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dynamic components by v, 're have by definition
of the rotation operator,
ABSTRACT

The mean motion of a2 flexible body is usually
taken to satisfy the TISSERAND conditioans of zero
relat ive momentum and anzgular momentum assoclated
to a miaimum of the relative kinetic enerzy. )
The paper proposes a choice minimizing the mean
square of relative displacemencs. It preserves
the zero momentum condition but linearizaes the
angular momentum condition {n such a way that -~
the relative displacements are representable 27 XN P
exactly by an expansfon (n natural elastic < —- \d
vibration modes. C
UAMILTON'S principle is used to derive all v’ D u
equations of motion, including the mean one, by r
using the concept of quasi-coordinaces, Gravita- 2 .
tional potential and thrusc vectors, as locally P
oriented by the body motion and deformation, are
accounted for.
Distortions may be large provided strains remain G
small. 9
Keywords : Flexible bodies, :lonlincar dynamics, c
‘fcan motion.
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FIG. 1

1. INERTIAL and NYNA'IC REFERENCE
FRAMES

A material point of the body has a position vector
y in a reference configuration C_ and v in the
actual configuration C ac time t, as measured from
cthe origin G_ of an inertial referemce frame.
If the body does noe deform, we may think of the

dynamic axes as frozen in the body and carried by
its motion. If it does deform we can still define
dynamic axes by some useful property that would
result for the relactive displacements u. Figure 1
illuscrates the vectorial relationship Letween
the displacemenc vector z in the inertial system
and u

-> - -

-> -> ->
wty’z-a*»t-a*x

*ua 1

The relative position of the two reference‘frames
is fully described by the position vector a(t)

of the origin of dynamic axes and a matrix rota-
tion operator U(t)

U uT « yTy = I idencicy macrix (2)
det U = 1

If for an arbitracy vector 3, we denote the column

-

mactix of its inertial components by V and of its

The dynamic reference configuration C, is che
reference configuration Co cargied by the change
of axes and a posi:i.gn vector y is carried into
the position vector x so that

§=x (4)
From (1)
TeieR*GadrU(x+u)
or, premultiplying by U,
x+*u= U (F=3) (5)

As X and u arg normglly observed {n the dynamic
frame, while v and a are data observed in the
inertial frame, (5) {g the most useful form of

realation (1),
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u is a function u(x,t), ¥ a function #(¥,t), and,
as already seen 3 and U depend only on time,
2. MEASURE OF STRAIN and STRAIN ENERGY
Denote by

aum .

A -(3—} (6)

*n

the macrix of gradients of relative displacements

in the dynamic frame. An exact measure of strain
is provided by the GREEN tensor

1 T T
Poelygl =g @Asal+ain ™
or, explicitly,
du du 3y, du
1 m a 1 1
Y WS (bt b s ) (3)
m 2 an 3xm 3:‘“ 3xn

Those quancities will be assumed to be small
and the strain enerzgy to be

waell cPa du
J-zfcmvmqup Q)

where ¢’ are the elascic moduli, p the mass per
unit volume and dM an elementary mass of the body.
If in additcion to small scrains, the body deforms
only slightly (chis may not be the case for thin
elongated parts) the major part of the local mate-
rial rocations experienced between the configu-
rations C_ and C can be absorbed by the rotation

of the dynamic axes. The relative material rotations
are then small and the measure of strain may be
linearized by dropping the last term {n (S).

3. ABSOLUTE VELOCITY and KINETIC ENERGY

Differentiation of (5) with respect to Cime
produces

e - UED s uGE - )

Substitucing @ = 3 = Ur (x + u) and noting that

- - - -
a £14 3 de

are respectively the absolute velocity of a mate-
rial point and the velocity of the orizin of dyna-
mic axes

du
va"’g’E"I (x*u)*ﬁ (10)
where
d w3 cr ep
[u] wy O -wy|==UU" =W (11)
Uy Wy 0

is a skew symmetric matrix built up, as the notation
suggests, from the dynamig components of the pseudo-
vector angular velocity w :

ur - (ul wy 03)

