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1. INTRODUCTION

Assumptions concerning the effects of damping are generally based
on a purely viscous model in which the energy dissipated per cycle
is proportional to frequency or on a 'structural' hypothesis
which makes this energy independent of frequency. The latter
approach is the most widely used in flutter calculations. How-
ever, by the application of the Fourier integral technique, it is
shown that the transient behaviour associated with 'structural
damping' is not physically acceptable. Nevertheless, structural
damping can be retained as an approximation provided that it be
restricted to a given frequency band. |

A Maxwell model, involving a single 'hidden' coordinate,
furnishes a more satisfactory type of viscoelastic damping. Here,
the transient behaviour is fully described by a heredity function
that shows how the damping force depends'on the past history of
the motion. The concept of the heredity function extented to an

eventually infinite, number of internal freedoms can provide a
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correct formulation. Experimental evidence is, however, needed
to establish the exact form of the heredity function. These
points are discussed in some detail in the first part of this
paper.

The second part is devoted to the analysis of resonance
in one degree of freedom under these various damping laws. In
the case of hereditary damping a difficulty arises. The effective
spring stiffness of the system becomes a function of the forcing
frequency and the concept of a natural undamped frequency is not
as clear-cut as it is in the simple viscous or structural damping
cases. For a simple Maxwell model two slightly different undamped
natural frequencies can be defined and phase resonance is shown
to occur at some intermediate value of the forcing frequency.

In the third part resonance in many degrees of freedom
is discussed with the help of matrix formulation. Here again
hereditary damping results in an effective stiffness matrix
whose elements are functions of the frequency. The natural
undamped modes are then best defined as those corresponding to
phase resonance. Any other definition would be of artificial
character and would prevent the experimental determination of
such modes, thus defeating one of the essential purposes of reson-
ance testing.

A convenient concept for discussing the forced response
in general and resonance in particular is that of a 'characteristic
phase lag'. Originally devised for the special case of purely
viscous damping [1], it is extended to cover all types of damping
and provides and expansion of the response in orthogonal 'response
modes'. At each phase resonance one of the orthogonal 'response
modes' becomes identical with a natural undamped mode as previously
defined. It is shown that at phase resonance the total reactive
energy is zero and stationary with respect to small arbitrary
variations of the excitation forces. The most difficult problem

is to obtain reasonably pure natural modes while using only a
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limited number of shaking points. 1In this connection several
principles can be applied: local phase resonance, pseudo-resonance
in neighbouring modes, and the stationary property of the partial
reactive energy. These are discussed in terms of the orthogonal
response modes. '

Under certain restrictive assumptions the inertia matrix,
the effective stiffness matrix, and the damping matrix can be made
diagonal simultaneously. The system is then effectively split
into sybsystems with a single degree of freedom.

These assumptions, already considered by Lord Rayleigh
[2] in the case of pure viscous damping, are easily extended to
cover all types of damping. One is the basis of a method of
shaker force adjustment previously evolved by Lewis and Wrisley
[3]. The more general one was reformulated in France by Basile [4].
It is the writer's opinion that such assumptions are unduly re-
strictive and stand no change of being corroborated by experimental

evidence.
Terminology

Square matrices are generally denoted by a capital Roman letter

as follows:

M matrix of inertia coefficients

K matrix of stiffness coefficients

R matrix of equivalent viscous damping coefficients
A-iB matrix of dymamic flexibilities.

Column matrices are denoted by a lower case Roman letter, thus:

q column matrix of coordinates
f column matrix of excitations
y column matrix of excitation amplitudes

x=a-ib  column matrix of response amplitudes (complex)
T column matrix of response amplitudes

Z column matrix of natural mode amplitudes.
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The transpose of a matrix is denoted by a 'prime', and the deriva-
tive with respect to time by a dot.
The elements of a matrix are indicated by subscripts, e.g.,

th

q. is the i~ element of column q

* . th .. .th
Aij is the element of the i line and j column of A.
Modes are indicated by a subscript between brackets, e.g.,
z(r) is the rth natural mode (a column matrix).
The convolution or Duhamel integral between two time-functions is
denoted by an asterisk, e.g.,

t
¢*q; = J ¢(t-1)q; (T)dT .
o

2. MECHANICAL AND MATHEMATICAL MODELS FOR THE STUDY OF ELASTIC
SPRING BEHAVIOUR

2.1 Simple Viscous Internal Damping

The simplest mechanical model of a structural unit where spring

action is accompanied by energy dissipation is shown in Figure 1.
It consists of a purely elastic spring, with stiffness k;, and a
dashpot in parallel. The force developed by the dashpot is pro-
portional to the velocity il(t) of the displacement. The force-

displacement relation of such a unit is therefore of the type

£1 = kiq1 + €141 - (1)
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Figure 1 - Structural Unit with Simple Viscous
Damping

