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ABSTRACT

The present investigation is concerned with the fact that
crankshaft-propeller torsional oscillations are coupled to the
torsional oscillations of the engine as a whole. The basic phe-
nomenon was discussed by Den Hartog and Butterfield! in the
elementary case of a single radial engine with a single resonant
frequency on the suspension.

A general method of calculation is presented for long crank-
shaft engines. It is an extension of Biot’s method,? where, in
addition to the usual dynamic moduli at both crankshaft ends,
the solution contains the dynamic modulus of the engine sus-
pension plus air frame with respect to the harmonic torque ex-
erted by the crankcase.

(1) InertiA CoUPLING BETWEEN CRANK ASSEMBLY
AND CRANKCASE MOTION

LET ¢, BE the angular coordinate of the xth crankpin
with respect to the crankcase and y be the angular
coordinate of the crankcase. The complete expression
for the kinetic energy of the crank assembly is a quad-
ratic, homogeneous expression in the angular velocities

¢ and ¢
T, = (1/2)$,21(¢z) + 'I’¢ZM(¢J:) + (1/2)¢2 V(¢x)

The coefficients are periodic functions, of which only
the mean values I, M, and V will be considered.

For instance, in the case of a single piston per crank-
pin, these coefficients are:

M =1I.+ bR1 — (H/L)]

R2
I, =M+éR2<1+'R)X

4L?
H J-—0bHL — H):l
p=
(o402 4+ I=2HG
where '
R = radius of the crankpin
I, = moment of inertia of crank section
about crank axis
4 = mass of piston
b, L, and H = respectively, mass, length, and dis-
tance of center of gravity to crank
axis for the connecting rod
J = moment of inertia of connecting rod

about the c.g. axis
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It comes out that, contrary to V, the value of I/ is the
same for any location of the oscillation axis of the crank-
case. This makes parts of M, due to connecting rod
and piston, additive in the case of several centrally
connected pistons per crankpin (e.g., V-12 engines).
The value of V is not given, since it depends on the
oscillation axis and will be discussed later.

The formulas are most easily obtained after a pre-
liminary reduction to concentrated masses and cor-
rective inertias. Even the apparently involved case
of the radial engine with angular eccentricities is
tractable that way.* Referring to Tables 3 and 4 of
this paper, where the formulas appropriate to the cal-
culation of two coefficients U and V), are given, the fol-
lowing correspondence exists: -

= 2R2Uo/g, M = .R2Vo/g

(2) EQuaTIONS OF MOTION

Fig. 1 shows an equivalent mechanical model of a
long crankshaft engine with constant values of I and
M and a spring constant k. Let 6, denote the ampli-
tude of vibration of the xth crankpin with respect to
the crankcase and let o denote the amplitude of vibra-
tion of the crankcase.

The natural vibrations having the same frequency,
w, and the same phase angle, 6, + «, will be the ampli-
tude of absolute motion of the xth crankpin. .

The equations of motion are then: for the xth crank-

pin,

—wil, — w’Ma = k(oz—l + 041 — 20::) (1)
for the first crank, ’
—w2I01 — o'Ma = k(02 - 01) + Mo (2)

L
M ‘M
° «,0s + ®

F1c. 1. Equivalent mechanical model of long crankshaft

engine with constant inertia factors, including positive angle and
torque conventions.
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for the last crank,

0, — w?Ma = k(fy — 0,) — M,  (3)

for the crankcase,

—ot(I, + 1) — MY 6, = Mo — M, + No —
1
N,+N (4

where I is the moment of inertia of the crankcase sep-
arated from the propeller and blower gearing casings
about the oscillation axis and where N is the torque
amplitude due to the engine suspension.

(3) CourLiNG DUE TO PROPELLER AND BLOWER
GEARINGS

The following linear and symmetrical relations hold
between the torque amplitudes Ny, and M, and the
corresponding absolute angular amplitudes « and

01+a:

—Mo = .Ko(01 + a) + Goa} (5)

—No = Go(01 + Ol) + Loa

The coefficients are dynamic moduli whose expressions
as functions of the frequency are to be set up in each
particular case. With regard to the fixed frame prob-
lem (a = 0), K, is seen to correspond to Biot’s K.

