DUALITY IN STRUCTURAL ANALYSIS
- BY
FINITE ELEMENTS

B. Fraeijs de Veubeke

INTRODUCTION

In linear cl.\suc:ty thcory the displacement field, of cartesian components u, (i , 2,
3), is charactcrized by gradlents of negligible magmtudc before unity

ID u1| << 1 - D, = 3/3x, A (1)

The coordmalu. x, of a material point are, for spccificity, cons1dercd to be those of the initial or -
“reference” contwuratlon of the elastic body, although the inequalities (1) allow to forget the
distinction between such lagrangian coordinates and the coordinates of the same point in the final
configuration.
The elements of the strain tensor can then be reduced to

1
€, = -2—(D1uJ + Ddu‘) =

€11 ) (2)
and those of thz rotation vector to

€y yxDyuy o ' (3)

N[~

w =

where e

L ik denotes the permutation symbol. It obviously follows that

le,,| <<1 and lo | <<1 | _ (4)

are restrictions fully equivalent to (1) In any simply connected domam the conservation of energy
can be stated in the form :

deR fx 6udR+/t 6udS - ' : (5)

OR

where the mtegratlons are performed in the domain R and on its bounding surface OR in the
reference configuration. The 6u,denote arbitrary perturbations of the displacement field; x, are
external force components per unit initial volume; t, surface traction force components. The
right-hand side is then the elementary work performed by the external forces in the perturbation.
It is equated to an increase in strain energy. From a thermodynamical standpoint this energy is the
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internal energy if there is no heat exchange between particles (adiabatic transformatiqn); it’.is.the
free energy if the transformation is kept isothermal. Introducing the stress tensor T, y equilibrium
at the boundary implies

- . 6
ty = ng7y, (6)

where the n} are the dircction cosines of the outward normal along 3R. The surface integral can
then be transformed in a volume inlcgra[

/ n, Ty y8u,ds ='/‘D1 (7y,8u,)dR

3R . R
and the statement of energy conservation written down, for a unit volume, as
oW = XJGU: + D, (Tuéuj)
an expanded form of which is
oW = (X, + D 7, )bu, + T, 4D, 6y, v )

In the case each &uy is an arbitrary constant, the volume element is merely translated and there can
be no encrpy increase, while Dybu, = 0; hence

X, + D1, =0 _ | (8)

Thosc are the translational equilibrium ¢quations satisfied by the stresses; the conservation energy
reduces now to

W = THDi 6uJ 9)
If the displacement pcrturb‘ation field is a small rigid body rotation
bu, = €y pnXn bW, (10)

where 6w, -are arbitrary constants. This expression neglects the fact that the coordinates of the
particles are actually x, + u,; however, this approximation is logical in view of the assumptions
(1) of geometrical linearity as is easily seen by comparison with an exact calculation. The energy
increase must again vanish; consequently, after substitution of (10) into (9), one can equate
separately to zero the coefficients of the 6w, and obtain the rotational equilibrium conditions:

eJmnTiJGIr\ = ejmnTnJ =0

which are equivalent to a statement of symmetry for the stress tensor
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.o T T!n : (11)
"= view of this last result (9) can be written as
2w = T”Dléuﬁ 'r”Djéu1 = 'r”6(DluJ+ Djui)

-c. {inally,

0

W= oT 0y, ‘ ’ ) (12)

In writing this statement in the equivalent form of gencral stress-strain relations

_ _ _oW o
¥ aex: (13)

consider the energy density W to be a function of the clements of a symmetrical strain tensor but
:z2 the formal distinction between ey and €51 in case 1 # j. Usually W is known explicitly in
€33) and shearing strains (vy,, Yua, Yg,) defined as

Wl
i

«7s5 of the direct strains (ey,, ,,,

iy T Dpugk Dyug = e ey, 1 #3) : (14)

T:us. 2 shearing stress is given as a result of (12) by

W
R

»*zn the terms in Ty, and T, have been collected together in view of (11). But it is also corrcctly
=z by (13) when the shearing strains are cxprusscd symlmtnc&l]y in terms of the e1y asin (14).
I= this case the symmetry (11) of the stress tensor is contained in (13).

In most applications material linearity is also postulated: the strain energy density is written as
+ zozdratic form

w o= % chle, e ] (15)

ct? = @l = gnE = 1
‘1 c i1 C 3 C (16)
=2 matrix of this quadratic f01m is posilive definite. Hence, the stress-strain relations

-, . = Cje : a7

~ oz inverted to yleld
¢ = FParT (18)

T Bn Pq
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Substitution of (18) into (17) shows that

CoFPe = 6789 ' : (19)

1y " mn

and conversely, substitution of (17) into (18) that similarly

1o gtgd
Fhac s = 6,60 | (20)

It appears then that the quadratic form (15) is numerically cqual to

S Lo :
¢ = 2 F;q TraTvq (21)

which will be called the stress-energy density, with the property

pq anq

(22)

This duality between W and ¢ applies more generally whenever the stress-strain relations (13) can be
solved in principle for the strains; that is whenever the Hessian matrix

2w

Be“aepq

is nonsingular in the range of strains that occur. The complementary energy density ¢ is then that
function of the stresses defined by the Legendre transformation

B(Tig)= 7,6, - W (23)

Discretization of the continuum problem can be introduced in many different ways and leads to a
wide variety of mathematical models for finite element analysis.

The most widely used is the discretization of "the sole displacement ficld; the discretization of
the strain field following through rigorous application of (2). The whole weight of the
approximation falls in this case on the equilibrium equations (8) that are only averaged as in a
Galerkin process on each finite element region by the shaping (or weighting) functions chiosen for
the displacement field. This procedure minimizes the functicnal “total energy” (strain energy plus
potential energy of applied loads) with respect to the finite displacement degrees of freedom. ’

A dual procedure is the discretization of the sole stress field, wherein one complies with the
requirement that equilibrium should always remain satisficd. The discretized strain field following
from rigorous application of the stiess-strain relations (22) docs not in general comply with
equations (2). In other words the integrability conditions for the existence of a displacement field
are generally not satisficd. The best approximation corresponds to a minimum of the functional
-“complementary energy” (stress-energy plus potential encrgy of the loads reacting against imposed
displacements) and corresponds to a Galerkin procedure applied to equations (2). As a result the
picture of the displacement field is “blurred;” it is only known through the valucs of a finite
number of functionals of that field. This feature is probably responsibl¢ for the relative lack of
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. waaxss of corresponding equilibrium models of finite elements, although in conjunction with

