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A survey is made of the basic matrix equations discretizing the strain-displacement,
equilibrium and constitutive equations of linear elasticity theory, The finite element
approach requires in addition a discretized form of the transitional equations between
subdomains and a progressive treatment from the element level to the.assembled struc-
tural level.

Special attention has been given to a rational incorporation of body loads and internal
degrees of freedom,

The direct stiffness method, force method and combined methods are related to discreti-
zed formulations of variational principles., The saddle point character of the many-

field principles is put in evidence.
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1.1, INTRODUCTION

As a result of any .type of discretization of a continuous structure, there are

essentially 3 groups of matrix equations describing its behaviour :

- the kinematic gfoup, ST q=2e ' @)
describing the relations between (generalized) displacements and strains,

- the static group Ss=p (2)
describing‘the relations between (generalized) stresses and applied loads,

- the constitutive equations relating stresses and sgrains. For a linear elastic body
they assume the form

s=Je or e=TFs (3)

where J is a positive definite matrix of generalized elastic moduli and F = J-l is a

positive definite matrix of compliances,

Equations (1) constitute a discretized form of the linearized strain measures of a

cont inuum
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presented here in cartesian coordinates, where Di = a/axi, and whose matrix form will

be written as
e=Du ; (4)

Equations (2) are the corresponding discretizations of the continuum equilibrium

equations
D g+ ¢ =0 (5)

relating the elewments
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of the stress tensor and the vector ¢ of body loads, and
N" o=t . (6)

which are surface equilibrium equations, where t is the vector of surface tractions.

Matrix N derives from the matrix differential operator D by replacing D, by n, the

i
direction cosines of the outward normal to the surface under consideration.
Equations (3) are the discretized form of generalized relations between stresses and

strains
o =He ‘ €))

where the symmetrical positive definite Hooke matrix H contains the 21 elasticity
moduli of the meterial that may vary from point to point in the case of a non homoge-

neous body.

Solving these equations under prescribed boundary conditions constitutes the aim
of matrix structural analysis. When the discretization is performed by finite element
methods, the matrix equations (1), (2) and (3) are first obtained for each individual
element. The ensuing problem of connecting the elements together, in order to establish
the same equations at the global structural level, becomes also one of the importanﬁ
steps in matrix structural analysis. Considering the continuum to be divided into a
finite number of subdomains later to be discretized and become the finite elements, the
connection problem involves discretization qf the transition conditions between face +

and face - of each interface :
u =u ' (8)
tt+ ¢t =0 9)

expressing respectively continuity of displacements and reciprocity of surface tractions.
If necessary, those transitions conditions can be generalized to introduce dislocations

and application of external surface loads at an interface.
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It will be observed that the presence of the same differential operator D in equations
(4) and (5) of the continuum provides an indication of the existence of dual properties
between kinematics and statics. This duality appears in the discretized forms (1) and

(2) through the presence of the same "kinematical wmatrix" S.

1.2, KINEMATICS AT ELEMENT LEVEL

It will be assumed that the rigid body displacements are included in the degrees
of freedom retained where discretizing a finite element., Even under very small strain,
a region of thin-walled structure can undergo large displacements, whose major part is
then of rigid body type. In the geometrically non-linear theory of elasticity the inclu-
sion of rigid body displacements is thus imperative., The situation is different in linear
elasticity, where local rotations are of the same small order of magnitude as strains.
However both intuition and experience show that the inclusion of rigid body degrees of
freedom, although not absolutely necessary for convergence with respect to reduction in
mesh size, is a practical requirement for good accuracy with economical sizes of elements
To the approkﬁnation of geometrically linear strain, the rigid body displacements are
infinitesimal and members of a linear finite dimensional space. In other words any
linear combination of rigid body displacements is itself a rigid body displacement.

This leads to a matrix representation of the rigid body modes as
q=Rr - (10)

where q is the vector of generalized boundary displacements of the element and the

colunns of R constitute a fundamental set (complete and linearly independent) of parti-

cular rigid body modes. .

We say then that R is a "base matrix" of the subspace of rigid body modes.

The vector r is that of coefficients of an arbitrary linear combination of those

columns, Let us give two examples.

Example 1, The constant strain membrane triangle (Fig. 1)
The displacement field is completely determined by the local displacement vec—
tors at the nodes. The local displacement vectors elsewhere are, by definition
of the discretization, obtained by linear interpolation. The set of generalize
displacements is indicated, each component is some orthogonal (covariant)
projection of a nodal displacement vector on one of the sides of the triangle.

A simple base matrix R is obtained by taking as columns generalized displace-
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ments generated by rotations about the nodes 1, 2 and 3 respectively.

(1)
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Example 2, The constant stress membrane triangle (Fig. 2).
As the name suggests, this element is derived from a discretization of the
stress field instead of the displacement field. Under constant stress the
surface tractions are uniform along the edges and can be characterized by
the corresponding resultants U12 » V12 ’ 023 ’ V23 » U31 ’ V31 y listed in
that order in the generalized boundary load vector g. The conjugate bounda-
ry displacements are defined by virtual work. For instance the generalized

displacement Uig e conjugate to the load U12 must be such that
(2
u,, U = t uds
12 12 Jl u

However, since the surface traction component t, is uniform, we have

ty = Upa/eq2

where 12 is the length of side 12, Therefore
1 Jz
u B e——— u ds . (12)
12 ¢2 11

and similar definitions for the other generalized displacements.

From this example can be understood that a discretization needs not neces-
sarily be based on local values of fields but involves, in general, linear
functionals of the field. In the present example the displacement field is
known only by its average values taken along the edges.

To obtain rigid body modes, it is necessary to compute expressions like
(12) for a rigid body displacement field. If, for instance, the element be

rotated infinitesimally about node 1, the u component of displacement along



12 varies linearly between zero and - (y2 - yl) dw
In that case (12) gives '

. |
upp =g de G -y .

By similar calculations we obtain, suppressing the factor %-dw , the base matrix

Yy, vy, Y =), =Yy TVt 2,

X, = x1 - x2 + x1 x1 + X, = 2 x3
"YZ'Y3+2}'1 -Y3+y2 Y3"YZ

R =

x2 + x3 -2 X, x3 - x - x3 + x2
BRERS! V3= Yyt 2y, ERATRE!

x3 -x x3 + x1 -2 X, xl - x3

(13)

The first column is the rotation mode about node f, the second is about node 2, the
third about node 3.

An interesting observation is that the displacement functionals coincide for rigid
body motions with the local values of displacments at the mid-side points.

This is natural from virtual work considerations, since the resultant boundary loads

may be considered to be applied at these '"virtual nodes".

The elimination of the n(r) elements of r between the n(q) equations (10) results

in a set of

n(q) - n(r) = n(e) (14)

independent equations relating the elements of q

sT g =0 (15)
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ST is a n(e) x n(q) matrix of linearly independent rows, and (15) is the neéessary and
sufficient condition for q to belong to the subspace of rigid body, modes.
By construction (10) with arbitrary r, is the general solution of (15), hence

sTrR=0 (16)

This shows S, that has linearly independent columns, to be a base matrix for the
orthogonal complementary subspace to that generated by R,

Consider now the more general inhomogeneous equation

st q=-e . ' q))
related to (15). Since e vanishes when q belongs to the subspace of rigid body modes
it is appropriate to consider e as a measure of strain of the element; its elements

are called the generalized strains,

Consider now non singular transformations of the quantities r and e

r= (r/2) ¢ 2= (2/0)r @/r) = (/D7

e = (e/8) & & = (8/e) e (8/e) = (e/&)!
We have gq =R % and sTq=2 ,

R = R(z/£) ST = (8/e) ST ,

so that §T R = (€/e) ST R(r/t) =0

This shows that R and S are only defined within equivalence classes, each member of an

equivalence class being derived from another by postmultiplication by a non singular matr

Homogeneous constraints placed on q

¥ g=o0 . (17)

can be devised to prevent the occurence of rigid body modes.

