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Abstract 
Gene regulatory network (GRN) inference is an active area of research that facilitates understanding the 

complex interplays between biological molecules. We propose a novel framework to create such gene 

regulatory networks, based on Conditional Inference Forests (CIFs) as proposed by Strobl et.al. Our 

framework consists of using ensembles of Conditional Inference Trees (CITs) and selecting an appropriate 

aggregation scheme for variant selection, prior to network construction. We show on synthetic microarray 

data that taking the original implementation of CIFs with conditional permutation scheme (CIFcond) may 

lead to improved performance compared to Breiman’s implementation of Random Forests (RF).  Among 

all newly introduced CIF-based methods and 5 network scenario’s obtained from the DREAM4 challenge, 

CIFcond performed best. Networks derived from well-tuned CIFs, obtained by simply averaging p-values 

over tree ensembles (CIFmean) are particularly attractive, since they combine adequate performance with 

computational efficiency. Moreover, thresholds for variable selection are based on significance levels for p-

values and, hence, do not need to be tuned.  From a practical point of view, our extensive simulations show 

the potential advantages of CIFmean -based methods. Although more work is needed to improve on speed, 

especially when fully exploiting the advantages of conditional inference trees in the context of 

heterogeneous and correlated data, we have shown that CIF methodology can be flexibly inserted in a 

framework to infer biological interactions. Notably, we confirmed biologically relevant interaction between 

IL2RA and FOXP1, linked to the IL-2 signaling pathway and to type 1diabetes. 

 

 

 



Page 3 of 23 
 

Introduction 
Real-life biological systems display interactions and regulation schemes that are part of complex pathways 

or networks.  Understanding these networks is important to unravel gene regulatory mechanisms or the 

genetic basis of complex disease traits. The availability of genome-wide transcriptome data offers 

opportunities and challenges for data analysts to extract gene regulation information directly from gene 

expression profiles: genes regulate each other’s expression and activity.  

One of the challenges when dealing with data derived from high-throughput technologies (i.e., ‘omics’ data) 

involves the curse of dimensionality. This refers to the fact that number of variables p is usually much larger 

than the number of samples n for these data and hence model parameter estimation becomes unstable. 

Ignoring the p>>n issue and adhering to classical statistics, is bound to generate singularities in matrix 

algebra (e.g., singular matrices) [Johnstone and Titterington 2009]. The curse of dimensionality particularly 

applies to transcriptome data derived via RNA-seq, but also holds true for microarray-based data that 

typically considers between 10,000 and 57,000 transcripts, depending on the platform and organism 

[Hardiman 2004]. One way to circumvent this problem is to reduce the number of variables. This can be 

done by using prior biological knowledge leading to biologically motivated constraints, or via 

mathematical/statistical variable selection algorithms. Alternatively, novel representations of the data are 

looked for, such as principal components in a lower-dimensional linear space [Yao, et al. 2012] or kernels 

for non-linear data dimensionality reduction [Lin, et al. 2011].Graph structures are easy to interpret and 

naturally represent biological networks. These graph structures naturally give rise to biological networks 

[Zhu, et al. 2007]. These networks may refer to genes and gene products or to networks between macro- 

and/or micro-molecules, possibly integrating different data sources [Sahni, et al. 2015]. Although only 

approximate, biological networks are often assumed to be scale free. This implies that only a small number 

of nodes in the network are highly connected and that the majority of nodes are connected to only a few 

neighboring nodes. Usually, connected nodes in such networks are said to be “interacting”. However, this 

does not necessarily mean that the nodes (or the compounds they represent) are physically interacting. Note 
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that several so-called physical interaction networks may miss true interactions as well and often contain 

non-functional interactions [Levy, et al. 2009]. Gene regulatory networks (GRNs) represent directed 

functional linkages existing between genes and regulatory elements most frequently associated with 

transcription factors [Davidson and Levin 2005]. 

In this work, the envisaged biological networks are functional GRNs for which “interactions” depict either 

direct or indirect regulatory relationships [Cho, et al. 2012].  The framework we develop relies both on tree-

based variable selection and GRN inference. One of the advantages of trees and ensembles of trees [Huynh-

Thu, et al. 2010] is their ability to effectively and rapidly dissect complex data spaces such as those generated 

by gene expression microarrays. Trees and random forest methodology belong to the class of recursive 

partitioning methods, that aim to recursively partition the space spanned by all input variables into partitions 

of observations with similar responses. The final partitions may be characterized by highly complex 

interactive patterns between input variables, although care has to be taken when interpreting interactions in 

the context of random forests [Boulesteix, et al. 2015]. For a general overview on classification and 

regression trees, we refer to [Loh 2011].  