£xrizcement models they provide a powerful tool to assess energy convergence.
\(ATRIX FORMULATION OF THE BASIC VARIATIONAL PRINCIPLES

Displacements, body forces, surface tractions, strains and stresses can be ranged in row vectors,
swesented here as transposed column vectors:

v' = (uluzua)
X = (KKK,
th = (t tyty)
e' = (611622933 Y12Y23Y31) (Yia = in)
' = (T11T52Tas TI9T?3T$1) (Tu = 'r“)

T=er, with the help of a matrix differential operator

ind 2 corresponding matrix of direction cosines for the outward normal

¢ bzsic equations of lincar elasticity theory obtained in the previous section take the following

Torms

e = Du strain-displacement relations (24)
D't + X =0 volume equilibrium equations (25)
t =N't surface equilibrium equations . (26)

£ imear stress-strain relations of type (17) or (18)
- = He or e=H  (H=H" : 27)
zhe a positive definite matrix H of elastic moduli.

Cernsider now a simply connected domain R, bounded by a surface R, on which all surface
=::1:0ns are supposedly specified. The total energy is the functional
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£(u) =/wdR -fu'XdR -fu'tds ' A (28)
R R 3R ' .
where the strain energy density is calculated in terms of displacements as -
1, '\ o
W= 5 (Du)'H(Du) : : (29)
Let Tv denote a pcrturbution of the displacement ficld, where 1 is a small parameter; then

Eu+Tv) = £Qu) + Ta(u,v) + ﬂz'/%(Dv)'H(Dv)dR

R

a(u,v) =/(Dv)'ll(Du)R -/v'XdR -/ v'tds - . (30)

R R OR

with

Noting that H(Du) = 7 is the stress ficld associated with the displacement field u and integrating
by parts :

a(u,v) = -fv'(D'T + X)dR +/v’(N'T - t)dS ’ (31)
Obviously this expression vanishes for any displacement perturbation if the stresses T satisfy the
equilibrium equations (25) and (26). Conversely, if a(u,v) vanishes for all perturbations belonging
to a sufTiciently arbitrary class, the cquilibrium equations must be satisfied. Thus £ @) has a rclative
minimum when and only whe_n the associated stress ficld is in equilibrium with- the prescribed loads

X and ¢, .
In such a case it must be observed that

/'WdR %/ (Du) "H (Du)dR = %/(Du)'-TdR o
R IR _ "R - :
-1 Tt 1 1!
. A2/uDTdR+2‘fuNTdS
%‘fu'XdR + 'él-/u't-ds . (32)

1t
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1 result known as Clapeyron’s theorem. Substituted into (28) it gives the follov.ving equivalent

£Qu) = - %/(Du)'H(Du)dR
R

Clapeyron’s theorem furnishes a direct proof of the uniqueness of the displacement field
v~ associated stresses are in equilibrium with prescribed loads X and t. For if u andw are two
" sxch flelds, the field u-w has stresses satisfying homogencous equilibrium conditions (X = 0,
< =¢), Then, from Clapeyron’s theorcm ’

. f{D(u -w)V'u{p(u - w)?dR =0
s .

!

=3, by virtue of the positive definitencss of H,
D(u - w) = 0

T35 shows that the strain ficld is uniquely determined. For displacements themsclves u and w can
:=2v differ by a rigid body displacement field with small rotations; thus, to that extent, the solution
- to the problem is unique. Complete uniqueness occurs when, instead of specifying traction forces
== the entire boundary, enough displacement specifications arc introduced to prevent all rigid body
~-vements. It should also be obscrved that, whencver rigid body motions are allowed, the
rrescribed loads must satisfy global cquilibriam conditions. Even multiply-connected domains R can
v¢ subdivided in a set of simple conncected sub-domains Ey, the finitc clements. All the preceding
rarsiderations apply with the addition of transition conditions at the interfaces; they appear when
~forming the integration by parts in (30) as additional surface integrals. Denoting by T, and I-
<tk faces of a given interface 1 between two adjacent finite elements, a typical additional term in

S

“3MYis

Tar! 1!
/vé;\{_’r.’ds +/ v!N!Tt_dS

I. I

Physical integrity of the structure implies that the displacement field be continuous at the
tzriace ’ '

u_=v . .

= : S (33)

Transitional equilibrium conditions at the interface are then obviously

§'r, 4+ N7 =0
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.

Nl('r+ -7.)=0 . | (34)

if due account is taken of the opposite character of the outward normals. If advantage is taken of
the presence of the interface to apply external traction forces on it, those conditions generalize to

' A -
Ny(r, = T)) =t (35)
It is easily shown that, provided H is continuous ai an interface, the continuity of u and the
transition conditions (34) imply continuity of the stress tensor and the strain tensor.
The principle of minimum total potential
f(u) = minimum : ’ (36)
and the transitional conditions (33) provide a natural basis for a piecewise discretization of the

displacement ficld in finite elements.
The dual principle involves a functional

g(m) =/¢dR -/u'N'TdS | e
R 3R | | |

® = —;— T'H I ' (38)

based solely on a stress field T, the boundary spccifications consisting in prescribing the
displacements u everywhere on aR ,Morcover, only such stresses are allowed that satisfy the volume
equilibrium cquations (25) with prescribed body loads. If N0 denotes a stress perturbation, we have
g(T 4 Mo) = g(1) + Tb(T,0) + TF/% o'H-1odR
R

with

b(T,0) =/0'II’1TdR - [u'N'ads - | (39)
R 3R -

In order that T+ To should also satisfy the equilibrium conditions (25), we must have

.