This equation furnishes immediately the reaction force
of the unit when the displacement is known as a function of time.
Conversely, when the force is known as a function of

time, the solution of the differential equation (1) yields’
1 ¢ -1/t
Qt) = @) + e Y, (t-T)dT (2)
o

where t; = c;/k; is the 'time constant' of the unit.
For instance, when a constant force f; is suddenly
applied at t = o to the unstrained unit (q; (o) = o),

£,

-t/t
@ = fa- et

and the displacement tends ultimately to the static displacement
f1/ky;. When the force suddenly applied is a harmonic function

of time

f, = Re {ylelwt}
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we find
_ Y1 int  -t/ty
ql‘Re{le e, (e e )}

Here again the motion consists of a transient associated
with the time constant t; of the unit and a steady state part
which is the forced vibration or frequency response 6f the unit.
The amplitude and phase relationship between force and motion in
the forces response is also obtained by the reverse procedure of

imposing on the unit a harmonic displacement

q = Re{x;e™"t} (3
and determining the force directly from equation (1)
£, = Re{(k1 + iwcl)xlelwt} L 4)

Equations (3) and (4) are actually simpler to discuss;
they also make comparison with the behaviour of other structural

units easier. From them we obtain

qi1 Xjcoswt

£, x; (kycoswt - wcysinwt)

The elimination of the time between these equations leads
to the hysteresis curves in an (f;,q;) diagram. It is convenient
to make these diagrams non dimensional by using the reduced varia-
bles

D = cospt
X3
f [ .
L_ = coswt - wt sinwt
kyx,y k,

This amounts to taking the amplitude of vibration as the
unit of displacement and the static force necessary to produce

this displacement as the unit of force. The family of hysteresis
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curves (Figure 2) is then dependent on a single parameter (wc;/k;).
All curves have a common vertical tangent at the points (1,1) and

(-1,-1).

FPigure 2 - Hysteresis Curves of Structural Unit with Simple
Viscous Damping for Different Values of the
Parameter wei/k

The energy dissipated &uring a cycle is

2
w [ ]

J £,q.dt = mxiciw .
o

For a given amplitude of vibration it is seen to increase propor-

tionally to the frequency.
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2.2 Hereditary Internal Damping

Viscous damping may be retained as a source of energy dissipation
in more complicated models. The Makwell model of Figure 3 incor-
porates a second spring in series with the dashpot and forms

really a system having two degrees of freedom. Its behaviour is

fully described by the two equations:
£1 = kiqy + c2(d1 - G2) (6)

k292 = c2(q1 - q2) - (7)

Figure 3 - Maxwell Type of Structural Unit

Since we are not interested in the internal degree of
freedom q,, we solve equation (7) for q, and substitute the

result in equation (6) to obtain

t

£, = kiqp + S ¢(t-1)q, (1)dt (8)
o

where

b(t) = keexp (- 2 t) ®
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with the underlying assumption that for t = o the unit is un-
strained.

In equation (1) the damping term is directly proportional
to the instantaneous velocity of displacement. In the present
case it is seen to depend on the past history of this velocity.
For this reason it is suitably called 'hereditary damping' and
the function ¢(t) is known as the 'hereditary function' of the
damping.

In solving problems of transient behaviour for such
units the operational form of the force-displacement relationship
is useful.

With the usual definition of the Laplace transform of

a function x(t)
” st
x(s) = J e > x(t)dt
(o]

and assuming q;(0) = o and q,(0) = o, the basic equations (6) and

(7) have the following Laplace transforms

£1(s) = (k1 + sc2)qy - sc2q»

(ko + SCz)az = Sczal
whence, after elimination of q,

- cokps 1y -
£ = ( ky o+ K, + scy )q1 . (10)

In this operational relation the coefficient of q;, namely

Czsz

21(s) = ko + 500,

(11

is known as the 'operational modulus' of the unit and its recipro-
cal the 'operational flexibility'. (The names operational impe-
dance and operational admittance are misleading, since the elec-
trical analogies, from which they are derived, are actually

violated.)
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obtain

where
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Solving equation (10) for g, and re-interpreting we

ki+k, ~ ¢z \ki+k,

_ 1 .1
t<k—k—>

A comparison of this general solution with equation (2)

2 t
ae =580, 1 <L> fe s enyar 2)
. (o]

shows a significant difference in behaviour due to the presence

of an instantaneous displacement associated with a spring modulus

(ky+kz).

Such a behaviour is physically evident from a simple

inspection of the structure of the unit.

From equation (12) the response of the unit to a

suddenly applied constant force is readily found to be

.5 ks -t/t,
ql(t) = k_1_< - k1+k2 €

and tends ultimately to the same static displacement as in the

previous model.

