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SUMMARY

Characteristic phase lag theory 1is tpplied to the derivation of an
‘ energy principle for pure mode excitation at.'s resonant frequency. The
principle is not restricted to small damping nor toa specific variation
of damping coefficients with frequency.

: Preliminary remarks on structural dmpinl are followed by a discussion
“of the simpl:lt‘ying assumption which makes the damping matrix proportional
to the stiffness matrix. This procedure allows a gradual presentation
_ of the general analysis based on the conocept of characteristic phase lag.
. poth. the torsional and the flexural response of a beam to single point
"sxoitétion are presented as examples for the tntluonoo of internal damp- .
.m on oonttnuom ‘structures.

. SOMMA IRE

Pour obtenir expérimentalement des modes de vibration propres d’une
grande pureté 11 est proposé de baser le r‘:lue d’un groupe d’excita-
.teurs sur un principe énergétique. " . o

Ce prinoipe est valable quelle quo soit la mture et la distribution
"de 1'amortissement interne pourvu que 1'énergie dissipée par.cycle
demure proportionnelle au carré de r upli.tude.‘ -

- Quelques remarques préliminairea sur la représentation de 1'amortisse-
ment interne sont suivies d’une discussion du cas simplifié od 1’amort-
issement et 1’élasticité de la structure sont dans un rapport constant.
Le concept de déphasage caractéristique qui permet dese libérer de cette

pothése est alors 1ntrodu1t comme base de démonstration du prmcipe
.6ner¢6t1que. Celui-ci affirme que 1’ énergie réactive fournie par cycle
‘est stationnaire pour unrézluo des oxoitntourn donnant un mode pur avec

‘résonance de phase.

A titre d’exemple la réponse d’une poutre continue libre avec amort-
iuement interne A une excitation localisée est analysée pour les trois
i preuiéres réaonmces de phase en torsion et en flexion. ‘
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. NOTATION

Lq colunn vector or genoulized diuplocemnts

\p colnm vector ot genonlmd extorml duturboncu

X SR 'bcolumn veotor of froqmncy responu nputudes l - lb

colum vector of simnoldol lnpllt Wlltudon

colum vector or elutio mdanped mode
-.'?".“1 B column vector ot ricid or l’reo mde

colm .vector of freqllﬁlw’ m'm’ mde ulwim with o cmt‘r“tm
phase log o

yk. 11 colum vector ot excitotion lode '

I ,:»"fi‘symetrical positive deﬂnite matrix of inertia cootﬁcientl

X e symetucu semi-deﬁnito mntrix of elasticity cofficlents

c ol smtucu matrix of operstional dawping terms

. e ::’.'T‘symetrlcal positlvo doﬂnito -trlx of ltructural dminz cooffi.cionts
'?B"""-- circulnr trequency : |
’:“t. t!ﬁe o

5 'upluoe transform vorioble. |

| _‘ohamtoriltio phuo lu angle

Droportiomuty ooetﬁoiont between K and G |
”"'.j._‘effectivo mertu coctncient for aa mdmed -ode

’active eneru diuipotod per oyolo ny'b
e

. reoctive onerc.y : ﬂy’o

noto.v 'l'ho ro' uptpr qbt.uod Ip.y trmpouuol ot o oolu- veotor u dnotod bv uu lou lnbol
with . 'pruo' (o.;.u ). In.8 sintlar fashion sa utorut‘ tndlostu trnomlt!on and IQO.‘
phoount ot tho oluutl by thou omhx ommtu. S P IR S



A vmunomu. APPROACH TO' PURE MODE EXCITATION BASED oN
T cmmnsrxc PHASE LAG THEORY :

' bv
‘&&?nﬂhds%wwe

.
l. INTRODUCTION

'-l
I

From generai thermodynamical considsrstions structural damping may be represented‘
by operationsl stress-strain relations. The correlative variations of stiffness with
" frequency are shown on the example of a simple Msxwoll model, These considerations

are necessery to fix the general character of validity underlying later developments,
- though the usual engineering assumption is retained for simplicity of presentation.

. The case of proportionality betveen damping and stiffness distributions is first
' discussed. not only because an important part of previous research work rests on such
"'a foundation, but also because it allows the general theory to be presented later as a
' patural extension of its energy properties.

. The frequency response of continuous structures to single point excitation are
worked out for the uniform free beam with uniform structural damping in torsion and in
flexure. These examples illustrate the relative importance of the total vibration in

'phase. the total vibration in quadrature and the resonant term of an expansion in

:'nstural modes. A

“

hsracteristic phase lag theory is next applied to the case of arbitrary (and even
”1arge) damping distribution. It ylelds an expansion of the frequency response which
retains the principal features of the expansion in normsl modes, to which it reduces
under the assumption of proportional damping. .o

Finally an energy principle: is derived which states that the total reactive energy
1nput per cycle is stationary with respect to small variations in the distribution and
.intensity of the exciting torces provided there is simultaneously resonance and pure
- mode excitation. The inﬂicstions of total reactive energy are consequently useful to .
“check the optimum testing conditions. They may also provide ‘a method for.gradual
'ndjustment of the individual shaker forces although the procodure suzzestod needl
ﬂturther investisation to establish its convergent character, =~ 4

2 srnwrmm. nmrm

The assumption of viscous dsnpin( sllows » simple nsthensticsl tornulstion of
;stmped motion problems. The sincle dscreo or treedon equstion ,>;1,. o

d’ | dq . i ."_"v - ’ B} o . s
_"L*“—*h a; ’“,Q,(t)'_'“j‘ o

Lt dt

AoUhiversity of Liigc, pelgiun. o



13 typical It governs the small displacement q,(t) about the equilibrium position .
under the 1nfluence ‘of an external disturbance Qz(t)

o This formulation does not represent adequately the effects of structural damping.