D'o=0 | | : (40)

We remove this constraint on the o field by means of a vector lagrangian multiplier v, note that
H™ Yt = e is the strain field associated with T and rewrite the bilinear form as
b(T,0) = (c'e + v'D'O)dR - f u'N'aodsS 41)

R .~ OR
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. "%.p-_ zTter an integration by parts,

N3 '=/‘°'(e - Dv) +/(V' - u')N'ods (42)

-R 3R

"=y this expression vanishes for all perturbations if the stress field 7 is such that its

conzsted strain field is compatible; that is, if a displacement ficld v exists such that .¢ = py and

a0,

v = ¢ QN )R,
'f\ nversely, if the expression vanishes for all perturbations bt,longmg toa mfﬁucntly arbitrary

displacement ficld with such propertics must cxnst Thus g@) has a relative minimum when

~r mesactated strain field is compatible.
Iz such a case we note that

[ u'N'TdS =fv'N'TdS

2R ~ 3R

1.2 since vis defined in R while T is in equilibrium with X,

Al ey

/u'N'TdS =/ v'D'TdR +f T'DvdR

2R R R

= -fv'de+ T'edR

R R

¢ -1y, noting that
f—"edR ‘=f-r'1r1~rdR = 2 [ #dr
A R R

it rzsult can be expressed agam in the form of a Clapeyron thcorem

[ fv XdR + fuums (43)

R SR
*_mishes a proof of uniqueness. For if T and © are two stress fields in equilibrium with X,v a
o ment field associated to T and w one associated to A, both being equal to the specified u on
“v.tmz field 7-9  is in equilibrium without body loads (X=0) and its associated displacement
‘vl v - w vanishes on 3R(u = 0). Hence, by application of Clapeyron’s theorem,

va-'




. 332 B. Fraeijs de Veubeke

’ /(T - 8)'H"Y(1 - 8)dR = 0
R ,

and, by virtue of the positive definiteness of H™Y,

T-0=0

In presence of finite clements the role of the transition conditions is obviously interchanged.
Conditions (34) arc now the a priori conditions completing the a priori equilibrium conditions to t2
satisficd by the stress ficld, while conditions (33) become natural transition conditions implemented
by the variational principlc

g(1) = min. : (4%)
MATHEMATICAL MODELS OFF CONFORMING DISPLACEMENT ELEMENTS |

The displacement ficld is discretized by assuming

u(x) = P(x)a ’ ' (45)

within the domain E of the finitc element and on its boundary 9E. The functions constituting th2
elements of the 3xn matrix P(x) are usually choscn to be polynomials. 1 he parameters oy

(o, ...wy) = a'’

are the unknowns to be determined so that equilibrium be approxirﬁuted in some “best” sense: ir
our case by minimization of the total potcential. Normally the discretization is such that (43
contains all rigid body degrees of frecdom with arbitrary amplitude and

€ = Du = (DP(x))a
contains at lcast an arbitrary state of uniform strain.

Shaping Functions. v :

. To satisfy rigorously the transition conditions (33) between elements, the behavior of u(x) iz
examined on cach face OyE of the boundary 3E; c.g. by using a parametric representation ¢
9,E. This analysis furnishes the number of degrees of freedom of u(x) on each 3 E and :
generalized displacement coordinate is attached to each such degree of freedom. If t%e colurmm
matrix q denotes the generalized coordinates pertaining to 9 E, the knowledge quo, determinzs
completely u(x) on 3Q,E. The analysis furnishes more precisely a relationship

9y = M@ , , (453

between generalized coordinates and parameters and an identification

P(x)a Qd(x)qd for x(aaE

valid for any a, so that
P(x) = Qa'(x)Ma for x(BaE |
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The elements of Q (x) are the “boundary displacement modes” on d4E. The set of relationships
1+0) for all the faces results in the matrix relation

q = Ma , : (47)
where q contains all the boundary generalized displacements. Naturally some of the elements of q
zre common to several faces in order to have uniquencss for displacements at vertices or along ribs.

As a result of the definition of the genceralized boundary coordinates the transition conditions

33) are satisfied along a face 8 E, provided the same boundary modes exist for the adjacent
2iement, and the associated q dkt, the same value across the interfaces. If the knowledge of a
Jdetermines completely the (Ixsﬁacumnts on the boundary OE of the element, it is not necessarily
true that the elements ol q are independent. In other words it is not always true that some value of
2 zlways corresponds to an arbitrarity given q. This raises the question of the possibility of
inverting (47). The simplest, but not unfrequent case, is that of a nonsingular matrix M,implying in
particular that the number of boundary displacement coordinates n (q) be cqual to the number
a(a) of parameters. Then, inverting (47) and substituting into (45), there comes another definition
- of the discretization of the displacement ficld:

u(x) = Q(x)q - (48)

where

o(x) 49)

I

P(x)M™?

are the so-called “shaping functions”. In this case the independent boundary coordlnates are
QJff'ment to determine the displacements in the interior.

If qa is defined as the result of sctting into q the clements of q, ¢qual to zero, then by
construction :

Q(X)qa =0 for x € 3 E and any q

a property that proves useful if one wishes to avoid the literal inversion of M and construct the
shaping functions dircctly.

Bubble Functlons

A more general, but still simple, case is that whcre M is a non square matrix but of rank n(q).
In other words n(q) < n(a) and the rows of M are linearly independent. Then, the homogeneous
problem Ma = 0 has cxactly n(a) - n(q) nontrivial and linearly indcpcndent solutions and
(47) has, for arbitrary g, a general solution

= Qq + Bb - ' (50)

Thus, the boundary coordinates are still independent, and the first part of (50) is a particular
\olutlon of (47), while B is a n{a) X (n(a) - n(q)) matrix with linearly independent
columns, each of which is a solution of the homogeneous problem; thus

MB =0 ‘ (51)

Substitution of (50) into (45) gives now .
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u(x) = Q(x)q + B(x)b (52
wjth '

Q(x) = P(x)Q } ' : ‘ (53)

B(x) = P(x)B : : (54)

The B(x) are “bubblc functions”, so called because they represent a displacement field in the
interior of the clement that docs not displace the boundary (q = 0); correspondingly cach
element of b is a bubble coordinate that governs the scale of the bubble. We note here that the
shaping functions Q(x) are determined except for the addition of arbitrarily scaled bubble
functions. »

Such a change of definition of shaping functions corresponds to the choice of another
particular solution for (47); or to a change of bubble coordinates:

b =1Uq+ c
where U is an arbitrary n(b) X n(q)matrix. The bubble coordinates can be so devised that they
vanish for a rigid body typc displacement of the boundarics; we say then that they are “relatively”
defined and this brings some simplifications in some of the later computations.

The Case of Linear Dependence of Boundary Coordinates.