The forced response to harmonic excitation is of

greater extent. Using the reverse procedure we put

q; = Re{xlelwt} and q, = Re{xzelwt}

in equations (6) and (7), and eliminating x , we obtain

- . wcoky iwt
f; = Re <k1 + i E;:IBEZ) x;€

In accordance with general theory, the complex modulus of the

forced response

. (L)Czkz

z3(W) = ky + 1 Kvincs (13)



Influence of Internal Damping on Aircraft Resonance 11

is also obtained from the operational modulus (11) by substitution

of iw for s.
From equation (4) the complex modulus in the case of

simple viscous damping is found to be
zy(w) = k; + dwc, . (14)

When equation (13) is split into its real and imaginary parts it

may be given a similar form, namely

2y (w) = ke *+ dweg (15)
where )
2c
k =k, + kg —2°2 (16)
€ 2 2.2
ka + w?cy .
.2
ce=c2—2—l‘—2——. (17)
k3 + w2c

The behaviour of the hereditary damping unit is thus
reduced to that of a simple viscous damping unit with character-
sitics depending on tﬁe frequency. This procedure is convenient
for purposes of comparison and since moreover it corresponds to a
decomposition of the complex modulus into real and imaginary parts
it is also physically significant. k

It is seen (Figure 4) that the equivalent spring stiff-
ness ke increases with frequency to the asymptotic value (k;+k;),
whilst the equivalent coefficient of viscous damping Ceo decreases
from c, to zero. The energy dissipated per cycle, nxfwce, also
tends to zero for very high frequencieé. Per unit time, however,

it would tend ultimately to the finite value %-x%k%/cz.
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Figure 4 - Effective Spring Stiffness Re and Equivalent Viscous
Damping Coefficient e, for Maxwell Unit

There is a characteristic circular frequency of the
unit for which the energy dissipated per cycle passes through
a maximum. The maximum of the product we is easily found to

occur for the value

_ ke
w2 =5,
where
c = l-c
e 2 °%2°

This value is conveniently taken as a reference in the non-

dimensional diagram of Figure 4, so that the curve

(g}

e _ 1
ot (18)

(L)



Influence of Internal Damping on Aircraft Resonance 13

pbecomes valid for all Maxwell units. _

The behaviour of C, as a function of the frequency is
also reflected in the hysteresis curves of Figure 5. At zero
frequency we have a straight line of pure spring behaviour; for
w = wp an elliptical curve of maximum area; and, when the fre-
quency tends to infinity, we have again a pure spring behaviour
associated with the modulus (k;+k,) and resulting in a straight

line of greater slope.

Figure 5 - Hysteresis Curves for Maxwell Unit
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The Maxwell model is only a simple example of a unit
with hereditary damping. More complicated models are easily
imagined. For example, several Maxwell units with different time
constants can be connected in parallel. A large number of hidden
coordinates will facilitate the correlation between the theoreti-
cal behaviour of ke and g as functions of the frequency and ex-
perimental evidence. The transient behaviour of such units will
still depend on a relation of the form of equation (8) with a
suitable hereditary function ¢(t). On the basis of equatioh 9)
we can write as a generalized form of the hereditary function,

involving a continuous relaxation spectrum:

o(t) = [ F(r) e Ttar
o
or, in operational form,
=y - E@
¢(s) = i T+S dr

Then, from the operational form of equation (8), namely

£f1 = z,(s)qa 19)
where
21(s) = k1 + s¢(s) ' (20)

we can deduce the corresponding operational modulus
7 E(r)
_ T
z3(s) = k1 + s £ e 4T .

The following example is given by Biot:

2

F(r) = 2 kg forr>e

=0 forr < e .
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Then,

2
z,(s) = k; - ;'klgl =5

After replacing s by iw, the complex modulus of the frequency

response appears to be

\

2 -
2, (W) = k1<1 + %gl ln#l + (::)—Z> + ik1g1%tan 1

For small e the imaginary part tends very rapidly to the asymptotic
value k,g;. Since g, would be small, the real part, or effective
spring stiffness, is also practically constant in a wide frequency
band, though it ultimately grows to infinity. This behaviour is
approximately in accord with the so-called 'structural damping'

law considered in more detail in the next section. The corres--
ponding hereditary function is

© -7t

2
o(t) = Zkigy S =
€

dr = - % k1g1 Bl(-Et)
2.3 Structural Damping

If the complex impedance is constant in the whole frequeﬁcy range

z3(w) = k(1 + igy) (21)

and the hysteresis curve (Figure 6) is also independent of fre-
quency. This 'structural damping law' is widely used in flutter
calculations. However, it cannot be followed in all its implica-
tions because, as will now be shown, it leads to a physically
inacceptable transient behaviour.. This behaviour can be deduced
from the frequency response by the Fourier integral technique.

