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CREEP BUCKLING
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LisT oF SyMBoLs

4 total area of column cross-section
h[2 half-width of web or radius of gyration
L total length.of column
x co-ordinate along axis of column
E=nx/L dimensionless co-ordinate
wo(x) initial deviation of column axis from straightness
w(x) additional lateral deflexion
(&) =2(wy+)
a, initial amplitude of sinusoidal deviation
a(t) amplitude of sinusoidal deviation at given time
p *  axial compressive load
&=P|4 average compressive stress _
or=E(rmh)?/(4L?) Euler critical compressive stress
a=G/og load ratio
G , axial stress in flange, positive when tcnsﬂc
€ axial strain in flange
4 time
b oy 04, 9 time constants
ter * critical lifetime of column
E E, ' Young’s modulus of elastic deformations
A material constants
m, n exponents of plastic deformation and of creep laws

Note.—To ensure uniformity in notation and sign convention the notation
used by the original authors has been changed in several instances.

INTRODUCTION

AIRCRAFT structures necessarily comprise elements which are under com-
pression. At room temperature slender columns and thin plates may be
considered to be stable provided the compressive load does not exceed a
critical value. At the high temperatures resulting from kinetic heating at
supersonic speeds material creep becomes important and introduces a new
element, namely time, in the buckling problem. Unavoidable initial
crookedness or eccentricity of loading will be subject to a gradual amplifi-
cation from the unequal rates of creep prevailing across the thickness of the
compressed element.

The growth of lateral deflexion occurs under arbitrarily small compressive
loads. This indicates that, although the purely elastic properties of the
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material at the temperature considered still permit the evaluation of a short-
time buckling load, this concept loses much of its significance as a design
parameter and should be replaced by a concept of critical lifetime.

In a broad sense the critical lifetime is the time after which a compressed
clement ceases to be an eflicient structural part, either because it collapses
or because its crookedness interfercs with the proper functioning of other
elements. This general definition can be interpreted in various ways. In this
chapter the meaning of the term “critical time’” will be restricted to the time
necessary for collapse under constant load and temperature conditions.

According to the creep properties postulated for the material, a column
may collapse in significantly different manners. For instance, a hypothetical
lincarly viscoelastic material requires an unbounded time interval to reach
unbounded latcral deflexions. In the restricted sense one may say that for
such a material the critical time is infinite.

On the other hand, if the stcady creep rate increases more than propor-
tionally to the stress, which is a recognized behaviour of metallic materials,
unbounded lateral deflexions will occur after some finite critical time.

When, furthermore, instantancous plastic deformations are added, true
instability of the column appears for some finite deflexion. At the corre-
sponding critical time the lateral velocity becomes infinite. Moreover plastic
deformations increase the lateral bending in the loading phase which also
contributes to a reduction in the critical time. This effect is most pronounced
for near-perfect highly loaded columns. In a perfect column there is bifur-
cation of the equilibriym at the tangent modulus load. Infinitesimal imper-
fections are sufficient to induce a finite lateral bending as the load is further
increased. Thus the limiting value of the critical time, as the out-of-straight-
ness tends to vanish, is infinite below the tangent modulus load, finite above
it and tends to zero as the short-time buckling load is reached. On the other
hand, without plastic deformations, the limiting value remains infinite for all
loads below the Euler load, and at the Euler load it suddenly changes to zero.

The main purpose of creep buckling theories is to provide an estimate of
the critical lifetime as a function of load, slenderness ratio, initial out-of-
straightness parameters and the mechanical properties of the material.
According to the type and destination of the aircraft or missile the required
lifetime may vary between a few minutes and several hundred hours.

CrREEP BuckrLiNg THEORIES

The main source of difference between the various theories developed so far
lies in the interpretation given to creep tests. This is not surprising since the
information given by simple constant load tests must be extrapolated to
describe the behaviour of the material under considerably diflerent con-
ditions. For instance, at some point on the convex side of the bent column
the fibre stress history may consist in a gradual increase in compression
followed by unloading up to stress reversal and increasing tension.

Extrapolations of this kind necessarily deviate from the purely pheno-
menological observations and involve idealizations or physical hypotheses
concerning the mechanism of creep. They are moreover influenced by
considerations of analytical convenience without which the analysis could
not be carried through or the results easily discussed. :
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Aside from this the following assumptions are generally common to all
theories and are listed for rcference and future discussion:

(a) The column is of 2n idealized H-section consisting of two concentrated
flanges of equal area 4/2 joined by a thin web of infinite shearing
rigidity whose width is denoted by & (Fig. I).