The lincar independence of the rows of M that was postulated in the previous scction is
equivalent to saying that the homogencous adjoint problem

M'g =0
has but the trivial solution g = 0. Assumc now instcad that this problem has a general solution

g = Yy, where Yis a n(q) X n(y) matrix of linearly independent columns and y is arbitrary.
Then

M'Y =0 or . Y'M =0 (55)

The necessary and sufficient condition for (47) to be solvable for a is that the boundary
displacement coordinates should satisfy

Y'q =0 , ‘ (56)
By suitably ordering the elementsin q
q' = (p'r")

those conditions can be expressed as the dependence of n(y) of the boundary displacements on the
others

r ="Rp , T (57)

and the system
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Yo haays.a solution of the form

a=Qp+ Bb (58)

+

N -

u(x) = Q(x)p + B(x)b ’ (59)
sh the same formal definitions (53) and (54), but the intcrnal disp]acément field is entircly
Zescrited in terms of a reduced set of independent boundary coordinates and, when present, bubble
anordinates. It will be shown later how such an expansion, representing the most general case, can

e csed in the global discretization problem.

Generalized Forces. . _

In the principle of minimum total potential appear virtual work expressions for the external
3awds that introduce natural definitions for the generalized loads. The case of dependent boundary
£splacements requiring special treatment, we shall use the expansion (52). The virtual work of

seescribed body loads gives

fu'XdE= Q£+ bR - (60)
- where

£x =fQ'(x)'xdE £k =fB'(x)XdE (61)

\ E E . - ‘ :

. \ : ‘ : .
iz, by definition, the generalized body loads conjugate respectively to the genecralized
Zscizzements q and b, They arc linear functionals, wherein the actual body loads are weighted by

"y st

% shzping functions and bubble functions. Similarly, through the virtual work of surface tractions
-3z the boundary ‘

j:x'tds = q'ng 4 . : : A : (62)

X

gemrretized boundai'y loads
g% / Q' (x)tds

ot
SE

(63)
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arc defined as lincar functionals conjugate to the boundary displacements. Here bubble functiors
make no contributions since they vanish identically on the boundary. The approximate solution te
the displacement ficld will only depend on the values of the linear functionals defined in (61) a"‘
(63) and infinitely many actual distributions of body loads and surface tractions can produce th
same approximate answer. This charactcnstlc situation is summarized by saying that the k nowled
of the gencralized forces is only a “weak™ knowledge of the actual load distribution and recognized
by the “starrcd’ notation.

Element Stiffness Matrix.

The strain encrgy of the clement can be calculated directly from the original discretization (43)
in terms of the paramecters

/Wdh, f(Du) H(Du)dE = % 'K, a ‘ (64)

with

=f {pr(x) 3 H{DP(x) }aE . (65)

and thereafter transformed through (50) in a quadratic form in the genceralized displacements

1 1 ‘
7 q'quq + q'qub + 5 b'K, . b (66)
with
= ' - = ' = e
Ko = Q'K,,Q K, = QK,,B Ky, = B'K,,B

It can also be obtained directly in the form (66) by performing integrations on the basis of the
expansion (52) in shaping function and bubble functions;

K., =f{DQ(x)1'H{DQ(x)}aE
=/£DQ(x)'1'H{DB<x)wE

=/ {DB(x)1'u{DB (x) }dE
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This last stiffncss matrix is never singular because a bubble function displacement necessarily
involves nonzero deformations: this allows the bubble coordinates to be eliminated at the clement
level by minimization of the total encrgy: :

1
2

1

q'quq + q'K“b 3 b'Ky,b - Q'{f;‘ + g;ﬂ - b'f¥ minimum

The minimum conditions are

Kaqq + qub - f::k + g;" ‘ . (67)
Ky 9+ K b = f¥ (Kbq = K;b) (68)

Solving the last with respect to the bubble coordinates and substituting into the first, produces the
stiffness relation

Kq = £ + g* (69)
with |

K=K, - quxggqu (70)

£ = £ - K\ KoDEg - (71)

g* = g¥

if Kov and consequently Ky are zero, equations (67) and (68) arc actually uncoupled and (67) is
equivalent to (69). This situation corresponds to a particular choice of the shaping functions that is,
however, difficult to gucss. The elimination that was just indicated is fully equivalent to uncoupling
by means of the change of bubble coordinates ‘

= _yx-1
b Kbbeqq + c

Elastic Properties of The Assembled Structure. ‘
Aftee climination of bubble coordinates, each element has discretized elastic properties with
- respect to boundary displacements characterized by rclations of type (69)

Keqe = £ + g . - 72)

where it should be noted that, while both f¥ and g¥ are external generalized loads for the
element, the g} are internal loads at the structurally assembled level. This is also clearly indicated
by the fact that the body loads arc given data from which the values of the generalized loads £ are’
actually known, while the traction surfaces dcfining the gk are unknown. The principle for
assembling the clements consists in stating which boundary coordinates must have common values
at interfaces, implementing, as was shown earlier, the exact transition conditions (33). If w denotes
the column matrix of common or “nodal” displacements, the allocation of generalized
displacements for each element is expressible by means of Boolean, orincidence matrices L,
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q = Lyw . . - (73)

Since the virtual work of internal loads at the structural level vanishes, we can cquate the sum of
virtual works of all forces on individual elements to the virtual work of external forces on the

assembled structure:

> (g + ) = > oty + 'y
E N .

E

. * . -

The generalized forces y, take into account spccificd loads and unknown reaction loads

along the boundary OR of the assembled structure as well as possible extuna] loads applied at
interfaces. After cancelling the common terms and introducing (73)

w' E Lygk = w'y¥

E

and, since this holds for any nodal displacements,

yy = E Ligk ' (74)

E

Substituting g * from (72) and rearranging terms
£ \ '
E L £F = Z L/K.q, = ( E LK L, v
E E

The elastic properties of the assembled structure are thus obtained in terms of the nodal
displacements w, their conjugate external loads

yk = yk 4+ E LE'ch » . (75)
_

E

and a master stiffness matrix

.

K= E LK, L, ' : (76)

E

The lincar system



DUALITY IN STRUCTURAL ANALYSIS 339

¥ = Rw a7

cim 1hen be solved for the unknown w after due account is taken of those nodal displacements that
T T te prescribed. .