In doing this it must be remembered that the imaginary part of the
complex impedance is necessarily an odd function of the frequency.
Consequently equation (21) holds for positive values of w and must
be extended to negative values by changing the sign of the ima-

ginary part.
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Figure 6 - Hysteresis curve of structural damping

Let us begin by assuming that q;(t) follows some periodic

law expressed by a convergent Fourier series of period T = 2m/w in

the form
o . t
a(t) = Tce
where -
Cn = An + 1Bn for positive values of n
C_ = A_+ iB_ for negative values of n
n n n

so that also

o

q:(t) = Co + 2 ? (Ancos nwt + Bn51n nwt)

In order to find the corresponding force exerted by the
unit we must multiply each term of the complex Fourier series by
k;(1+ig,) if n is positive, by k;(1-ig;) if n is negative and
simply by k; for the term corresponding to n = 0. The force is

then given by
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oo

£1(t) = kigi(t)+kygy X {i(A +iB )e_lnwt
1 n - n

-i(A_-1iB )e‘m“’t}
s n )
oo

= kig1(t)-kigy I (2A sin nwt-2B cos nwt)
1

The last series is known as the 'allied Fourier series'
to the series for q;(t) and, according to the theory for the

summation of such series [5], the result can be expressed in the

form
/W
fi1(t) = kg (t) + kéﬁl f wq; (T)cot -w(;—-t)d'[ .
-m/w

The integral must naturally be understood as a 'principle Cauchy
value'. Passing to the limit for w -+ o (T - =), or using the
corresponding analysis for the summation of 'allied Fourier
integrals', we obtain

dt

(O = a® rp s e o (22)

It is now necessary to verify this general law of
'structural damping' by recomputing the frequency response.

. : i i
Putting q; = x,e “T and f, = ylelwt we have

iw(T-t) dt_

1 (o]
z1(w) = ky +— kigy S e —

- 00

or, with the change of variable u = w(t-t)

oo o
cosu du . sinu du
S —+i =

u u
-00 . =00

1
zy(w) = k; + F’klgl

The first integral is zero by reason of symmetry. The
second is well known to be equal to m. We are thus led back to
equation (21) and we may note that in the case when w is negative,
the limits of the second integral will be reversed, confirming

that the imaginary part of z; will have to change sign.
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Besides the severe restrictions put on the behaviour of
q:1(t) to ensure the existence of the integral, the general form
obtained for structural damping is physically absurd. It would
imply that the force exerted by the unit does not only depend on
the past history of the motion but on its future as well. Though
structural damping does not appear to enjoy a sound physical
basis, it is an acceptable approximation in some definite fre-
quency band. This was already apparent from the example of the
generalized hereditary function. It is also true when compared
with the simple Maxwell model. To show this we deduce from
equation (21) the equivalent coefficient of viscous damping

_ 1
¢, = kigy "

and compare it with equation (18). This comparison is easier if

we write

Cc ~1

a o els)

This curve can be made to touch the curve defined by equation
(18), provided

= L1k
g1 = 5 N (23)

and the contact point is then at w = w, (Figure 4).

If the simple Maxwell model is acceptable, equation (23)
furnishes a correlation between the observed increase in spring
stiffness with frequency and the value which should be taken for
the coefficient g when using a structural damping law. The
difference between isothermal and adiabatic moduli of metallic

materials is quoted to be of the order of 1%. This would give
g1 = 0.005 .

This figure is probably of the correct order of magni-

tude. It must however be remembered that other sources of damping,
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like slip in riveted jqints, are present, so that the value of g ,
which integrates the other effects, may wéll rise to about 0.02.
The increasing use of bonded or integrally stiffened structures
will tend to reduce the value of this damping coefficient to its

purely internal damping contribution.
2.4 Internal Damping in Continuous Media

Enrico Volterra, who considered the vibrations of discrete systems
with hereditary characteristics, has also extended the hereditary
damping concept to continuous media [6]. The analysis shows that
for an isotropic medium the stress tensor {oij} and the strain
tensor {eij} are related by two heredity functions ¢(t) and P(t),
so that

t 50 t de 13
Oij = Gij Ae + £ o(t-1) 3¥-dT + 2peiJ + 2 f Y(t-1) dt. (24)
In this relation 6ij is Kronecker's delta, e = Zeii, and A and p
are the usual Lamé constants.

By using a single relaxation constant for each type of

heredity, the operational form of the relations is found to be

sk, c sk ¢
aij=dij<>‘ k+i)¢>e+2<“+k+i)cw> €5
0 6 vy

They agree, as a particular form, with more general stress-strain
relations justified by M.A. Biot on the basis of thermodynamical
considerations [7, 8].