Simple mechanical ‘models have been imagined to represent the anelastic behaviour of -
':"structural mterials. They usually retain the simple viscous damper or dashpot as the
type of damping,: but they produce the required feature of heredity (or dependence on
:the past history of motion) by means of ‘hidden’ coordinates. The simplest example is
‘ the nodel of Fig. 1, which consists of a spring and & Maxwell unit in parallel and is
-actuslly 8 viscous damped system with two dureu of freedom, Itl behaviour 13 tully ‘

described by the system of equations
. dz

: --—‘— + = 6y )
m e ko teg dt (ﬂx 2) Q) (@)

kyyfc;;m,s%)= 0 o (3

Advantage w be taken of the tact that the second equation 1- free of external'
dlsturbance to carry out the elimination of q, which then becomes the ‘hidden’ coordin-

ate. Aaaumlnx the system to be at rest in the equinbrium poaition at tzo one -
obtainl tor 9 the alngle lntesro - ditrerential equatlon S .
e, ot g, SRR S
m— +K; q,v+.j'-¢wt - r)-;;;aur =ty ()
v jdt' R ‘o : R SR
where, in this partiular case, lt"“‘ heredity function is
; « | \¢a>= ke © | )

. The ordlnary type of eq. (1) must be recovered when k tends to infinity.

- The llmitlng form of the heredity function is there c5(t), where S(t) -is Dirac's’
impulse function. - Eq. (1) then tollows from eq. (4) on account of the sifting pro-

petty of the Dirac. function

A Very general forms of heredity tunctlona may be obtained by connecting several
mwell units ln parallel and multiplying the. mmber ot hidden coordinates. -

A simple method to deal with’ eo. 4) 18 to take ita Laplace tranatorn. : If q, (a).’
qS(s) and Q‘(s) denote rebpectively the Laplace tranaforma or ql(t). ¢(t) and Ql(t).

one obtaina instead of. eqs 4) and (5)
T etk edel) e -'q‘gs)v P 115
k.

d>(s)‘ .=>!ck, j:'cs 2 : ":(5")




e

;. The umltlns form of ¢(s) when k, tends to infinity is simply the conetent ¢, which
,:;.grees with the fact that the Lapllce trenltormmot the Dirac impulne tunetion ie unity.
~ In the case of several Maxwell units 1n parellel the operetionel structure of the‘
,‘heredity function would be“ o ‘ o
S A
¢(8) = .2 ;1—;-7;

DT o

g If the epring and the Maxwell units are thought of as a model for the anelastic
- properties of a single spring, one is led to represent the -odulus of the spring by an
:operetionel tern of the form _ _

Ky +9¢(l) = Y(s)

- Secondary creep may be accounted for by euitable modifications in the model (essen-
“tially the chain of reaction forces would have to pass somewhere through a single

yfdashpot). then
4’(8) -0 when 8—0
'rslnce the static deflection 18 then unbounded

In 8 s‘lmiler ‘manner stress-stra_in relations of continuous media with anelastic
" pehaviour are obtained when the elastic constants are replaced by suitable operational
expressions. Biot? has recently Jjustified such relations on the basis of ONSAGER'S
Thermodynamical reciprocity law for coupled irreversible phenomena gssocigted with the
‘use of hidden variables. ,

| It will be sufficient for. our purpose to discuss systems with a finite number of
" degrees of freedom. This procedure has the ‘advantage of allowing a general formulation
. in matrix notation, the i-eeulte of which are eesily extended to continuous medie.

'Accordingly we define \
q a column vector of general ized dieplecement tunctione,,»‘-.. |

f"_p a column vectoi' of cemrel.ized'Ae"x,ternull ‘dilturbencee -
and replece eq. (1) by the lnatrix equetlon " , ‘
.=.' el s S ) .
R o u-—q+c-q+xq =p . - (68)
»v,;f.-f-' ot dt’ dt‘ R e ‘L,'j
..vhere : "; SR L

ie e symetricul posltive detlnite mtrix ot mertle coetﬁcunte

. K . :a seni-detlnlte poeltlve end eymtricel mtrtx ot etittneee eoefﬁciente '

e 'e eymetricel utrix ot demlnl ooefﬂciente. '} i



account for strueture.l damping the second ternm sh.ould,.be understood as

'c‘—”-q

. 'm }_fgymbol . nee_n_ing that each product of 3 dupin( term in C and a component velo-
clty is & convolution integral imolvin; some heredity function. Again it is simpler,
trona,nelgebraic otandpoint. to consider the Laplace transform of q. (8) which under .

wt«_:_n_t'hat there is equilibriul att= o’. would be

[.ﬂu FK+ o) aes) o .M

'l‘he elements of C nre now opeutioml uprouim. this fact bein; indicated by ‘the
notation C(S) ~ : -

‘ ,-Our chiet interest liea in the rrequency reeponu of the syetel. Putting in (eq.6)

p = "M q = xelet -
: _ .
: the relationship between the imput vector y and the forced outpnt vgctor x is obttined
by the ‘substitution of iw in the place of 8- - _ ‘

- [K-w’u-fiw(iw)]x =y (8)y

Now the elements of C(iw) are runctione of iw with real coefficients, hence

Cw) = R@H+lar@h (e

Since a change of sign in w is equivalent to chl.nginz i into -1, this ehon thut in
general the effective stiffness matrix is . \
K- r(w')

which is a function of frequency. o.nd the mtrix ot equin.lent viscous damping coei’fi- :
»cients is . o :

R@")
also s '_function of frequency.

) If for example. we return to the case of ths model of I"iz.l. which has & trequency‘ .

response .