Dependent Boundary Displacements. Superelements.
Turning back to the gencral case of elements with dependent boundary displacements, two
~.=zs of procedures are available. As suggested by (59), gencralized loads can be defined as in the
:04 pertaining to generalized forces conjugate to bubble coordinates and to the independent
“:zzdzny displacements, so that the virtual work at element level can be written as

D'(E% + g%) + b'fY

<-2:xriv an element stiffness matrix

_(i:pp K,
\Kbp K\?b

zom be caldulated from a transformation of (65) through (58) and the bubble coordinates eliminated
- roduce a stiffness relation similar to (69)

:.':? = f* 4+ f*
.1 containing only the independcent generalized displacements and their conjugate loads.

The first procedure consists in assembling the clements by allocating the complete boundary
seerdinates to nodal displacements as in (73). We will however denote here this operation by

g = Aw

‘ng the notation Ly for the Boolean matrix that, in particular, localizes the independent
mnates:

Plaiuye - LeV
“w.= formulas (75) and (76) remain valid to calculate the external loads and master stiffness
--;-ix. However, the linear system (77) is completed by the sct of homogeneous constraints

Yiq, = (Y A)w=0 . ' ‘ (78)

=23 _ting from the dependency conditions (56) expressed for each element. -

Txe second procedure consists, if possible, in assembling a small group of clements into a
worerzlzment with independent boundary coordinates. One has here to distinguish between the
coordinates W . appearing at the boundary of the superelement and the internal nodal
:soriizates W g o Thus, for the allocation of displacements in the elements forming the group

g = Fpw, + Gew,
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and, in particular,

p(min)z = Hew + Jgwy

The set of dependency constraints is . .

Y:F, Y:GI
W+ w, =0
[ i
Y'F Y'G

NEN NUN .
The supcrelement is possible if the matrix that premultiplies wy  has linearly independent rows.
For then the set of dependency constraints can be solved for W,

v, = Ww + Ab 1 arbitrary (79)

The last term represents the general solution for w, =0 and clearly.each (lincarly independent)
column of A represents a possible “assembled bubble mode” of the superelement. Turning back to
(58), we can express the parameters of each constitutive element as

a, = Q:Ps + Bsbe = QEHEWO + Q:J:wx + Bsbe'

Q (M, + J Ww, + Bb, + QJAb" (80)

that is in terms of the independent boundary displacements of the superelement, a set of local
bubble coordinates and a set of assembled bubble coordinates. From then on the situation is
comparable to that of the section pertaining to bubble functions and the only difference in further
treatment is the necessity of extending integrals to the union of the domains E or to the boundary
of the superclement. External forces applicd at internal interfaces can be accounted for but are
generally not present.

The difficultics encountered with conforming displacement models for Kirchhoff plate
bending theory originated the scarch for superclements. A first one is an arbitrary quadrilateral
subdivided into fourtriangles by its diagonal and using a complete cubic deflection field [6]. The
second is‘anassemblage of 3 triangles also using a complete cubic deflection field [7].

MATHEMATICAL MODELS OF DIFFUSIVE EQUIL!BRIUM'ELEMENTS
The stress ficld alonc is discretized in the form
T(x) = R(x)c + S(x)s . ) o . (81)

where ¢ and s are column matrices of stress parameters. Each column of R (x)is related to a
nonzero body loading mode, so that the set of body loading modes is

.

X = -D'R(x)c ’ . (82)

while the stresses generated by S (x) are in equilibriunfwithout body loads

D'"S(x) =0 ’ (83)
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-« pz=eral the elements of R(x) and S(x) are taken to be polynomlals of low degrec and S (x)
stes at least an arbitrary state of uniform stress.

Generalized Loads.

Along each face dyE of the boundary, the assumption (31) generates a set of independent
.~ traction modes, to each of which a generalized load is attached. The chosen sct of
slized loads constitutes a column matrix g,,. Hence, if Ny denotes the operator N associated
¢ =2 the outward normal along oyEand T, (x) tn, matrix of ldcntnﬁcd surface traction modcs, the
s owing identity must hold for dl‘bltl'dl'y c dnd s:

K;R(x)c' + N&S(x)s = Ta(x)gry for x € B{YE .' : (84)

{zct, each definition of a gencralized load, as intensity factor of a surface traction modec,
uQes its dependuncu on the values of ¢ and s; whereby we are provided with a relation of the

ga=Gc+Cs' (85)

- the identity (84) conrcsponds to the identities

N;R(x.) = Ta(x)Ga No'{S(x) = Td(x)Ca for X- € BO[E - (86)

T=r knowledge of gd determines completely and uniquely the surface traction distribution atong

>

lu'~

) D»note by g the column matrix of all the sub-columns g,; then the set of relations (85) for
.2 complete boundary JE is of the form

= Gc + Cs v . (87)

¢ and C are called the “load connection matrices”. This relation is similar to (47) but, in
-=1r2s5t with it, onc clement of g may only belong to one fdu, of the boundary.

Generalized Displacements.
The generalized boundary displacements are conjugate to the generalized loads by virtual work
~nsideration. Along a given face

1 = 1 | = ] 1 1
/ u'tds f u Nd'rdS ‘ / u {NO{R(x)c + NdS(x)s]dS
S,k 3t ..aaE ‘
A +23ling ourselves of the 1dent1ty (84) along that face

/ u'tds = {f.u'T (x)dSlg, = (a¥)'g,

ZE O E
x "
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Consequently the gencralized displacements along 3,E are linear functionals of the unknowr
displacements; the surface traction modes playing the role of weighting functions:

.

Jo o= ' (5
q& f Td(x)udS | (882
adE
The virtual work of all surfacc tractions will finally be represented by

u'tds = g'qgx (89)

@E

where g is the coluinn matrix of all sub-columns q%.
Similarly, if body loading modes are considered, conjugate gencralized displacements can be
defined by analyzing the virtual work

fu'XdE = -‘/’u'D'R(x)dE}c'= (b*)'c (90)
| _ .

E

To each body loading coordinate in ¢ a conjugate generalized displacement in b* is thus attached
and .

b* = -/{D'R(x)VUdE ) i (91)
E

As in general the discretized deformation field

e(x) = H l7(x)
will not be integrable, it is only normal to expect that our knowledge of the displacement field wit
remain the *“weak” one provided by the values taken by some set of linear functionals. Compared =
displacement discretization the situation with respect to strong and weak knowledge of fields is
reversed. '

,

Application of the Principle of Minimum Complementary Energy.