This implies that R# R r = O must only possess the trivial solution r = O,

In other words the n(r) columns of R“R must be linearly independent. Its number of rows,
equal to that of R# , must be superior or equal to n(r).

Hence the minimal number of constraints capable of suppressing rigid body modes is n(r).

Any matrix R¥ of size n(r) x n(r) with the property

R* Rr=20 -> r=20
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is said to deflne a set of external isostaticity constraints,

Since premultiplication of (17) by a non singular matrix does obviously not modify the
set of constraints, R #T is defined within an equivalence class, It 1s obviously possible
to select R*T, within its equivalence class so that R*R, which 1s non singular, becomes

the identity matrix s
= (r/r) = RTR.*T (18).

Consider now the general solution of (17) when R# defines a set of external isostaticity

constraints, It is of the form

q-= S*T e (19)
Sﬂ[T is a base matrix of the subspace defined by (17). Each of its columns is a straining
mode of the element, since rigid body modes were prevented to take place.
The elements of the arbitrary vector e, that combine the columns linearly, can right-
fully be called generalized strains; in fact, as the notation prefigures, the generalized
strains defined by (19) can be rendered identical to those defined by (1); the condition
therefore will be equation (23). As (19) provides the general solution to (17) (e arbi-
trary) ‘

rR¥ s"T = o (20)
holds true and R #T and S'»T are base matrices of orthogonal complementary subspaces.
Once again it appears that S is only representative of an equivalance class and that

T

(20) is true wathever be the separate choices of R and S»T within their respective

equivalence classes,

The assembled matrix (R S*T) has, according to (14), n(r) + n(e) = n(q) columns,
and 1s consequently square. Furthermore the homogeneous equation (

Rr + S*T e=0

is easily seen to possess only the trivial solution, If we premultiply by R*.there

follows already r = O on account of (20) and the non singularity of R#R.
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Then e = O follows because of the linear independence of the coluuns of SﬂT.

Consequently an arbitrary géneralized boundary displacement vector q has a unique

expansion in terms of a complete base matrix (R S#T)
q=Rr+s* e (21)

corresponding to a separation in rigid body modes and kinematically admissible straining
modes (i.e. not violating a certain choice of isostaticity fixations). Premultiplying

r

by ST, there comes on account of (16)

T T 4T e (22)

The matrix STSigT is square, its number of rows, equal to that of ST was defined to be
n(e), the number of columns of s*T is complementary to that of R*T, or n(q)-n(r)=n(e)
again. It is also non singular; for ST(S*Te) = 0, implies that S*Te belong to the com-
plementary subspace generated by R, i.e, |

S*T e=-Rr for some r

However such a relation was seen to imply both r = 0 and e = O,
This proves that (22) constitutes at most a non singular transformation of generalized
strains between their definitions according to (1) and their definitions according to
(19)« Both definitions become identical by selecting S";T within its equivalence class
to obtain

T #T # <

S° 8 = (ele) =8" S (23)
To determine r in the expansion (21) we premultiply by R* and use (18) and (20) to
obtain

/

r = r* q - (28)

Comparison of this with (17), suggests for r the interpretation of vector of generalized

displacements of the supports,
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1.3. VIRTUAL WORK AT ELEMENT LEVEL

The q vector defines the boundary displacements of the element.,
It sometimes also defines unambiguously the internal displacements.
There are many cases however where internal degrees of freedom are introduced with
fixed boundaries (q = 0) to improve the conditioning of the stiffness matrix or better
represent the effects of an eventual body loading of the clement.
It is extremely important to note that, for a given discretization, there is no unique
way of defining the generalized displacements related to the additional internal degrees
of freedom. This is because there is no unique way of defining the Internal displacements
which are forced by the motion of the boundaries,
Between any two possible definitions b or c of vectors of generalized internal displa-

cements belonging to the same discretization, there is a relation
b=c+Ugq (25)

where U is some suitable matrix. For fixed boundaries both definitions give identical
disﬁlacements but if we set ¢ = O, a motion of the boundaries will have different inter-
nal effects than setting b = O,

A step towards uniqueneés is provided by the requirement that generalized internal
displacements may be regarded as internal strains as well. In other words b would

have to vanish like e, whenever the element undergoes a rigid body displacement.

Suppose that, for the original choice ¢, we find

c=Cr to be linked with q=Rr

in the rigid body motions. We would then require U to satisfy
0= (C+UR)T for arbitrary r

and be presented the problem of solving

C+UR=0 or RT UT = - CT

From (18) and the transpose of (16) the general solution of this is

U= =-C R# + A ST
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where A is an arbitrary matrix of suitable dimensions; and we find
b=c~-C R“q'+ A STq mac=-Cr+Ae

we then say that b had a strain-type definition.

Introduce now the generalized loads through the virtual work equation,
We distinguish between the loads applied at the boundary of the element (except along
the structural boundary and in the presence of interface loading, they are internal
connexion loads at the structural level) and the body loads.
Thus the boundary load vector g produces virtual work on q alone, while the body load
vector has a virtual work associated with both internal and boundary displacements and
falls in two parts : f which is conjugate to q and h which is conjugate to b,

The virtual work at element level has the structure

‘1/e=qT(g+f)+bTh (26).

1.4, STATICS AT ELEMENT LEVEL

Equilibrium of the element requires that the.virtual work of loads vanishes for
any displacement of rigid body type; thus, provided b has a strain-tybe definition,
when b = 0 and q =R 1,

It foLlows then from (26) that

RT (g + £) =0 (27)

represent the equilibrium conditions constraining the loads. From (16) it is found

that the general solution of (27) can be written
g+ f=5s ‘ (28)

and s is a vector of generalized stresses. Premultiplying this result by qT and consi-

dering (1) we obtain

qT (g + £f) = (STq)Ts = els (29)
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showing the stresses so defined to be conjugate to the strains e.

‘Finally the external form of virtual work (26) can be equated to an internal form

V= e+ vt =72: (30)
and this isadiscretized version of the virtual work theorem of continuum mechanics,

It will be noted that the strain-type definition of b, enables its conjugate h to be
considered both as a generalized load and a generalized stress., Another consequence
is that, as representing a load system, h 1s self-equilibrating since its virtual work
vanishes under rigid body displacements.

In contrast to this the body load system represented by f is generally not self-equi-
librated. Being conjugate to q it is possible to balance it statically by reaction
loads from the isostaticity constraints, Thus in a virtual work approach to static

equilibrium

(R r)T f + 1t j=0
must hold for arbitrary'r. There follows for the reaction loads

j==RIE 3V
The general solution of this, considering j to be given and f unknown, is

£=-r"T 5455 (32)

f

the first tefm being a particular solution as can be verified from (18).

