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StMMARY H. Pian.® H. A. Fettis! applies iteration diréctly to the
General rules are derived for setting up iteration matrices yjeld- diﬁere{’t‘a] SQ'Stem of those prob]ﬁms.
ing convergence towzrds the elastic modes of semidefinite self- Setting aside the very exceptional cases where 'the
adjoint vibration problems. They are classified according to the integrations may be carried out in closed analytical

methods used for a preliminary reduction of the problem to a
finite number of degrees of freedom. These include the Rayleigh-
Ritz, the complementary energy, and the integral equation ap-

form, both of these approaches imply some type of
numerical integration, whereby a system of linear alge-

&n ¢ 2 j i ifferential
proach. In the Jast case it is shown how extended influence co- braic equatloz?s appromma‘t.es either the difieres

efficients are related to isostatic reference frames. A numericel system or the integral equation. In the present .pcpéf'»
example is treated and a procedure suggested for improving the reduction to a vectorial space of finite dimensions 3s

higher frequency modes obtained from the Jumped mass models
which are provided by the application of numerical integration
snd collocztion 1o the integral equation.

accepted as the initial step from which developments
necessary to provide convergent iterations are Jeft to the
care of matrix algebra.

This approach allows in particular a general formula-

IxTRODUCTION tion of the ideas on which extended Green’s functions

NOR-‘\ML VIBRATION modes of continuous elastic are based. The various rules obtained remain of stand-

structures form an infinite set with a discrete fre- ard application in very general situations; zall have in

quency spectrum. Restraining the freedom of the sys- common the central role playved by a matrix operator

tem to a few of the normal coordinates offers an ade- for orthogonal projection in the vectorial subspace of
quate approximation to its elastic and inertial behavior the elastic modes.

in some frequency range. Most of the requirements
of aeroelasticity are for the low range from zero to some

(1) EguaTioNs OF Mo71oN aND NGRMaAL MODES
limit zbove which the higher frequency modes may be

assumed not to be appreciably excited. Consider the eigenvalue problem e.\:emplif.ied by ‘x.he
Tt is always possible in theory to obtain the modes natural modes of vibration of a system having a finite

and their eigenvalues from the differential equations and number of degrees of freedom

boundary. conditions of the problem. This approach, (C — «'M)x = 0 (1)

however, is impractical except in the simplest situations

where the general solution of the differential equations where C stands for a symmetrica] semidefinite positive

are known. In this connection a new method due to matrix of stifiness coefficients, I for a symmetrical

W. E. Milne' deserves attention. As an alternative, positive definite matrix of inertia coeficients, « for the

iteration methods are useful but present difficulties in circular frequency and x for the one column matrix or

the case of unrestrained systems, like structures of air- vector of the vibration amplitudes.

craft in free flight. Eq. (1) is obtained from the generzal equation of mo-
Such structures have no Green's function or static tion

influence function in the accepted meaning of displace- Vi 4 Co = (2)

ment at one point due to unit load applied at another, MgTte=7 "

and their vibration problem lacks the usual integral by letting the vector p of generalized forces, correspond-

equation formulation.

ing to the generalized coordinates vector ¢ vanish and
To ezch degree of freedom remaining in the structure

w!

by separation of the time variable ¢ = €'“x.

after complete rigidification, there corresponds a vibra- To each eigenvalue «,? root of the frequency equation
tion mode of zero frequency. More generally, the pres- - 0 (3)
ence of eigensolutions with zero eigenvalues, which det(C — «*}) = (5

characterizes semidefinite eigenvalue problems, re-
quires an extension in the concept of the Green's func-
tion.

From this standpoint, integral equations involving Cxgy = w' Mg (4)
extended Green's functions zre briefly treated by
Courant and Hilbert;? an example in the aeronautical
ficdd is given by R. L. Bisplinghoff, G. Isakson and T. H.

there corresponds a normal mode x¢) satisfving the rela-
ton

The assumption that C is semidefinite is equivalent to
stating that Cg = 0 admits of non-zero solutions.  Let
ugy (1= 1,2 ...m) dencle a complete Jinearly inde-
Received August 26, 1054, pendent set of these free modes so that
" Professor of Acronzutical Engineering, University of Litge, . ) .
nd Lecnrer in Aerodynzmics, University of Lovvain, Cupy =0 (1 =1,2...m) (3)
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From Eq. (4) it appears that the free modes are nor-
mal modes of zero eigenvalue. They involve no elastic
deformation energy and are consequently easy to deter-
mine by simple inspection of the degrees of freedom re-
maining in the structure after complete rigidification.
Elementary examples of free modes are the vertical,
longitudinal, and lateral translations, the pitching,
rolling, and yawing motions of a rigid airplane in free
flight. To those might be added the relative control
surface motions provided they are not effectively
spring-restrained.