' ‘ 'ck" T
(v “"*“"r‘rm‘ =

i;ne ‘egt_eetive spring stiffness is |
k =k +k. Cwlo ,'_.(‘1.0)
eff T ‘ ak'+w" o




1 and the equivalent coefficient of viscous damping -
e = 2 . : |

c
€4 k, 2 + wic?

an

The increase in spring stiffneas with frequency is in quulitntive agreement with the
observed difference between isothermal and adiabatic moduld *To account’ for experimental
evidence the simple engineering law

~

1

Coq = 8 (12)

has been proposed for structural damping and extensively used:u1flutter'eeiculetlonsa'
Though it is not possible for a Maxwell model to follow this law exactly, quantitative
egreement can be obtained over. a wide renge of testing trequenciee. Let us examine this
1n more detail. . _ . B SR S
Put‘ | . : e
Ha‘ = 'g’/k‘ W' = kxlc po= av’wo

Altheh?éﬁé;(losj(ll) and kiifwﬁecdherreapeeiiieif

S | LY A or S L
e L
[+ — -
°qQ° = ) . ’
Tk, 1+t Lo (11‘),
) @ SR C R f :
°.q-;-°- = e/n : Y ¢ t )

Equating (11') and (127) at some vilue u* of the reduced frequency

0! - B tant = o

“The condiiien for a.double root in u* yields

2' = ‘H '. ) .,#‘ - H . . ) _} . ' (13) :

.’
‘end a second order contact between the curvea (11’) and 12",

If for lnstance g = 0.02. which 1s on the lower side of observed veluee. we should
have H = 0,04, which means that the asymptotic velue of the effectlve modulus of the |
spring would he 4% higher than. 1ts static value, o .

This seems more than the observed difference but et»the'frequeney of‘ugreement
PR N X | |

the difference is only 2%.



% Both dumpinz lus and the effective. spring stiffness ratio (10') are Dlotted in’
.l” “3. There is & wide trequency range of ugroemant tor dmpinz. N

“The duhpot coefficient c may be chosen to shift the uctunl frequency at the contact «
jpoint where necessary. Of course w, is really & physical constant of the material,
whose value would result from careful measurements if the Maxwell model is found to be
‘qcceptable. EVidently by increusinz the. coqploxity of the model almost any experimen- -
:tal damping curve is reproducible ina large frequency range. The problem is to increase

our knowledze of the dtmDing curve before fitting a Maxwell model to duplicato it.

For subsequent diacussion of the frequenc: responle in n degrees of treodon, the.
following assumptions will be made:- ‘ I

(a) 'l‘he change in stifi'ness w 1) will ‘be unond

(b) 'l‘he 0001"19“ VchDuB damping matrix will be approximated in the testiu
trequency range . by the engineering ln :

?‘elo-
R ]

D L h R@?)
,"where G is a symmetrical positive definite matrix of constants.

Hence our t‘undaneni;ul eq. (8) becomes

-~ The aecond assumption is really unnecessary but is used for the sake of simplicity
‘rhe main results will remain true for any damping distribution so long as R(w?)
remains positive definite, which is necessarily the case since energy can only be
vdissipated by the system. Any additional type of damping source may be present’ such as
slip in riveted joints and (even large) urtiricial damping in control surface deflec-

tions.

Howevér. the energy dissipated must remain proportional to the square of the ampli- .
tude. ' ' B

Concernins the first assumption the results will ulso remin true if utitfneu
increases remain proportional to K, that is ii’ '

o .
o . o

l(-.wl.(w) -[ll+t(w)]K

" S . e . v

It would then be possible to defir\e the undmped !utuni modes in a rational manner .
by the eicenvalue problen B e

j{[1'+ I(G?)]‘,"“.@’N] x =0 o sam

.ndretﬂin the'bén,ei’iit'ahof orthogonality rgliitibno.' R : | :



‘7

Hovever both for the sake of simplicity and because the case just outllned seens a
1.too special one, we retain our first e-eunptlon and define the undenped neturel mnodes
: by the elgenvelne problem o

(x - “-’f!.') x = o '- ae

s

-:3 UNDAUPED NATURAL IODES

"~ Eq. (16) 1s obtained ee a epeciel caee of eq.(8) without external disturbance. by

letting all dahspot coefficients vanish in the structural model. If the model includes
secondary creep the dashpots responsible for unbounded static deflections must be
frozen hy letting thelir damplng ooefficient tend to infinity.

)

The undemped modes are then related to the quasi-static spring etlrtneesos In the
frequency response of the damped system the resonant modes will be associated with
somewhat higher dynamic moduli. In view of the small increases in stiffness with
‘frequency the difference between a resonant mode and its quasi-static definition may
. be expected to be small.. A measure of magnitude may be found by investigating the
- undamped modes associated wlth the eeymptotlc values of the moduli, all daahpots being

. frozen. i L

If the restraints necessary for ground resonance testing are flexible enough to
‘gimulate the conditions of free flight, we must allow for the existence of m independ-
ent free modes uy which setisty the equations
Kui. =0 -(1=1, 2.. m) AR ) A

and involve po elastic deformotion energy. For that reueon K was eeenmed to be only
semidetinitive posltlve.

The eloatic undamped modes b satisfy the equations
ke = a*'nu‘r Co(r=1, 20 - (18)

le recall the existence of orthosonollty reletions 'hlch in our notatlone are in
the rorn . .

uly My =0 1Ay ' O (198)

. ;\ ‘“71""‘:-' =_ $ o - - (1)
A |

‘n r g = o réis o (18¢c)

They likevise hold with K instead of ‘M but. since those involving free modes are
olready lmpllclt in the stronxer stttement eq.(l?). we need only add the relution

rxx, rEs (19d)



: 'f‘fIt w be necésury to apply an orthozonauzntion process to each set of Illodog
wh;oh happen to- belong to the same eigenvalue in order that egs. (19) hold without
festrlction. ‘rhis 1s the case of free modes, which all belong to @ = o. It may

v exceptionany be the case for elastic modes.

_‘ 4'.‘, rnmumcv RESPONSE UNDER mwu:mn Assuupuou
Returninx to the trequency response Equeticm (14). we lntroduce the assumption of
proportionality G 71(. then , | B
[+ K-?Mx =y (20)

'here (1 + fy)l[ represents the complex atittness -trix.