The skew symmetric character, explicitit in the
last equality of (1l1), is immediacly verified by
time differentiation of (2). The second term on
the right hand side of (10) is the vector of
dynamic components of a vector product w x T.
It may thus be written indifferently

[u] (x+u) == [x+u] 0

From (10), the kinetic energy of the body can be
decomposed as follows

1 T
T'ijvavam
-lvrv du \v'r vagdu¢vr[u][(x*u)qm
2:7% g ) d¢ 3
T
1 {3u” 3u T du 1 T
3R TR COE RS T
(12)
where
T
R-I[::*u][x*u] du (13)

{s the macrix of inertia moments of the hody about
the dynamic axes in {ts true configuratiom, ‘e
recognize in the 3 lasc terms of (12) che relacive
kinetic enersy, the contridbution of gyroscopic and
centrigugal forces. ‘loreover

E3

I[x + u] %% du the vector of relative angular
momentum,

J 34 4. s che vector of relative momentum

4, VIRTUAL 'JORK and QUAST COORDINATES

The decomposition (1)) of the absolute velocity
must, by analogy with virtual velocity, give
birth to an analogous decomposition of virtual
displacement,

From (5) again

Su = §U(F=-3) + U (G - §3)

3-%=97 (xru)

U 8% = 6h absolute virtual displacement

'] 53 = Sp vitual displacement of the origin

of dynamic axes
hoth in dynamic components. Hence

fh = &p + [ba] ( x+u ) + bu (14)
‘here [° Sa; - da r
[5a]= ~6a; 0 sa,| = - 50.07 = U, 60
An, -da 0 -
2 l : (15)

The elements of Sp are also known as the quasi-
coordinates of translation and tnose of dn, the
quasi-coordinates of rotation,
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Let us consider a perturbed rotation as composed

of the unperturbed one followed by a small additio-
nal rotation, that will not differ much from the
identity

U+dU o (I-[6a])u
this i{s equivalent to
§U = - [a] U

or the definition (15). The elemants of G&a are
the small angles of rotation of the dynamic frame
about {ts own axes, when passing from the unpertur-
bed to the perturbed position. This agrees with the
definitions of the elements of w , the angular
velocities of the dynamic frame about its own
axes.

The virtual work of a force t applied at a material
point 1is thus, as seen in the dynamic frame

£%h = £7(8p + (5a] (xvu) + 6u) (16)
In the application of HAMILTON'S principle, the

variation of the kinecic energy involves the
computation of

sl gy di,yd g
Gv; a(u“)-su“«ud: §3

T d T
= 8UUv, + U (u* sp)

or finally, after expanding the last term,
d
Gvg = = (4a] " (W] 6o 3T o0 %))
It involves also the computation of Sw . Starting

from :

ITd

PO | - _d T . )
55 = = 6u-E(U Sa) »U8a + U ESG

dt
and premultiplying by U, there follows

Sw = [u] a + :—: Sa (13)

The variational derivatives associated to 4p and fa
will be respectively the equations of mean transla-
tion and mean rotation about the dynamic axes,

5. MINIMUM KINETIC ENSRGY LN RELATIVE 'OTION

Assuming the absolute velocity of particles to be
given, analyze such motions of dynamical axes that
minimize

1 3u,\ T 3u
2 J (ac) ‘a-" du min
The minimum requires that

(24T , 29
jGe) Sedu0

for all changes in relative velocity due only to
changes in the motion of dynamical axes; the
position of the axes themselves may be kept uamper-

turbed at the epoch of comparison. Hence we take
4u = 0 and AU = 0, from which follows

Ava = A(U ?a) =0
From (10) follows then

(x*u)

3
L av, = (2]

= =Av < [x*u] dw
L

This, replaced in the minimizing condition 3ives,
in view of the arbitrariness of Avg and Aw

3u
[ € du = 0 (19)
the condition of zero relative momentum, and
[[x*u]f:%dn--‘) (27)

the condition of zero relative angular momentum,
Axes which move in such manner that these conditions
are satisfied are TISSERAND axes. While (17) {s
linear, (20) has the disadvantage of being non
linear in the relacive displacements.