Tree-based models have a tendency to over-fit the data at hand and, hence, to underestimate classification 

errors. Several measures can be taken to overcome these issues, including the building of unpruned trees on 

multiple bootstrap samples as implemented in Breiman Random Forests (RF) [Breiman 2001] and the 

separation of variable selection and node splitting steps [Strobl, et al. 2007]. Such a separation is 

implemented in Conditional Inference Trees (CIT) and Conditional Inference Forests (CIFs) [Strobl, et al. 

2008; Strobl, et al. 2007]. At the heart of CIT and CIF lies an unbiased tree algorithm that do not artificially 

favor splits in variables with many categories or continuous variables [Strobl, et al. 2009]. CIFs present 

several advantages over classical RFs including separation of node selection and splitting steps to overcome 

tree-based variable selection bias [Hothorn, et al. 2006], resampling with replacement to handle ensemble 

variable selection bias introduced by bootstrap sampling [Strobl, et al. 2007], a conditional permutation 

scheme to deal with correlated input features [Strobl, et al. 2008], and the possibility of natural threshold 
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selection for variable importance measures (VIMs),  as we will show later. Hence, a CIF-based methodology 

theoretically encompasses categorical and continuous input variables that are possibly inter-related and 

measured on different scales, hereby paving the way for combined analysis of multiple data sources. For 

these reasons, and having integrative analyses of heterogeneous and inter-connected ‘omics’ data in mind, 

we chose CITs and CIFs as the basis of our novel network construction and inference methodology, despite 

the fact that random forests rather than CITs or CIFs are widely applied in bioinformatics contexts 

[Boulesteix, et al. 2012b]. In the belief that computational efficiency can be reached by optimizing the 

program code and CIT/CIF underlying algorithms, we focus on investigating the impact of parameter 

choices in CIT and CIF (e.g., related to multiple testing correction and the number of randomly selected 

variables at each tree node) on the performance of proposed gene regulatory network construction methods, 

in synthetic and real-life data settings. 

The source code: The source code developed in the context of this manuscript is available at 

https://bitbucket.org/kbessonov/cifmean and www.statgen.ulg.ac.be 

 

Methods  

Data sources 

We obtained publicly available gene expression data from the DREAM 2, 4 and 5 challenges [Marbach, et 

al. 2012; Marbach, et al. 2010; Marbach, et al. 2009] and the GEO public repository (GEO #: GSE43488).  

In particular, we used gene expression data on 3456 E.coli genes from DREAM2, containing 320 

transcription factors (TF), for 300 subjects [Essaghir, et al. 2010]. The 320 TFs were considered as input 

variables to our proposed strategies (Figure 1). As the gold standard (GS) network we took evidences from 

RegulonDB [Salgado, et al. 2013] of experimentally verified regulator - target gene relationships.  

https://bitbucket.org/kbessonov/cifmean
file:///F:/Documents/RESEARCH_Integromics/THESIS/REVIEWS/May_2016_CH124_67/www.statgen.ulg.ac.be
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The DREAM4 In Silico Network Challenge data only contained synthetic microarray expression data 

derived from 5 GS networks, each with 100 nodes [Marbach, et al. 2010; Marbach, et al. 2009; Prill, et al. 

2010]. Each data set contained 100 genes collected on 100 samples. Since no list of potential regulators 

existed, all 100 genes were considered as possible input variables.  

The DREAM5 Network Inference Challenge data consisted of three GS networks 1-3, with respectively 

1643, 4511 and 5950 genes. The GS network 1 data contained synthetic (simulated) gene expression data 

represented by 1643 genes and 195 regulators for 805 samples. The GS network 2 real-life E.coli expression 

data was characterized by 4511 genes containing 334 TFs collected on 805 subjects.  The GS network 3 

also involved real-life data on an organism, this time S.cerevisiae. The corresponding gene expression data 

included 5950 genes containing 333 regulators and was collected on 536 samples. For each scenario, the 

entire set of regulators was used as starting set for variable selection in our methodology.  

As a case study, we took human microarray expression data from a type 1 diabetes (T1D) study in children 

[Kallionpaa, et al. 2014], obtained via the public GEO database (GEO #: GSE43488). As gold standard we 

considered the verified set of transcription factor–target gene sets from [Essaghir, et al. 2010] that used a 

variety of sources, including the Transcriptional Regulatory Element Database (TRED) [Jiang, et al. 2007], 

Pazar [Portales-Casamar, et al. 2009], PubMed, and the Transcription Regulatory Regions Database 

(TRRD) [Kolchanov, et al. 2002], among others. The resulting unique list of gene-gene pairs was composed 

of 1617 genes (245 TFs and 1372 target genes). These 1617 genes, evaluated on 121 samples, served as 

input to the analytic tools considered in this manuscript. A summary of the available data is given in Table 

1. 