Fig. 1. Cross-section of idealized column

(6) Small curvature and the Bernoulli assumption result in flange strains
given by the formulae
g = E+J§h Wzz €y = E'—%‘h Wzz
where w is the lateral deflexion measured from the curved axis of the

column before load application (Fig. 2). In terms of non-dimensional
variables there results the kinematical equation

=& = —2 (65/E) (z—2z0)ee: ()

TS

Fig. 2. Initial and additional deviations from straighiness of pin-jainled column

(¢) The compressive load acts along the line joining the pin-jointed ends.
The resulting flange stresses are given by

6, = —G(1+2) 6,=—5(1—2). ceee(2)

(d) Before the application of the load the column axis is sinusoidal in
shape

2y = aysin E. ceen(3)
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It is assumed to remain sinusoidal during the buckling process
z=a(t)sin&. (@
The differential cquation of the problem is then either satisfied by
collocation at mid-span or preferably averaged by a Galerkin process.
(¢) The load P is applicd so rapidly that no creep can develop during the
loading process but slowly enough so that dynamic effects are avoided.
(f) The temperature is constant both in time and along the column.

1. Creep buckling of lincarly viscoelastic columns
The consideration of mechanical models is useful as it suggests the type of
stress—strain relation one may use to describe certain anelastic material
properties. KEMPNER? investigated the creep buckling of a column whose
material follows the stress—strain law implied by the mechanical model of
Fig. 3. It consists of a Maxwell unit of time constant ¢, =¢,/E;, in series with
a Kelvin unit of time constant ¢,=c,/E,, producing a relation of the form
6'+< + = + 1>6‘+LG’—E1(€+—€) ceen(B)

t, By 4 ity

Fig. 3. Mechanical analogue of linearly viscoelastic stress—strain relation

The heredity characteristics of this model are better evidenced in the
equivalent form

e = (o/E,) + fH(t—r) o (1) dr

where the model was supposed to be unstrained for :<0. The strain consists
of a purely elastic part and the cumulative effects of a time-dependent part -
involving a heredity function

1 1
t,).
H() = + o ow(—iln)
The correspondmg creep curve under constant stress
¢
=+ {l—= —1t, — . — ....(6
€ E1+E2{ exp( /.‘)}+E1 i (6)

presents the characteristic features of experimental observation (Fig. 4).
The first term is the instantaneous elastic response OB. The second repre-
sents a primary or transient creep whose rate vanishes exponentially with the
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time constant ¢, and results in a final strain of magnitude o/E,. The third
term represents a constant-rate secondary crecp.

It is most important to observe that primary creep, which is responsible for
the decrease in the gencral rate of'strain, is due to straining in the Kelvin unit
and is fully recoverable. When the load is removed this part of the strain
gradually disappears. Such elastic after-effects are actually observed in high
polymers.

=~
72

P '

< t,

Fig. 4. Constant-stress creep’curve corresponding to mechanical model of Fig. 3

The linear character of the relation between stress and strain has impor-
tant consequences. First of all the analysis is easily extended to arbitrary
cross-sectional shapes. This entails only the replacement of Ah%/4 by the
actual moment of inertia I. In other words %/2 may be considered as
denoting the radius of gyration of the general cross-section whose total area
remains designated by A. These two are the only parameters which have
any bearing on the results of the analysis. Furthermore the assumption that
the deformation retains a sinusoidal shape is entirely justified. The variable
€ separates and a single differential equation remains for the amplitude a ().
According to assumption (¢) the amplitude immediately after load appli-
cation i1s

1
a(0) = = v (7)
Evidently the load ratio «=P/Pr=6/cg should be smaller than 1 to avoid
initial elastic buckling. Then as time proceeds, the lateral deflexion grows
continuously. Since, however, the differential equation is linear with con-
stant coefficients this growth is of an exponential character and the deflexion
remains finite for any finite time. .

The same conclusion holds naturally for the more general but still linear
viscoelastic relations considered by HirTon? and for other types of initial
column imperfections. For any shape of the type amsinmf (m integer)
remains congruent and the greater m the slower is the rate of increase of its
amplitude. If an arbitrary initial imperfection is expanded in a convergent
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Fourier series, the corresponding scries for the deflexion prevailing at any
time will then converge a fortiori. The conclusion about the non-existence of
a finite critical time for linear viscoelastic columns is at variance with early
statements by FREUDENTHALS and by RoseNTHAL and BAER®. Freudenthal’s
treatment of the case of constant initial eccentricity was later corrected by
KempNER and PoHLES.

The rate of growth of the lateral deflexion is nevertheless significant with
regard to the critical time in its broader sense. It is thus of interest to note
the relationship between the time constants of the mechanical model and the
time constants of the final result

40— -0 (2 + 1) = 148 {1 —exp(—40)} +C(1—oxp(~1/0}
The relations are

0,0, = —

1—a

hty 00 =1t—14 (l i é“l)
o E,
Oniv one of the time constants is negative and responsible for divergence.
For small load ratios the positive time constant 0, is almost equal to the
relaxation time #, of the Kelvin unit, whilst the negative constant is very
large and produces slow divergence. For load ratios near unity, that is, close
to the Euler buckling load, the positive constant is asymptotic to £, (E1/E,)
and the negative one tends to zero, thereby producing a very fast divergence.