‘l'hil nsumpti,on 800_8 back to Lord Rayleigh®, who investigated lta con.equencog in
tho case of viscou ’Qemping.. It was revived by LEWIS and WRISLEY’ as the basis of a
" method for exclting pure modes with a lultipuolty of shakers. It is a decisive
.wuqmg step ince’ only two quedratlc toms m 1nvolved which may einultl.neoully

be Teduced t0 8 8 ot squares.

In other words. the equations ¢overn1n¢ the norul coordinates are not only free of
inertinl and elastic coupling terms but even of coupling terms due to damping. . The
- system 18 eftectively split intoasum ‘of independent, sub systoms with one degree of
freedom. With the object of removing later the need for the Rayleigh usnmptton.

prelent the detniled treatment of this proble- ‘in 8 slightly different way

\

Instead of seekinz the response ampntude b { to a ;ivon excitation y we enquire
- about the exclteti_en necessary to keep a normal undamped mode vibrating at a given.
‘amplitude Uy OF Xy, although the forcing frequency differs from the natural rrequency
as. md dewlne is present. For an elastic natural mode we find

s .S ¥ F (1+1‘Y)K! -w’Ix
W"“’“‘.‘"{Wx _ : - B
P - . ¥, = [(1 + 1”“’;- - wg] l! E | an

L 1

end. ror a free mode. in view of eq. (17)
5 = -o'M, (@)

we call (2!) end (22) ‘normal excitation modee' Their shape is here invariable,
.ln.ys being proportionnl to the inertia torcu ot the natural vibration.
'rheir lmplitude amd phue behue enotly ulte Y demd entam ln ‘one duree of .
freedom. It one puta : S » N .
tm —-—————' ! S "" (23) .
¢f _.l_w.,% ey



eq. (21)‘.m‘be cut in the form o
‘"rLY KL

"yi"'.' sind:‘. T

(21"

ot forees ot SING
The ratio lnertis forces _ of | ¢*,¢'ﬁ¢r
» c exciting forces mr.g 7" .

) presents. as a tunction of trequency through eq. (23), _the well known diaerammatic
{orm of Fig. 2{

'rhe noml excitation modes have simple energy propertiea. From egs. (19), -

o rés uwlyy, = o

x'g¥y
) (24)
x’rzi = 0 . "’j“i = -0 JA1

) Hence it appears that a normal excitation mode develops no energy input in a normal
'vibmtion mode except the one it keeps vibrating. v

“'With this new interpretation of the orthogonality egs. (19) it is easy to construct
. the response of the system to a general input y. Put . 4 :

y = Zaizli-Zﬁryr - : (25)
," 80 that. trom the linearity of the eqmtions
&aini + 2 ﬁrx , ' . (26)

_The coefficients of the expansion are found by multiplying eq. (25) to the left by
-the u’y and x'r and using egs. (24), there follows o

“Ij x!'y
ay = ;Ti"' B = 'r"
134 _ Pt

Substituting this result in eq. (26) nnd replncing the normal. excitation modes by
their values '(22) and (21") .
n [x '.Y] sin qbre 1‘f’r
r=- ""?h‘ i’] “1”E — Xy 27
: ﬂ-)’w o '

: ‘rhe norsal undamped modes htvo bean lupposod to be normlized in uuch (Y m that
' they all ‘have the same ettective inortio cootticlont ,

ey s e

The quantities betweeh squcre braekots tro a manuro ot tha enoru input of the
'excitntion in each mode. : : . .

'l‘he expansion (27) in very usetul vhen discusainz the behaviour of the response.



B

v lO ngume all the elementa ot y to’ be real; all shakers are in phase (or. 13‘00
srees ,out of Dhase) und one ot them my be taken as mrking the phase origin. :

n Tbo ;'emonse lll.v theu be split in a port which 15 in phase with the excitat
" one ‘wbih lags 90° behind, viz. . ton. ““‘"

» _
"

= o « ib where

n [x ,.1] sin ¢r cos ¢

- -—:-}; [u’yy) uy +§

r £

o n [x!y] sin?
E ':?"'Ly"—_i'&"‘r
pye,

' l.et us disregard for the moment the relative importance of the input ener
‘ gy brackets.
‘It demping is emall,¥ << 1, sin ¢y will be small of order va except in the neich-‘

bourhood ot the resonant frequency w = "‘r ' &
At resonance, there is in ‘b’ 8 resonmt tem 'hlch tori sin H = "1,: ‘ls‘,
: ey

" the corresponding term in ‘a’ disnppeore. :

Xy

The other terms of ‘b’ sre, comporod to the resonant one, small of O d
" terus of ‘a’ small of 0(7). , (7 ). and the

If a local amplitude of the resonant term is large, the addition ot terms of 0(y%)
-1n phase and of 0(Y) in quadrature results in a peak amplitude which is still correct
to 0(7’) ~ But in the vicinity of & node of the resonant term we are exposed to an
error of 0(Y). . It seems therefore important to discriminate, in the pick-up signals
the part in quadrature with the excitation ‘b’ and to reject the part in phase 'o"

It is shown on two relatively simple examples of continuous structures that with a
single shaker good approximations to the resonant mode shape may be expected from the
meagurenent of ‘. Fig.4 (a,b,c) shows the first three resonance cases for torsion. -

of a uniformly damped beam; Fig.5 (a,b,c) the first three cases for flexure. The
value of ¥ is 0.04. 1In eech case the total response ‘d’* is compared to the resonant
term. The response ‘a’ isdrawn to s magnificationof ten. Its relative importance seems
to grow systemtically with the order of the resonance. .