Jn the other hand they simplify markedly the

formula (12) for the global kinetic enerzy.

6. LEAST SQUARES JF RELATIVE DISPLACEMENTS

A choice of dynamic axes mianimizing at all times
the functional

-}f uTu du nin (21)

will now be investigated. The minimizing condition
fur §y du =0

must hold for all variations due to a change {n
position of the dynamic axes. Such variacions
can be taken directly from (14), secting Sh=),
since ¥ {s a siven fileld and 3§37 = O,

Thus

Su = - C«Sa](x*u) - 6p = Exo-u]Ga-&p

The variations S§p and Sa being free and indepen-
dent, the minimizing conditions >ecome, noting
that Eu]u =),

I wudy =0 (22)
ftx +uludu = Il:x] uds =0 (23)
For the inertial observer, condition (22) implies
U[ (3 - 3) du 'de\l =)

1f the orisin of axes in the reference configu=
ration is taken at the center of mass. This
equacion yizlds then the explicit position vector
of the origin of dynamic axes, given the actual
confiruration of the body

3 [du - J @ du (24)
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Similarly, when (23) 1s expressed in terms of
observables in the inertial system, the consequence

J[x] du=0 : (25)

of our choice of the origin and the fact that
[x] x = 0, reduce it to the following equation
for the computation of the rotation operator

J[x] Uddu =0 (26)

To solve it we introduce a RODRIGUES-HAMILTON
tepresentation of the rotation operator

Usz+28 [b] + 2 (8] (8] (27)

and recall the significance of the vector b and

the parameter 8.

l. As [b] b = O we observe that Ub = b and this

vector, invariant under the operator must be
aligned with the axis of rotation;

2. Any vector u perpendicu.la: to b remains
perpendicular after transformation by the operator

b Uu = bTu+ 28 b° (] ¢+ 257 (5] (] =0

if bru =J , as also br[b]- 9.

3. Any vector perpendicular to b must be rotated
by the same angle 9; we must have

ur Uu = uru cos 9

The left-hand side is computed using the properties
W b] uwo [b] (5] =-b" 1+ 5t
and compared to the right, giving
I-Zbrb-coae or br'o-ninz%
(23)

4, Finally the condition UTU » I {mposes the
constraint

32051:3-1.0 . [29)
from which follows
B2 - cosz % (30)

The substitution of (27) into (26) leads to an
algebraic equation in b aud 3 chac is racher
difficult to manipulate,

The situationis much clearer if we begin by
translating the functional (21) in terms of the
unknowns and the data

%J("(" - 90T U@ -D-0du ain

Expanding the integral, taking (25) into account,
and kéeping only the terms that depend on the
unknowns 3 and U :

-23rfﬁdu+3rijdu-2IerGdu min,

Ine minimization witu craespect to 3 gives (24)
again and we are left to determine U with the
proolem

4 n- I U 3 dau niatuum  (31)

We now {ntroduce the representation (27) that,
after some commutations of factors {n vector
products gives to ¢ the structure of a secoad
degree form in the unknowns b and 8

¢'°Ixrﬁdu+28brﬁi¢br!~(b

& J (x] &du (32)
Fef e @ @ G won

The ainimizing conditions obtained by equating
to zero the partial derivatives of the augmented
fuact ional

bed =2 (B2 +bTh -1)

can be presented in the form of a self-adjoint
eigenvalue problen

“ A 5\ b
r } =2 (36)
at 3 3

For any eigenvalue A and associfated eigenvector ,
normed by the constraint (27), there follows from
the minimizing equations cthat

0--Ixr64u¢x

tlence the minimum of the functional {s associated
to the smallest eigenvalue of proolem (34). As
there are alwvays 4 rcal eigenvalues and correspon-
ding eijzenvectors the problem of the unicity of
the minimizing solution arises.