The notation x¢y (r = 1, 2. .. n) will qualify elastic
modes only; those are modes calling for elastic deforma-
tion energy and consequently associated with non-zero
eigenvaluss. The following orthogonality relations are
essential:*

un'Mug =0 i =] (6a)
U Mgy = 20/ Mugy = 0 (6b)
' My =0 15 (6¢)
xy'Cry = 0 rEs (6d)

They hold as a consequence of Egs. (4) and (5) between
any two modes of different eigenvalues and may be as-
sumed to hold between two distinct modes of the same
eigenvalue as the result of an orthogonalization process.
The modes

U (1=12...m)

X

then form a complete orthogonal set in terms of which
any vector admits a unique expansion. For example,
the expansion of the displacement vector

] ”

9 = Zl N ’:_ ; Sf.\'(,)

introduces the normal coordinates 7,(f) and &,(1) and
may be substituted in the equations of motion Eq. (2).
Multiplying then to the left by #(,’ and x¢y’ in turn,
using Eqgs. (4), (3), and (6), the equations of motion are
obtained in normal forn

’
w“ Uy P -
= a
, Uiy My (72)
A ¢ )If) -
w4 & = — (lb)

*y' Mg,
The simplification resulting from the absence of inertial
and elastic coupling between normal coordinates justi-
fies the interest attached to the computation of the
normal modes.

(2) PROJECTION OPERATORS IN RESTRAINED SYSTEMS

Let the normal mode problem of a restrained system
be cast in the form
(CM = XE)x =0 ()

"The exchange between rows 2nd columne or transposition is
cenoted by a prime.

u'and z’are thercfore one-rowed matrices.
o H™ - U e L - H .

Jn trensposirg a product cach factor s transposed znd the order

reversed.

where C-!is the reciprocal of the nonsingular matrix C,
E the unit matrix, and

= 1/u? 9)
the characteristic value parameter. With the trans-
formations

M=LL" Lx=y (10)
Tt reduces to the characteristic value problem
(F=XE)y =0

of a symmetrical matrix
F=LC'L=F

The computation of L is always possible and elemen-
tary when it is assumed to be Jower (or upper) triangu-
lar, L’ then being upper (or Jower) triangular. This tri-
angular factorization has been proposed by Cholesky in
connection with the solution of symmetrical linear equa-
tions systems.®

Let v(;) be the modal columns and M\ > ... > A,
the characteristic values. To eliminate the mode v
vielded by the iteration with F we form the scalar prod-
uct vgy'vay, the degenerate square matrix xg;»gy’, and
the resulting projection matrix

.4] =

E = [rore'/ra'yel

In view of the orthogonality relations between modes
¥ =0 r#l

this operator has the obvious selective properties

{.4 wa =0

Aoy = 30 r#l

We have accordingly for the deflated matrix®

Fy = A\F = F4, =

Fya =
{F:"(7) =
proving that Fy retains the modes of the original F
matrix. But, whereas the y;) ( # 1) retzin their
original characteristic values );, the characteristic value
of »a) has been reduced to zero. The very first iteration
with the deflated matrix F, will then remove any first
mode component and will converge toward the mode of
next highest characteristic value. Pre- or postmultipli-
cation by the successive projection matrices allows re-
petition of the iteration process without the growing
complications sometimes encountered  with other
methods like “'sweeping.’”?
The transforimation (10) is not an essentizl step 2nd
may be avoided altogether. The projection matrix to
be used s then

0 U ’ ! 0
F = Nlraore'/va'vae)

(RVA

the relations

0

Ay r

1
gy’ M
Ay =E - ———

oy M

with the selective properties
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Ay =0 Ay = 2 r=1

resulting from the orthogonality relations Eq. (6).

The original problem Eq. (§) is replaced by the prob-
lem

(C-'MA4, = XE)x =0

in which A = 0is now the characteristic value pertaining
to xqy. :

When interpreted as the substitution of a deflated
inertia matrix

_ MrolMxa)'

My=M4,=4'M=)
' ' ' xay' Mxqy

in place of the original 2, the method reduces to zero
the efJective inertia of the mode to be eliminated.

oy Mg = 2 My =0

thereby raising its frequency to infinity, while the other
efflective inertias are left unaltered

2y’ Mgy = 20/ MAwxe = 20/ Mxy r = 1

(3) IxerTIAL DEFLATION OF FREE MODES AND THE
RayiLeieH-Ritz METHOD

The Rayleigh-Ritz method uses a finite expansion in
assumed displacement functions for the comtinuous
structure, each multiplier being conceived zs a general-
ized coordinate. The strain energy is computed from
the strains obtzined by differentiation of the displace-
ments and is ultimately a quadratic homogeneous form
in the generalized coordinates with matrix C. The
kinetic energy is a quadratic homogeneous form of
matrix M in the time derivatives of the generalized co-
ordinates. As a consequence the vibration problem is
obtained in the form presented by Eq. (1). From the
positive definite nature of the kinetic energy the matrix
1 is never singular and suggests the use of an iteration
process based on the modified equation