‘lfhere are. however situations which h"o 'been described et length”*® where the errors -
are necessarily larger: . _

(a) when the input energy bracket of the resonont term is venishinzly small (pseudo- -
resonance). This happens with (Y sin:le ‘shaker when it 1s located in the '

vicinlty of & node
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b) when there are several modes grouped in a small range of trequency; Obviously
_ there are then several sin ¢ terms which are not so small,

: The only cure for these situationa is to'play on the input energy brackets by using
»;a multiplicity of shakers

The ideal would be to make y = Yr for then, by definition, there is no other mode
attacked than Xpe . It would even become unnecessary to work at resonance, were it not
_advisable to minimize even small errorsbyusing the principe of resonance. In practice
- this goal cannot be achieved because of the continuity of the structure but it may be '
reasonably approximated by a great number of concentrated shaking points.
The Rayleigh assumption is agein significent with regard to the simplicity of the
vdistribution law 1t yields for the sheking amplitudes. .

if the mass alloted to each shaker may be determined, eq. (21) shows that the amp-
1itude of the shaking force must be kept proportional to this mass and to the amplitude
of the shaker’s displacement. This is the basis of the method developed by Lewis and-

Wrisley'. -
5. FREQUENCY RESPONSE IN GENERAL : THE‘bHARACTERISTIC PHASE LAGS
It is difticult to decide vhether the Rayleigh assumption is an over-simplitication

.oi of it is reasonably true. For the internal demping -of an isotropic material one
may question whether the complex moduli

E(L+15) (1 + 1g)

have the same'value of g. If not, one must expect different damping intensities in
bending and in torsion and failure of the Rayleigh assumption in cases where bending
is coupled with torsion. Slip in riveted joints and other types of energy sinks may
elso be distributed in a manner quite different from the structure’'s flexibility.

Rayleigh has extended his treatment by whet is essentially a perturbation method'
valid when damping is small®, It is however possible to present a general expansion
formula for ‘the frequency response, retaining most of the characteristics of eq.(zv)
and valid for any intensity and distribution of damping.

It is a 31mp1e transposition of a method originally devised to treat the case ot
'viscous damping ' tg :

.We now return to the general form presented by eq. (14) and concentrate on the physical ’
ideas, leaving the detailed treatment for Appendix I.

‘ With a view of extending the method of Section 4, one may first try to keep the old
definition of an excitation mode. It appears however that the simple energy properties .
of eqs.(24) are no longer true. Because of the general form of the G matrix such an
excitation mode would give energy inputs in all the undamped natural modes. If damping
is small, a perturbation method similar to that of Rayleigh might be devised, but
another approach is open, "which consists in altering the definition of the excitation
‘mode and the response mode SO as to keep the truth of egs. (24).



r'rhis mppens 13 tbe deﬂultlons are based on the rollwlnz typical relation between‘
- responge .ud excltstlon. ‘Observe on eqs.(22) and (31') that the displacements of a
o response node are'all in phaso (the elements of u; and x, are real) and that the same
; 1. true tor the elements of the correspondinz exoltetion mode which ell lead by the

v Ta aee 'hether auch a property mey hold 1n :enerel we seek a solution of eq. (14)
. uhere ' .

¥y 18 a vector with real elements *
X = -1¢u- with r elso'invinc ‘real eiements.

_ 'l‘his tnrns out to pose an eigen-value problem tor the ‘clmro,cteristic phase lag ¢/
'and detines entirely a set of ‘frequency response modes’ and corresponding ‘excitation
nodes' nth the following properties : (proof ot the statements may be found in

: ADDOndll I).

:} (e.) ‘For a given frequency there are as many real characteristic phsse angles @ as.
A-»there are degrees of ‘freedom in the system. - -

(b) As functions of frequency they follow laws qualltetively similar to eq.(23).
It may be shown theat each qb is a growing function of w?, taking the value 77/2
“. for one of the undamped natural frequencies Wy and asymptotlc to 7 when w tends

" to infinity,

-—tﬂ.._q'o-ea.ch.gbarscteristic phase lag angle: ¢'l there corresponds a frequency response
mode ry wvhose shape varies with frequency but which 1is, for w = w identical

v to the. corresponding undamped natural mode.

(d) To each characteristic phase lag ancle ¢ there also correeponds an excitation
node .

<
[}

1 ' . . ‘ ) , N .
K= 'm¢ (lx'l : (28)

N

(e) A given excitation mode develops no energy 1nput in a trequency response mode
except the one to which it corresponds. , f.e. egs. (24) are saved.

It tollows thetunexpansion similar to eq. (27) exists. 'rhe form of the expansion given -
below assumes; -for the ‘sake of simplicity, thst the free mdes are undslmed

The free modes are then treqnency response nodes wit.h a characterist 1c phese lag elv&ys‘ '
equel to zero . . . . _ o
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If we' femember that

:rx_f.,;; _ ¢?,*'ﬂ/2. when w = w,

: no£h1n¢ is changed in the dlecuieion of the behﬁlour at resonance,

. If the resonnnt trequencies are euttlciently separated and damping 1s not too large,:
good meuurements of Xy rcsult with few excitation points if the total reaponse in'
quadrature is retained. -

Otherwise we must again strive to mke y = nx in order to excite the response mode
ry =X only.

Since G is unknown, no direct metbed is available to this effect, Instead we may
' rely on-an energy principle which is discussed in the last section. '

"6. STATIONARITY OF THE REACTIVE ENERGY IN
'PURE MODE EXCITATION'

~ For a single degree .of freedom the input y cos wt acting on the elementary dis-
placement rd.cos(wt - ¢) produces per period an energy
. b3
yr J cos a.d cos(a~p) = wyr sin ¢
a=0 _

which we call the active energy (it is actually dissipated in the system during the
__period) The expression 7yr cos ¢ is the reactive.energy. Active and reactive

‘energy may be combined as the real and imglnary part of a single complex energy

Tmiyre -i¢ = 7iyx where x = re -1
Generalizing this for several degrees of freedom, a general (but real or ‘in phase’)
input excitation y produces per period a complex energy miy ’x where x is “the complex
“output amplitude. If x is split in real ‘and imaginary partex =a - ib, we get
the active energy - E, = 7y'b
the'reactive energy E, = 7Y a
: Expanding the excitetion ;nd reeponse in their frequency response nodee _ "

iRy x o= TAe

o _a"-— Zﬁlcoa¢‘r‘ . b = Z,B sin¢‘ X

y

the tollo-inz quadntlc forns ere obtelned

‘_ o "5/3:' [J"r‘] .m ¢,‘ ;‘_;iyzp"“ t‘f’t.“"r‘]' 3 X .. v fal)

-
1

118

]
-
|

= "Zﬂx' :-[",A'x"xj aos 4’: mER Iy ardeotd @)
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hey both appear reduced toa sum of squares by virtue of the essential property e of .