CIT/CIF-based network inference methodologies 

A schematic representation of our proposed GRN framework is given in Figure 1. In particular, for a given 

‘omics’ data set, with molecular information that can be mapped to a gene, for instance transcriptome data, 

and assuming a one-to-one mapping of transcripts to genes, each transcript (gene) is subsequently taken as 
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output (response) and the remaining transcripts (genes) are taken as input (predictor variables). For each 

response, a CIF/CIT is constructed and a variable importance measure (VIM) is defined (see below). These 

measures per gene are either based on a single CIT or are aggregated over several CITs in gene-based CIFs, 

depending on the view taken to construct a network from trees. In general, a (statistically) “significant” VIM 

for gene X in predicting gene Y will lead to a connection between X and Y in the network. Because of the 

direction of prediction, the connection is presented as a directed edge, naturally giving rise to a directed 

network (i.e., GRN). The so-called predicted network is compared to a gold standard (when available), using 

network prediction performance criteria as suggested by [Marbach, et al. 2012; Prill, et al. 2010]: 1) the area 

under the receiver operating characteristic curve (AUROC), 2) the area under the precision-recall curve 

(AUPR), and 3) the DREAM challenge specific score. The ROC curve plots the sensitivity (i.e., true positive 

rate) versus 1 minus specificity (i.e., 1 minus the true negative rate) and is well-known in statistics. 

Precision-Recall curves or PR curves are often used in Information Retrieval and offer an alternative to 

ROC curves for skewed class distributions. An algorithm may be a good performer based on ROC but not 

based on PR. Whereas recall is defined as the true positive rate, precision is defined as the fraction of 

examples classified as positive that are truly positive. When the number of unconnected nodes exceeds the 

number of connected nodes in the GS networks, as is the case with GRNs, more information about 

comparative performance of methods can be retrieved from precision-recall curves [Davis and Goadrich 

2006].  For more details about ROC-PR comparisons, we refer to [Davis and Goadrich 2006]. The overall 

score summarizes performance over several network scenarios and is defined as in [Marbach, et al. 2012] 

as the mean of the (minus log10-transformed) network specific p-values pPR and pROC. The PR and ROC p-

values are derived from the original AUPR and AUROC values by comparison of obtained areas with those 

obtained from a simulated null distribution based on 25,000 random networks [Marbach, et al. 2012].  

In what follows, we briefly describe the network inference schemes considered in this work. Each of these 

schemes involved particular choices of VIMs and hence different gene-gene network building strategies:  
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CIT: Here, the global null hypothesis of independence between any of the predictors and the response under 

consideration is tested by means of the conditional distribution of linear statistics in the permutation test 

framework of [Strasser and Weber 1999]. When this hypothesis cannot be rejected, the procedure stops. 

Otherwise, the predictor with the strongest association to the response is selected. We define the node’s 

variable importance measure as its measure of association with the response (i.e., the p-value of the 

corresponding association test) and denote it as VIMnode. When the same variable refers to multiple times 

nodes in the same tree, the measure of association corresponding to the node that exhibits the largest sample 

size is considered. Next, the most optimal split for that node is sought (i.e., the split that maximizes a split 

statistic). It is based on standardized linear statistics as before. For more details, we refer to [Hothorn, et al. 

2006].  

CIF and CIFcond: In this work, both GRN inference schemes build an ensemble of conditional inference 

trees via the R party package version 1.0-11 [Hothorn, et al. 2014; Hothorn, et al. 2006; Strobl, et al. 2008]. 

The cforest_control() function therein defines parameters that control the tree building. Unless stated 

otherwise, we passed the following parameters described in [Hothorn, et al. 2014] to cforest_control(): 

teststat="quad", testtype="Univariate", fraction=0.632, replace=F, mincriterion=0.95, minsplit=20, 

ntree=1000, mtry=k/3. Note that teststat="quad", testtype="Univariate", and replace=F correspond to the 

recommendations given in [Strobl, et al. 2007], so as to construct unbiased random forest. The mtry 

parameter (i.e., the number of variables randomly selected at each node) was set to k/3, with k the total 

number of possible predictors in the data as recommended by [Boulesteix, et al. 2012a] . While the cforest() 

function creates ensembles of trees from a training section of the input data, the function varimp() uses the 

out-of-bag (OBB) samples to calculate the importance of each predictor variable with respect to target 

response..  In particular, for each gene predictor / gene response pair, the varimp() function outputs the mean 

decrease in accuracy (%IncMSE), indicating how much the mean square error (MSE) increases after 

permutation of the OOB samples averaged over all trees of the forest. Thus, large values of %IncMSE are 

suggestive of a gene pair’s importance. Because for forests, a node’s variable importance is aggregated over 
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several trees, we denote it by VIMglobal. In practice, its calculation was made by the varimp() function with 

parameters nperm=100  and OOB=T. Hence, we used a total of 100 data permutations and OOB samples 

in the testing phase. In the case of CIFcond the conditional parameter in the varimp() function was set to true 