We wish to extend this principle to the situation where the body loads, instead of being fixed.
are variable. Such a situation is suggested by (82) where the body loads depend on adjustablz
paramcters c¢. Thosc can be considered as gencralized external forces. Let U denote the stress
energy and consider its variation

6y =/6¢>dE =/T'H'16TdE =/e'6TdE

E o @ Mal’)sh
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v~z vzriations 8 T are now constrained by the equilibrium equations

D' = -X = +D'R(x)c

D'5T - D'R(x)gc = 0

T~z constraints are again recmoved by a lagrangian véctor multiplier v, and we manipulate the
:v.iling expression - -

.5'5';=/‘ (e'61 + v'D'6T - v'D'R(x)6c)dE
! o
E:

>+ partial integration on the second term

&t =/67'(e - Dv)dE +/V'N'6Td8 - {/V'D'R(x)dE}Gc
E E ’

OE

if ¢ is kept constant (¢ = 0), we fall back on thc original situation and recall that € = Dv and
v =u prescribed on OE. “
The result is then the vanishing of the first variation of the complementary energy

£t -/u'N'TdS) =0

oE-

13 equivalent to the trcatment given in the scction pertaining to matrix formulation of the basic
+:iztional principles. If ¢ is variable, we have now the more general result

o =/V'N'61—dS - {'/‘u'D'R(x)dE}Gc . S (92)
E

oE

i%.is is pow applied to thef"iliscrctization (81). The stress energy is e

=

i =

(%]

/'i'"H'l'rdE = % ¢'F,C +‘c'chs +% s'F“s (93)
. E

¢ 7-zdratic positive definite form with flexibility matrices



344 : B. Fraeijs de Veubeke

F = R'(x)H 1R(x)dE ’

‘ F = R'(x)H 15(x)dE

F = S'(x)H 1S (x)dE
E

The first right hand side term becomes

fu'N'SrrdS = {fu'N'R(x)dS?éc + yu'N'S(x)d.S‘fds
dE

OE OE

or, considering the definitions given for the generalized boundary loads and displacernes

u'N'867ds = (q*)'sg = (q*)'(G6c + C&s)

OE

Finally, the last term can be transformed by (91) to yield

- u'D'R(x)dE}6c = (b*) 'Sc Ve
E

Substitution of (93), (94) and (95) into (922) and identificatian of the cocfficients of the variatrors
&s and 6c produces

F s + F c = C'qg* (F

s s asc

= F') . - o6

sc

F_,s + F__c= G'q* + bx* - i o7

cs

Equation (96) alone, solved for s and substituted into (87) furnishes a stitfness relation cornpleref:-
analogous to that of a displacement typce of element

& + (CF7XF,. - Gde = (Cryrc'da+ ceED

The Lody loads arce here supposcdly given: that is, ¢ is known, and appcars as external generalizes
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i3 given by" the second term. The stiffness matrix of the element involves only the C load

somnection matrix.

" Equation (97), which is in the nature of a Castigliano formula allows, if desired, an estimation
« the generalized displacement b¥*, conjugate to the generalized body loads. Taking (96) into
~count it can also be written in the form

K3

b = (F,, - F_,F;IF, Je + (F  F;Xc' - G')q*

8s s8¢

Kinematical Freedoms of Equilibrium Elements.
Stiffness matrices arc always singular because the homogeneous system  Kq = 0 has, amongst
- nantrivial solutions, at least the rigid body frecdoms of the element

Kqy = 0 (1 =1,2,...,1) (99)

“en the stiffness matrix derives from a displacement model, this property is a direct consequence
- e fact that such rigid body modes were built-in on purpose into the discretization (45).
zating by ay  the T lincarly independent columns, defined except for scale, that represent a
-=:d body displacement ficld

oot
doh

u@)(x) = P(x)a(l)
w2 note that, by definition,
DP(x)a(i) =0

:=d. in view of the definition (65), that conécqucntly

K, a5 = 0 (100)

ow in relation (50), the combined matrix (QB) is non singular so that

% = Wt By
.27 bz solved uniquely for the q¢ and by yiclding another representation of the rigid body

-=2des; in particular of course qr, = May,. .
From their relationship with K, we find for the other stiffness matrices

K“q([)+ qub(z) =0

K_qu(l)+ K‘bbb@) = O‘

=2, finally (99) after elimination of the B, . In this case therc are no other nontrivial solutions

In the case of equilibrium models, the solutions of Kg* = 0 are identical to those of
g% = 0 becausé F~1 is positive definite. Here the q¥, vectors, representing rigid body modes,
iz obtained directly by inserting fields u = vy (}‘3 of rigid body displacements into the
tions (88), and into dcfinition (91) for the corresponding bd'; Then, starting with the
;. iiibrium equations satisfied by any T (x) field in (81)

tw
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D'7(x) - D'R(x)c = 0

premultiplying by v'm(x) and integrating over E, we obtain after integrating by parts on the
first term ’

-fT'Dvde +fV(1')N'TdS

E JE
- {/VQ')D'R(x)dE]c =0
E

Now Dv@ = 0 and the definitions (89) and (91) can be used in the other terms, giving
g'q'é's + c'b(vif) =0 (101)

a virtual work statement of global equilibrium of gencralized forces. Substituting (87) and noting
that the relation holds for any b and ¢, there follows

C'q&'s =0 C . (102)

b&; + G'q&) =0 (103)

It is now clear from (102) that the q>('§> are solutions of

Kq* = CF;lc'q* = 0
In “*good” equilibrium clements there are no other solutions. When others exist like,q* = k* sav.
and it a corresponding body displacement is taken from b* = - G'k*, we can conclude from
(96) and (97) that s and ¢ again vanish. Thus a nonrigid body type of displacement exists that
produces no stresses; we can say that the model contains a kinematical deformation mode or
“mechanism”. The presence of mechanisms in equilibfium models presents difficulties of similar
nature to the existence of dependency relations between boundary coordinates in displacement
models. : _

It is typical of mecchanisms that they can appear or are inhibited by the process of assembling -
elements together. It is, therefore, of interest to reconsider this process for equilibrium elements.