Letting k¢ and k, tend to infinity, we obtain the exten-

¥

sion of the simple viscous damping model of Figure 1 for which

Gij = 6 (X + sc¢)e + 2(u + sc

w) ij
For harmonic motion
iwt

}

eij = Re{Yije
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and this yields

g.. = Re{Gij(A+iwc¢)ZYiielwt+2(u+iwcw)Yije1wt} (25)

1)
The natural extension of the structural damping law would then be

.. = Re{aijA(l+ig¢)ZYiieiwt+2u(l+igw)Yijelwt} (26)

1)
When these relations are solved for the amplitudes of strain qu,
it appears that Poisson's ratio has to be replaced by a complex

quantity

v(l + igv) (27)

where g, depends on g¢ and glp and the usual shear modulus G and

traction modulus E may then be respectively replaced by

G(1 + igw) (28)
and

2G(1 + igw)[l + v(l + igv)] . (29)

In the special case g¢ = gw = g, it is found that g, = o. Poisson's
ratio then remains real, whilst the same complex factor affects

both moduli, namely

G(1 + ig) , and
(30)

E(1l + ig)

As will be seen later, this leads to an important simpli-
fication in the study of the forced response of a continuous iso-
tropic medium. It has the essential consequence that elastically
uncoupled modes are also automatically uncoupled with respect to

internal damping.
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3. DYNAMIC AMPLIFICATION FACTORS FOR A SINGLE DEGREE OF FREEDOM

Before attempting a discussion of the influence of internal

damping on aircraft resonance it will be useful to examine the
resonance phenomenon for a single degree of freedom. The addi-
tion of the effects of inertia is the essential new feature we

must introduce.
3.1 Resonance in the Presence of Simple Viscous Damping

With the addition of a mass m; to the model of Figure 1, equation

(1) becomes
£1 = kiqy + €1q1 + midy (31)
and, under the assumption of simple harmonic displacements, when
q = Re{xleiwt} . (32)
The external force required becomes

Re{yleiwt} (33)

f,

where

y1 = (k; + iwc; - w?mp)x; .- (34)

Whilst varying the frequency, let us keep the amplitude of excita-
tion constant and always referred to the same phase. This is the
case if y; is taken as a real constant. By solving equation (34)
for x;, and substituting in equation (32), the forced response is

found to be

- ‘ Y1 iwt
41 = Re {k1+iwc1-w2m1 © } ’ (35)

Noting that the low frequency or quasi-static response is

- Y1 it
q1 Re{k1 e }
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we may rewrite equation (35) in the form

Y iwt
= Re(L D e 36
q1 {kl } (36)
where
1

D= (37)

i SL - o2 M

1+ iw K, w X,

is the 'dynamic amplification factor'.
It is convenient at this stage to introduce the quanti-

ties

w, = /ki/m; and € = zglm =<1 (38)
(o} 1 2vm1k1

which are the most important characteristics of the free vibra-
tions of the system. The free vibrations are governed by equations
(31) with £, = o. With the aid of definitions (38) this is

transformed to
2 b .
+ =
wodr + 28w qy + qp = 0
and the roots of its characteristic equation are
w,[-€ * Vez-1] .

In the absence of damping (when c; = o or € = 0) these roots are

+ iwo, so that W, is the natural circular frequency of the
undamped system. The dimensionless quantity € along governs

the complex nature of the roots and is the true measure of the
dynamic effects of damping. Since the critical value, above which
the roots become real, is € = 1, € may be considered as the ratio
of the actual damping coefficient c; to its critical value.

Definitions (38) also simplify the expression (37) and

2 -1
D = 1-<ﬁ)’—> +2i€%— . (39)

we obtain
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The significance of D as a complex quantity is best revealed by

its polar form

D = Ae 10 (40)
where ) o |-
w 2 W
A= |1 -=]+ 4e* = (41)
Yo Wo
and 2¢ &
o
tangp = ————— . (42)
1-(&)
o

Substitution of equation (40) in equation (36) yields
q1 =~%% A cos(wt - ¢) (43)

so that A appears as the dynamic amplification factor for the
amplitude of vibration and ¢ as the phase lag angle between the
motion and the excitation.

Figure 7 is a representation of D as a complex quantity
in the Argand plane. Figure 8 is the classical representation of
A and ¢ as functions of the frequency.

Phase resonance is defined as the condition for which
the motion is in quadrature with the excitation. The condition
¢ = /2 is precisely seen to occur when w = W, - Since (at least
for small values of €) the phase is very sensitive to frequency
alterations in the neighbourhood of resonance, the measurement
of phase is an ideal way to ascertain resonance conditions.

Amplitude resonance is defined as the condition for
which A is a maximum. This occurs for a slightly lower frequency
W= W /1-2€2, and the maximum of A, which is [2€¢TTEZ]’1, is not
much greater than the value [2&:]-1 it has at phase resonance.