The second term is, according to (16) in transpose, a general solution of the homoge-
neous equation,

The expansion (32) decomposes f into a part absorbed by reactions j against the isosta-
ticity constraints as given by (31) and a self-equilibrated part, whose generalized

stresses s_ are given by (see (20) and (23) )

f

s, =S f (33)

A similar expansion is valid for the generalized boundary loads, since (28) and (32)

are equivalent to

g=R* § +5 s (34)
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with s ¥ 8, =8 (35)
In (34) we find for given g the unique values

j=R g=-R'£ s =s¥g (36) .

The unicity of the expansion 1s otherwise obvious because (R#T S) is non singular

and a natural base matrix for g-space or f-space. Its transpose is the inverse of

our base matrix for g-space -
R=H (x/x) 0
@ ') - 37)
ST 0 (e/e)

as is readily verified from (18), (20), (16) and (23).

l.4. KINEMATICS AND STATICS AT THE STRUCTURAL LEVEL

We now affect the previously defined matrices by a bracketed subscript (i) to
indicate the element to which they belong. Similar quantities without bracket will be

defined at the assembled structural level,

The operation of connecting the elements together has a kinematical aspect which
consists simply in identifying each generalized boundary displacements q(i) of each

element, with one of the elements listed in a nodal displacement vector q.

The possibility of doeing so implies of course a compatibility of definitions of gene-
ralized displacements at each node, Remember also that the nodal displacements need not
be local values but simply linear functionals. The kinematical connexions are then
expressible as

Q(i) = L(i) q (38)
for each element. The Boolean matrices L(i) are convenient tools for presenting formulas

and manipulating them. In actual software practice they are replaced by more efficient

algorithms,
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The statical aspect of the connexions can be derived from virtual work equations :

T T T i :
V- Elamem 9w ) P Py ! (39)

expresses the virtual work of all forces acting externally on all:the, yet unconnected,
elements, If the transitions conditions (8) and (9) in the continuum were exactly satis-—
fied, there would be no contributions from the interfaces to the virtual work,

More generally, even if some external loads were applied at the interfaces, the virtual

work of internal connexion loads would vanish, This property is assumed to hold after

the discretization and, as a result, (39) as modified by (38) can be equated to the

virtual work performed by the external loads (external at the structural level) only :

T

T t T |

TR s I o ) I Mo

T T T T

Teerd Floy fa I Mo (40)

Indeed the body loads on each element are still external loads for the global structure
and g condenses the external loads applied at the structural boundary and possibly at
the interfaces, Simplification of (40) and consideration of the fact that it must hold
for any nodal vector q, yields the relation

8= DL By (41)

i .

At the structural boundary (41) is a discretized form of the surface equilibrium
equations (6). At an interior node where there is no contribution to g from external
loads, it is a discretized form of the reciprocity relations (9) between internal

connecting loads.,

The kinematical connection rules (38) allow to deduce the generalized boundary

strains of each element from the nodal displacement vector :

T T
ey = S1) Y = Gy Ly 9 (42)

By definition, the generalized strain vector e of the structure is built from the

sequence, in some conventional order, of the strains e(i)



T T T T ,
e = (e(l) e(Z) XX e(N)) | .(43)

There follows that the kinematical relation (1) holds true at the structural level if

a structural kinematical matrix S be assembled as follows

T T T
S = <L(1) S(l) L(z) S(Z) eeeo L(N) S(N)) | (44)

15.

The dual role of this structural kinematical matrix is obtained by combining equations

(28) for each element

r

=38

gy * foy " Sy S(w)

into the single equation

LI g, =31L,% s . (45)

T
Pt B TR fw TR S fw

The first term is identified by (41), the second suggests the definition

f=IL (46)

T
f
Pl F

of a body load vector £ conjugate to q, the right hand side term involves the

structural kinematical matrix (44) and the structural stress vector s

T T

T T
S = (S(l) 8(2) eee S(N)) (47)

conjugate to e, Hence (45) turns into equation (2) and at the structural level is

completely analogous to (28) :
p=g+£f=Ss : (48).
The virtual work theorem for the structure becomes

qT P= qT g+ qT f = qT Ss=e s (49)

and is identical to (29). Both the general equilibrium equations of the structure (48)

and the kinematical equations
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e=sTg " (50)

expressing compatibility of the structural strains are necessary for the virtual work

theorem to hold,

1.5. TOPOLOGICAL ANALYSIS OF THE STRUCTURAL CONNECTIONS

Clearly (48) and (50) are dual systems of equat ions, involving the same kinematical
matrix and describing the topology of interelement connection from the dual aspects of
kinematics and statics,

Their properties are important because of their wide range of applicability; since no
constitutive equations relating stresses and strains are implied in this investigaéion,
its results will apply to any structure where a geometrically linear measure of strain

is acceptable,
The kinematical problem : solve
S q=e

when the strains are given and the displacements are the unknowns, is the discretized

equivalent to the problem of constructing a displacement field in a continuum, knowing
the strain tensor field. It is known that local and possibly global compatibility con-
ditions must be satisfied by the strains for a solution to exist and this solution may

not be unique,
The statical problem : solve
Ss=p

when the loads are given and the stresses are the unknowns 1is known to be generally
undetermined. The existence and unicity conditions of those two problems are interre-
lated because of their adjoint character and should consequently be treated together,

We note that concerning the dimensions of the problem, we have

n(q) =n(p) = v n(e) = n(s) = o
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In equation (50) each column of ST is, by definition, a compatible strain vector asso-

ciated to some unit displacement vector. The columns are however net linearly indepen-

dent and the homogeneous problem
T
SSq=0 > q=Rr > S R=0 (51)

has a set of non trivial solutions, represented as in the case of a single element

by linear combinations of the columns of a matrix R.

These colﬁmns, which constitute a maximal set of linearly independent solutions, are
n(r) = p in number so that R is a v x p matrix,

Each solution corresponds either to a rigid body displacement of the structure or a
"mechanism", they are both referred to as kinematically admissible modes of the struc-

ture and the elements of r as kinematical coordinates.

Similarly in equation (48) each column of S is a self-equilibrating load vector
associated to some unit stress vector., The columns are generally not linearly indepen-

dent and the homogeneous problem
Ss=0 > s = X x -+ SX=0 (52)

has a certain number of linearly independent solutions. The general solution is a

linecar combination, whose coefficients are collected in x, of a fundamental set repre-
sented by the columns of X. Each solution is appropriately called a self-stressing, since
it indicates a state of internal stress existing without externally applied loads.

The element of x are "redundancy coordinates'", We denote n(x) = £ , so that X is a

o x § matrix. .

Linear, non singular transformations of the kinematical coordinates or the redundancy
coordinates merely change the choice of R or X within their respective equivalence
classes. Wathever be the choices, the orthogonality cohditions (51) and (52) remain satis
fied.

The condition for problem (50) to have a solution is the orﬁhogonality of the given
strain vector e to all the solutions of the homogeneous adjoint problem S s = O,

Hence

efxx=o0 for all x - XX e=0 (53)
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That the condition is necessary is immediatly seen by premultiplying (50) by XT and
using (52) in transpoée. That it is sufficient will be demonstrated by actually construc-

ting a solution.

Similarly the existence condition for a solution of problem (48) is the orthogona-
lity of the given load vector to all the solution of the homogeneous adjoint problem

ST q = 0 . Hence
T T
pRr=0 for all r -+ RRp=0 (54)

Necessity follows from premultiplication of (48) by RT and use of (51) in transpose,
Again a solution will then be constructed.

The existence condition (53) is the discretized form of the compatibility conditions
to be satisfied by strains.