Structural Mcchanisms.
The process of assembling can again be represented by localizing operators

qu'c = L:w* ’ (10%)

Equating once more the sum of virtual works of external loads on the disconnected elements and
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-2.= total virtual work of loads external to the assembled structure

E BeqF = YW

E

% socunt was taken here that the contribution Z cE'b*éf is common to both sides. To maintain
s2=ct equilibrium, the generalized loads y conjugate to w¥* and applied on the boundary of the
sssembled structure, or may be at some interfaces, must correspond to the exact surface tractions
—2des defined along the corresponding faces of elements. Substitution of (104) and identification
-7 the coefficients of w*, produces

vy = Z L'g, ' (105)

E
We note here in passing that because a given element of y, belongs to a single interface,

© wow equations are all individually of the type

ot Yo =1
-4 that, since each generalized load in such a relation governs the amplitude of the same surface

irz:tion mode, exact transitional cquilibrium or “diffusivity ™ is sccurcd.
The g, are now taken from the stiffness relations (98)

+ que

& < '(CF::Fsc- G)t £
K = Ce (F;;)C

:=d substituted to arrive finally at the structural stiffness relations

FyEwt E :Le' (CF3F, .= G)gcp = ( § :Lc'KsL: ?wif . | (106)
- .

5 E
T=¢ translation of the body loads on each element into cquivalent nodal forces is clearly indicated.
i¥ gne wishes to solve this lincar system by the standard stiffness method, the conditions to be
s:tisfied by the y loads should be examined; that is, the linearly indepenent solutions of the

:ziresponding homogeneous problem must be found. Now for the assembled stiffness matrix

K= Z EKEL Z (CAL)'(F 1) (C/L,) = AFTA' (107)
=

E
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where F~! is a postive definitc matrix constructed with the (F;,';)E as diagonal blocks and A
" partitioned as follows:

A= (CIL.C)L,...CyL,)
" Again the solutions of the homogencous problem Kw¥ = 0 are the same as those of
Alwk =0 . (108}
and can be written in the form
wk = Yr - r arbitrary, A'Y =0
where the columns of Y arc a sct of lincarly independent solutions. If the equilibrium clements ar:
“good”, the only solutions arc the global rigid body modes of the structure. Otherwise Y alsc

contains a sct of independent mechanisms for the assembled structure. The conditions imposed oz
the loads for solving the sct of cquations y = Kw¥, namely

Y'y =0
would then contain, in addition to-the usual global equilibrium conditions, conditions for avoiding
excitation of the mcchanisms. Equilibrium superclements are combinations of a small number ¢

elements where such conditions can be satisfied by suppressing all or part of the loads on the
internal nodes.

BOUNDS TO STRAIN ENERGY
The advantage of the dual analysis, once based on conforming displacement models, the other
on diffusive equilibrium clements, is the numerical assessment of encrgy convergence. It can first be
shown that if the prescribed displacements are zero, the first approach furnishes a lower bound, th:
second an upper bound to strain encrgy. To this effect each field of stress or strain, both beirz
always related by the elastic moduli of the material
T = He € =H1r _ _ (109

is considered as some element mof a Hilbert space; the scalar product being defined as |

(my ,m,) =fel'He,dR 7 e He, dR = (m,,m,)

R R -

or, equivalently,

+(my ,m,) =/ €, T,dR =/e;71dR (110)
R R

the last equality expressing the Betti-Rayleigh reciprocity principle. The square of the norr
becomes then naturally twice the strain or stress energy.
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2, = (m,m) =fe'HedR =/T'}I—1TdR ' (111)

# .--~ermore.one obtains through the metric propertics a definition of the “distance” between two

.:‘(ml,m,))‘= ”m1 - m:,”

f

?(m,m,) = (m - my,m - m,) (112)

Consider now the definition of a “compatible” ficld, an element of the space denoted by
= = c: In each finite element the strains derive from a displacement ficld

€ = Du in each E . i (113)
7=z displacement fields satisfy the transition conditions at interfaces
u, = u_ (114)
7=z displacements satisfy the prescribed boundary values on al R

‘u =0 on B]R : : (115)
3.ch compatible fields are obviously generated by conforming displacement models. Since linear
.zmbinations of compatible ficlds are obviously also compatible, the sct of compatible fields is a
>space Cof Hilbert space.

Consider next the definition of a “‘self-stressing ficld”” denoted generically by m = a:
i~ zzch finite element the stresses satisfy the homogencous equilibrium conditions

”n

D't = 0 in each E . (116)

Teyv satisfy the homogeneous transition conditions at interfaces

%'t 4 NT1_=0 . T (117)

«'s

T=ey satisfy homogeneous boundary conditions on 3 R

X't=0_ on 3R (3,RU3,R = 3R) . (118)
.- fizlds are obviously generated by diffusive equilibrium models. As linear combinations of
‘=stressing fields are themselves self-stressing fields, their set is a subspace A of Hilbert space. The

=251 important property of subspaces ¢ and 4 is that they-are orthogonal. Thus, if c €Canda € A
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(c,a) =0 ’ (119)

Indeed, from the definitions,

(c,a) =/(Du)'TdR =/ u'N'rdS -'/‘U'D'TdR
R .

UOSE R

Grouping the union of all boundaries OE in a set of interfaces plus the structural boundary 3R, the

result follows dircctly from (116), (114), and (117), and (115) or (118).
In order to take into account the applicd loads we must introduce a particular cquilibrium

ficld a, that satisfics the nonhomogencous equations:

D'tr+X=0 in each E (116.')
N' 7, +N'_T_=t¢ at interfaces (117")
N'T. =t on 3R (118")

Thus, ifa, is such a ficld and a and arbitrary self-stressing field, the most general solution to (116"),

(117') and (118') isa ficld a, + a € (a, + A).
The exact solution to our problem is i ficld s that lics at the intersection of subspace C and the

translated subspace A + a,. By an integration by parts it is easily found that

(c,a,) = (c,a + a,) = u'tds +/u'XdR = (f(ao),u(c)) (120)

IUJ, R R

the right-hand sid¢ denoting symbolically the virtual work of the loads with which the field a_ isin
equilibrium against the displacements associated with the ficld c¢.The unieity of thesolution s is
easily demonstrated. Should there be another solution §,then s-s  would at the same time be 2
self-stressing ficld and a compatible field. Hence, applying theorem (119)

(s -5, s-8)=0
from which follows ’ i
§~-8=20

because of the positive definite character of the norm.
Similarly, since s - a, is a self-stressing field and s a compatible field,

(s - a,,s) =0

~or

(s,8) = (s,a ) = (f(a ),u(s)) (121)

which is Clapeyron’s theorem. The fact that the exact solution belongs to both C and A + a, leads .
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wraliy to the concept of approaching it from both sides by minimizing the distance between a
tof cofCand ag+a of A+ a:

F(a, +'a, c) = (ao +a-c¢,a +a-c)= ninimum
cec
a €A
Tapanding the right hand side as follows ‘
(a; + a, a, + a) +(c - a,, ¢ -a,) - (a,, a,) - 2(c, a)

w¢ czn discard the third term as being constant and the last which is zero on account of (119),
Thus since the first and second terms are cach positive, we obtain separately

!