(M~C — W*E)x =0

with inherent convergence towzrd the mode of highest
frequency. Several procedures are avaslablef for shift-
ing convergence to the Jower modes. Wielandt's
method for instance® is applicable and enjoys the ad-
vantage of determining the modes independently and
unaflected by round-off errors due to the elimination of
other modes. It requires, however, some a priori
knowledge of the cigenvalues and costly matrix inver-
sions. In he case of unrestrained systems the more
promising formulation Eq. (S) is unavailzble, since, in
view of Eq. (6), the C matrix is singuler and its recipro-
cal, the matrix of static influence coefficients, does not
exist.

However, such a formulation exists in the vectorial
subspace of the elastic modes and will be shown to follow
from inertizl defletion of the free modes.

The projection matrix used here is

I UpUg
4 = E — E (i)’ (1) (]l)
T U Mug

with the selective properties resulting from Egs. (6)
Augpy =0 (f=12...m) (12)
Ax(,) = X (f = ],2...77) (]3)

In view of Egs. (13) the elastic modes of the modified
eigenvalue problem

(C — w*MA)x =0 (14)

are identical in shape and eigenvalue to those of the
original Eq. (1). On the other hand, the free modes zre
now modal vectors of Eq. (14) with arbitrary eigen-
values, since they satisfy both Egs. (53) and (12).
There follows that 1.4 presents the seme type of de-
generacy as C, which indicates the possibility of a simul-
taneous reduction to the vectorial subspace of the elastic
modes. For definiteness we assume thzt in the zpplica-
tion of the Rayleigh-Ritz expansion to the unrestrained
structure a complete set of m independent rigid body
displacements is used as representing the m first as-
sumed functions, the 7 remaining ones involving com-
patible elastic deformations.

The free modes are then represented in the vectorizl
spzce by the unit vectors e (1 =1,2...m) defined
as having 21l their elements equal to zero except the ith
one which is equal to unity. Any crthogonalized set of
free modes, from which the projection operater 4
should heppen to be constructed, 'is made of linear
homogeneous combinations of these unit vectors with a
non-zero determinant. Hence from Egs. (3) end (12)
follow the equations
Cey =0 Aepn=0 Mlepy=0 (i=12...m)
indicating that the m first columns of the matrices C, 4
and M4 are composed of zeros.  Since further C an
MA are symmetrical the matrices zre partitioned as
follows

1

=1e

0

'

C = M4 =

[=1Kk=}

[=)K=)
=

4=z
0

|
IT

K and NV are symmetrical nonsingular (n, %) Malrices,
R and B respectively (m, n) and (n, 1) matrices.

It is then natural to consider a similer partitioning of
the modal vector

-

=
1
i

T 1

where v contains the m first elements, z the 1 remaining
ones.  Eq. (14) thereby reduces 1o the elastic subspace
formulation

(K — u,-"_\’}z =0

identica] with that of a restrained system.  Iteration
mav now be performed with K72V 1o obtain the lowest
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frequency elastic mode and successive deflations applied
on the basis of the orthogonality relations

5(7)'-\'5(:) =90 Z(y)'KZ(.) =0 r=s

holding in the subspace. The m first components of a
modal vector may be obtained from the orthogonality
conditions

8(;)’.’\{.‘\‘(,) =0 (‘l =12... 172)

implied by Eqgs. (6b), and also more directly from the
selective property expressed by Eq. (13) in the form

v = Rz (13)

(4) Riem Bopy EqQuiLieritM CONDITIONS AND THE
CoMPLEMENTARY ENERGY METHOD

It is a feature of the complementary energy method
that internal 2nd external equilibrium should be verified
a priori. No difficulties are to be expected from unre-
strained systems since the rigid body equilibrium con-
ditions, implied by each free mode, are used to eliminate
the free mode coordinates. It is however instructive to
show how the use of the projection matrix 4 is effective
in carrying out the elimination.