The existence condition (54) expresses that the virtual work performed by the external
loads on any kinematically admissible mode must vanish,

Stated otherwise, the load vector p must be self-equilibrated. The transpose of (51)

states that each column of S is a self-equilibrated load vector.

As for isolated elements, a minimal set of constraints can be selected that prevents
the occurence of kinematically admissible modes in the structure,

We express the constraints in the same notation

R* q=0 R“ a p x v with linearly independent rows (55).

Again R* can be chosen within an equivalence class to satisfy

R" R = (p/p) = R' K" \ (56)
The general solution to (55) is
q=Ww Wa v x (v=p) with linearly independent columns (57),

with the property

RFw =0 or W R™ =0 (58)

#T

expressing that R~ and W are base matrices spanning complementary orthogonal subspaces.

Theorem 1 . (R W) is a base matrix for q-space.

It has the required number of columns, P for R and v - p for W,

The linear independence of the columns follows from the fact that the homogeneous
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.

equat ions
Rr+Ww=0,

possess only the ‘trivial solution. Indeed, if we premultiply by R# and consider (56)
and (58) there follows already r = O. The equations are then reduced to W w = 0, that

imply w = O because of the recognized linear independence of the columns of W,

Corollary 1.1. Any nodal displacement vector has a unique expansion of the type

q=Rr+Wuw ) (59)

The first part contains the kinematically admissible modes of the structure, the second

the displacement modes compatible with the applied constraints,

Corollary 1.2, The g x (v = p) matrix STW has linearly independent columns,

Indeed by reference to (51), equation ST(W w) = O has the general solution

Ww=RTr~r

but, from the theorem, this holds only for w = 0 and r = O, Hence ST W w = 0, having
only the trivial solution,has linearly independent columns.,

T

Then, from STq =e =5 Ww, we conclude that the columns of STW constitute a maximal

set of linearly independent compatible strain vectors,

Working by analogy, we introduce the concept of internal isostaticity constraints

or "generalized releases". They are homogeneous relations imposed on the stress vector

¥

X"s=0 X* a EX o matrix with linearly independent rows (60)

#X be

and capable of preventing the occurence of self-stressings. This implies that X
non singular. Again, as X#T can be selcted within an equivalence class, we can obtain
that

M x = (x/x) = Xt X*T _ / (61)

The general solution of equation (60) is

s=Yy Y a o x (0-¢) matrix with linearly independent columns
(62),
and the property

Mfy=o0 or ¥ x* oo (63)
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Theorem 2 . (X Y) is a base matrix for s-space,
It has the required number of columns, & for X and (o - £) for Y. ,

Premultiplying

Xx+Yy=0

by x* and using (61) and (63), there follows n = O, Then Y y = O implies y = O because
of the linear independence of the columns of Y. The columns of X and Y are thus linearly

independent.

Corollary 2.1, Any generalized stress vector has a u;ique expansion of the type

s=Xx+Yy

the first part contains the self-stressings; the second those stressing modes that

comply with the chosen set of releases.

Corollary 2.2, The v x (0 = £) matrix S Y has linearly independent columns.

Indeed), by reference to (52) the equation S(Y y) = O has the general solution
Yy=Xx .

But, by theorem 2, this can only hold for y = O and x = O, Hence S Y y = O having
only the trivial solution has linearly independent columns.
From S s = p =S Y y we conclude that the columns of S Y constitute a maximal set of

linearly independent self-equilibrated loading modes.

T

Theorem 3 , The matrix(Y STW) is non singular,

Consider the homogeneous problem

YT (ST Ww) =0

N

Since Y and X#T span complementary orthogonal subspaces, its general solution is

ST Ww= X#T v (65) *
with arbitrary v. Premultiplying this by XT we get, in view of (52) in transpose
and (61) that v = O, Then corollary 1.2. implies that also w = O,

Our homogeneous problem has only the trivial solution and the columns of YT ST W are

linearly independent. This requires

g=E2Vv-0p (66)
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Conversely, consider the homogeneous problem
yT (YT ST W) =0 equivalent to e SYy)=0 4.
Since W and R“T span complementary orthogonal subspaces, the general solution is

SYy-= R"BT z where z is arbitrary. (67)

Premultiplication by RY yields z = 0, in view of (51) in transpose and (56) after
which Corollary 2.2. enforces y = 0. This shows thatrwT S Y has linearly independent

columns and the matrix of the theorem linearly independent rows, Consequently

V=-p220-=-E (68) .

Comparison of (66) - and (68) establishes that

V=-p=0-=-¢§ (69)

Thus YT ST W is square and having linearly independent rows and columns is non

singular. The same is of course true of its transpose WT SY.,

Corollary 3.1, (ST W X“T) is a base matrix for e-space.‘

It has the required number of columns, v - p = 0 - £ for ST W and & for X“T.

The linear independence of all the columns is a direct consequence of the proof that
problem (65) has only the trivial solution.

This base matrix provides for any strain vector a unique expansion

e = ST Ww+ X#T v (70)

N

The first part collects the lineariy independent compatible straining modes (for
which a nodal displacement vector q exists), the second part is made of generalized

dislocation modes.

Corollary 3.2. sy R*T) is a base matrix for p-space.

SYhas 0 - &£ =y=-p columns and R“T has p , making the required total of v .
Their linear independence is a consequence of the proof that problem (67) has only the
trivial solution. .

The unique expansion

P=SYy+ R”T z (71)
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of an arbitrary loading vector p, divides it in a self-equilibrated paré and a part

reacted upon by the set of external isostaticity constraints. .

Note 1 . While RwT and X&T can be selected in their respective equivalence classes to
implement (56) and (61), it is also possible to select either W or Y in their
equivalence classes to reduce the matrix of theorem 3 to an identity matrix :

T ST

Y st w= uw) = (y/y) =W sy (72)

Note 2 . Computing the virtual work through the expansions (59) and (71), we find
qT p= oz 4wt (WT SY)y (73)

Similarly the virtual work computed from (70) and (64) is

eT s = vT x + wT (WT SY) vy (74)

As observed before in connection with the virtual work theorem (49), the
equality between (73) and (74) 1is ensured when v = O, which means that the
strain vector is compatible, arid z = O, which implies that the external loa-
ding is self-equilibrated. Those expressions also exhibit the conjugate
nature of the couple (r,z) and the couple (v,x).

Under the conditions of Note 1, w and y would also be conjugate.

We now pass to the effective construction of solutions of problems (48) and (50) when

the existence conditions are satisfied.

Premultiplication of equations (50) by the non singular matrix (X Y)T subdivises their
solution in two parts. The first

X? e = XT ST q= (S X)T q=0 because of (52)

is the known statement (53) of the existence condition for a solution. The second

YT e = YT ST q

can be solved by calling on theorem 3. The solution is in fact unique if we add the
requirement that it should satisfy the isostaticity constraints (55).
The displacement vector is then of type (57) and the problem becomes



Ye= (s ww C@s)

with the unique solution, based on theorem 3

w=@ sTwlyle =,

The final result is that, provided the compatibility conditions (52) for strains are
satisfied, problem (50) has the particular solution

r

q=5"e sT™ aw ¥ sTwy 1 T (76)
satisfying the isostaticity constraints (55).
If we disregard such constraints, the general solution is obviously
T#
q=S e+Rr arbitrary a7

the sum of a particular solution and the general solution for e = O, which consists
of kinematically admissible displacements. This result is in fact equivalent to the
expansion (59) where w has been expressed in terms of the strain vector e by means
of (75). |

A completely analogous procedure is applicable to the solution of equation (48).
After premultiplication by the non singular matrix (R W)T they are split into

R p = RS s = (ST R)T s =0 by virtue (51),

which is a restatement of the existence condition (54), and

Wp=w ss

If we here add the requirements that s should satisfy a set of releases (60), then

s 1s of type (62) and we have a unique solution

y=@ sntalp ]

#

or s = s*p sy @wsp

(78)

23,
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The general solution without releases is
#* .
s =S p+Xx x arbitrary (79)
By comparing (78) to (76) we see that

S =S8 (80).