2. Buckling induced by secondary creep in metallic malerials

High-temperature creep tests show that for metallic materials the secon-
dary creep rate is not proportional to the applied stress. If the transient or
primary creep phenomenon is neglected the constant-stress creep law may
be expressed in the form

e = (o/E) + S(o)t. ceea(8)
From this a general law has to be derived for creep under variable stress.
Following early suggestions by Napar® and Napar and Davis’, this is
generally done by postulating the existence of an equation of state connecting
the rate of deformation with the stress and the strain

(ae/at)o=const =f(°'; 5)~ ceee (9)

Furthermore experimental evidence supports the idea that to small incre-
ments of stress the material reacts instantaneously in a purely elastic manner

(36/36) 1=comse = (1/E). o\l (10)
These two assumptions result in the general law
¢ = (6/E) +f(o,9)- ceee (1)

The assumptions are sometimes referred to as SHANLEY’s engineering
hypotheses.® '
It follows from Eq. (8) that
S (o, €) =S (o)
and the general stress—strain relation assumes the form
¢ = (6/E) + S (0)- ... (12)
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With S(o)=0/(Et;) this law would be a particular case of the linear model
of Kempner with the Kelvin unit frozen and thus the transient creep dis-
regarded. For metallic materials and moderate stress levels a power law is
acccptable :8.20

S(c) = No/E)» n>1. ... (13)
It can represent both tensile and compressive creep, if they are symmetric,
provided n is an odd integer. Otherwise the absolute value of the stress must
be taken and X must be given the sign of the stress.

In his Wilbur Wright Memorial Lecture, HoFr!! neglected the elastic
part of the deformation. It was shown by him elsewhere!? that in creep
problems in general this can give a satisfactory approximation to rcality
after a sufliciently long time of loading. Thus the simplification is acceptable
in creep buckling analysis for the large critical times corresponding to small
load ratios. However, the retention of the elastic term does not complicate
the analysis and it is 1mportant in designs for short critical times. The
following treatment of this case is due to KEMPNER13,

The stress—strain law expressed by Egs. (12) and (13), together with the
kinematical and equilibrium Egs. (1) and (2), leads to the partial differential
equation

_2% (%%4. E&z) = )\( ) {(z+1)* + (z—=1)7} for z>1

= A ( ) {(z+1)»—(1—=2)"} for z<1.

A solution of the type of Eq. {4) has now the character of an approxi-
mation. When it is used, the differential equation cannot be satisfied every-
where. The simplest approach, but also the least exact one, is to satisfy it at
mid-span where sin £=1. Under constant load the time variable separates
and the following expression is found for the critical time

x(i)"m f(1+a)» =g+ * el (14)

+ f T =T = O]

where 4(0) is the amphtudc 1mmcd1atcly upon load application as given by
Eq. (7). If the load is so high that the initial stress at mid-span on the convex
ide is tensile (a(0)>1), the first integral must be discarded and the lower
limit of the second raised to the actual a(0) value. For the special case that z
is an odd integer the two integrands are identical and the integrals may be
lumped together. In particular for n=1 the intcgration is ¢lementary and
yiclds an infinite critical time in accordance with tlic lincar case of section (1).
For n greater than one the generalized integral is convergent and the
critical time is finite. It was computed by KEMPNER and PATEL! for various
amplitudes of initial column imperfections and exponent values of 1°1, 1°5,
2, 3... 14. In the notation of this paper their definition of a reduced critical

time and out-of-straightness parameter are:

T = 20-1F, (2f7)  2fr, = a(0).
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Since the critical time is rcached at infinitely large deflexions there is
some approximation involved in the small-curvature assumption during the
final stages of the buckling process. In this respect, however, a refinement ot
the analysis should procced simultaneously with an improvement of Eq. (4).
Tor, by reason of symmetry, the slope of the bending curve remains vertical
at mid-span and causes the approximate formula used for the curvature and
the exact one

waaf (1 +w5?) 312
to be identical at the collocation point.
3. Buckling induced by primary and secondary creep in metallic materials

Whilst the effect of primary creep was disregarded in the preceding
analysis, the purpose of a theory developed by Lisove!® is to represent
accurately the curved part of the creep diagram. The theory is based on
experimental evidence produced for 75S5-T6 aluminium alloy at 600°F by
Jackson, ScuworE and SHOBER'®,

It seems useful to make some remarks concerning the interpretation of the
test results. They seem to indicate that constant load tensile tests exhibit a
constant rate of creep after about 4 hr, while constant stress tests result in
creep curves with a decreasing rate of deformation up to 16 hr. To reduce
the load in accordance with the change in cross-sectional area, the constant
stress experiments were devised on the basis of an assumed Poisson’s ratio
of 0'5 corresponding to dcformations at constant volume. Constant stress
experiments are valuable from the standpoint of basic creep theory, but
obviously the constarnt load tests are the correct ones to use in uniaxial stress
problems if one wishes to avoid the calculation of the changes in flange areca.