(i.e., variable importance was assessed via the conditional importance measure of [Strobl, et al. 2009]), 

while in CIF it was set to false. 

CIFmean: In contrast to CIF and CIFcond, we passed the following tree growth parameters to the function 

ctree_control(): teststat="quad", testtype="Univariate", fraction=0.632, replace=F, mincriterion=0.95, 

minsplit=20, ntree=1000, mtry=k/3. Because in CIFmean variable importance is assessed within a statistical 

framework, based on formal testing and p-values, the obtained p-values were compared to a significance 

level of 0.05 (i.e., mincriterion=0.95). In addition, a minimum number of 20 individuals were required in a 

node before it was considered for node splitting (minsplit=20). A node’s variable importance VIMglobal was 

aggregated over several trees according to the formula in Eq. 1, with n(Xj) - the number of trees grown per 

response gene that contain the variable Xj as a node and pXjt the p-value related to the association test between 

predictor gene j and response gene i in tree t of the ensemble (VIMnode). As before, when gene j (Xj) occurs 

twice in the same tree, only the p-value corresponding to the largest sample node is considered. We use 

CIFmean p-value to refer to network inference strategies in which VIMglobal is calculated using p-values 

aggregated via the equation 1. In case testtype=”Teststatistic” in the ctree_control() function above, not p-

values but raw test-statistics are used to aggregate over trees. We refer to this strategy as CIFmean test-

statistic.  

𝑉𝐼𝑀𝑔𝑙𝑜𝑏𝑎𝑙 =  𝑎𝑖𝑗 =
∑ 𝑝𝑋𝑗

𝑡𝑇
𝑡

𝑛(𝑋𝑗)
 (Eq. 1) 

Breiman RF: We implemented classic random forest (building 1000 trees) with the randomForest library 

(version 4.6-7) in R [Breiman 2001; Liaw and Wiener 2002] and the default options with mtry=k/3. Similar 

to the CIF and CIFcond methodologies described above, VIMglobal importance measures were permutation 

based and reflect the mean decrease in accuracy (%IncMSE) before and after permutation of OOB samples. 
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The OOB samples were derived based on sampling with replacement (bootstrapping) equivalent to the 

replace=T in the CIF. They were computed via the function importance(…)[,”%IncMSE”].  

The conditional inference framework and multiple-testing:  Previously, we indicated that we based the 

stopping criterion during node selection in CIT or CIF on univariate (multiple testing uncorrected) p-values 

as invoked by testtype="Univariate" in ctree_control(). However, it is also possible to use a stopping rule 

based on test statistics rather than p-values. In comparison to the second, the first does not make assumptions 

about the nature of large-sample distributions. Currently, in the software, it is only possible to explicitly 

account for multiplicity in the node selection, when using a stopping rule based on p-values 

(testtype="Univariate"), either by relying on Bonferroni (testtype="Bonferroni") or Monte Carlo 

(testtype="MonteCarlo") strategies. In practice, with Bonferroni correction, a node’s variable importance 

measure VIMnode is calculated using the formula 1-(1-praw)k where k is the total number of input predictor 

variables minus 1 [Hothorn, et al. 2014].  The Monte Carlo multiple-testing corrected p-values attached to 

a node (VIMnode) are based on permutations and adopts a min-p approach [Hothorn, et al. 2014].   

In the next section, we report results of extensive simulation studies, using the aforementioned network 

inference schemes and assess their robustness to altered parameter choices. In addition, we explore their 

utility on real-life data applications and formulate recommendations of our proposed GRN framework in 

data integrative contexts.   

Results  

Evaluation of CIT/CIF-based GRN inference with DREAM4 data 

Based on the DREAM overall score criterion (see Methods section), the best performers were CIFcond 

(34.24) and CIF (33.92), followed by RF (33.50) and CIFmean based on aggregating test-statistics rather than 

p-values (27.39) (Supplementary Figure S1). Amongst the CIFmean methodologies based on p-value 

aggregation, the best performers were GRN methodologies that utilized mulitple testing (MT) correction. 