The structures of the dynamic moduli in the case of
a spur gear reductor are obtained as follows (Fig. 2):
Let

Ky, = —my/(0, + )

be the dynamic modulus at the end of the propeller
shaft. The amplitudes 6, and 6,, relative to the gear
casing and the torque amplitudes m, and m,, due to
teeth pressures, are related by the equations

0,, = 7'007,, m, = ToMg
(o negative here) while
No = (r0 — D)mg + @ Tpa

I;0 is the moment of inertia of the whole reductor group
about the oscillation axis, the moment of inertia of the
shaft groups about their own axis being ignored.

On the other hand,

Mg = Zy(0s + o) — Zap(bh + @)
Mo = Zod(od + Ol) bl Zoo(01 + a) )

with ZdO = ZOd

The Z’s are the dynamic moduli of the drive shaft
“other end clamped.” Solving for the angular ampli-
tudes,

bs + @ = (mg/Kaa) — (Mo/Ka)
b+ a = (my/Kw) — (Mo/Ku)

The K’s are the dynamic moduli of the drive shaft
“‘other end free”’; they are simply related to the Z.

ZwKa = ZaKoa = ZyKo = ZaZw — Zos®
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F1c. 2. Symbols used to set up dynamic moduli of spur gear
type reductors.

I

Iy I,

Ko

F1c. 3. Simple structure of driving shaft for spur gear reductor.
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Fi1c. 4. Symbols used to set up dynamic moduli of epicyclic
type reductor.

These equations yield in succession

0 + o = —(10 — 1)a — (r*mys/K,)
Amg = —Zab — [Zao + (10 — 1)Z4]e

where
A = 1 + ('ro”de/K,,)
and, finally, '
Ko = Zoo[l + (TozKa/Kp)] Al
Gy, = (To - l)ZodA_l
Ly = (0 — 1)2Z3A7 — wl
If the drive shaft has the simple structure of Fig. 3,
de = ko - (02.[@
Zyo = ko
Zoo = ko - wZIo

If, furthermore, the inertias I, and I, are neglected,

de = ZdO = Zoo = ko, bKdd = 0
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and there follows an exceedingly simple structure con-
veniently referred to as the ‘‘purely elastic coupling”’:

/Ky = (1/ke) + (1*/K}) .
GO (TO - 1)K0, Lo = (‘To - 1)2Ko - w2110

One should be reminded that, owing to the flexi-
bility of the propeller blades, K, and, hence, K, will also
be functions of the mean angular velocity of the crank-
shaft.?

The case of the epicyclic reduction gear is slightly
more complicated. Fig. 4 shows elements similar to
the spur gear reductor and similarly denoted. In
addition to those, a crown wheel, of moment of inertia
1., is connected to the gear casing through an elastic
shaft of spring constant k. that allows in a crude fashion
for the flexibility of the gear casing. Planet gears have
a total moment of inertia about their own axis equal
to[. '

The relations between the different angles are

0, —ﬂoop + (1 + Fﬁ)oc
0,1 = 7-00, - (To - 1)04:

The same relations hold naturally when « is added to
each relative angle. Using these relations in a kinetic
energy equation, such as

1,6, + @) = A(8 + a)? + B8, + @) + C(8s + @)?

values of 4, B, and C are found that satisfy this equa-
tion. It means that the total inertia I, of the planet
gears may be transferred asfollows: anamount

A4 =1+ p) [1+ (uo/70)]L,

goes to the crown wheel, whose fictitious total inertia
becomes I, + A = I,; an amount

B = —uo[(uo + 70)/(r0 — DL,

goes to the planet carrier at the end of the propeller
shaft; and an amount

C = wo(l + po)/o(ro — 1)

goes to the sun gear.

In the expressions of the dynamic moduli that will
follow it is understood that this transfer has taken place.
There comes, in succession,

- 1> a

(Ko/k — 1) cosp+1
(Kn./k — 1) cos nu + cos (n + 1)u

k.
mg + (I-?c

To—].

K.

6c

The dynamic moduli Ko and K, are functions of w and,
hence, of u through Eq. (8).
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| b+ o = _[(l;_c_p_z+l%:]m¢—(fo—l)f%a
with
K, =k, — 0,

and

Amy = —Zuby — [Zao + (0 — 1)Zaa(ke/K.)] e
with

a=1rz O

and, finally,

N

Gy = (10 — 1)Zo(k./K;) A1

Ly = (10— 1)*Za (%)2 ATt — “’2I°£c: = @

Similar formulas will hold for the other crankshaft
end, eventually geared to blowers and (or) to exhaust
turbines.