Except for large damping, amplitude resonance, though

less pure, is a good substitute for phase resonance.
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Figure 7 - Polar Representation of Dynamic Amplification Factor.
Simple Viscous Damping
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Figure 8 - Amplitude and Phase of Dynamic Amplification Factor.
Simple Viscous Damping
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3.2 Resonance in the Presence of Hereditary Damping

The addition of a mass m; to the simple Maxwell model of Figure 3
produces, after similar calculations, a dynamic amplification

factor

-1
= { weeky oomy
D <1 Yl Ty T Y k1> . 44

Transformation and examination of this expression
reveals two difficulties. The first is how to define the natural
undamped frequency of the system. If one puts c, = o the natural

frequency is

w = VEl/ml . (45)

[o}

But, when c, tends to infinity, the system is also undamped and

its natural frequency is given by

J(k; + kp)/m; = wOVI + K (46)
where
< = ko/ky - (47)

Since the ratio k is fairly small, these two definitions of a
natural undamped frequency are not very different. However, as
will appear later, there will be reason to choose a third defini-
tion, giving an intermediate value.

The second difficulty is the definition of a reduced
damping coefficient. The characteristic equation of the free
vibrating system is of the third degree and the nature of the
roots is consequently more difficult to ascertain. It will be
sufficient for our purpose to introduce the dimensionless coeffi-

cient

£ = —2— (48)
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By taking (45), (46) and (48) into account, equation (44) may be

written

o
n

K+ieo,
with

-1
(1 R . (49)
w
Yo
The resulting phase lag angle ¢ is given by

2
_ K*eo,
tang = (kZ+eZa?) (1-a2)+KkeZa2 (50)

The denominator of expression (50) is a quadratic in o?. One of
the roots is real and negative and has consequently no special
significance. The other root is real and positive and it may be
concluded that there is one value of the forced frequency corres-
ponding to phase resonance. The_position of the root with respect
to the values o = 1 and o = v1+k, which correspond to undamped
natural frequencies, is easily found. Insertion of the first
value gives to the quadratic the positive value ke?. Insertion

of the second gives the negative value -k°.

Since the coefficient
of o is negative this proves that phase resonance occurs between
the undamped natural frequencies which were previously considered.

Since, from a physical standpoint, the definition of
the undamped natural frequency is necessarily somewhat artificial,
there is some virtue in adopting a precise definition based on the
principle of phase resonance. In other words, the natural un-
damped frequencies of linear visco-elastic systems will be con-
sidered as best defined by their phase resonant frequencies. In
other respects the behaviour of the phase angle with increasing
frequency is qualitatively similar to that of a system with simple
viscous damping. Because of the reduction in equivalent damping
at high frequencies it simply approaches sooner its asymptotic
value of 180°.

Consideration of amplitude resonance does not reveal any

remarkable features.
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3.3 Resonance in the Presence of Structural Damping

The dynamic amplification factor due to structural damping as

defined by equation (21) is

2\-1
D=1+ ig, -2 (51)
0.)0
where
(.00 = VE]_/H‘I]_ .

The behaviour of the phase lag angle

tanq>=Jﬁ
- ()
o
shows phase resonance for w = wo, which is thus rightly defined as
the natural undamped frequency of the system. A significant
difference is the existence of a small, but non-zero, phase
angle at zero frequency.

The representation of D in the Argand plane is excep-
tionally simple. The reciprocal of D is clearly a straight line
parallel to the real axis and, from inversion theory, the locus
of D itself is a circle with its centre on the imaginary axis
(Figure 9).

It is obvious from this circle diagram that for this
type of damping amplitude resonance and phase resonance are coin-
cident.

Kennedy and Pancu [9] have shown that in the case of
structural damping d¢/dw? also reaches its maximum at resonance.
The method of determining resonance by measurements of the rate of.
change of phase with w? has the advantage of avoiding the measure-
ment of absolute phase angles, which may present difficulties for
certain types of excitation. In cases other than those with struc-
tural damping, the maximum rate of phase change is not exactly
coincident with phase resonance but very close to it, provided

damping is small.
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W = w, L@
|

Figure 9 - Circular Locus of Dyanmic Amplification Factor for
Structural Damping

4. INFLUENCE OF DAMPING ON RESONANCE IN MANY DEGREES OF FREEDOM

4.1 Matrix Formulation of the Problem

To discuss frequency response problems with internal

damping on systems with a large but finite‘number of degrees of
freedom it is most convenient to use matrices because of the
simplicity offered by matrix formulation. The behaviour of
continuous structures may be approximated closely by such methods
and most of the conclusions so reached may be extended to con-

tinuous structures without further justification.
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Let us return to the equation of motion of the single

degree of freedom system with hereditary damping in the form
mdy + kiqy + ¢*q; = £ (53)

which is derived from equation (8) by the simple addition of
inertia effects. The notation used for the convolution or Duhamel
integral

t
¢*qy = S ¢(t-1) qu(r)dt (54)
o
is convenient for the extension required by the matrix formulation.
The extension of equation (53) to many degrees of freedom is
simply
M + Kq + o*q = f (55)

where q denotes the column matrix of the coordinates and & and g
are the column matrices of their first and second time derivatives.
M is a square symmetric and positive definite matrix of inertia
coefficients, K a square symmetric and positive semi-definite
matrix of stiffness coefficients. & is a square symmetric matrix
of heredity functions, whose product with i involves a convolution
integral of type (54) for each product of elements. Finally, f
is a column vector of external exciting forces.