The static problem

Cg=7p | (16)

to which Eq. (2) reduces on the assumption of zero
accelerations admits of a finite solution for ¢, but under
restrictive conditions. From a classical theorem of
algebra’® it is necessary and sufficient that » should be
orthogonal to 2l the solutions of the homogeneous ad-
joint equation '

Cr=0
Since in this case C = C’ the conditions zre explicitly
Un'p = plug =0 (t=12...m) (17

They state that the virtual work of applied forces must
venish when the displacements zre in the ratjos given
by a free mode and they are consequently the expres-
sions of all the rigid body equilibrium conditions of the
problem. XNow, since M is a nonsingular matrix, the
vectors Muy and Mx,, cach one proportional to the
inertia force distribution associzted with the mode, are
linearly independent and form a complete set in terms
of which any arbitrary vector p admits of a unique ex-
pansion

m

? = ]Z Q’g.‘fﬂ(,‘) —:' E ,'3,.1]13\'(_.) (18)
1

Premultiplying by #(y' or xyy’, and using Egs. (6)
agam, the coeficients of the expansion are found to be

") 'P

X /
: _ o'p (19)
ey Mgy

x(7)l-‘jx(.')

ay =

When these values are substituted in Eq. (1), and since
# 1s arbitrary, the following uscful expansion is ob-
tained:

’ . .
o~ M) n LM x)

E=%

(20)

Uy’ Mug T %' Mxg

Egs. (19) show the conditions (17) for static equilibrium
are equivalent to

a; =0 (t1=1,2...m)

They require that p should contain no inertial compo-
nent from the free modes. Hence, starting from an arbi-
trary p, the vector

m

> M) p=A'p (2)

T U Mg

p —‘2 a~,~.h’u({) = <E -
1

is the most generzal one fulfilling the requirements.
This result is susceptible for a well-known dynamic in-
terpretation.? On the assumption that the svstem is
completely rigidified, the displacements are restricted to
free modes and the equations of motion to Egs. (72).
Now, from Eq. (21)

m

Ap=p—3 02

T U Mug

and in view of Egs. (72)
A'p=p - ;ﬁf-‘f“(f)

The fact that A4'p satisfies the rigid body equilibrium
conditions then clearly results from an application of
d’Alembert’s principle to the rigidified structure; or, to
borrow a statement from reference 3, the application of
A'p is equivalent to “‘consider the unrestrained system
to be ia equilibrium such that the externzl lozd is
balanced by the inertia forces corresponding to the
acceleration of the system as a rigid body due to the
applied load.” This new property of the matrix 4 may
be used to advantage when setting up the vibration
problem with the complementary energy method.”?
The same displacement functions are assumed as for the
Rayleigh-Ritz methed, and the structure is Joaded by
the resulting inertia forces, whose amplitudes for har-
monic motion have the vectorial representation

p = lMx
We multiply to the leit by A’
A'p = 24 Mx = 3 (4x)

and conclude that, whatever be x, the amplitude vector
Ax s such that the resulting inertia force distribution is
i equilibrium.  Hence taking for x in succession 2]l the
unit vectors, what amounts to take for .4 x the successive
cohimns of 4, we explore all the possibilities for equi-
hibrium. Now, from its construction, .4 has exzcily the
degeneracy 2 and its # non-zero columns yield exzctly
n independent inertia force distributions satisfying rigid
body equilibrium. For each of those the corresponding
stress distribution should be computed by integration of
the internal equilibrium and compztibility eguations.
From the stresses the maximum strain energy {ollows,
whose expression for zn arbitrery initial emplitude
vector x will be of the form
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(1/2)wtx'C*x

The element common to the 7th row and jth column of
the elastance matrix C* is e(;'C*e(y, and belongs by
definition to the interference energy (or energy itself if
1 = j) between the stress distributions due to the dis-
placement amplitudes 4e(; and Ae,. Observing that
the first m stress distributions vanish identically to-
gether with the m first columns of 4

Aeyn =0 (1=12...m)

the first m rows and columns of C* must also vanish and

where K* is a symmetrical, nonsingular (n, %) matrix.
For the maximum kinetic energy we have

(1/2)e(4x) M (4x) = (1/2e'4'MAx =
(1/2)wt' M A%

However, as a result of its definition and selective
properties, a projection matrix enjoys the property of
idempotence 4? = A, whence the maximum kinetic
energy is also (1/2)w?x’' M Ax.

We apply now that form of Hamilton's principle
which asserts that the difference between maximum
strain energy and maximum kinetic energy is stationary
with respect to arbitrary variations in the displacement
amplitudes and obtain the vibration problem in the
form

(C* = MM4)x =0

In view of the structures of the matrices involved the
problem is again carried over in the subspace of the elas-
tic modes:

(*K* = Nz =0

In order to obtain the Jow frequency modes, iteration
should be conducted with the matrix N=!'K* and de-
flation set up with the aid of the clastance matrix K*.
It is known from general theory that the complemen-
tary energy method yields better eigenvalues than the
corresponding Rayleigh-Ritz procedure.’?

(3) EXTENDED INFLUENCE COEFFICIENTS

From the considerations developed in section (4) it
appears that the static problem

Cg =4 (22
has always a solution for arbitrery p. The general solu-
tion is

m
q = P(-p —:‘ Z’/..Z’l(,») (23)
]

where the first term represents any particuler solution.
The arbitrary constants v, may be represented by the
scalar product of p with arbitrary vectors g,

i = g'p

so that the general solution takes the form
g = (Po + Xliu-;g")b = Pp (24)

Pis the general matrix of extended influence coefficients.