1.6. PSEUDO INVERSES AND PROJECTORS

Because
q=8S8 " e (76)

is, in some sense, a solution of the singular problem

sT'q = e . (50)
ST” is called a (oblique)pseudo-inverse of ST. While in (76) we obtain a displacement
vector for any strain vector (even no compatible), the strain vector obtained through
substitution of this displacement vector into (50) is necessarily compatible,
Hence the elimination of q between the two equations generates the product ST ST#
that is not an identity matrix, as would be the case with genuine inverses,
It is an operator that transforms an arbitrary strain vector into a compatible one.
This operator is a projection into the subspace XT e = 0 ; the projection rays (or
vectors annihilated by the projector) are the dislocation modes X”T v of expansion
(70). This is to be verified by looking at the structure (76) of ST'F and using (63).
Similarly, by eliminating e between the two\equations, we obtain the product ST#ST
as an operator linking two displacement vectors. Again ST# is not a genuine left-inverse
to ST because the operator transforms an arbitrary displacement into one that satisfies
the isostaticity constraints R q =0, It is in fact a projector of an arbitrary dis-
placement into the subspace R* q = 0 ; the projection rays R r are the kinematically

admissible modes,

One way to construct an identity matrix is to complete (76)

q=5"e+Rr
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in order to give back to q its arbitrariness. Replace in it
T - # .
e=S q and r=R ¢q (justified by (56) and (58))

to obtain an identity in q, whereby

#
sT* sT 4+ RR" = (q/q) = s s* + R*T BT (81)
Proceeding in the same wmanner with the equations "
_ o¥
s =38 p and Pp=8Ss

we construct the operators

¥

S" S projecting an arbitrary stress vector into the subspace of stresses complying

with the releases X* s = 0 and annihilating the self-stressings;

S S# projecting an arbitrary load into a subspace of self-equilibrating ones by

annihilating the reactions from isostaticity constraints,

We find the identity

s* s+ x x* = (s/s) = sT sT* + x*T xT ' (82).

If the base matrices for s and e are taken to be identical, which is always possible
although sometimes artificial from a physical point of view, and the same is done

for the base matrices of q and p; the following simplifications occur

x*T = x vyzstw r*T = R WzsY (83)

Each base matrix is split into orthogonal complementary parts

xXXY=o0 RIW=0 (84)

The pseudo inverse Sﬁ becomes the so-called Moore~Penrose generalized inverse of S

+ T T T

stasTuawlwa=yafnlys (85).
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1.7. ALGORITHMS FOR A DIRECT DETERMINATION OF PSEUDO-INVERSES

For structures made of assembled beams the determination of redundancies was
traditionnally done by releases, that is by cutting members or at least some of their
load transmission capabilities, untill the internal forces in the released structure
could be determined by statics. This procedure which largely relies for its success on
physical intuition becomes slow, tedious and prone to error for the large arrays of
more complicated finite elements. The automatic determination of all the self-stressing
states by the computer itself is a considerable step towards salvation of one of the
most time-honored method of dealing with hyperstaticrsystems. It was pioneered by
P, DENKE and J., ROBINSON, As will be shown the aigorithm they introduced, which is the
Jordan version of the Gauss elimination algorithm, as applied to the structural kinema-
tical matrix, provides on constructive answer to the problem of determining all the base
matrices involved in the topological analysis of section 1.5.

The Gauss-Jordan algorithm consists in the step by step determination of a v x v non

singular premultiplier P that transforms the kinematical matrix S into a matrix

PS= (86)

having p last rows of zeros (p is in fact determined by the algorithm itself), Io-£

is the identity matrix in ¢ = £ = v = p dimensions and Q becomes some (0-f) x §
matrix,

Each factor of the premultiplier depends on the choice of a pivot,

If in the first row of S a pivot S1q is selected, the first factor of the premultiplier

is constructed with the remaining elements of the ath column of S,

~

1/Sla 0
P1 =
- sZa/sla
. I\’._1
- Sva/sla
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(1)
ng

is selected on the second row and with the other elements of the

The ath column of P}S thereby turns into a unit vector., Denoting by s the elements
of P1 (1

Bth column theAnon singular premultiplier is constructed.

S, a pivot S

- (1)
P2 = 0 1/s 23 0]
o | - DD
. . I,
0 | - sDssD

while the ath column of PZPIS remains the same unit vector, the Bth column is now
turned into the next unit vector. Whenever in pursuing this algorithm with the succes-
sive rows of the sucessive transforms of S a row of zeros in encountered, it is sent

to the last row by a renumbering of the elements of p. The procedure terminates when the
last rows to belreated are all composed of zeros,

Finally the sequence (2, B, Y .es) Of columns is here transformed into the sequence

(1, 2, 3 «ss) by renumbering the elements of s,

The final structure of the transformed S is then given by (86) and the structure of the

premultiplier is

P, =P = , (87)

N is a non singular (v - p) x (v - p), L is non singular p x p and lower triangular,
Tis ap x (v = p).

Splitting s and p to suit the partitioning of P and P S, problem (2), premultiplied
by the non singular P, takes the new form

sy * @82 "N Py (88)

0 =T Py * L Py ' (89)
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The corresponding homogeneous problem (p = 0), or self-stressing problem has clearly
from (88) a solution where 8(2) can be taken as the set of redundancy coordinates

and.s(l) is determined from its knowledge, This determines a possible matrix X in (52)

Sy T 4x - Q
X = (90)0

8(2) = X I€

Furthermore, as we can take 3(2) = 0 as set of releases, a possible X* matrix is

= I,) (91)

and, since the general solution of (60) is simply 5(2) = 0, S(l) arbitrary, we can

identify

I
y=| 9% (92)

S(l)=y o

Equation (89) that does no more contain s, 1s obviously the existence condition for
a solution of the equilibrium equations. Thus a possible RT matrix in (54) is

RY = (T L) (93)

Finally comparing (88) to (79) we obtain a possible pseudo-inverse
N 0
s¥ = (94)
0 0

Confirmation of all this is obtained in the modified form taken by the dual problem

(1) when we expand q as in (59) by . N
T W NT TT \ NT w NT
an = T = R = w+Rr
r 0 L r 0] r 0

W= {95)
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Substitution of this into problem (1) results in

B v W Io-g 0 W
e =S’ pr =@ 8! -
r r QT 0o r
or e = (IG-E Q)T W for the compatible strains.

A set of external isostaticity constraints is furnished by

R = ab™y | (96)

that verifies (56) and (58). The non singular matrix of theorem 3, turns out to be an

identity matrix and formula (78) is then seen to verify the result (94).