6., NEGENERACY NF THE LEAST SNUARES PROBLEM

Assume the smallest eigenvalue and one associated
e{zenvector of problem (34) to be determined by ome
of the standard algoritims. Consider a new set of
inertial axes obtained by the corresponding rotation
operator U (so that the optimal dynamic axes will
coincide in orientation with the Lne:ciil axes
at the epoch considered). Nenote Hy =i ma+x+u
the absolute displacement ia the nev inertial
axes, Then, the other eigensolutions will be
investizated as solucions of

- I %' Vo dy " stat{onary
where V 1is the rotation operator exploring the
new orientations of dynamic axes with respect to
the optimal ones.
(VU {3 of course the rotation operator with respect
to the original finertial axes). The eigenvalue
problem becomes
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(= D)=L e

n=| [« I[x]u du  (36)
e[ L] (d" » G ]ldT) @ 0D

with the advantage that one eigensolutiomn is
known

wdy =

Ve I « b=0 and 3 =1,

Substitution of this solution in (35) shows that

l. m = 0, already known as minimizing propeety
(23)

2, A = 0, che smallest eigenvalue has been shifted
to zero. This has the effect of splitting the
eigenvalue problem in two parts

MbesAb (33)
A8 =o (39)

If the 3 other eigenvalues are strictly positive,
M is positive definite and conversely. The ainimum
is unigue, Matrix M can be put in the form

Me2 (I Ex*%l[v%]r du -I E%]E-;-]t.du}

of a2 difference of moments of {nertia, the firsc
associated 6o a sort of half-way confizurationm,
the second to a configuration where the position
vectors are reduced to half che displacemencs of
the masses.
Obviously ¥ will be positive definite Lf the
opt imal relative displacements are not unduly
large.,
Moreover (39) shows that the other eigenvectors
have their 8 component zero: they are 130° roca-
tions about axes that will be perpendicular, since
the eigenvectors b of (33) will be orthogonal,
The identity operator V=I and the three 130°
rotation VI.Vz,V1 form an Abelian group.
Assume now A=“0 to be a double root, It implies
that a unit vector n will exise, such that

n = 0 nrn-l
n is parallel to the axis of the rotation V and,
since A = 0,3 may be taken arbitrarily
(between =1 and +1). It is easily verified
that ¢ raemains minimum undec the one parameter
(9) familly of rotations

b=n sin'% 8 = cos %

Vel (m =1)(l~cos0) + sind [n]

7. AN EXAMPLE OF DEGENERACY

FIG. 2

The example, {llustrated on figure 2, shows the
possibility of non uniqueness of the minimizing
choice when large elastic displacements are
tvolved. A satellite with a rigid central axisym=
metric body has two flexible massless appendajes
terminated by concentrated masses. In its reference
configuration the macrix of :noments of inertia is

A"Z"IRZ B] 2 h)
b) B+2mR 9
o) 0 '}

Suppose that in the Jeformed confisuracion the
central »ody has not moved hut that the masses of
the appendages have heen interchanged. Je find from
(32) and (33)

2

- A=2nR ) N 2 9
=) ‘w2 b b =-2mR 9
o J B

The eigenvalues of problem (34) are :

(associated o b = O 3 = 1 and the
idencity ope=
rator)

A =0
o

A = 2(a-2aR%) A, = 2(s-20R%) A, = 23

2 3
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Take the case B > A, so that kl is the smallest

of thezlast three.

If 2mR < A the smallest eigenvalue {s A _aad is
unique. °

The original axes are also the ones that minimize
the functional, The rotatioms V,, Vz and V3 are

of 130° respectively about the }i:s:. second and
third cartesian axis; V. maxinizes the functiomal.
If 2mR® > A, the smallasc eigenvalue {s A, and is
again unique. The votatioa V, of 130° aboul the
axis of symmetry of the central body brings the
displacements of the concentrated masses of the
appendages back to zero, hut displaces all the
masses of ghe central Sody. This operatcion achieves
the relative configuracign minimiz{ng the functional,
In the limiting case 2mR® = 4, xo = 1, =9 and the
smallest eigenvalue {s a doublet, The functiocnal
remains invariant and min{mum under rotations of
arbitrary amplitude about the axis of symmetry.