The substitution of Eq. (24) in Eq. (22) leads, since
is arbitrary, to the following fundamental equation,
satisfied by extended influence coefficients

CP=A4" o PC=4 (25)
It should be compared with the equations
CC'=C(CC=E

holding for restrained systems.

A new formulation of the vibration problem, extend-
ing to unrestrained systems the properties of Eq. (&), is
obtained from Eq. (14) by left-multiplying with P’ and
using Eq. (25)

(E — o*P'2NAx =0
or, in a form adapted to iteration
(P'M —XAE)y =0 where y = 4x  (26)

In view of Eqs. (13), the elastic modes are retained with
their original characteristic values. The original iree
modes however degenerate because of Eq. (12) ia the
trivial solution ¥ = 0. It mmzy be suspected, and ex-
amples do confirm, that the place of free modes is
generally taken by parasitic modes. It is most im-
portant that the parzasitic modes be eliminated in the
iteration process and this may be achieved by a careful
choice of the g; vectors in relation to the particulaer
matrix Py adopted. For example, we may require that
a set of m parasitic modes w'y; be eigensolutions of Eq.
(26) with zero characteristic value, and, therefore, ob-
tain as conditions

m
P’Jf?i'(;) = Po'_"fﬂ.‘(,‘) ‘+ “ [1((,~)’.’l{'¢i'(j)]g(¢) =0
i=
(j=1,2...m)
So long as the wy, and x» are linearly independent this

vields 7 nonsingular linear systems of the mith order jor
the m X n components of the g; vectors.

(6) THE SYMMETRICAL EXTENDED INFLUENCE
COEFFICIENTS

As a particular choice, the parasitic modes of zero
characteristic value may be the {ree modes themselves,
in which case we obtain, on account of Egs. (6a).

Po'.‘l]’?l(,-)

T T M

The resulting matnx of extended influence coefficients is

2 Uy M
(- o

7wy Mug,

)Po = 4P

It must be independent of the particuler choice P..
Indeed, we have the mcore genera] result

AP = 4P, =G (27)
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which follows immediately from the definition of P in-
cluded in Eq. (24) and from Eqgs. (12).

It will now be proven that G is symmetrical. As a
particular P matrix it satisfies both Egs. (25) and (27)

G'C=4 AG =G
and therefore
G'CG =G

Now the left side is obviously symmetrical, which
proves the proposition.

When symmetrical extended influence coefficients are
employed, Eq. (26) specializes in

(GM = XE)y =0 (28)

This is the most natural extension to unrestrained sys-
tems of the formulation Eq. (§) an the associated itera-
tion procedures successfully zpplied to restrained sys-
tems. Compared with the original Eq. (1), its eigenso-
Jutions and eigenvalues zre unchanged except for the
free modes whose frequency has been shifted from zero
(infinite characteristic value) to infinity (zero character-
istic value).

An explicit form of the extended influence coefficients
may be found in the case of the Rayleigh-Ritz procedure
described in section (3). Partitioning the vectors

la

_e
TEOPT

to match the partitioned forms of the matrices C and 4,
Eq. (22) reduces to

Kb = R'r 4- B's
The general solution for g is consequently
a arbitrary
{b = K~-'R'r 4+ K-'B’s
and a particular extended influence cocfficients matrix

1S
e ——

0 i 0

P =
* " K-R'K-1B

From Eq. (27) {cilows then

' —1pr 1]
. _ RESR'RE-IB

= " 2
'BK-R' BK-1B' (29)

Nothing much is gzined in this case. Actually the itera-
tion with X1\ is more economical, both as an initial in-
vestment and because it proceeds in the subspace of
elastic modes only. The use of extended influence co-
efficients becomes a practicz] proposition when it is com-
bined in the integral equation approach with colloca-
tion and the use of 2n isostztic reference frame.

(7) CoLLoCATION 4ND JSOSTATIC REFERENCE FrRAMES

Imagine any group of constraints applied to structure
£0 as to mazke it isostaticelly restrained with respect to
a ngid reference frame.  The relative displacements of

-1
—
pe ]

the structure are then given by

q = Giso.p

where Gj, i a symmetrical matrix of generalized in-
fluence coefficients in the usual sense of relative elonga-
tions in the generalized coordinates due to unit general-
ized Joads. We know that if  is replaced by 4’y the
applied Joad fulfills the requirements of rigid body equi-
librium. Consequently, the constraining loads with re-
spect to the isostatic reference frame must vanish.
Hence

q= Giso.A ’?

is a possible displacement vector of the uarestrained
structure. The role played by the reference frame is
thereby reduced to determine unique values v,, depend-
ing on the nature of the constraints, for the otherwise
arbitrary free-mode components of the displacement [cf.
the general solution Eq. (23)]. It may be concluded
therefore that ’

Py = Giod’ (30)

is a particular matrix of extended influence coefficients
and

G = 4Gy A’ @1

the obviously symmetrical one. These expressiozs fur-
nish us with practical means for computing the ex-
tended coefficients. From them we obtain the formula-
tion

(AGjeA'M — XE)x =0 (32)
derived from Eq. (25), and the simpler one
(AGio M — ME)y = 0 (33)

deriving from Eqgs. (26) and (30).