Sectiou 5 (See egs.{A.11) of Appendix I). Eg 1s definlte positive or at most semi-
jdefinite positive if there are undamped free nodes. exectly as the G matrix. This

‘was t.o be expected in view of the character of really dissipated energy of E;. The sign -
~of E. on the contrary depends on the oxcitetion frequency. Indeed, the factor cot
1¢> starting from a positive value at. zero frequency, passes through zero at resonanceﬁv

"and becomes more and more negative above resonance (Bee (b) of Section5.and Appendix

I). Fora damped free mode this factor is zero at zero frequency and negutlve after-

swerds. Tho expanslon term 1n eq. (32) for an undamped tree mode is
E - mot [ulﬂuilﬁi

fwhich is always negative.' It follows that the renctlve energy takes any positive or
‘negative value when the shape and intensity of the excitation is varied by changing

its coordinates' ﬁ& The conditions for the reactive energy to be etationory with .

respect to variations of the coordinates are ;

o2
= 217[3. [r G "x] cotd:‘

.

Excopt for the trivial solution in which 111 the coordinotes are zero, stationarity '

‘is satipfied only- under-the following oirculstunces.
(a) All co-ordinates are zero except one, say ﬁ5

- (b) cot.¢>j-0 that 18 w = wy.

Thus the fact that the reactive energy is 1nsensit1ve with respect to variations in

the shape and intensity of the excitation is an indication both of resonance and of

pure mode excitation since then y = By, and the response is x = =18 g In such a
situation the stationary value of the reactive energy is actually zero, However the
converse is not generally true; for many setsof values of the coordinates the reactive

energy may be zero without being stationery._ There i{s also a statlonarity property

ror

r

‘which is a sort of ayerage value for the phase lag of response over excitation. It

. cot @ = E/E ‘ ' (33)'

does not require resonance but only pure mode excitation. There is resonance when the

.stationary value of this ratio is zero. The behgvlour of the total reactive energy,

'which seems already to provide valuable control ‘of the optimum testing conditions,
would still be more valuable 1f it provided a wethod for edjusting the individual

shaking forces. The following remarks are pertlnent to this aspect. The adjustment

of & sinsle shaker force amplitude: 8y makes all coordinates vary according to linear

‘laws B = ﬁ&m + 7(,) 8y The reective energy is then a second degree equation in the
'varinble S Simple examples show that, occordlng to circumstances, thia equation may
-or may mot have real roots. Its extremal: volue is also either a maximum ‘or a minimum.

It is suggested that according to a repeated cycle, each shaker be adjusted to make -.

the reactive energy extremal Periodic oontrol of the frequency may be made in the
early stages by observing peak amplitudes, - later. by adjusting the stabilized extremal
‘value of the reactive energy. to zero. When ho.free modes are present and the first
resonant mode is sought, the stationary value 15 an absolute minimum, Bo are then the

‘extremal values. in each adjusting step and the procedure obvioualy converzes. Purther ,

research s needed to est;blish convergonce 1n the ueneral case.

.
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o m_trerentlute eq. (A.3) with respect to «’ and multiply the result to the left by
'r»'l.‘ . : ‘ * S , :

' O dgtan )

T @ v‘ = -—;,——- [r'y - wu)r.]+t-n 4:; (r’. x - wu)v,] -'tan ¢y [r'y Mr,)

Trnnonoso eq. (A.a). lultwl: lt to the ruht l! v uul aubtraot tron the previous |
...resu),t . , . ,

d(tnn ¢,)
e In v“iovl of eq. (A.4) where I =1y we get the foiult'
d(tan &) rloMr,

Hence ¢, s a growing function of o’

[r ¢ K- w'll)r ] - tfq 'f. ‘[r,;'. Nr,) =0

From eq. (A.2) & cbumteristic phase lag takes the value 7/2 when
(K-wMr = o

Thus, if w is a natural undamped frequency and r the corresponding mode shape, trbm
“eq. (A.2) again of tan ¢ tends to a finite limit when w tends to infinity. In this

case :
A \ ,

tan ¢ 3 W/w?  where Y 15 & root of det (yM+@) = o
and is consequently negative, which agrees with eq. (A.5).

Since :an ¢ canndtbe zero except in tghe case of undamped free niodeé (where it was
‘shown to remain zero) or when w tends to infinity, it follows that each root ¢ is a’
~growing function of w? which passes only once through the vulue /2 and reaches

asymptotically the va.lue .

consequently each of the characteristic phase lags belongs to a frequency response
mode "u which becomes 1dent1cal to xg when w = ay and ¢‘ = 17/2.