3. DISCRETIZATION OF BODY FLEXIJILITY

The time derivacive of (22)coincides with the zero
relative momencwn TISSERAND condition (19). lut
the time derivacive of (23) (s a linearized form
of the zero angular momentum condition (2J) and is
easier to apply to the discreti{zacion of body
flexibility. The discrecization by neans of a
modal analysis is classical in the case of small
deformacions l+3 , In the case of large deformations
it {s simple to apply in relacion tn the choice
of axes suzgested in section 6, With the advent

of powerful computer programs for modal analysis
and accurate testing methods “*2 , {t is also
practical.

A modal analysis of the small amplicude vibracions
of the free body produces the following expansion
for small relative displacements, in which the
summaction convention on repeated {ndices {s used

and °1pn denotes the alternating tensor

Wt = v () s e a (®) x + qu(e) £y(x)
The unknowns are the rigid body tramslation ampli-
tudes vl(:). the small rigid body rotation amplitudes
ap(:) and a denumerable set of vibration amplitudes
qp(e).

A8 the set of functions describing the displacement
field {s complece, the expansion can be used even
for large relacive displacements, i{n which case
large a_(t) cterms induce strains because of Cie

non linBar terms {n the exact strain measures 6).
However, the minimizing conditions (22) and (23)
are precisely satisfied by keeping the qq terms
alone, 8

Indeed the modal function ft(x) have the properties

I:i du = 0 (L=1,2,3) all 8 (40)

(3 = 1,2,3) all 38 (41)

B -
ejqi qu El dy = 0

expressing their inertial orthogonality with .
respect to the small rigid body modes (which are -
nactural modes of zero frequency).

Thus, considering that the origin of the reference
configuration is at the center of mass,

Ixn du =0 (n = 1,2,3)

the minimizing conditions (22)
fui (x,t) du = 0 (1 = 1,2,3)
reduce to .
VL(:) I dy = 0 (L =1,2,3)

and are satisfied by setting vi(‘) = J, The
minim{zing coaditions (23)

eth [ xq uy du =9 (J =1,2,3)

reduce to

e - §, - =0
mp(:) *on 'jqi! xnxq du G;(t) I(xnxn ° xjxp)du

J

The matrix of integrals (s that of the inertia
moments of the body in its referenca configuration.
It {s positive definite, and the conditions

can only be satisfied by taking a (€) = 2.

Thus, an expansion of relative digplacemen:s limiced
to the natural modes of non zero frequency

aglx,e) = qq (0) £] (%) 42)
satisfies aucomatically the principle of minimum
square averane of relative displacements and the
equat ions of mean motion will he those associated.

to the corresponding choice of mean axes.

Another advantage of the discretizacion in nacural
modes is of course the existence of the orthogonality
properties

8 .y 8
[fi ft dy = 8 ! du
the squared norm of a mode, or gseaeralized mass,

being here conventionally equated to the total
mass of the bady, and then, wich D = a/axm,

(43)

Lf v¥8

j Pln £ F L,
du 1if y=8

mn M A p qp 2

=M (44)

The natural circular frequencies X(B are assuned
to be ordered by increasing values. in practice,
as interest is primarily centered on the low
frequency response of the body, the expansion is
truncated, leavins only a finite number of degrees
of freedom.
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9, INERTIA TERMS OF THE EQUATIONS OF MOTION
The expansion (42) s used to compute the

absolute velocity (10)

8 .
Vai * vsi * ®tm “n (x“ * fon) * g EL (43)

and produces for the kinetic energy the expression
Z‘r-Ivaiv“du
. - (Vgi vs‘ + N qs) I du
M ™ ( ‘uxndu * quFth * 9 qa[du )
BY)

= Wy g ( ‘m"nd“ * 2qBF:m ’qu'Ysﬂlﬂ
: 8 o
*2A wpdgd, (46)

This formula contains three types of coupling
coefficients resulting from the modal analysis