The representation used by Libove S

e = (c/E)—A e B9k ce..(15)
is one which fits the constant-load compressive tests in the range
0<t <20hr 4500 € —o < 5500 p.s.i.

In accordance with the preceding considerations o is the fictitious stress
referred to the orlgmal arca.

The time exponent is given as £=0'66; it indicates that the rate of strain
decreases during the entire time of tcstmg. It is not known whether an
asymptotic rate of strain is eventually reached in compression; nor is it
intended to discuss here the physical grounds on which to distinguish
between primary and sccondary creep. The important point to stress with
regard to the phenomenological interpretation is that this distinction shoulc
not follow the viscoelastic model in which primary creep is fully recoverable.
Although there is not sufficient evidence to assess quantitatively the amount
of recoverable creep, it is, according to OpgvisT!?, negligible in the case of
stable materials.

This in part justifies the use of a strain hardening law, such as that of
Eq. (9), to extend the test result represented by Eq. (15) to variable stress
conditions. Thc use of Egs. (9) and (10) produces the law

& » ( Ae—Bo) 1/K
=K .(16
| £~ [efEy ey i)
used by Libove. Aside from linearity, the absence of elastic after-effects is
274
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an cssential difference between this theory and that considered in Section 1.

\When interpreted outside of its rather narrow range of validity Eq. (16)
presents peculiarities due to the fact that the plastic rate of strain does not
change sign with the stress. Thus when the flange stress on the convex side
becomes tensile the law still predicts a negative rate of strain. This unfor-
tunate feature can easily be corrected by the use of a stress function of Nadai’s
type ;
¢ = (¢/E) + A(sinh Bg)X.
Nevertheless Libove’s theory should yield a good approximation when, as
seems to be generally the case, tensile stresses develop in the flange only
during a negligible fraction of the total computed critical time.

The calculation of the critical time by Libove’s theory is very lengthy; it
is possible only by stepwise integration. Hence no simple formula can be
given for the critical lifetime.

4. Inclusion of instantaneous plastic deformations

Instead of idcalizing the creep curve by an elastic segment OB followed
by a constant rate creep line (Fig. 5) as in Section 2, Horr?® proposed to
consider the instantaneous segment OC, where C is the intercept of the
asymptote to the real creep curve. The segment BC should then be con-
sidered as an instantaneous irreversible plastic deformation. Not only does

‘€

(¢}
t
Fig. 5. Different idealizations of experimental creep curves

this theory include the instantaneous plastlc deformations but it also approxi-
mates the effects of primary creep in a time-concentrated manner. OpQvisT?®
was the first to show that the problem stated in this manner, but without
elastic deformations, could be integrated.

The complete stress—strain relation considered by HorFF may be given in

the form
| - m; 6’

E= 2+ +qE

I‘*‘i

.. (17)

As in Section 2, A is a material constant which must be given the sign of the
stress and which measures the inter. . " vy creep. The instan-
taneous plastic deformations are g;v;,.l Ly e sceond term where
u is a positive constant if 66 > 0
is zero ifes <0
This accounts for the fact that instantaneous unloadmg occurs in a purely
elastic manner.
When the last term is omitted, Eq. (17) yields the tangent modulus of
the instantaneous stress—strain curve (Fig. 6). During a tensile or com-
pressive loading phase this modulus decreases steadily towards zero. Since
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during the differential creep process at least one of the flanges is undergoing
such a type of loading, the combined incremental modulus of the column is
also steadily dccreasmg One must then expect the column to fail at some
finite deflexion because the critical load of true instability is reached. This

ELASTIC
UNLOADING

TANGENT

* Fig. 6. Instantaneous uniaxial stress-strain curve with irreversible plastic deformations

is an essential new feature of the buckling process brought forward by the
inclusion .of plastic deformations. If one seeks the critical condition in the
usual way by investigating the existence of a state of indifferent equilibrium,
one has to satisfy the homogeneous equation in dz:

. ~ =\m+1
—22d555=22dz+(2) {pale=1" +pi|2+1"}dz ....(18)

where z (£) is a known shape of deflexion at a given time and dz (£) a virtual
incremental deformation. Moreover

us = @ if dz (z—1) > 0 and otherwise zero
w = p if dz (z+1) > 0 and otherwise zero.