(a, + a, a, +'a) = min
a €A
(c - &, c-—ao) = min
ce€cC ’ (122)

7= first is the principle of minimum complementary cnergy, reduced here to minimum of stress
ererzy because the boundary data on displacements are homogeneous. The second, in the
ej=nzlent form. N

% (c,e) - (c,a,) = min

cecC " (123)

expansion

c = E @ ¢ c, €C ' (124)

w:th given members ¢4 of C and unknown coefficients ,, For convergence and considering all
e mesh sizcs, the elements (124) should constjtute a denumerable set everywhere dense in C.
wtituting (124) into (123), the optimal values %, of the coefficicnts are given by the linear
WYt . . .

v (ehey) = (ag,cy) ( =1,2,...,n) ' (125)
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Thus the best approximation ¢ = £ &

.

(3,03) = (ao’CJ) G =12,...,n)

,C1, satisfies equations
Multiplying cach by &J and adding, we obtain

(c,8) = (c,a,) = (£(a,),u(c)) . C(126)
This very 1mportant property shows that the best approximation aiso satisfies Clapeyron’s theorem.
it is the analogue of (121). ’

Now,.since the best approximation does not in gencral give to (123) its minimum, that on the
other hand is reached by the exact solution:

(8)8) - 2(6)30) = (S;S) = Z(S)ao)
This result, combined with the Clapeyron theorems, furnishes the energy bound

(c,¢) < (s,s) ‘ (127)
and the corresponding virtual work bound

(c,a,) s (s,a,) o : (128)

Turning now to problem (122), we discretize the self-stressing field as

n
a = E Btai a, €A
1

as occurs in a finite element anaiysis with diffusive equilibrium models. Substitution into (122)
produces for the best coefficicnts the set of linear equations

B (a,a)) = - (a,.a,) (G = 1,2,...,0)

Hence, denoting by & = a_ + zﬁxai the best approximation,

(@,a)) =0 (3= 1,2,...,0)
Multiplying each by B, -and adding, we find
(8,8 - a,) =0 or (3,3) = (3,a,) . a9

This result, analogous to (126) and (121), can first be interpreted as a statement of Pasternak’s
reduction principle. Taking the case of the exact solution first, it says that the stress energy can be
evaluated as half the scalar product of the exact strains by any statically admissible stress field. This
follows immecdiately from the definition of the scalar product (s, a, ). It is remarkable that this
property also holds for any best approximation.
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But the same result can also be interpreted again as a Clapeyron thecrem despite the fact that
~either a, nor a will generally furnish an integrable deformation field. [t must be recalled that,
dthough the minimum complementary energy principle does not lead to a strong knowledge of
displacements, it furnishes a weak knowledge in the form of functionals of the displacement ficld.
To illustrate this in the present context consider first the result (120)

(c,a,) = (f(a,),u(c))
In this equation f£(a,) dcnotes the fixed sct of external forces in equilibrium with the stress field
2 .. Changing the scale of the force$, without altering their rclative distribution, we have by
linearity

(c.va,) = Y(£(a,),u(c))

Considering v as a generalized load, its conjugate generalized displacement is

q, = (f(a,), ule)) = (c,a,)
It is a lincar functional of the displacement ficld, where the weighting functions are given by the
distribution of external loads £ (a, ) ; the value of the functional is also given by the scalar product
(c,ao ). In casc we deal with an arbitrary field m,instcad of a compatible one ¢, the generalized
displacement conjugatc to v is numerically given by

q, = (ma,)
Also it still is the linear functional

q, = (f(a,), ulm))

but, this ‘time, the dctailed (strong) knowledge of the displacement field u(m) associated to m is
unavailable. In this sensc (129) can be interpreted as the Clapeyron theorem

(G,8) = (£(a,),u(@®) | (130)
where u (8) is, in a generalized sense, the displacement field related to a. Since the best
zoproximation 4 does not in genceral correspond to the minimum in (122), reached only by the
enact solution,

(3,8) = (s,s) ' (131)
Then we have also by (121) and (129)

(3,a,) 2 (s,s,) ’ 1(132)
The strain energy bounding derived from (127)‘and (131) . !

(2,8) < (s,8) < (5,3) : (133)
I3 thus expressed equivaleritly by the bounding of generalized displacements

(£(2),u@) < (£(a,),u(s)) = (£(a),u(@) (134)
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The consideration of several, independent, loading modes on a given structure raises the interesting
problem of determining similar bounds to mutual generalized influence cocfficients,[1,3].

Problems where non zero displacements are prescribed on 93 R can be solved by the
superposition principle. In a first stage, account is taken of the prescribed loads and the
displaccment boundary conditions are kept homogencous as in the preceding treatment. In a second
stage, the loads arc suppressed and once takes only into account the boundary displacements. The
solution of the-sccond stage belongs to the subspace A of self-stressing states and the translated
subspace ¢, + c, where ¢, is any ‘particular compatible field satisfying the prescribed
displacements on 9, R.The minimum distance principle is again observed to split into

% (a,a) - (a,c,)

minimum

a €A
and

(c0 +c, ¢, +¢c) = minimum

c €C

W]liC!l are particular forms of the minimum principles of complementary cnergy and total encrgy.
I?ctm_lcfd calculu.tnons of the approximations by discretization, completely analogous to the
foregoing, establish an cnergy bounding

(8,3) < (s,s) s (,8) (135)
that is the reverse of ( 133). Also

(5,8) = (s,c,) (8,3) = (a,c,) (€,8) = 3,¢c,)
results than can either be interpreted as duals of the Pastern

theorems involving the virtual work of the reaction loads
the last equation this interp

generalized reaction load ass

ak reduction principle or as Clapeyron

work of the loads against the prescribed displacements. For
retation requires the definition of the lincar functional representing a
ociated to ¢, Then (135) is equivalent to

(£@3),u(c,)) < (f(s),u(e,)) = (£(2),u(c,)) (136)
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