The Monte Carlo based MT correction was the most effective (23.75), closely followed by Bonferroni 
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(23.61). The prediction performance of GRNs derived from a single tree (CIT p-value (Uncorrected)), 

compared to CIFmean p-value (Monte Carlo) was 1.8x lower: 13.17 compared to 23.75. The AUROC and 

AUPR in the 5 networks separately showed quite diverse performance trends amongst the considered GRN 

inference methods, as can be observed from Figure 2. However, CIFcond is a quite computationally intensive 

strategy (Table 2). The computations shown in Table 2 were run on a single core of an Intel L5420 processor 

clocked at 2.50 Ghz. For hundred nodes and a sample size of 100 subjects, Breiman’s RF implementation 

was the fastest data partitioning method, closely followed by CIFmean p-value (Bonferroni). For this reason, 

and because it is an easy-to-implement strategy giving rise to a statistically grounded threshold for variable 

importance, we will focus on CIFmean in the remainder of this manuscript (DREAM2, DREAM5 and real-

life data) and will investigate the scenario’s under which the performance of CIFmean can be optimized.   

The parameter mtry can have a large impact on GRN inference performance, as can be seen from Figure 3 

for CIFmean. The highest DREAM4 overall scores were obtained for mtry=k, hence using all possible input 

predictors, with the exception of CIFmean p-value (Bonferroni). There mtry=5 seemed to be a reasonable 

choice.  

Evaluation of CIFmean-based GRN inference with DREAM2 data  

The top performer based on AUROC and AUPR was RF followed by CIFmean test-stastistic (Uncorrected) 

and CIFmean p-value (Monte Carlo) (Figure S2). The Monte Carlo multiple-testing correction provided the 

best performance amongst the CIFmean p-value methods (Supplementary Figure S2). Note that since only a 

single data scenario was available for DREAM2 it was not possible to compute a DREAM global score but 

instead, we considered the sum of AUROC and AUPR. Contrary to DREAM4 results, the optimal mtry 

parameter based on AUPR and AUROC across all CIFmean methods with the exception of Bonferroni was at 

default value of k/3. In case of CIFmean p-value (Bonferroni), the highest performance was reached at the 

maximal possible value for mtry (Figure 4: mtry=k). 
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Application of CIFs to DREAM5 data 

Using the DREAM5 overall score developed in [Marbach, et al. 2012], the best performers were RF (63.28), 

followed by CIFmean p-value (Monte Carlo) (54.02) and CIFmean p-value (Uncorrected) (53.59). Very low 

performance was demonstrated by CIFmean p-value (Bonferroni) showing ~8.5x performance drop compared 

to CIFmean p-value (Monte Carlo): 6.32 compared to 54.02 (Figure S3 and Figure 5). The default mtry value 

of k/3 provided the optimal performance for CIFmean uncorrected for multiple testing and CIFmean with Monte 

Carlo based multiple testing corrected p-values. For CIFmean with Bonferroni corrections and for CIFmean 

test-statistic (Uncorrected), the maximal value of mtry provided the highest performance (Figure 6).  

Case Study: T1D data 

The best CIFmean -based GRN performer, at a default of mtry=k/3, was CIFmean p-value (Monte Carlo) 

followed by CIFmean p-value (Bonferroni) (Supplementary Figure S4). The impact of the mtry parameter 

across CIFmean methods greatly varied (Figure 7a). In case of the CIFmean p-value method with Monte Carlo 

multiple testing correction, the highest performance was achieved at the default mtry setting of k/3, although 

the performance is rather stable across the considered values for mtry. With Bonferroni correction, the 

maximum value of mtry at k gave the highest performance benefits. The CIFmean p-value (Uncorrected) 

method showed the lowest performance changes with varying mtry parameter values (Figure 7a), and 

therefore appears to be the most stable approach among all CIFmean approaches. The default mtry value of 

k/3 was clearly suboptimal for CIFmean test-statistic (Uncorrected) and CIFmean p-value (Bonferroni), 

depending on whether AUROC and AUPR measures of performance were considered (Figure 7b).  

From a practical point of view, considering a threshold p-value of 0.01, the GRN inferred with the best 

performer CIFmean p-value (Monte Carlo) with mtry=k/3, highlighted a total of 89 interactions. Amongst 

them is a highly significant pair involving forkhead box P1 (FOXP1) and the IL-2 receptor-α (IL2RA), with 

corresponding p-value based global variable importance measure of 0.0057 (Table 3). Both IL2RA and 

FOXP1 are well known T1D markers linked to the IL-2 signaling pathway and immune regulation [Hulme, 

et al. 2012]. Table 3 lists other significant pairs linked to IL2RA.  
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Discussion  
Networks come in different flavors, depending on their aim and the biological entities that serve as input 

during their construction. Examples of networks include gene regulatory networks (GRN) [Baitaluk, et al. 