As stating an eigenvalue problem for &, the equation may be solved
approximately on the assumptions that both the deflexion and its increment
are sinusoidal. Instead of proceeding by collocation at mid-span, the
equation may be averaged as in the Galerkin process. In such a case it is
multiplied by sin & and integrated from O to /2, which by reason of
symmetry is equivalent to integration along the whole span.

If dz>0 or, what is the same, de >{, the load in the flange on the concave
side is increasing everywhere and consequently (J.1=p. According to the
amplitude of the deflexion two cases mu- - ! ii«hed; they correspond

s

to different loading conditicuy inn T i.ﬁ.-.:yab

Case 1
a<1, whence z<1; there is elastic unloading along the flange and con-
sequently p,=0. The averaging process yields then

*Oop—3 wa {0 ™ 5in? =0. ....
.{_ 5 U_H(E) !(asmE-]—l) sin Ed&',}da 0 | (19)

2 E E
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The critical condition between average compressive stress and amplitude is
obtaincd if the bracket vanishes. For the case m=1 considered by Hoff

I 12{(es=9)/E 3‘”“3’”’)2] 2@ ...
8 w(g/L)? 8
Instead of 3w/8, the factor unity is obtained when the collocation method is
used. In that case a critical load corresponding to the reduced modulus of
the central section is reached. At that time the real column will not yet
buckle as its other sections are stiffer than the central section. The averaging
process takes this into account and produces the correction factor 3w/8.

Case 2
a>1; there is unloading in the sections defined by 0<asin <1 and

there is loading in tension in the complementary segment. Hence p,=p from
E=n=sin-1 (1/a) to Tl:/2 and .

[ 7] eocoracs

a =

..(21)
/2
+ f (asin E—1)™sin? EdE)} da=0. -
7
For m=1 the critical condition is then
Cla) = %’3 (&) ... (222)
where
_ 3t 3. 1  4a
Cla) =a ?+Esm ;+—- ..(22b)

If we take a to be large or 7=0 we obtain Hoff’s approximation which
considers the stress reversal to extend along the whole flange. Then
3n

C(a) ~2a—-8— ... (23a)
and
a_.i—n—<l+2(c)) ....(23b)

Again the collocation process would give this result without the factor 3w/8
and it would then correspond to a critical combination of two tangent
noduli reached in the centre section. The difference between the exact and
the approximate values of C(a) is only significant in the range 1<a<15. If
the value of a obtained from Eq. (23b) is larger than 16 it will be in excess
by an error of less than 0-02. ) .

The computation of the time required to reach one of these critical con-
ditions under a constant load follows a similar procedure. The assumption of
Eq. (4) is substituted in the partial differential equation of the problem

m+1
—2—zEz—2 z+() {ale=1]" + | 2+1|"} 2+

+ (5) Galz=1p 4 mlz+1p)
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where A,= 4+ according to whether z is grcater or smaller than one.
A=A since (z+1) is always positive.

The cquation is multiplied by sin £ and integrated between zero and 7/2.
This cither represents a Galerkin averaging process or the type of Fourier
analysis described by HofF. In this way an ordinary differential equation is
obtained for a(t) in which the variables are separable. The critical conditions
appear now as those for which the lateral velocity a(f) becomes infinite.
The two cases specified earlier must again be distinguished. We give only
the results corresponding to the values m=1 and n=3 considered by Hoff.

Case 1
Critical condition reached for an amplitude smaller than one. -
5\, a?(4+a?(0)) 2 (a—a(0))
' i, =MIn——— " _Ntan-l X 122 ., (24
» (E) «= Ml o aray T araao) @)
where

=é{‘iﬂ£_°_%(§)z} N=9% (]%)2 eee (25

In this formula a is the critical amplitude as given by Eq. (20) or, what is
the same, by a=4M|N, provided the result is smaller than unity.

Case 2
Critical condition reached for an amplitude greater than one. The time
lapse must be split in two parts: ' _
lee = bim + tag- ....(26)
The first part corresponds to the time necessary for the amplitude to increase
from 4(0) to unity. It is naturally given by Eq. (24) where a is set equal
to unity:
&\3 4+a2(0) 2 (1—a(0))
) o =Mlhn——2~ —Ntan-1 —— =
A (E) lim 520) 0 T i) @7)
The second part is the time lapse between unit amplitude and critical

amplitude, during which stress reversal spreads gradually from the centre of
the flange on the convex side towards the ends. The averaging process yields

5a2

A (1%)3 ta = M1n 2= —NB(o) ....(283)
. _ [ 2@ ,
B(a,—f o e ....(28b)

where a is the critical amplitude as given by Eq. (22). Equations (28) are
not derived in Hoff’s paper but it is shown there how the critical time may
be bracketed between a lower and an upper limit. The upper limit is found
by neglecting the plastic deformations which occur in the stress-reversed
part. Equation (24) remains valid under this assumption though the ampli-
tude given by Eq. (20) exceeds unity. :