(c) The correspondinx excitation mode {is found from eq. (A.l) in the torl
‘ Yy :cosqﬁ‘(l(-wu)r ¥eing6r, . (A8)

und. 1f use is made of eq. (A.2) in one. of the other useful tom o

an

_—5;“ w‘l)r‘ .-._m—c,r,‘
. In particular, for an ,undm.ed free mode, ; | . ,
Yy =z ":" -~ WM oo (e

A-iv



APPENDIX 1 : o
‘ e - ’ .
CHARACTERISTIC PHASE LAG THEORY
/
(;) ‘In Q. (14) put x = o ¥r and, ununlnc y ud r to have real elements, separate
real and imaginary parts . L

cos ¢ (K - wN) r+-1nqbar

y o (A1)
-sind (XK -w'M) T +cosPpGr = o'." ) ‘ (A.z)'

 The last equation is honogenp;ms and poses an eigenvalué problem for ¢ :
det‘ (@ - tan qS (K - o™)] =0 ' v;‘f‘: “

There are m + n roots for tan ¢ utlsryinl | -
| Or, = tandy R-ohyr, . %)

' Bhould tan ¢> and hence r‘ bo complox. multiply to tho lott by the transpose con-
Juute ry )

. . ¢‘ Sonter | I .
an =. S ‘ (A.4)
T (K-t r :

hence ¢ and consequently r, are real since ¢ = @’ K = K‘ M = M* and both numerstor
and denominator are Hermitian forms, : -

0
i

{(b) Por w= 0 the nitial values of the phase leg angles .

tan ¢ (0) -'-5-—-—- > 0 :
(@ = Ty

since G and K sre semidefinite positive, . 'l'l\o only vectors which make the denominator .
zero are the u;. A free mode u; satisfies eq,(A.2) for w = o with '

@ = 72 1t oy £ o -

¢  arbitrary it"aui = o

In the last case (nndwod troe nodo) d: =0 und r = “1 13 u solution for any value
of the frequency . ,

Next denoto by v the uctor whon olountl o.re deriutivel vith respect to «? of

the elenentl of Tg Lc. rg . _
dry).
" - ———‘—'.

-t

A-111



" (d) From eq.(A.3), multiplying to the left by r'y

rJGr‘ = tan ¢, [rj (K-wl)r‘]

- Biwmilarly, if eq.(A.3) 13 und for the modo of index j und then transposed and»
,‘nultiplied to the right by r‘ .

r,@r, = tan ¢y [r', (x-w’n)r,]

hence if ttn 45 £ ten @

ryen =0 - (A.9)
vy @-dtrg =0 (A.10)

These ortho;omlitv relltlons still hold if a multiple root occurs for the charac-
teristic phase lag by orthogounllzin; the rosultlng independent wodes. If undamped
free modes are pt«ont :

a lli =0 !
‘replaces eq. (A.9) as s stronger atitoie_nt. whilst ed. (A; 10) becomes simply

u'ill' = 0

Finally the undamped free modes may be orthogonalized between themselves (egs. 19a
of Sect. 3). From all this there results :

y¥ =0 JEK (A 11)

Thus .each excitation mode has no other - eneru lnput than in its corresponding
frequency response mode. .

\ .
(e) The Yy form a complete linearly independent set, or base, of the vectorial
’ apwe. For, should a relation of dependency exlst.

Za y, = o
then. on lccount of egs, (A.11) .
ay [r'y y‘] = o  would follow.
But, from sgs. (A.7)
B . cos ¢y [r"- R =y (x - w‘ﬁ) Ty

sifl"qsl [r""";‘] = r'y o’rvl.

[,’-?‘ rlt = [r" - éa‘u')i-,]' + Iy er)t

A-v



‘l‘lua ocnnot be zero excopt in the case Pof an undumpod free mode at w = 0. Hence
for & qon-zero frequency of excitatlon one has essentislly a.l =0 tnd linear 1ndepen-

,‘dence.. _ o
: An oxmnsion ot 18 thus always nossible md unique
X | ‘._y=2_ﬁ‘y"
'hm in view of eqs. (A.11) RN
| 5 = r’ ¥l . [r!, 3] sin ¢
[r! ’l] lriga )

t.ml there tollows the auoclated expl.naion )
" x ~-E,Blo’1¢ir

m- nnduped free nodea it hu the particull.r torl of eq. (30) of Eaction 5.
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APPENDIX IT

TORSIONAL VIBRATIONS OF A UNIFORM FREE BEAM WITH
' ' UNIFORM STRUCTURAL DAMPING .

The beam haé canstant values of torsional rigidity J, polar moment of inertia Ib
and specific mgss p. Its’ structural damping is accounted for by the complex shear
modulus G(1 + 1:)

I1f submitted to distributed externnl torques c(z)e and concentrated end torques
C(o)e#”t and- C(l)eiat ite (complex) forced vibration amplitude O(z) is governed by
the following differential equation and boundary conditions

GJ (1 +1g) 677 + afpxp 6 = - c(z) - S

63 (1 +1g) 6'(®) = C(o) o (B.1)

GJ (1 +-1¢) 9’(1)

C(l) J

The natural undamped nodes are found by. putting ¢c = o0, C(o) =c(l) = ov. ”Hence
vith

.

I . . . ) .
o= =R, - , © o (B.2)

6'"" +x% = o 9! (o) ey = o
© The modes-are |

6,(2) 1 (treé‘node)i w = 0.

‘(&3)

L}
]

6p(z) cos(kz/l) with k, rm(r=1, 2..)

The natﬁ;gi frequencies result from eq.fB.z)ﬂ For the damped case put

. o 2
At = K (B.4)
. ! ‘ 1+ il .
The Qélutibﬁ or'eqs.fafl) when the excitation consists uniquely in the concentrated
sorque to the right is easily found to bé

K N P é(z) CRES cos(iz/1) o %§.5)‘>

GC(I) k¥ sin A
Since A is complex a practicsal uathod consists to write A = a(l -~ 105 substitute in
3q. (B.4) and equate real and imaginary parts, Whehce o .
D R | PN K?
= e—— (B.6) at = - (B.T)
¢ 1 -4 o o (1850 +gh ’

B-1i1i



The real and imaginary parts of eq. (B.5) have been computed for 8 = 0, 02 or g =
~ 0.040016 in the three first resonant conditions. The corresponding values ‘of a are

given by eq.(B.7) with the appropriate values of k. On Figs.4e, 4b and 4c 1t is
. observed that the: complementary vibration in phase (real part) is small but grows in
' relatlve importa.nce with the order of the resonance.