In the Jast case the parasitic modes must be shown to
be harmless. They are, beczuse it happens thet their
characteristic value is zero. To prove this it sufiices to
show that the equation

AGio My = 0

possesses m linearly independent solutions for »; De-
cause of the existence of # elastic modes in Eq. (33) it
cannot have more than m. Now, from a classical
theorem of algebra,’ the zdjoint equation

MGiod'y =0
should then also have m independent solutions; but
this is obviously true since
A'v=0

has m solutions corresponding to the m solutions w(; of
the adjoint equation

Ay =0
Examples of Jumped mass systems treated in a man-
ner equivalent to Eq. (33) are given by S. Levy tand by
Scanlan and Rosenbzum.’® In the notations of this
paper their mathematica] treatiment is glong the follow-
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ing lines. The equation

m
x = @G Mx T IE aii () (34)
expresses that the absolute displacement amplitude due
to the application of the vibratory inertia loads differs
from the amplitude in the reference frame by a set of
free-mode components. The intensities oy of these
components are determined from the conditions

upMx =0 (J=1,2...m)

of rigid body equilibrium for the applied loads. They
vield A
2 46 MGieo Muy

—oy = w
! Uy Mu,

and, when substituted in Eq. (34)

m I
. U M
x = o [E - 2 = | G Mx
T Uy Mug

which brings us back to Eq. (33),

The formulations Egs. (32) and (33) are specially in-
teresting when used in conjunction with collocation.
Whatever be the kernel considered for the integral
equation of the problem (usuzl Green’s function in the
isostatic reference framme or extended Green’s function
for the unrestrained system), eny type of numerical
integration, using the values of the integrand at several
division points, and collocztion 2t the same points,
vields an equivalent Jumped mass model with a diagonal
mass matrix. The elements of Gy, are then Jocal
values of the usual Green's function in the reference
frame, whose definition may be chosen in order to ab-
tain simple checks against experimentz] data. The
elements of Gio.4’' or G are loczl values of the corre-
sponding extended Green's functions. As a finzl prac-
ticz] observation, the invalueble Rayleigh quotient

2

XM x
W = ——0
x'AGx
is seen to be identical in view of Eqs. (31) 2nd (13) and
of the symmetry of 14 to the simpler one
_ ' M o x'Mx
(A2)' MGy o M (4%)  x' MGy Mx

,2

(33)

This makes the computation of G unnecessary when Eq.
(33) is employed for iteration.

(S) NUMERICAL EXAMPLE

The example here concerns the normel vibration
modes of a free elastic beam of constant cross section
carrying a concentrated mass at the Jeft end, cqual to
the total mass of the beam [sce Fig. 1 (a)).

From the differential equation and boundery condi-
tions the exact frequency equaticn is found to be

p(sinh pcos p — cosh psin 4) = 1 — cosh 4 CoS u

in which u* = «'ma®/E].  The mode shapes are given
by

2 /4 3/ 4 al/4 al4
m
m
—— '
12/12m 4/12m 2/12m 4/9Zm 1/772m

Fi6.1. (a)Elastic beam with concenirated mass, znd (b} Jumped
mass model obtained from Simpson’s rule and collocztion.

o
—

)

AV
d

Fi6. 2. Compzrison of second elastic rmoce chzpes on the basis
of same effective mass:

exact mode

Jurnped mass model . .

Jumped mzss model after recomputation of the eSective
mass.

o

oe |

A(f) = B(cosh uf + cos¢) — A (sinh pf + sin gi)

where { is a dimensionless coordinate running from —1
at the left to zero at the right, and

A(sinh g — ¢in g) = B (cosh p — cos u)

The efiective mass ¢f a mode may be computed from

~0
y(=1) + j i =

with g o= BT (1/0y(=1)

The two first elastic modes have the following charac-
teristics from which the zpproximate results found be-
low may be evaluated:

First mode
u = 4.041833 ut = 266.87S 7 = 40.96104
A 6.200534 B = 6.3217%3
normalized to have y(—1) = 2

I

Second mode
a = 7.1340 pt = 2590 n = 20.43223
-4 = 35.402871 —B = 5.302060
normalized to have y(—1) = 1

]

This mode is represented by the continuous hine of Fig.
2

(a) Rayleigh-Ritz

All boundary conditions are for stresses, none for
displacements.  The ascumed functions cz@e%’s‘?%;%
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y =g+ g¢f + 0:(2 — 3t + ¢

features the translation free mode, the pitching free
mode about the right end, and the elastic displacement
due to a load applied at the concentrated mass, right
end clamped. Tt satisfies but one of the stress boundary
conditions: y"(—1) = 0.