The lower limit involves an approximate additional time based on complete
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stress reversal in the outside flange from a=1 onward. This amounts to the
substitution of Eq. (23a) into (28b) and yields

G\® , . Sa? 2 (a—1)
.- = l — -1 _— LU
A (E) tag=MIn Tra aN tan iTa (29a)

where
]. O'E'—G
E

and a is the approximate critical amphtude of Eq. (23b).
If under exceptional conditions a(0) is already larger than unity, the
critical time is obtained as a diflerence between two additional times

M = M+ N .v..(29b)

(3 - ar E 8220}
A (E) te=MIln 20)(ata® — N [B(a) —B{a(0)}]
and a similar bracketing is again possible.

The analyses of the critical times must be completed by calculation of the
zero-time amplitude ¢(0) from the initial amplitude a, prevailing before
load application. This is a problem in inelastic column theory which, in
gencral, has no simple solution. Three phases may occur during the loading
process:

Phase 1

Compressive loading takes placc along both ﬂanges This necessarily
implies that the initial amplitude is smaller than unity. Since the loading is
50 rapxd that the creep deformations may be neglected the integrated stress—

strain relations
m+1

are valid everywhere. The equation of equilibrium is then

g\m+1 .
—2—-(Z Zo)Ez—Q Z+ — +1 ( ) {(14)m 1= (1—2)™*+1}

It has to be solved for & increasing monotonically from zero.

The averaging process is always applicable; however, for m=1 thesituation
simplifies because the equation becomes linear and the assumption of Eq. (3)
1mphes Eq. (4) and leads to the simple relation

ozslE
‘ ~ (U/E) (65—6)—(G/E)2
Phase I ends when unloading begins at the centre of the convex side where
6,=6 (a—1).
The unloading condition expresses that o, has reached a minimum there

do, da
-1 — =0 e (81
& ¢ +Gdc 31)

from which one obtains with the aid of Eq. (30)

)R] o

This equation permits the computation of the limiting value of & marking
the end of the first phase.

.. (30)
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Since a, is smaller than unity, before load application the left side is
smaller than the right side. When G increases the left side is positive increasing,
and the right side positive decreasing. Equality occurs before the denomi-
nator of Eq. (30) vanishes. Thus the column cannot buckle during the first
phase. The amplitude cannot even exceed unity since the tensile stresses
which would then be present could not be produced without previous
unloading.

Phase 1

If the load is increased beyond the limiting value of Eq. (32), account
must be taken of the elastic unloading in part of the right flange. The propa-
gation of the strain reversal along the flange leads to complicated calculations
unless reversal is assumed to take place instantaneously, at the beginning of
the phase all along the flange. This approximation, introduced by Hoff,
scems acceptable in view of the rapid increase in the size of the reversed
region with the amplitude of deflexion. It leads to a quadratic equation for
the amplitude as a function of load and initial deviation.

Buckling is possible during this phase, the critical condition being naturally
given by Eq. (20).

Phase 11T

There is occasionally a third phase which starts as soon as the amplitude
exceeds unity. The real situation in the right flange may then become quite
complicated. Compressive-stresses may still incrcase near the ends of the
column and decrease in adjacent regions whilst a central part is now under-
going tensile loading. The approximation introduced by Hoff is here some-
what less satisfactory, giving strain discontinuities at the phase change.
Since tensile plastic deformations are introduced immediately along the
whole flange, in this approximation the critical condition is given by
Eq. (23b).

Adding to Hoff’s considerations we wish to observe that a column with
vanishingly small out-of-straightness may be subject to creep buckling in a
finite critical time. The analysis of phase I shows that smaller imperfections
a, result in higher limiting & values. When the initial deviation tends to zero
this limiting value tends to the tangent modulus critical value &: which
makes the denominator of Eq. (30) vanish. Thus if one considers the limiting
case obtained by letting g, vanish the following situation arises: If the load
is less than the tangent modulus load, for which bifurcation of the equili-
brium oceurs in a perfect column, there will be no bending and the column
will simply shorten as a result of the creep strains. In the other creep buckling
theories this conclusion holds for loads up to the Euler buckling load. If,
however, the tangent modulus load is reached the asymptotically straight
column will start to bend.?® The analysis must then be carried out starting
with phase IT and zero initial deviation, giving under Hoff’s assumption

(- ) e - ) o o0

Unless buckling occurs upon load application in this phase, or unless the
third phase is entered, this equation permits the calculation of 4(0) for an

280




B. FRAEIJS DE VEUBEKE

initially perfcct column under a service load & higher than the tangent
modulus load.

