron experiments on carbon phenol materials
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