1.8, COMPACT SELF-STRESSINGS

Different choices of pivots in the Gauss-Jordan algorithm lead to different sets
of redundancy coordinates and matrices X describing the self-stressings of the structure
While S is sparsely populated, its transformation by the Gauss-Jordan process will
usually result in a fully populated Q matrix and self-stressings with a tendancy to
diffuse in the whole structure. From a physical point of view this is unsatisfactory
since it is now well known that compact self-stressings, involving only few members
(finite elements) of the structure are the more numerous, In fact they represents the
local compatibility conditions for strains in the continuum and must therefore be
concentrated in a few number of adjacent members. Only the global compatibility conditior
in multiply connected domains correspond to extensive redundancy "circuits",
The compact self-stressings can of course be obtained by dismantling the structure into
its constitutive (finite)elements and reassembling a small number of them untill a
redundancy is observed,
This procedure becomes however tedious for large structures and it would be desirable
to program the computer to automate the search for compact self-stressings, This would
result in a sparsely populated X matrix with the attendant advantages of best-condi- -
tioning of matrix force programs,

In some cases where a discretization of the stress field of the continuum is possible
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in terms of stress-functions, the process is trivially achieved by the nodal values
of the stress functions, which are in fact local redundancy coordinates, When the
stress-function approach 1s not viable the search of compact self-stressings via
appropriate selection of pivots in the Gauss-Jordan algorithm 1s still a subject of

research.

1.9, EXTERNAL HYPERSTATICITY

In many cases, especially in Civil Engineering structures, the external cons-
traints placed on q do more than prevent the kinematically admissible displacements;
they can introduce additional self-stressings. Such cases of redundancy of supports
are most easily handled by considering the set of nodal displacements subjected to
supporting constraints to belong to an additional virtual finite element with its
own elemental kinematical matrix and strain vector. Adding this strain vector to the
sequence in e , we increase n(e) but not n(q) and the number of independent self-
stressings is.cbrresponding ly increased; they now include the self-stressings due to
redundancy of the supports. It will be observed that only non zero strains in the addi-
tional element can induce strains in the structure, a rigid body displacement of the

additional element produces a corresponding kinematical mode in the structure.

1.10, STIFFNESS AND FLEXIBILITY AT ELEMENT LEVEL

In approximations based on a discretization of the displacement field, the
strain energy is obtained directly as a quadratic form in the boundary and internal

displacement coordinates q and b @

b™) >0 (97)
The symmetrical matrix of the form 1s known as the stiffness matrix and 1is non negative.
In a rigid body displacement

q=Rr and b=Cr

‘the strains vanish and the strain energy also; thus
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R + K cC=0 Kbq R + Kbb C=20 (98)
Let dq and db denote differential increases in the generalized displacements

and apply the energy conservation theorem, equating the strain energy increase to

the virtual work‘performed by the loads
@ =dgt (K q+ K. by +dbf (K q+K.b) =dg (£+g +dblh .
- qq gqb bq Kbb
Since this is valid for arbitrary dq and db, we obtain the Castigliomo type formulas

K +K. _b=g+f
qq 1 qb 8

99

Kpg @t Kgp 2= 0

Let us investigate the effects of modifying the definition of internal displaceument
coordinates accdrding to the formula

b=c+1Uq A (25)

The strain energy is modified into

K K q
5’(q c’)
kcq Kbb ¢
K =K +U'K +K.UG+U K, U
qq qq bq qb b

T T
ch qu +vu Kbb ch

The virtual work becomes
dq" (g + £+ U h) + dc’ h

and our stiffness formulas
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i T
K +K c=g+f+U h
qq qc 8

K q+K,., c=h

cq bb
The following consequences of this transformation must be stressed :

- the boundary displacement direct stiffness matrix qu is modified to qu »
-~ the generalized body load conjugate to q is modified from f to f + UT h,

- the internal stiffness matrix Kbb and the body load conjugate to the internal

r

displacement remain invariant,

T .
- the stiffness coupling qu Kbq is modified,

If the new definition of internal displacements is of strain-type, we have, by
definition, ¢ = O together with q = R r in rigid body displacements and the corres-

ponding properties

qu R=0 ch R=0 .
Holding the boundary fixed (q = 0) and displacing the inside necessarily generates
internal strains and a positive strain energy. For this reason the internal stiffness
matrix Kbb is necessarily positive definite, which opens the possibility of solving
the stiffness equations for the internal degrees of freedom. Elimination of the inter-
nal displacements is the more indicated that it can be done economically at the element
level and does not impeach the interconnexion problemn that concerns the boundary displa-

cements only. From (99)
-1
b =K, (h- Kbq q) . (100)

Substitution of this in both the strain energy and the virtual work is equivalent to

an internal coordinate transformation (25) with

U - KK

and the additional advantage that

= - -1 =
Kee " Kgp ™ Kqb Kob Kb = ©
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the stiffness coupling is eliminated. Moreover the transformation is such that c is
zero under rigid body displacements, or, stated otherwise, the new,internai coordinates

are of strain-type definition. This follows directly from the absence of stiffness

coupling; the strain energy is reduced to

1 T T
W=-2-q Kq+=c Kbbc (101)
with K=K =K -1 (102)

qq qb Kbb Kbq

and vanishing of the strain energy, which implies rigid body motion, implies ¢ =0

because K_, is positive definite, while

bb

KR=20 (103)

The same result is of course obtained from formulas (98) as modified by the transfor-

mation,

. We summarize the situation after elimination of the internal degrees of freedom,
as it will be applied in the sequel.

Starting from the quadratic form (97) as obtained with an arbitrary definition of the
internal degrees of freedom, we eliminate b by formula (100) that also enables us to
retrieve the internal displacements once q has been calculated. We thus obtain the

boundary-stiffness relation

Kq=g+f | (104)
where K is given by (102) and, for economy of notations, f denotes the body load
effectively conjugate to q

\ = - -1
=gy -K, Kb | (105)

where fb stands for the body load conjugate to q under the original choice b for the
internal coordinates. The stiffness matrix K is non negative., Its singular character
is demonstrated by formula (103). '

Transforming the energy due to boundary displacements by the expansion (21) we obtain

in view of (103) the positive definite form



where J = S# K s#T (106)

is a positive definite matrix called the core stiffness matrix. It clearly depends
on the choice of e, that is on the choice of the kinematical matrix S within its
equivalence class,

As the following transformations show

r

s=5"(g+6) =s"kKq=s"k Me+RrRr)=Je (107)

J is a matrix of generalized elastic moduli connecting the stresses and the strains

of the element.

The inverse relation
e=TFs (108)

defines the positive core flexibility matrix, or matrix of compliances.
From (107)

f+g=8Ss=8Je=57J ST q
we obtain the inverse of (106)
T
K=S§8JS8 (109).

In connexion with this result, the question arises whether it is also possible to

define an extended flexibility matrix relating loads and displacements, providing in

fact an inversion of the stiffness relations (104). Starting from (21) we derive

#
q=5"T e+Rr=5TFs+rRr=5"TFs" g+ +rr

or q=G(g+ f) +Rr : (110)

¢=s"TFs” extended flexibility matrix (111)

34,
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As was to be expected from the singular character of equations (104), this result
holds because g + f is self-equilibrated and the existence condition (27) is satis—
fied, but the solution is not unique. The part of q governed by G is the one satis-
fying a certain choice of isostaticity constraints implicit in s* . Frou (18) and
(20) we obtain '

r* q=r

the constraint violations, or generalized support displacements, of the general solu-
tion. The converse of (111) is easily found to be
T
F=8 GS (112).