M, = K0, + G,a } ©6)
M,+ N, = Gubr + Ly

(4) THE F1xEp CRANKCASE PROBLEM

Treated by Biot,% 3 this will correspond to the pres-
ent problem where « is put equal to zero. The gen-
eral equation of motion for the xth crankpin is satisfied
by putting

0,-—;Csin(xu+¢) x=12...m )

the frequency being related to the parameter p by the
equation

w = 2V k/I sin (u/2)
Egs. (2) and (8) are reduced to the following:

®
[2 cospu— 1+ (Ko/k)]@l —6:=0
[2 cosp— 1+ (Kn/k)]on — Opa

o ©
and are used to fix the unknowns ¢ and u.

The substitution of the general solution [Eq. (7)]
transforms them in a pair of linear and homogeneous
equations in the unknowns sin ¢ and cos ¢. The
condition of compatibility or “frequency equation”
appears in the form of a determinant,

(Ko/k — 1) sin u | _ o

(Kn/k — 1) sin nu + sin (n + D (10)

Instead of plotting the left-hand side as a trans-
cendental oscillating function of p to find its roots by
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an interpolation process, Biot suggests constructing a
complex quantity of which it is to be the imaginary
part. It is useful, in view of the generalization of this
process to the present problem, to draw attention to a
convenient method for this construction. Any deter-
minant

a b
c d

I=ad—bc

is the imaginary part of either

(@ — 1) (c + id)
or

—(a + 9b) (¢ — id)

As a result, the complex quantity is immediately re-
solved in factors; in the case of Eq. (10),

einp['eiu/2+ (Ko/k _ 1)8'—5';4/2] X .
[6"2 + (Ka/k — 1)e™ 2] = Ao, d ot o (11)

An equivalent statement to the condition that the
imaginary part should vanish consists in equating the
argument of the complex quantity to a multiple of .
Hence,

nu + ¢o + ¢, = multiple of =
where

tan ¢o
tan ¢,

(12)

(2k/K, — 1) tan (ﬂ/2)}
(2k/K, — 1) tan (#/2)

(5) LIMITATIONS OF THE SOLUTION

It appears from Eq. (8) that the proposed solution
yields only those natural frequencies that are inferior
to the cutoff frequency

we = 2VE/I

of the mechanical filter represented by the long crank-
shaft. This cut frequency is indeed the natural fre-
quency of an elementary cell of that filter (Fig. 5).

A corresponding process, yielding the natural fre-
quencies, if any, above the cutoff frequency, would con-
sist in putting

0, = (—1)*Csinh (xu +¢) (x=1,2...n)

the general equation of motion being again satisfied,

provided
w = 2\/171 cosh (u/2)
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F1c. 5. Elementary cells of long crankshaft considel;ed as a
mec}'xlanical filter. The cut frequency is the natural frequency of
a cell.

However, it seems doubtful whether the consideration
of these higher frequencies is worth while, especially
since their accurate value will be impaired by the sim-
plifications involved in the actual concentrated masses
model.

The same remarks concerning the limitation in fre-
quency range will apply to the treatment of the general
problem.

(6) THE OSCILLATING FRAME PROBLEM

Returning to the general equation [Eq. (1)], it is
seen to admit of a solution

0, = C[sin (xu + ¢) + v]}
a = —CI/M)y

C is again an arbitrary amplitude coefficient, and the
frequency is still given by Eq. (8). The three param-
eters u, ¢, and v will follow from the equations govern-
ing the motions or the end crankpins and of the crank-
case. ’

The investigation is limited to the case of ‘‘purely
elastic coupling’’ on both ends of the crankshaft. The
general case involves no special difficulties but is more
cumbersome.

Substitution of Egs. (13) and (5) in Egs. (2) and (3)
expressing the motions of the end crankpins yields

(Ko/k — 1) sin (u + ¢) + sin¢ — e(Ko/k)y = 0}
(14)

(13)

(K./k —1)sin (np+ ¢) + .
sin[(n 4+ Dp+ ¢] — e(Ka/k)y = 0

where coupling coefficients appear
o =7nl/M) —1, ¢ =rnlI/M) -1
Multiply Eq. (4) throughout by I(CkM) 1.