The result is bad both for mode shape and frequency
parameter

pf = 375.34

This serves to indicate that, zlthough not required by
the variational principle, good results with few assumed
functions can only be obtained by satisfying also most
of the stress boundary conditions. From other pub-
lished results? this is a criticzl point to watch in all
cases of unrestrained systems.

The next expansion tried,

Y=ot gt oo -4+

satisfies both boundary conditions for flexural moments
but not for shear Joads. The elastic part is the deflec-
tion due to uniform Joading of the beam on two end sup-
ports.

The main results are contzined in Tzble 1. The error
on the frequency parameter is about 5 per cent. The
mode shape s here proportional to the Jast column of A.
It was first chosen to be normalized like the first exact
mode

y=2- 38 4 100¢° — 50¢¢

It compares well and even clightly better if the com-
parison is made, as it should be, on the basis of the same
effective mass. For this purpose it should be altered in

the ratio
40.964947" .
[43.015S7J = 0.9759

(b) Complementary Energy

The inertia Joads due to the same expansions zs in
the Rayleigh-Ritz case were also investigated. Despite
the bad mode shape the first expansion vields a fair
approximation to the first frequency parameter p* =
277.9. Here are some more details for the second case.

The inertia Joading, satisfying rigid body equilib-
rium, is found according to theory by using the Jast
column of A4 in Table 1 as vector of displacement ampli-
tude. The Joad consists of a distributed part

wi(m/a)(~0.04 + 0.76¢ — 2t + ¢¥)

and a concentrated part —w®m0.04 st the Jeit end.
Integration is carried out twice to find the bending
moments
38 1
ma | —0.04f — 0.0282 + — & — 0.1° + — “‘:l
[ d * 300 © T 30f

and as a check it is verified thzat the stress boundary
conditions may be satisfied at both ends. From the
strain energy

wim?a?

EI

ise 887
13513

II
K* = 10“@! and pt =

10.84 135 135
630 S6 8§87

Ot

= 267.61

which is correct to about 0.27 per cent. Since ozly one
elastic degree of freedom was retained, the mode shape
and its effective mass are here the same as in the Ray-
leigh-Ritz case.

(¢) Collocation and Isostatic Reference Frame

If one aims at several elastic modes this method is
attractive on account of its low initicl investment in
numencal labor. Two elastic modes, besides the two
free ones, were aimed at out of five degrees of freedom.
The integral in the integral equation was approximated

TaELE 1
Numerical Resuits for First Elastic Mode from Rayleigh-Ritz Method

| 1260 315 126
315 210 63
126 63 31

=

It
O‘, B
Y
O

. 0 0 -1
A=§5— o) 0 -6
o] 0 25

uy = (I 0 0)
u&) = (=T 4 C)
N = ll%%%§6 m"

K = II%% EI a=?
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by Simpson’s rule with four intervals and the subdivi-
sion points used for collocation. This is equivalent to
the lumped mass model of Fig. 1 (b); the coordinates
are the displacements of the concentrated masses.

Iteration was performed according to Eq. (33) and
Table 2 gives the main results. The G, matrix was
computed from the deflections of the beam on two end
supports. This causes the first and Jast columpns of the
iteration meatrix to vanish and allows the temporary
discarding of the first and Jast coordinates during the
iteration process. Besides initiz] investment this is
another advantage of Eq. (33) over Eq. (32). In that
respect, clamping the beam zt one end would have
proven slightly Jess advantageous.

The frequency parameter s correct to 2bout 0.6 per
cent; the mode shape (of same effective mass) within
plotting accuracy of the exact first mode.

The results of a subsequent deflzation and iteration

The application of the formula gives the mode values at
mid-stations:

- 8.662638 —6.280293  13.013%75 -3.514210

The effective mass is then recomputed from its exact ex-
pression evaluating the integra] by Simpson's formula
with eight intervals. The new value is found to be
106.525m. The mode shape then compares better
(white circles in Fig. 2) with the exact one and the {re-
quency parameter is overcorrected

but lies within 6.26 per cent ¢f the exact value.

(9) CoxcrLrsions

It is suggested that normsl modes of complete air-
crait structures in free flight be computed on the basis of
lumped inertia imodels. The reselts weuld appear to be
relizble provided (1), the models be obtained as a resujt
of some formula for numerical integration combined with
collocation applied to the integrzl equation of the
problem; (2), the constrainis used 10 evaluate Gieo. CON-
form with those of the static rig for comparison against
experimental dzta; and (3), the higher frequency modes
be corrected for eficctive mass and frequency by tech-
niques similar 1o the one described.