2012], co-expression networks [Horvath and Dong 2008; Langfelder and Horvath 2008; Wang and Huang 

2014], differential networks [Ideker and Krogan 2012], metabolic networks [Maarleveld, et al. 2013]. All 

the networks considered in this manuscript were directed and inferred via machine learning based 

methodologies inspired by forests. Genes were taken as nodes and “variable importance measures” were 

taken as weights to edges. The measures were derived from conditional inference trees (CITs) or conditional 

inference forests (CIFs). The reason for relying on conditional inference trees rather than classic regression 

trees was that we were ultimately interested in developing a network inference method that enables the 

integration of different data types (for instance, methylome, genome and transcriptome data).  These data 

types generate measurements on differential scales, requiring re-scaling in order to avoid biased selection 

of features. Specifically, Breiman’s Random Forests [Breiman 2001] are known to be biased towards 

features with larger number of possible splits [Strobl, et al. 2007]. In addition, correlations between features 

are frequent in biological data (e.g., co-expression networks rely on “correlations” between gene 

expressions). Rather than reducing the data to obtain independent features (e.g. via components theory 

which would complicate node definition and interpretation), a method that can directly deal with correlated 

features is highly desirable. Our results showed that the conditional inference forests (CIF) framework can 

outperform classic Random Forest, especially when features are correlated or are of different measurement 

types as was demonstrated in DREAM4 data (Figure 2 and Figure S1).  

In particular, CIFcond applied to relatively small data from the DREAM4 challenge (100 nodes and sample 

size of 100), outperformed all other considered methods based on AUPROC and AUPR performance 

measures, including RF. The added value of CIFcond to RF seems to be rather small at first sight, but given 

its theoretical optimality in the presence of correlated data (as is the case here: multiple genes are co-

expressed), we would generally favor CIFcond over RF. Note that only weak correlation patterns existed 
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between gene expressions in DREAM4 data. Averaged over all networks, only 2.20±0.91% of gene pairs 

showed a correlation > 0.3 (Figure S5). Interestingly, for network 4 the AUROC of CIFcond was largely 

suboptimal to RF, whereas for AUPR, the CIFcond slightly outperformed RF (Figure 2). Clearly, single tree-

based techniques are not to be recommended for GRN inference purposes (Figure 2).  

Interestingly, having a closer look at DREAM4 scenarios and Figure 2 and AUPR, CIFmean with a stopping-

rule based on test statistics rather than p-values outperformed all other CIFmean methodologies. This may be 

due to the fact that CIFmean test-statistic (Uncorrected) does not make any assumptions about the shape or 

nature of the test statistic’s distribution. Hence, it would be interesting to investigate in more detail the 

relation between GS network properties, the nature of the input variables and the performance of CIFmean 

test-statistic (Uncorrected), possibly combined with a maxT [Westfall 1993] approach to derive multiple 

testing corrected p-values. The same observation was made for DREAM2 data (Figure 4 – varying mtry 

values). 

Among the p-value based CIFmean methodologies, CIFmean p-value (Monte Carlo) was the best performer for 

DREAM4 (Figure S1) and DREAM2 (Figure S2). For DREAM5 data scenarios, which are scenario’s with 

the largest numbers of genes among all considered synthetic networks in this manuscript, CIFmean p-value 

(Monte Carlo) did not only outperform all p-value based CIFmean methodologies, but also CIFmean based on 

test statistics (Figure S3). In DREAM5, CIFmean p-value (Monte Carlo) was closely followed by CIFmean p-

value (Uncorrected) (Figures 5 and S3). All these results seem to indicate the added value of adjusting for 

multiplicity during node selection, despite it being more computationally intensive (Table 2). 

The most optimal mtry value highly depended on the data scenario, respectively DREAM2, DREAM4 and 

DREAM5 (Figures 3, 4 and 6). For CIFmean p-value (Uncorrected) methodology, the most optimal values 

were respectively k and k/3. For CIFmean p-value (Bonferroni) they were 5 and k with k/3 being a reasonable 

alternative. For CIFmean p-value (Monte Carlo) the most desirable mtry values were k and k/3 and for CIFmean 

test-statistic (Uncorrected) they were k/3 and k. Notably, only with DREAM5 data the number of samples 
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largely exceeds the number of the input variables (i.e., TFs) to be considered for gene network inference. 