If each heredity function is of type (9) we have a simple
'Maxwell damping'. Simple viscous damping may Be considered a
special case where each stiffness k, is taken to.be infinite.

When k, tends to infinity the function

o) for t<o

keexp (— %f—t) for t > 6

o(t) =

which has the property

J p(t)dt = ¢, (independent of k,)
o
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behaves like the Dirac operator c,8(t) and the convolution integral
reduces to
t . .
cz [ 6(t-1) qi(T)dT = c2q;(t)
o
in conformity with the simple viscous damping law.
The matrix ¢ is then reduced to §(t)C, where C is a

matrix of constant viscosity coefficients and equation (55) becomes
Mj + Kq + Cq = £ . (56)

'Structural damping' cannot be included in equation (55) since
it does not admit of a representation by a Duhamel integral.

The operational stiffness matrix corresponding to (55)
is

sZM + K + s&(s)
and the frequency response of the system when

q-= elwtx

and (57)

£ = elwt

derived from it by the substitution s = iw, is given by
[K - w?M + iwd(iw)] =y - (58)

Since the elements of ® are real functions of iw, a
change of sign in w is equivalent to changing i into -i. Conse-
quently, when & is split into its real and imaginary parts, the

result is of the form

®(iw) = R(w?) + iwI(w?) . (59)
The matrix

K = K - w?Iw?) (60)
may be considered as a matrix of effective stiffnesses which are

functions of the frequency, and the matrix R(w?) as the matrix of
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equivalent viscous damping coefficients. This reduces the struc-
ture of the equations to that which would result from consideration

of equation (56).
4.2 Natural Undamped Modes

With the use of (59), let us rewrite equation (58) in the form
[K - w?M + iR]x = y (6D

where K now stands for the matrix K defined by (60), and where
functional dependence of the elements of K and R on frequency is
understood. In view of the discussion in Section 3.2, and since
it is the purpose to obtain the natural mode shapes by resonance
testing, these modes are best defined by the principle of phase
resonance. Phase resonance occurs, y being a matrix of real
elements (all excitations in phase), when the matrix of response
amplitudes is of the type x = iz, where z has real elements.
By splitting equation (61) into real and imaginary parts,

we obtain
-wRz =y : : (62)
(K - w?M)z =0 . . (63)

The last equation, which is homogeneous, has then by
definition the natural frequencies Wy as eigenvalues, and the

corresponding natural modes z as eigensolutions. The required

(K)
excitations follow from equation (62). From (63) the square of a

natural frequency is expressed by the ratio

(K)K(“’K) 2 (K)
2 M2 ()

w2 (64)

K~
It is perhaps important to observe that, because K(w;)
and K(wz) are not necessarily proprotional matrices, the modes
and z associated with two distinct natural frequencies w,

‘@) (s)

and W need not satisfy the usual orthogonality relation
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' =
Z r)M z 0o

W, # wg

The loss of this property may lead to doubts about the
adequacy of our definition of natural modes. Other assumptions,
however, like the ones based on quasi-static stiffnesses K(o) or on
on K(«), whilst saving equations (65), are artificial in character
and would produce definitions of modes unattainable experimentally.
From a practical point of view, the variations in stiffnesses
with frequency are small enough to yield negligible differences
between these definitions. Hence modes obtained from resonance
definition should satisfy approximately equations (65).

For pure viscous damping, where I(w?) = o and R = C is a
matrix of constants like K, and also in the case of 'structural
damping', the definitions coincide and orthogonality should be
satisfied exactly. These cases represent, however, an idealiza-

tion of the physical situation.
4.3 The Characteristic Phase Lags

An analysis of the frequency response based on equation (61) is
conveniently based on a type of orthogonal expansion using the
concept of 'characteristic phase lag'. 1In its original form [1]
it was developed for the pure viscous damping case. Since it
does not use equations (65) it is easily extended to the general
case where K and R are functions of the frequency.

At any given frequency the existence of a set of normal
excitation modes and corresponding normal.frequence response modes

will be assumed as follows

y =y real

= e-l¢Kr(K) with real r

bl
|

(K)
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It is therefore postulated that in a natural mode all
coordinates vibrate with the same phase lag angle ¢K with respect
to a mode of excitation forces which are in phase.
Substitution of these expressions in equation (61)
yields after separation of terms in phase and terms in quadrature:

[wcos¢,R - sing, (K - sz)]r(K) = o (67)

and

[coso, (K - w3M) + wsing R]r (68)

® - Y

Equation (67) is homogeneous and poses an eigenvalue problem for
the 'characteristic phase lags'. The eigenvalue tan¢K are the

roots of the algebraic equation in tan¢, namely
t|[wR - tang(K - w?M)]| = 0 .
They are all real since

erK)R r(K)

rtK)(K - w2M)r

tan¢K = (69)

(K)

and, if r' . denotes the transpose conjugate of r these are

(K) Ky’

ratios of two Hermitian forms. When tan¢K is known the values

¢K are defined without ambiguity by the condition
0 §_¢K <M. (70)

It will be shown that this determination is consistent with a
continuous variation of ¢K with the frequency.