8
F:n'I"mfnd“'?:n (7

the symmetry with respect to the lower indices
being a consequence of (41),

BY L[ (¢B gf . g3 ¢¥
snn .zj(fn Eu’fu Em)du (48)
symmetrical {n both pairs of indiced and finally
a set of skew symmetric matrices, governing the
gyroscopic tarms

= I 34 :31 dy = = ,\:" (49)

The inertia terms of the equations of motion
follow from the computacion of the variation

v8
Am =g

cz Cz
aT T T
S| Taeel GoT SaiTar it 3q,
‘1 o F

T .
- 343 GQB ) de

Subscitucion of (17) and (18) and integration
by parts yield the following inertia terms

Mean translation (coefficient of GPL under the

integral sign)
d 3T 3T
- e ee—— P @ W e— (1.-1.2.3)
de avgi anl n avm
(50)
Mean rotation (coefficient of scL)
d_3ar 3T .
T a«i * %ni “n o (1=1,2,3)

(51)

Deformation mode of index 0 (coefficient of an)

d_aT 3T
a 3§, © 91, (52)

10. ELASTIC RESTORING TERMS OF THE EQUATIONS OF
MOTION

Under the expansion in modes the deformation tensor
(3) becomes

8 8 B8, Y
2 Tan © 98 (Dmfa * anm) ‘qu'YnmEanfl

(53)

and the strain energy (9), due account being taken
of (44)

1 2 1 g .1 3y
Woe = =
7 %% (g) I du* 7 %h% Tne * 3 %% Ty

(54)
The following coupling coefficients were introduced

8 Pq 3 n du _ 2
rn‘ -fcmn 0. fn op fl aq fi 5 rcn (55)

8y Pq. Y n du
riY . fcm o, fi 0, €10, £] 0 fj g (56)

the last one presenting the same type of symmetry
as the alascic moduli

By _- By - .v8 L 4
rnc' rcr| --I‘“c -rBY (57

The generalized elastic restoring forces appear
in the deformation mode equations only as

_ L2 1 8 oz
ERRRO R I du= 7 qaq (e +2 Tgp)

1 ng Yn
=7 Y% Tgy *Tgg )
(53)

For small deformations only the first term needs
to ve retained.

11. SRAVITATIONAL TERVS NF THE EQUATIONS OF MOTION

In the case of the gravitational potential use {s
made of the fact that the body dimensions are
usually small compared to a characteristic length
of the gravicational gradienc. ’

A truncated Taylor expansion of the specific
gravitational potential is then considered,
centered at the origin of dynamic axes

- )

G-G(i)-imr gt (59)

m "7 %an *n T
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where

gm(s) - -M ' (60)

EH
L}

is the gravitational acceleration at the origin,
and
2%c(®

; (3) = = or—=m= (61)
mmn hrna‘n

the local gravity gradient :?nsor.
In dynamical axes this becomes

G = G(d) - g, (x*u) -1y

2 ‘an (xmmn) (xnmn)

and, integrated over the mass of the body, produces
a potential :

- _ 1 8 1 8y
P = G(@) [ du ﬂm (Z I‘m‘nd" * qumn * 2 qﬁqumn}

(62)
Unlike the inertial and strain-energy forces, the
gravitational forces have {ixed oriencations in the

inertial axes; in other terms the dynamic components

i-lm depend on che oriencation U of the dynamic axes

HeUuRU
and, using (15)
6 = 60 H UT + u i 6uT = -(6a] H - usa)”

or Gﬂm Sa, H, = e Sa, H

® a1y °%t "ja T %0ty %L “jm

Ou the other hand
8G(3) = - §t 63‘ e 691

The contributions of the gravitational forces to

the equatioas of motion are then established as the

reppect ive coefficients of 6’1.' “L and Gqs appea-

rl.ng in - §P,

Mean translation
gi I du

Mean rotation

(1=1,2,3) (63)

8 By
L Eljn([ x x du + ZqBFm . qaqysm } (64)

(1=1,2,3)
Deformat ion mode of index
8 3y
Hnn { ?um * a, San } (65)

In aircraft applications, as long as the velocity
of flight V is small compared to the orbital
velocity g (R° mean earth radius , g_ modulus
of gravi:aciogal acceleration at this distance
from the center of the earth) it is common practice

to accept a "flat earth” approximacion. The
gravitational field {s considered to be uniform
and oriented as the third inertial axis. In this
case the dynamical components 8y are, i{n terms
of the usual choice of Euler angles.