It in to be expected from theory that the vibration in quadruture (imzinnry part)
closell approximates the natural mode which comes into resonance. This is most clearly
seen by expanding the vibration in i'requency response modes and picking out the res-
onsnt term, -hose ahape is that of the resonant mode in question, The expansion is
gimlo to obtlin aince we are in & case whcro tho Rayleigh assunption holds.

It is rendily vpritied on’ egs. (B.1) tlut the mtunl modes (B.3). are kept in torced
vibntion solely b: the following distributed excitation torques .

3

co(z) = = W'l Go(x)

Y
cp(z) = g GJ re Op(z) ¢ (B.8)
N LT N
where o ©otandy = /(1 - Syt |

To find the coefficients of the expansion the concentrated end torque is represented
as a distributed torque by means of Dirac’s delta function

c(l)ed(z - 1) = EA,. cp(z) ' ~ (B.9)
where ' 8(z-1) = o for z<1
o é <l
_[z 8(z ~ dz =
C

1 s=1

- Eq.(B.9) is -treated as a formal generalized Fourier expansion for which the orthog-
onality relations (as expected from eneru input congideration) ‘hold

l .
,L cp(2) Bs(x)dz = 0 r#s

'Or more simply here

{Gr(z) Qs(xidz =J .'l_/.a, = s # o

l N T = & ';'.o

Thus, nultiplyinc eq. (B.9) by 9 (z). intogntinc betuen o nnd l nnd uainz the
_ sifting property ot Dirnc 8 tunction . :
. r"rr’owl' o
g C(l) cos r7 = A, 8 GJ 21 sin ¢’r : '(Bl.m)

3—iv‘ _’



,y_f.tifh'thogg.véluea of the A, the series (B.9) is divergent, but, it may be summed
by 55;,105_me§h9q. The corresponding series expansion for the angular vibration is,
“however, convergent : “

T o ® . . ’
o 6@ = §§r’e!.(z) ' - (B.11)
- ‘Por a hatnral;yibr&tion frequency the roqpnnnt term of (B.11) is (¢ = 7/2)

1 3cos 7

TG .
= @ = . cos(rmz/l
Tocly Ores() Pl

The difference between this term and th& 1li¢1nlry part of eq. (B.5) has been com-

puted. It is very small is displayed as an error curve with s magnification fac-
tor of 100. It tends to in¢rease with the order of resonance. - : :
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APPENDIX III

FLEXURAL VIBRATIONS OF A UNIFORMN FREE B!AH WITH
UNIFORM STRUCTURAL DAMPING

Btructunl dtmping 1s represented hdr;'by the co.mblo'x Young’s modului E(1 +1g).
There are distributed loads p(z)! and concentrated end shear.loads, The amplitude
of forced deflexions V(z) are governed by :

EIL+1g) V¥ -wtaV = p V') = V() = o .
: o . ' (CO'I)
- El(l + 1g) V(o) = B(o) - El(l + 1g) V"’(l) = 8(1)
lhturul undunped modes comprise two orthosonalized free modes .nd elutic mdos
U(z) = 1 Ug(z) = 1 -22/1 :
‘ o o (C.2)
Vp(3) = 9~,(l,.) a‘(krz/l) = 8,(kp) c,(l,z/l)

The kr'l"lro ‘roots of the tnmeendentil equstit'in

. - 1-cos kcoshk = o
with S EIK* = ofml®
8,(x) = sinx + sinh x ¢, = l". s, = c" c, = 8,/ 8, .= c,’

1

For'the damped cese put -

Then, if only the right end shear load is acting, the response, based on egs. (C.1), '
is found in closed form-as

EI V(2) \s (M o, (As/1) = ¢, (\) -,(M/!) ,
= : (C.3)
1? sl) . k' 2( 1 = cos A cosh A)
Putting A\ = a(l - 15) one finds .
e M0-B i
1-62+8 . u-eﬂ“ﬁ')an')

. 'rhe real and imaginary part of eq. (c 3) are shown on Figs.5a, 5b and 5c for the
three first resonant conditions and for the choice 8 = 0.01 or g = 0.04. The con-
clusions are ‘similar to those of the tonlon case. :

C-111i



"l'he Btileich hssumptlon holds. It is readily verified on eqs. (C.1) tfhat the
natural nodu are kept vibuting by the following dlltributions of exoit;uon loads
_',-qnly AR TR L SRR

o

'u‘,(":s:)“'= - w’l\n U,(zi © q,(2) s~ o'm U, (z)
o -‘ El‘k“.;‘ [ ol¢r :
"v (z) = V.(z

T Peing, r(®)

* ¥hen the right.end shear load acts only we use tho formal Fourier expnns!on in
distributed loads .

| ) Bz b o= g, ® +A,q,(s) +23 p,.(z) -
R .

_ 'heuce. py usinz the orthozonauty relutlons .

' : _.'{;u, u; dz =0 f niv dz =0 jo Ve Vg dz = o

o S 1 . '
oL Btz = J;‘ u,.’d_zv-= /3 fl-v'dz = I8, (k)

‘and the - siftlnz property ot the Diruc tunction. the coetflclents are aobtained. In '
Aparticulu' C ' . . g

: i - Elgk % l%r
s(l) [cz(kr) s‘(kr) - SQ(kr) c!(kr)] =z Br szz(kr)

.l_’ sin &,

.

»l'he expansion of the re:spomser is convergent

v'=Au+Au+£av
" he term which comes into resonance is worked out as
EI " 3(cos k sinh k. - sin k. cosh k)

——'—la sh Vres(z) .:: i‘o' — ’(k) - '. Vr(z)

‘ The difference between this lnd the imaginary part of eq. (0.3) is again extremely
amll as my be seen-on the error curves of l"ils. u. 5b and 8¢, 4

=y .
L Se— P

C=1v- "~ ... A
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