Hence, DREAM5 more closely resembles a classic regression context, compared to the other data scenarios, 

for which it has been shown that there is little improvement by using unpruned bagging strategies (i.e., 

mtry=k). The higher the discrepancy between the number of samples compared to the number of input 

variables (p>>n; as is the case for most real-life omics data with human samples), the more we expect mtry=k 

to do well, as was observed for T1D data (Figure 7). For practical reasons, our CIF-based GRN inference 

framework takes mtry=k/3 as a default.  

From a theoretical point of view and on small data sets CIFcond is to be preferred (Figure 2 and S1). From a 

practical point of view, more work is needed to use CIFcond principles for GRN inference purposes. Based 

on the DREAM4 data represented by networks composed of (only) 100 nodes, the computation time of 

CIFmean p-value (Uncorrected) was 12.35 minutes versus 0.79 minutes for RF (Table 2). Analyzing 4511 

nodes of the DREAM5 network 2 took CIFmean p-value (Uncorrected) 3232 minutes versus 6054 minutes 

for RF. Hence, it seems that the larger the data, with the same mtry parameters, the larger the computation 

time advantage of CIFmean over RF may be. Clearly, as CIFcond already took approximately 2 hours analyzing 

a 100 node network versus 12.35 minutes for CIFmean p-value (Uncorrected), it is infeasible to use it on 

large data sets at the moment. Modifying CIFcond to reduce computation time is the subject of future projects.   

GRN inference in eukaryotic expression data is complex [Michoel, et al. 2009]. Therefore, the absolute drop 

in performance of CIFmean p-value (Monte Carlo) (Figure 7), compared to for instance DREAM4 data 

(Figure 2), on type 1 diabetes (T1D) data is not surprising. Low correlation between gene expression levels 

is possibly due to transcription factor regulation acting on the protein rather than on the transcript level itself 

via post-translational modifications, unknown latent variables, genes exhibiting functional overlaps, several 

levels of regulation that are not caused by transcription factor binding [Hu, et al. 2007], epigenetic 

components and others. This may result in gold standard networks with heavy reliance on protein-protein 

binding but poor expression level changes [Marbach, et al. 2012].  Nevertheless, CIFmean identified highly 

relevant T1D genes connected to IL2RA, a well-known marker of T1D. This suggests the potentials of 
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CIFmean – based GRN inference in unraveling biologically relevant mechanisms. Among the genes listed in 

Table 3, is STAT1, a member of the STAT protein family, which is critical in IL2 signaling and regulation 

of T cell activity. Perturbations in IL2 signaling pathway were found to be closely associated to onset of 

T1D, highlighting the importance of the immune system and cytokine signaling components [Hulme, et al. 

2012].  The FOX family of proteins and BCL3 highlight the immune system involvement in T1D. The 

SMAD family of proteins is also key to T1D, as they are associated with TGFβ and BMP pathways. 

Mutations in SMAD genes are strongly associated with diabetes, as previously reported in [McKnight, et al. 

2009]. Note that these results were obtained by taking a p-value threshold of 0.01. The optimal threshold in 

the corresponding ROC curve (i.e., the point closest to the top-left part of the plot) was 0.0038 with 

respective specificity and 1-sensitivity confidence intervals of 0.55-0.56 and 0.45-0.52 (based on 2000 

bootstrap samples).  

Finally, CIF’s separate node selection and splitting association steps coupled to general association measure 

based on framework developed by Strasser and Weber [Strasser and Weber 1999] offer opportunities to 

handle different input data types, for instance RNA-seq and microarray expression data. Performance of 

CIF based methodologies was not yet tested on RNA-seq data, which is often characterized by small sample 

sizes. Since RNA-seq transcriptome data are ideally modeled via a negative binomial regression model that 

considers over-dispersion [Anders and Huber 2010], we plan to expand the choice of association tests 

currently incorporated in CIF methodologies. In addition, since these tests will rely on a regression 

framework, they can potentially be adjusted for confounding factors. In brief, the CIF framework provides 

generality and flexibility for enhancements in many contexts, including integrative multi-‘omics’ data 

analysis. In future work, our aim is to avoid a posteriori data integration (for instance fusing a methylome-

transcriptome, genome-transcriptome, transcriptome-transcriptome networks via [Wang, et al. 2014]), but 

to develop a feasible CIF- based gene regulatory network inference method that can handle methylome, 

genome and transcriptome data as joint input to predict gene expression. 
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Conclusions 
In this work, we investigated the performance and practical use of conditional inference trees (CITs) and 

forest (CIFs) to infer gene regulatory networks from synthetic and real-life data. Synthetic data and data on 

model organisms were made available by the Dialogue on Reverse Engineering Assessment and Methods 