For columns with small initial deviations the situation which is most likely
to occur in a practical design will be that of a service load smaller than the
limiting value in phase I. Substitution of the service load in Eq. (30) will
then give the a(0) value required in the computation of the critic 1 lifetime.

The extension of Hofl’s theory to other exponent values i desirable.
Although straightforward in principle, it may lead to lengthy developments.
PaTeL?! has given theoretical expressions for the critical time for general
integral values of the exponents. He uscs collocation at the centre section
instead of the more exact averaging method. The correlation between a(0)
and a, has not been investigated.

NumERICAL EXAMPLEs AND GRAPHS
(1) For 2024-T4 (formerly 24S-T3) aluminium-alloy at 600°F typical
values of the material constants are cited by Hoff: m=1; n=3; E=74 x10°
p.si.; £==85-5625; A=10080 min-1. Take a column of slenderness ratio
2L/h=>50 with the Euler buckling characteristics
oz/E = (n[50)2 = 39-4786 X 10-* oz = 29,214 p.s.i.
The critical tangent modulus stress is obtained by equating to zero the
denominator of Eq.,(30), which gives
Gi/E = 31-167 x10-% & = 23,064 p.s.i.
With an initial deviation =006 the limiting average compressive stress of
phase I results from Eq. (32). A trial and error process yields
G/E = 242x10-* & = 17,910 p.s.i.
A service load of 15,000 p.s.i. will therefore result in a loading confined to
phase I. The zero-time amplitude will then be given by Eq. (30) with
&/E = 2027 x 10-*%; one obtains .
a(0) = 0-1509.
Equation (20) gives a critical amplitude
a, = 11696
which is larger than one. Its substitution in Eq. (24) yields an upper limit
to the critical time
¢, = 16+3 min.
I'o find the lower limit the #;, value is first computed from Eq. (27)
Yim = 11-95 min.
The critical amplitude under conditions of stress reversal in the right flange
is then obtained from Eq. (23b)
a, = 5-259
and is substituted in Eq. (29a) to obtain
t,a = 390 min.
Hence
tlim -+ tad = 15-85 min.
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Application of the formulae (22b) and (28a, b) gives practically the same
critical amplitude but a value
{,qg = 4-11 min

and a critical time value

tlim + lad = 16-06 min
cflectively bracketed between the previous estimates. In this example taken
from one of Horr’s papers?$, the short-time buckling load is found to occur
in the third phase. Its valuc of 22,450 p.s.i. is seen to be lower than the
tangent modulus load, whilst for a near-perfect column it would lie some-
where between the tangent modulus load and the (higher) reduced modulus
load.

(2) Itis of interest to compare these values with the results given by an
analysis. which neglects primary creep and plastic deformations. We thus
apply KeEMPNER’s analysis?? with the same values of E, n and A and the same
service load.

If we first keep the same initial crookedness a,=0-06, Eq. (7) gives for
zero time amplitude

a(0) = 0-1233.
Then from Eq. (14)

tee = 20-27 min.
If on the other hand we keep the zero-time amplitude of Hoff’s analysis, we
find

-t =18-64 min.

These values give an idea of the separate effects of neglecting primary creep
and plastic deformations during the creep process only or duririg the load
application as well.

(3) More generally the effects of initial crookedness and Toad ratio in
Kempner’s analysis are best shown if Eq. (14) is rewritten in the form

cp\*? l—oc aq
M= r
<E> N (1—°¢>

This is illustrated in the.case n=3 by thc constant load ratio curves of Fig. 7,
where this type of reduced critical time is plotted on a logarithmic scale
V. ap.

(4) We also wish to give an example of creep buckling for the limiting
case of an initially straight column. The material constants are those of the
first example.

A column of slenderness ratio 25 is chosen, for which

(og/E) = 157914 x10-% ¢./E = 89-449 x 10-4,
The short-time buckling load of this column is reached when Egs. (20) and
(33) yield the same arrphtude, provided it is smaller than one. By trial and
error this is the case for

G/E = 97-7x10-4,
A service load corresponding to
&/E =92x10-4
will then give according to Eq. (20)
2, = 0-9664
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Fig. 7. Reduced critical time vs. initial amplitude of deviation and load ratio for pin-jointed H-section
columns. Primary creep neglected, no plastic deformations. Stress exponent of secondary creep n=23.
Analysis according to KEMPNER?? .

and Eq. (33) a zero time amplitude

d(0)=0.0434.
The critical time as computed from Eq. (24) is

. = 16 sec.
One sees how sensitive the lifetime of such a column will be. It ranges from
infinity to zero in a loading range

G¢ = 66,192 p.s.i. t0 Gy = 72298psx
and is already reduced to 16 sec for
& = 68,080 p.s.i.