(15)

When substituting the solution, note that
I ”

—w? =36, =2(cosp — 1) Y 6, = 2(cos p — 1)ny + sin ¢ — sin (u + ¢) — sin (nu + ¢) +
. 1 )

kT

The following additional notations are introduced:

sin [(n + )p + ¢]

F=If+n7+IrO+Irn
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total moment of inertia of the engine about the oscillation axis; this makes a discussion about the exact value of V
practically unnecessary, since the value actually included in an experimental measurement of F will, at least for a
sufficient number of plstons, be independent of the angular position of the crankshaft and represent accurately

the required mean

Kf = —N/a

dynamic modulus representing the response of the engine mounting and air frame when submitted to a harmonic

torque from the crankcase.
dynamic modulus of the suspension:

h =

—otnl — (I/M)*[K, — «*F)

This dynamic modulus is part of a more complicated expression that will be called the

(16)

The coupling coefficients ¢ and e, are again put in evidence if Egs. (14) multiplied, respectively, by 7o(I/M) and

7a(I/ M) are substracted:

elsin (u + ¢) — sin ¢] + e, {sin (nu + ¢) — sin [(n + Du + ¢1} + (/k)y =

17

Egs. (14) and (17) form a linear and homogeneous set in the unknowns sin ¢, cos ¢,.and v; hence, they yield a

compatibility condition or frequency equation:

(Ko/k — 1) cos u + 1
(K./k — 1) cos nu + cos (n + 1)u
e(cos p — 1) + e,[cos nu — cos (n + 1)u]

(Ko/k — 1) sin p —aKo/k
(Ko/k — 1)sinnp + sin (n + Dp —e,K, /B =0
@sin u + e;fsin ny — sin (n + D]  k/k |

The development of this determinant is started through the elements of the last column, each determinantal
cofactor being replaced by a complex quantity of which it is the imaginary part according to the process indicated
for the fixed frame problem. Some terms, which are real, are conveniently dropped, and after some grouping of

the others there comes:

ing [%AoAnei(w + ¢n) + 2(1 — COS u) <€

where

K, cos (1/2)

4o = k  cos ¢

+enK)—<1—e ) (a? + o)

and 4, =

KK,
Bl
K e =+ real (18)

K, cos (4/2)
k  cos ¢,

In contrast to the fixed frame problem, ¢ is no longer a factor of the whole expression; hence, the primitive idea
of equating the total argument to a multiple of = will no longer give a satisfactory result, since the argument would
depend upon circular functions of the angle #u, which means that it would go itself through many oscillations.

However, it is possible to bring’ifhe vanishing con-
dition of the imaginary part to a reduced form:

sin (mp + ¢) + sin ¢ = (19)
where the angles ¢ and ¢ Var'e independent of #u and vary
smoothly. To this effect, introduce the dimensionless
flexibilities

)\=27k, ao=I—2—{—I:—1, an=%—1 (20)
then put
tany = a/b (21)
where
a=a + o — (& + &’ (22)

b= cotg + tan S [Ne?a, + €2a0) — aoars] (23)

The angle ¢ is the argument of the bracket in Eq. (18),

~ which is written accordingly :

}_zKoKnI:asinp

Pk |2sny gtV )\eoe,,e_"“] + real

Finally, defining ¢ through one of expressions

2606,,)\ 2€o€,¢)\

b Ve w
(24)