(DREAM) project [Marbach, et al. 2010; Marbach, et al. 2009; Prill, et al. 2010]. Real-life data on type 1 

diabetes was obtained from the GEO public repository (GEO #: GSE43488).  We have shown that the 

conditional inference framework suggested by [Hothorn, et al. 2006] offers interesting possibilities for data 

integration, provided computational efficiency can be enhanced. In real-life settings of high-dimensional 

biological data, we recommend to use the CIF-based GRN inference approach based on conditional 

inference forests and node-specific p-values, adjusted for multiplicity in node selection by Monte Carlo 

resampling. In addition, we recommend randomly selecting about 1/3rd of the input variables at each node 

in the forest. Although more computationally intensive, this approach is less dependent on the number of 

randomly selected variables at each node than conditional inference trees with Bonferroni corrected p-

values. Averaging node-specific p-values over trees in CIF ensembles and using these as variable 

importance scores to weight network edges, greatly facilitates construction of weighted networks such as 

GRNs. Indeed, for classic forests-derived variable importance scores it is not obvious to set a threshold 

above which two nodes need to be connected in the network, unless ROC or PR curves are constructed 

based on gold standard and the optimal threshold is derived from those. The statistical framework that 

underpins CIFs naturally leads to setting an overall “significance” level, such as 0.01. The latter is important 

when working with real-life biological data, for which the truth is largely unknown.   Adopting this strategy 

on microarray gene-expression data for 121 type 1 diabetes patients and 1617 genes gave meaningful results, 

supported by the literature.  
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Figure captions 

Figure 1 - Gene regulatory network framework based on CIT / CIF 

a) Given gene expression data for a number of subjects or individuals, consider iteratively each gene 

expression as output (Yi - response) and remaining gene expression as input (X-i - predictors).  

b) Construct a conditional inference tree (CIT) or conditional inference forest (CIF) per input/output. 

c) Predict. Per node, aggregate over all available tree(s) to obtain a variable importance measure 

(VIMglobal). Construct a non-symmetric adjacency matrix and hence a directed network. 

d) Compare. The previously predicted network compare to a gold standard, whenever such a 

standard is available or use performance metrics such as area under the ROC curve (AUROC) or 

area under the precision-recall curve (AUPR). Edges that differ between gold standard and 

predicted network are shown in red. 

 

Figure 2 - DREAM4 performance results – mtry=k/3  

AUROC and AUPR expressed performance of considered GRN inference methodologies for each of the 5 

DREAM4 networks included in the study and described in the methods section.  

Figure 3 - DREAM4 performance results – variable mtry 

Performance of proposed CIFmean methods at various mtry values, assessed via the DREAM4 overall score. 

Overall scores are averaged over 5 networks.  

 

Figure 4 – DREAM2 performance results – variable mtry 

a) Performance of introduced CIFmean methods based on the total area of AUROC and AUPR. b) A more 

detailed view of the AUROC and AUPR dynamics as a function of the mtry parameter.  

 

Figure 5 – DREAM5 performance results – mtry=k/3 

AUROC and AUPR expressed performance of considered GRN inference methodologies for each of the 3 

DREAM5 networks included in the study and described in the methods section.  

Figure 6 – DREAM5 performance results – variable mtry 

Performance of CIFmean methods at various mtry values, assessed based on DREAM5 overall score (average 

over 3 DREAM5 networks).  

 

Figure 7 – The T1D Case study performance results – variable mtry 

a) Performance of CIFmean methods based on the total area of AUROC and AUPR. b) A more detailed view 

of the AUROC and AUPR dynamics as a function of the mtry parameter.  
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Supplementary material 
 

Figure S1 – DREAM 4 performance results - mtry=k/3 

GRN inference performance levels across 8 methodologies described in the methods section. Performance 

is quantified via the DREAM4 overall score as defined in for instance [Marbach, et al. 2012]. 

 

Figure S2 – DREAM2 performance results - mtry=k/3 

Performance of CIFmean and RF methods based on the total area of AUROC and AUPR (mtry=k/3).  

 

Figure S3 – DREAM5 performance results - mtry=k/3 

GRN inference performance levels across CIFmean methodologies. Performance is quantified via the 

DREAM5 overall score as defined in for instance [Marbach, et al. 2012]. 

 

Figure S4 – T1D Case study performance results - mtry=k/3 

Performance of CIFmean methods based on the total area of AUROC and AUPR (mtry=k/3).  

 

Figure S5 – DREAM4 GS networks 

Network properties of the DREAM4 GS networks (1-5), each of size 100 (nodes). 

 