(5) It is difficult to make a numerical comparison with Libove’s theory
both on account of the lengthy computations and becausc of the lack of
data for the material constants of his representation as applicable to 24S-T'3.
For idealized columns of 753-T6 at GOO°T Libove quotes the valucs

E=5-2x10¢p.s.i. K=2/3 A=0-264x10-¢hr-1 B=1-92 X 10-3 p.s.i.-1.
The relation between his reduced critical time and his initial straightness
parameter which are in our notation

AEB « \YX B _ a,
Tater = (‘27 m) exp {z?“ (1+ m)} b

{ B aq
Yn/n=exx3'\—;{- )

l—«
is given in Fig. 5 of the paper quoted.
Libove extendcd his theory to solid rcctangular sections. 22 For the material
constants given above a plot, similar to that of Fig. 7, was given by
MatHAUsER and LiBove?? and is reproduced here as Fzg 8.
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COMPARISON WITH EXPERIMENTS

Extensive tests were conducted at the National Advisory Committee for
Acronautics on creep buckling of rectangular-section columns. The material
constants of Libove’s creep law for 75S-T6 aluminium alloy at temperatures
between 300° and 600°F may be found in a technical note by MATHAUSER
and Brooxs?4 together with results on fifty-four specimens under varying
conditions. An interestinrg observation is that collapse occurs suddenly at a
finite critical deflexion, confirming the presence of instantaneous plastic
deformations. Despite the fact that Libove’s theory does not account for
this it predicts critical times which are generally shorter than the experi-
mentally observed ones. The largest discrepancies are associated with the
largest average compressive stresses. This would seem to indicate that the
exponential law has been extrapolated with too much confidence.

Other tests conducted at the Polytechnic Institute of Brooklyn on fifteen
2024-T4 rectangular section columns of slenderness ratio 111 at 600°F have
indicated the disturbing influence of higher harmonics in the initial deviation.
An estimate of the fundamental and third harmonic was obtained at room
temperature from strain-gauge measurements along the column. Unfor-
tunately the measurements could not be taken at the testing temperature
just prior to load application. For this reason some smaller discrepancies are
attributed to variations in the creep deformations with preload intensity
during the heating period. Correlation between these tests and theory awaits
extended information on the properties of the material used.

The growth of the third harmonic during the buckling process was
observed with the aid of dial gauges in tests by Hurt?$, and compared to
the theoretical growth when the initial shape is a pure fundamental. The
columns were of extruded pure aluminium bars machined into H-sections
and tested at a temperature of 77-5°C (171°F). No quantitative comparison
is given with theory. : :

All tests show qualitative agreement with the various creep buckling
theories concerning the influence of the various parameters. he chief
obstacle to quantitative comparisons is generally the lack of sufficient data
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on creep properties. Theorics based on strain hardening hypotheses like
Libove’s are capable of handling correctly the observed primary and
sccondary creep eflects. They are, however, difficult to amplify and do not
lend themsclves easily to numerical discussion. Theories based on the
Opgvist-Horr approach have interesting features of simplicity and take
plastic deformations into account. However, the idealization of the creep
curve they imply poses a problem when critical lifetimes are to be predicted
which do not extend far beyond or are even shorter than the primary creep
petiod.

CrEEP BuckrLIiNG UNDER MORE GENERAL ASSUMPTIONS

The theories developed so far have concentrated on a highly idealized case.
To enhance their applicability to practical design problems extensions are
necessary, some of which are outlined below.

A good feature of the idealized section is its coincidence with an efficient
design. Extension to the solid rectangular section as done by Libove simplifies
the production of experimental columns for correlation tests. The unequally
flanged H-section has practical importance for the extensions of the theory
to reinforced cover sheets and has been considered by Hurt?S.

More important is the presence of end restraints in columns which are
members of a framework. Consideration of the end restraints is almost an
clemeni~ry problem in the linear viscoelastic case. But with non-linear
creep laws serious new difficulties appear, especially in view of the fact that
congruence of the deflected shapes is likely to be seriously violated.

Consideration should also be given to the axial loading history. Variations
in the axial load may be caused by the external forces but also by unequal
temperature distribution in the structure, a characteristic feature of thermo-
elastic buckling. Thus a decrease in axial load may be encountered when
the temperature distribution is equalizing. It should be observed that the
creep rates will generally be different in sections along the column and will
also vary with time according to the temperature distribution and variation.

In this connexion NEss?? has presented a theoretical investigation of the
time dcpendent buckling of a uniformly heated column of linear viscoelastic
material.

Finally creep buckling occurs in other types of structural members. Test
data are already available for plates? and multi-webbed box-beams* and
have been announced for circular cylinders.?® No theories have been
developed yet to predict the observed lifetimes.
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