1,11, THE DIRECT = STIFFNESS OR DISPLACEMENT METHOD

Having determined the stiffness matrix of each element, the stiffness relations

81y * fy T Ky Y i=1,2, ... N

are multiplied to the left by L T) and added to produce in view of (38), (41) and (46)

(1
p=g+f=Kgq (113)

e opp T |
where K = f L(i) K(i) L(i) | (114)

K is the master stiffness matrix of the unsdpported structure, as the right hand side

demonstrates it can be obtained quite siuply by a proper addressing procedure of the
elemental stiffnesses.

We recall that while £, the body load conjugate to q, must also be built up from the
individual f(i) according to (46 ), the load g is obtained directly by coumputing the
virtual work q¥ g of the loads externally applied at the structural boundaries or, as
the case may be, at the inﬁerfaces.

Because the structure is as yet unsupported, the master stiffness matrix is singular.
If a base matrix of kinematically admissible displacements R is known, the master

stifness obeys the equation K R = O, It is however tedious for a large structure to
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set up a base matrix R from inspection.

In aerospace applications, where the structure is normally not supported, a Gauss-
Jordan algorithm applied to K can again produce a base matrix R together with a
pseudo—iﬁverse of the master sﬁiffness relations (113).,

With the same notatioms as in section 1.7,, let the premultiplier P receive the

structure

However, in this case the symmetry of K induces two important properties.

Noting that P K PT is also symmetrical and computing

, I Q NT . NT 0+ QLT
(P K) PL = =
0 0 0 LT 0 0
we obtain at once
N = N : (115)
T +qLl =0 or T+LQ =0 (116)

The premultiplication of (113) by the non singular P wmatrix reduces the stiffness

relations to

Q(l) +Q Q(Z) =N P(l) (117)
0 =T + L /
P(l) . p(z) ) (118)
The first can be rewritten as

(1) N0 P(1) - Q

1(2) ° 0 Pr2) I
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a pseudo-inversion of (113)

q=K"p+Rrr . (119)
[ o - qQ

where K* = _ =T R = (120)
o o I

and q(z) is identified with the kinematical coordinates r of the structure.

The second (118) is obviously the existence condition for the solvability of (113)
with respect to q, or equilibrium conditions to be satisfied by the loads to avoid
excitation of the kinematically admissible displacements, As such it must be equiva-

lent to
T T
RP=mQ Py YR O

This is not contradictory with (118), which can in fact be placed in the form

L RT p = O by virtue of (116). Since L is non singular both forms are thus equivalent.
In the general case the known external loads are applied on a set of coordinates dis-
tinguished by the subscript (1), in other words a set p(l) of external loads 1s given.
For the complementary set, the values of displacements is known : q(z) is given (zero
for fixed supports). .

We then modify the Gauss-Jordan algorithm applied to K by forbidding the choice of
pivots on the columns belonging to the second set. When the algorithm stops, the pre-

multiplier has still the same structure, but now

I Q .
PK = ’

If V has no zero rows, the structure is at least isostatically supported.
If it has zero rows it is only partially supported. !

The stiffness equations are immediatly resolved as follows

T " VP T (t21)

gives the unknown displacements in terms of the known loads and support displacements,
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-1 .
P(z) =L (.V Q(Z) -T P(l) ) | ' (122)

yields the reaction loads in the supports.

1.12. THE FORCE METHOD

While the direcfAstiffness method completely by passes the construction of the
structural kinematical matrix, the force method is agtually based on its topological
analysis. This is because, as its other name indicates, the direct stiffness method
selects the generalized displacements as the basic unknowns. The strains and stresses
are then derived from the generalized displacements, not necessarily from matrix
equations, but often by returning to the field equations in each subdomain. The force
method aims directly at the stresses and begins therefore by the determination of the

redundancies, We start from equation (79)
s = S# p+Xx

where a pseudo~inverse s" and a base matrix X have been obtained by a Gauss-Jordan
algorithm, as explained in section 1.7.

The strains are given through the core flexibility relations

= F

@ T W %W

established for each element. Considering the definitions of e and s, respectively

(43) and (47), for the assembled structure, the set of those relations can be presented

in the form e = F s, where F is built up from diagonal F(i) blocks
F
0 F 0 /
F = (2) _ .
0 () - _ 0
0 0 0 ‘
Fan

Thus e=F S“ p+FXx
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The compatibility conditions for the strains were found to be expressed through

equation (53) and we must have
XXFs*p+ (XX FX) x=0 . (123)

Since F is positive definite and X has linearly independent columns, this set of
linear equations for the unknown redundancy coordinates is non singular and its

inversion furnishes
x==- G FX) X Fs*p

and the generalized stresses are given in terms of the applied loads

s=s'p-x & FX) X FS®p (124)

Given the compatible strains which follow from e = F s, the displacements can be
found from

q=5T e +RrRr (125).

This procedure solves the problem of the unsupported or "free" structure, as well
as that of isostatic or hypostatic supports, for which r can be determined at
least partially without invalidating (124).

Imagine now that we incorporate an additional element whose boundary displacements
q(o) do not introduce new generalized displacements but are taken from the existing
set q.

The addition in a given truss of a new bar \connecting two existing nodes is the
simplest example. In more complicated examples the new element can possess, in iso-
lation, its own non empty set of self-stressings.

In any case /

o) = Loy 9

and the new element has its own set of generalized strains

T T
®0) = S5(0) %) " 5¢o) Loy ¢



so that the structural kinematical matrix receives additonal columns, that will be

assumed to be listed in front of the others:
T .
= S S
5= L) S () '

S denoting the kinematical matrix of the "free" structure,.

(£)

Theorem 4
the .
The self-stressing matrix X of augmented structure can be partitoned as follows

s(o) xoo xot x(o)
= (127)

where x(o) is a complete set of redundancy coordinates for the additional element in

isolation, Xoo and Xft have linearly independent columns.

Proof

It is obvious that the self-stressings S(o) = xoo x(o) of the isolated new element
induce no loads on the free structure when it is being connected, so that s(f) does
not depend on x(o). By definition the columns of Xoo are linearly independent.,
Assume now that the columns of Xft are not linearly independent. A non zero x(t)
would then exist such that s(f) = Xft x(t) = 0, For this x(t) we must have

S(o) = Xot x(o) # 0, otherwise the columns of X related to x(t) would be linearly
dependent, which contradicts the definition of X.

Hence this x(t) would generate a self-stres§ing in the isolated new element alone,

which contradicts the assumption that x(o) is a complete set,

Note

If x(t) is properly choosen, X itself can have a set of zero columns, the corres-

ponding columns of xft represezzing self-stressings of thé free structure alone,
The remaining columns of xot and Xft represent the new self-stressings that may
appear as a result of the interconnexion.

The partitioning of X, considered in theorem 4, is one obtained from a Gauss-Jordan
transformation in which the pivots are first selected amongst the L(ﬁ) S(o) columns

of S. It yields for s(f) the expansion

40,
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]
=3 + X 128
o) T S P R X (128)
From the core flexibility relation of the free structure follows
e =.F ] = F S * +F X, x
(£) TE® %@ TN e P TN e X(e)
Apply now the compatibility conditions on the strains
T
T e(o) Xoo 0 - e(o)
X = =0 ,
T T
e (£) Xor g ®(f)
yielding in particular
T T _
Xot (o) * Xft €(f) ° ’
or, in view of (127),
T T #* T
Xot e(o) + Xft F(f) S(f) p + (Xft F(f) Xft) x(t) =0 (129).