2epen\

sin { =

iny =

yields the reduced form [Eq. (19)] of the frequw,m
equation. : of

-
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TaBLE 1
~——Natural Frequencies—
w/am,
Cycles
u° & @n° nu + do + én u° per Sec.
0 -90 -90 —180
1 —8.97 —68.05 —-71.02
1.2 —4.915 —40.15 —37.865
1.3 —-3.175 —7.74 -3.115 1.31 14.435
1.4 —1.58 +27.38 +34.20
2.0 +6.14 +75.15 +93.29
5.0 +29.72 +86.34 +146.06 )
7.0 +40.28 +87.47 +169.75 7.96 87.65
8.0 +44.69 +87.79 +180.48
9.0 +48.52 +-88.06 +190.58
10 +51.815 +88.26 +200.075
15 +64.13 +-88.86 +242.99
30 +82.785 +89.44 +352.225 31 337.5
45 +101.83 +89.64 +461.47 :
51.5 548.6
60 +208.055 +89.74 +657.795 66.5 692 .4
90 +256.95 +89.85 +-886.80 92.5 912.2
120 +263.53 +89.91 +1,073.44 121 1,099
150 +267.14 +89.96 +1,257.1 150 1,220
180 +270 +90 +1,440 Cut 1,263
frequency
Fixed frame solution of the example shown in Fig. 6.
. TABLE 2
———————— w./27 = 88.63 Cycles per Sec. (1° = 8.05) -~ ~——Natural Frequencies—
ue ¥° ¢° ety 4+ Y-t u° w/2m,
Cycles
per Sec.
0 —180 ) 0 —180 —180
1.0 —77.26 -0.07 —71.33 -71.19 1.31 14.435
1.5 +49.08 —0.18 +57.90 +58.26
2.0 +80.44 —-0.09 +92.35 +92.53
3.0 97.10 -0.07 +115.03 +115.17
4.0 106.33 —-0.07 +130.26 +130.40
5.0 113.21 -—0.08 +143.12 +143.29 ;
7.0 134.36 —0.15 +176.21 +176.51 7.14 78.63
8.0 168.31 -0.73 +215.58 +217.04 8.96 08.63
9.0 308.44 —-0.165 +362.08 +362.41
10.0 316.14 —0.065 +367.70 +376.80
15.0 332.46 -0.01 +422.45 +422 .47
30 351.94 . +531.94 +531.94
31 337.5
45 371.44 .. +641.44 +641.44
TABLE 3
w,/2r = 14.325 Cycles per Sec. — ~—Natural Frequencies—
w/2m,
) Cycles
u’ v° ¢° ety 4+t np+y —¢ g per Sec.
0 —180 0 - =180 ~180
1 —38.24 —5.40 . =37.64 —26.84 1.15 12.68
1.2 +27.745 —16.59 +18.355 +51.535
1.3 +82.43 —22.39 +67.84 +112.62
1.4 +136.98 —18.72 +126.66 +164.10 1.44 15.87
1.5 +174.16 -12.20 +170.96 +195.36
1.6 +197.16 —-7.95 +198.81 +214.71
1.7 +212.26 —5.49 +216.97 +227.95
1.8 -+222.895 —4.00 +229.70 +237.70
1.9 +230.85 —3.05 +239.20 +245.30
2.0 +237.13 —2.41 +246.72 ' +251.54
2.5 +-256.29 —1.02 +270.27 +272.31
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F1c. 6. Inertias in Ibs. in. sec.? and rigidities in lbs. in. per
microrad. of typical V-12 engine with spur gear reductor. Fur-
ther data used: . ﬁ 3
7= — 2.38 I/M =13
o = + 0.14 F = 700 1bs. in. sec.? ¥l I
lutions to thi ion -
There are two soluti o this equation 3| 2 3 $ 3 S 3
nu + ¢ + ¢ = even multiple of (25) N,
nu + ¢ — ¢ = odd multiple of =

The process is thus reduced to the plotting of two
smooth curves. To sum up: Plot the three expressions
(20), the last two being already necessary in the fixed
frame problem; then plot Egs. (22) and (23), extract
the angle ¥ from Eq. (21), and, finally, extract { from
one of Eqs. (24).

(7) SpEcIAL FREQUENCIES

Some particular values of x are important to discuss.
(a) IfK, =0, then,

tan ¢ = cot (u/2)[—a + ©*\] !

andsin{ = 0.

The two curves have a common point if this condi-
tion occurs for a particular value of u (resonance at the
rear dynamic modulus), or they are identical if the
condition is permanent (rear crankshaft end free).

The symmetrical case exists for resonant values of the
front dynamic modulus.

(b) If k tends to zero, N tends to infinity.