= 8y sind , 58 sing cosd , 8, cosé cosé
along the roll, pitch and yaw axes respectively.
In satellite applications the inertial axes are
usually centered on the attracting body and
oriented towards "fixed stars".
Let R be the distance at which the gravitational
acceleration has a known modulus s then,
neglecting harmonics, the potential of a unit
mass is

2
G(3) = = gR:—- p = Jiii - /a!a

From which follows easily

a
- - —-L. z - 3—. - 1— 3 2
87 3% R Hap =t 3 % T3 San! 8*

12. THRUST FOLLOWER PORCES

Gravitacional forces are so-called "Jead" loads;
they have components determined {n inertial space
and oriented independently of the deformacion of
the body. Propulsion forces generated by air-
bSreathing engines or rocket thrusters are,
generally speaking, "followers”.

Attached rigidly to a rigid bYody their components
remain fixed with respect to the dynamic axes.
‘founted flexibly on a flexible body they are
moreover influenced by the deformations.

To take this into account, we assume that the
thrust axis of a given propulsion unit passes
throush a given material point x of the bhody and
is oriented by the local material rotacion
prevailing at this poinc,

Let dx denote a differencial step taken from the
point x of the thrust axis in the directioa of the
chrust in the reference configuracion, so that

dx
Jdx dx

are the direction cosines of the thruse vector f
in the reference configuration. In the deformed
state the convected unit vector will be

ans-

dx + du
Y (dx+du) T (dx+du)

Introduce the matrix A of displacement gradients,
as defined in (6)

n' =

du = A dx
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(I+A)dx
/ dx’dx+2dx"Tdx
remain very

Under thc.rauunption that the strains.r
small 2dx Tdx i{s negligible before dx dx and

n' = (I+A)n

In other words the local Jacobian matrix, governing
the local neighborhood transformation, represents
with a good approximation the local rotation opera-
tor, The dynamic components of the thrust in the
deformed configuration are thus given by

£' = (I +A) £

The virtual work, computed from the general formula
developped in section 4, i{s now expressible in terms
of the known thrust vector of the reference state

(T + 6a¥ [vu] + 6Tz + 0 £
From this the contributions of a thrust follower
to the different equations of motion {s obtained;
it requires the computation of the deformacion modes
and cheir derivatives at the local attachment point.
Mean translacion

* a0, :i) £

(6"‘ - (1i=1,2,3) (66)
Mean rotation
8 Y.
®otln (xn*'qsfn) ('6”*%0“!?) € (67)

(1=1,2,3)

If the deformations are small enough.' only the
linear terms in the amplitudes ag may be retained,

Deformat fon mode of index 3
8
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DISCUSSION
A. Lidgeots (Laboratoire d'Automatique): By using P. Likins (UCLA):

your method, the choice of the reference axes is
based on the minimisation of the summed squares of
the deviations. Have you tried to use another norm,
by using a weightless matrix (different from the
unit matrix)?

Author: No, I believe it would only complicate
matters, because the linearised version of the
Tisserand conditions that emerges from the simple
norm is ideally suited to simplify the expansion
in normal modes.

I note that you began with a
concept of a mean motion frame which is new to me,
that of a frame which minimises the relative dis-
placement norm, and showed that this is equivalent
to a frame that I have seen used before, that of a
frame for which relative angular momentum is zero
in the linear approximation. In the course of your
research, which came first?

Author: I was aware that others, such as. Professor
Buckens, have used the frame defined by zero
relative angular momentum in linear approximation.
However, I began with the realisation that the
Tisserand frame minimised the relative kinetic
energy, and sought instead to minimise the relative
displacement norm, finding only after extensive
analysis that the result was equivalent to the
frame which gives zero relative angular momentum in
linear approximation.