Now F(f) being positive definite and Xft having linearly independent columns,

equation (129) can be solved for the unknown x

(t)’
When the result is substituted into (127), there follows

T -1 T

#
See) = USey) = Xge K Frey Xeo)  Xgp Figy Sqpy 1 P
T LT
= X Kee Feey %5 Xor ®{0) (130)

This establishes the stresses in the original structure as a result of the application
of external loads and the applicafion of given strains in the additional element,
Obviously we need only consider loads p applied to the set q compleuentary to'q(o).

As no flexibility of the additional element is involved, this formula is applicable

to the problem of the hyperstatically supported structure. The additional element is
then the virtual element suggested in section l1.9. incorporating the set of displace-
ments (o) which are either fixed (q(o) = 0 and thus e(o) = 0) or whose values are

prescribed.



An interesting feature of the force method, which is in fact related to reciprocity
properties and consequently to virtual wdrk, is the Pasternak reduction principle.
Evaluating the internal form of the virtual work theorem, it can be verified from
(123) and (124) in the simplified form '

s=s" +Xx (s" = s* p)
e=Fs = e” + Fxx (e“ = F s#)
x = - (xT F x)"1 X e r
that el s =g =l g*. (131)

In other words, the virtual work can be evaluated by reducing either the strains,

or the stresses, to their particular statically determined part,

1.13. THE COMBINED METHOD

In the combined method, stresses and displacements are solved simultaneously.

Elimination of the strains between equations (1) and (3)
T
Fs=-8 qg=0 (132)

and equation (2), generate a combined linear system

- o (133)

whose matrix is still symmetrical,
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1.14, DISCRETE VARIATIONAL PRINCIPLES

The formulations of the direct stiffness, combined, or force method can be pre-
sented as the Euler-Lagrange equations of discrete variational principles.
The variational principle of displacements, or principle of minimum of the total po-
tential

%- Tk q- qT P winimum (134)
features the strain energy expressed in terms of the generalized displacements and
the potential energy = qT p of the loads p assumed to be known and invariant (dead
loads). If the displacements actually occuring are incremented by 'variations" éq,
the conditions under which the total energy remains stationary to first order in the

variations is
T
8q" (Kq=-p) =0

and, since the increments are arbitrary, we obtain equations (113) of the direct
stiffness method., The increment of the total potential to second order (the second

variation)
§q° K &q

is non negative and the total potential is thus a minimum,
More general boundary conditions consist in specifying loads on a subset p(l) of p

and displacements on the complementary subset q(z) of q. The principle takes the form

2790 Fu %) * 9 Rz Sy * 79 a2 ) " Sy Py Pintmm

The third term is in fact a specified constant that could be dropped from the principle,
were is not of interest to adopt the Lagrangian multiplier technique and restore to q(Z)
its freedom by augmenting the functional with the term - pr) (q(2) - u(z)).

Here p(z) is a set of Lagrangian multipliers, u(z) the set of specified values of q(z).
The Euler equations pertaining to variations on q(l) and q(z) are then respectively

Kip 9y *®2 92) “ Py = °
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T
0 Ky = Xip)

Ka1 9q1) Y Kz 9¢2) “ P2y T

The Lagrangian multipliers are thus identified with the loads p(z) reacting against

the imposition of displacements,
If the conditions q(z) =0 prevent any admissible kinematical freedom of the structure,

K11 is non singular and

-1
1y = ¥ Py - K2 92y (135)

r

an equation that solves the problem of determining the remaining displacements in terms

of the given data. Also

-1
P2y = Koy Ky (Pryy ~ K 9)) * Ky q(y) (136)

an equation determining the reaction loads. This situation, that often prevails, is

to be compared with the solution given previously by equations (121) and (122),

Consider now the Friedrichs transformation of principle (134) by which the strain

energy 1s now expressed in terms of strains through use of (109)

3@ Ka=g3d 53T q=2¢6Tp s Ty =2

and the kinematical equations (1) are incorporated through a set s of Lagrangian mul-

tipliers
%-eT Je+ sT (ST q-e) - qT P - | win [ max (min) ] (137)
q s e
variations on e produce as Euler equations
Je-s=0 | (138)

which, in view of (3), identifies the multipliers with the stresses associated with
the strains in the constitutive equations., Considering the positive definiteness of
J, it is clear that for fixed q and s, (137) is a minimum with respect to that choice

of e.



45,

Variations on s produce as Euler equations the kinematical constraints (1); variations
on q the equilibrium equations (2). ‘

Consequently this 3-field variational principle contains all three basic equations (1),
(2) and (3) of our problem as Euler equations,

It remains to justify its minimum-maximum character with respect to the choices on q

and s.

Accepting the constitutive equations (3) or (138) as satisfied a priori and substituting
the minimizing choice of e into (137), we obtain

r

- %'ST Fs+ sT st q - qT P min ( max ) (139)

q s

Indeed, it is clear that the quadratic form in the stresses is negative definite and
produces a maximum of the functional for the choice corresponding to the variational

derivative (Euler equation) with respect to s :
. . |
~-Fs+8S q=0 (140)

This is of course equivalent to the compatibility equations (1) as modified by the
constitutive equations.

The variational derivative of (139) with respect to q yields again the equilibrium
equations (2), The 2-field principle (139) is canonical in the sense given to it by
Friedrichs. In the context of linear elasticity it is better known as the Reissner
principle. Should we substitute for s its maximizing value s = J ST q, taken from
(140), the principle reverts to the one given by (134), where the choice of q is
minimizing,

N

If on the contrary we write (139) in the equivalent form

Ty s + qT (S s = p) win ( max )

-1
28
q S

and assume the equilibrium equations (2) to be satisfied a priori, we obtain the

single-field principle

- %’ST F s max (141)
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By changing the sign this turns into the minimum complementary energy principle,

A direct application of this principle requires that we solve the equilibrium equations,
When this has been done by a suitable definition of redundancy coordinates, we can

subst itute eqﬁétion (79) and obtain

(pT S”T + xT XT) F (S“ p + X x) min (142),

N[~

whose Euler equations are identical to (123).
Consequently as our initial single-field principle (134) is related to the direct
stiffness method, the dual single~field principle (141) is related to the force
method.,
The variational equations of the Reissner two-field principle, equations (140) and (2)
are seen to correspond to the final system (133) of the combined method. '
A second two-field principle can be derived from the genefal principle (137) by obser-
ving that the a priori satisfaction of the equilibrium equations (2) reduces it to
%-eT Je-sle , min
: e
Its direct applicability requires again that the equilibrium equations be solved, it
then appears in the new form ‘

LeTge-e (S# p+X x) max [ min] (143)

2
x e

Indeed, its variational derivative with respect to e is

Je- S' p-Xx=0 (144)

and, when this minimizing value of e is substituted, it turns into the functional
(142) of x with a change of sign, whereby x becomes maximizing. The direct variational

derivative of (143) with respect to x produces the compatibility equations
x? e=0

When they are solved simultaneously with (144)

-
J X e S p

- ‘ ' (145)
X 0 - X ) ‘
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we have a new type of combined method,

All the discfete variational principles so reviewed have correspondiné formulations

for the cont inuum, When‘the displacement, strain tensor or stress-tensor fields they
contain are replaced by discrete representations, some of the constraints represented
by equilibrium, compatibility or constitutive equations are relaxed. The principle of
minimum total potential relaxes only the equilibrium equations. Its dual, the principle
of minimun complementary energy relaxes only the compatibility conditions,

Reissner's principle relaxes both, but retains exact constitutive equations.

The second two-field principle relaxes compatibility and constitutive equations but

satisfies rigorously equilibrium,
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