REFERENCES

P Milne, WL E., Numericel Delerminetion of Cheracteristic N
bers, J. Res. Nat. Bur. Stand., Vol 23, 5. 245, 1u50,

* Courant and Hilbert, Metholer Cor Matlhiematicchon Phvsik 1,
p. 306, Julius Spriniger, Perlin, 142]. -

| 0 21 o4

e e |02
]i—4 = w° -

] 0 —15 —21

15 0 | o= 1273918
12 0 | ;‘ + 2.484788 |
8 0 [Mrgy =l +7.150195 |
2 0 | | — 2.484788 !
-21 0 | | —10.123672 &

JOURNAL OF THE AERONAUTICAL SCIENCES—OCTOBER, 1055

for the second elastic mode are contained in Table 3.
The mode shape (black dots in Fig. 2) compares
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TABLE 2
Numerical Results for First Elastic Mode from Lumped Mass Model

I3 O 0 0 0 o
4 0O 9 II 7 0
y oo 5 s, -_=& Jlo 11 16 11 o
- Tg iso ~ 768 ET 0 1I 0
4
I O 0 0 0 o
1 — 1 =3 -
ul, (I 1 1 1 1} u) (-I 0 I 2 3)
16 -20 -4 4 4 428.058
-65 I00 -I0 =20 -5 -1369.39%
A=15|-26 -20 104 -24 -14 X, = |[-1540.722
13 -20 -22 52 ~-23 £4.150
52 =20 -28 -92 &8 2657.665
0 -784 -480 -502 0
3 0 2600 1440 1640 O
P n & ~
0 -232 0 344 0O
O -4528 -3260 -5I04 O
f‘4 = 268.4€6 X'} x =1 8I0 180 n .
1 0] (»)
TsBLE 3

Nunierica] Resuits for Second Elastic Mode from Lumped Mass Model 2nd Dedztion of the First Mode

-451.729  -339.348  -229.858 -6I19.324 -215.741

3 1445.119  1I77.520 639.773 1727.412  690.173

I & - ~ <z ] 4 ~
AG, MA = ﬁecﬁ Ie25.921  1023.55I1  10I19.657  2530.248 776.522
-868.804 -I44.5€8 49.174 328,628 -42,412

-2804.629 -1767.308 -1806.955 -5273.646 -I1329.460

x"z)= ( I.I70 186 -13.004 797 5.110 218 II.281 949 -25.65I 253 )

4 ;
Hs = 1 80e.74 XM x, = 162.558 = .
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APPENDIX

Symmetrical Extended Coefficients as a Limiting Case of
Dynamic Flesibilities
Harmonic excitation p = ¢’y produces a forced re-
sponse ¢ = ¢"'x whose amplitude must satisfy (C —
w?M)x = . To the expansion of x in normal modes

X = zl: a,U ;) + ; 537-".‘(1) (36)

there corresponds an expansion for », that in view of
Egs. (4) and (3) may be written in the form

y = —wfzfj.sf.vum + g: Bo(w? — w)Mxy (37)

So long as the forcing frequency is neither zero nor equal

to one of the natural frequencies, the expansion (37),

similar to Eq. (18) is capable of representing any forcing

amplitude. The coefficients must then have the values
Uey'y *m'y

—_—y = —m— 3 =

, =
’ u.‘zil(i)’.‘fﬂ(i)

("-'72 - w:).‘l’(,) I_"f.\'(,)

which, when substituted in Eq. (36), yield an expansion
formula for the dynamic flexibilities matrix

x = (C = i)™y

1 & 71(:'11(:')’
(C— )7 = — TZT_—‘:‘
w? Ty Mug
n

. . !
X)X (z)

T (e = oxe' Mae

For restrained systems the influence coefficients matrix
is obtained as a Jimiting case by letting the forcing fre-
quency vanish
C =y SO (39)
T wxm Mag

It may be shown that the same expression applies to the
matrix G for unrestrained systems. In other words,
this matrix obtains as a limiting case of dypamic
flexibilities by removing the free mode components of
the expansion which have a simple pole at w?® = 0, be-
fore passing to the limit.

To prove it, denote by G the expansion (38) and ob-
serve that it already is symmetrical from structure znd
that it satisfies the relation

46 =6

as a result of Egs. (13). There remains to show that it
satisfies Eq. (23). To this effect multiply to the left by
C and use Eq. (4)

2 Mxex'

CG =3,

T xgy Mag
Now, on account of the expansion (20), there follows

G = E — 3 Mhaw!

= 4’
T ' Mug

Q.E.D.