Values of w for which this occurs are conveniently re-
ferred to as resonant frequencies for the engine sus-
pension, although the engine inertia and the inertia
coupling factor I/M are involved in the expression for

AN

N

~L |

F16. 7. Two modal shapes of the engine in Fig. 6, when the
resonant frequency of the suspension almost equals the second
natural frequency of the same engine with fixed crankcase (88.63
vs. 87.65 cycles per sec.). Frequency of first mode is 78.63 cycles
per sec.; of second mode, 98.63 cycles per sec. Numbers refer
to vibration amplitudes relative to the crankcase. To find abso-
lute amplitudes, add values given for a.

h. There comes

—(602 + 6”2) cot (/"'/2) [Eozan + anao] -1
— [2e0€,/ (0® + €,2)] sin ¢

tan ¢
sin{ =

(c) For antiresonant frequencies of the engine
suspension, % tends to infinity, N tends to zero, and

(a0 + ) cot (u/2) _
cot?(u/2) — aay,
sinf =0

tany = tan (¢o + ¢,)

So we are naturally brought back to Biot’s fixed frame
solution.

(8) SHAPE OF THE VIBRATION MODES

For each value of u ensuring the compatibility of Egs. (14) and (16), values of ¢ and v should be obtained to fix
the shape of the natural mode in question. An obvious algebraic method is as follows: Eliminate vy between Egs.
(14) and obtain linear and homogeneous equation in sin ¢ and cos ¢. From this, tan ¢ is obtained, or, again, a
corresponding complex equation is set up—e.g., after some reductions

Ccos

2 k2 coS ¢o

K Iﬁ&teiw +[ + 1)/2] u){ b i/t _ @

e"[ (n/2) p + én]} = real
CcoS ¢,
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The argument x of the bracket is given by

205

(e + €5) tan (7/2)p + (ea, + e a0) tan (u/2)

tan x =

and ¢ is determined by

(6 — &) — (@atn — enoo) tan (u/2) tan (nu/2)

¢+ [(z+1)/2]u+x=0

The determination chosen for ¢ is then used in one of Egs. (14) to fix the corresponding value of y. From the

first one, for instance,

&y = cos (u/2) sin [¢ + (4/2)] — ao sin (u/2) cos [¢ + (u/2)]

(9) NuMerIicAL EXAMPLE

Fig. 5 shows the numerical values of inertias and
rigidities pertaining to a V-12 engine with spur gear re-
ductor.

The interest being focused on the influence of the
engine suspension, some simplifications were intro-

duced. Flexibility of the propeller was not accounted
for, and the engine suspension was treated as a torque
spring connecting the engine to a perfectly rigid air
frame of extremely large inertia—hence, for practical
purposes, fixed in space. There is, accordingly, but

300
240° - /4/

2

ne7d
180° ' \/ /
///

120° /
a0 | Gpur -8 6#4-?*-%

AN

D
AN

/\ \1,15

~120°
L
-180
0 1° 2° 2%
p°
E— e —
F1c. 8. Illustrating the determination of the two first natural frequencies of the engine in Fig. 6, when the resonant frequency

of the suspension almost equals the first natural frequency of the same engine with fixed crankcase (14.325 vs. 14.445 cycles per
sec.).
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one resonant frequency for the engine suspension
(k = 0), denoted by w;,.

Table 1 shows the results for a perfectly rigid sus-
pension (fixed frame solution). For flexible suspension,
a resonant frequency of 88.63 cycles per sec., very near
to the second natural of the fixed frame case, was first
investigated, since the frequency shift effect was ex-
pected to be particularly large.

Table 2 summarizes the results of calculations for
this case. The angle ¥ follows closely the sum ¢¢ +
¢, except in the neighborhood of the resonant fre-
quency, where it gains 180° due to the added degree of
freedom and then follows again the sum at 180° dis-
tance (alternatively the ¢ curve might be notched as
in reference 3).

The angle ¢ is practically negligible. It shows two
maxima: the first between the zeros of oy and a,; the
second one near the resonant frequency of the suspen-
sion.

Figs. 6 and 7 show the calculated shapes of the two
modes, one 10.3 per cent lower and one 12.5 per cent
higher than the primitive second natural frequency.
The other modes are practically undisturbed in fre-
quency and shape.
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The case just discussed may be said to correspond to
a ‘hard” suspension. A case of ‘‘soft’’ suspension was

" next investigated by taking its resonant frequency at

14.325 cycles per sec., which is near the first natural.
As should be expected, only blower oscillations are
affected with small frequency shift.

The relatively large values of {, with the coalescence
of the two previous maxima, are remarkable.

Table 3 and Fig. 8 summarize the numerical results.

In all cases ¢ is exactly zero for p = 37.160, resonant
frequency of the front dynamic modulus.
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