Once a ¢K is determined, the corresponding mode Tig
follows from equation (67), except for an undetermined multiplier.
The corresponding excitation mode follows from equation (69) or
one of the following combinations of equations (67) and (68),

namely

cos¢Ky(K) = (K - sz)r(K) (71)
and

sin¢Ky(K) = er(K) . (72)
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Obviously both r and y(K) may be taken as real. They then

satisfy the initggi assumptions of (66); and moreover, in equation
(69) we may take rEK) to represent simply the transpose of r(K).

The energy dissipated per unit cycle in such a type of
excitation is

= ﬂerK)R r(K) . (73)

EK = ﬂ51n¢K T

]
7 ()
It should be small compared to the maximum deformation energy, so
that the quantities

erK)R r(K)

0 (74)
T R T

Yk T
should be small compared to unity.

Now the fact that energy is really dissipated per unit
cycle shows that the equation

wR r(K) =0

cannot be true, except perhaps for w = o or w = ». It follows
from equation (67), that the value tan¢K = o0 cannot occur in the
frequency range, except at the limits w = 0o and w = ». As a
consequence the continuous variation of a root tan¢K will yield
a continuous variation of ¢K consistent with equation (70).

Let us now introduce the frequencies XK defined by

;. TR T

A ]
K r(K)M r(K)

(75)
In view of this definition and (74), eqﬁation (69) can be written

as
T
e

Note that, since K, R and r

tan¢K =

are dependent on frequency, A

(K) K

and Yg are themselves functions of the forcing frequency.
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Whilst Aﬁ always remains finite and positive (the limits
K(o) and K(«) exist for the stiffnesses) as a ratio of two posi-
tive definite quadratic forms, Yk behaves in a different manner
for w = 0 and w = « according to the assumptions made for damping.

For hereditary damping. Finite, positive definite
1imits exist for R when o = o and for w?R, when w = «. Then YK
and tan¢K behave like w near w = o and like w ' and w”° respec-
tively near w = o,

For pure viscous damping. K and R are matrices of con-
stants and nothing is changed in their behaviours near w = o.
However, near w = « Y, now tends to infinity as w (these values
are thus not small any morelat high frequency) and tan¢K still
tend to zero but only as w

For structural damping. K and wR are matrices of con-
stant elements. Both Yg and tan¢K tend to small positive quanti-
ties near w =20. Near w = o YK remains finite, whilst tan¢K tends
to zero as w

From equation (67) again, it appears that tan¢K = o can
be an eigenvalue if r satisfies

(X)

(K - w’M)r o . (76)

K -

This is recognized as the problem of equation (63) and justifies

the assumption that

T T ) (77)
o = T/2, _ (78)
Ai = wi for w=uw, (79)

= w, Rz . (80)
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To sum up:

There are as many excitation modes and normal response
modes as degrees of freedom in the system.

Each characteristic phase lag is zero at zero frequency
(or small and positive for the assumption of structural damping),
passes through m/2 for one of the natural frequencies of the sys-
tem (the response mode being then identical with the natural mode)
and tends to 7 at high frequency. It thus behaves qualitatively
like the phase lag in a system of one degree of freedom.

For pure viscous damping [1] and structural damping [10]
it may even be shown that w-ltan¢K and tan¢K respectively increase

monotonically with w?2.
4.4 Orthogonality of the Normal Response Modes

From equation (67) it follows that a normal response mode satisfies

the equation

wRr = tan¢, (K-w?M)r

() T FneewT o

Let r j be another response mode at the same frequency. Then,
by pre-multiplication by rEj) we obtain

wrij)Rr(K) = tan¢K rkj)(K - sz)r(K)

Similarly, using the equation satisfied by r transposing and

3y’
post-multiplying by r(K), we derive

= tan¢j rEj)(K - w*M)r

wr!. Rr
Gy & (X)

Hence, if tan¢K # tan¢j, the following orthogonal properties are

satisfied:

TR =0, (81)
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)(K w*M)r, . =0 . : . (82)

(J (X)

These can still be shown to hold true if a multiple root occurs
for a cheracteristic phase-lag by orthogonalizing the associated
independent modes. (From matrix theory the number of independent

modes is known to correspond to the degree of multiplicity of the

root) .
Pre-multiplying equation (68) by r( ) and using the
orthogonality relations we obtain
=0 j#K. (83)

*5)Y )

This proves a most essential property, namely that the energy
input from a given excitation goes only into its associated

response mode.
4.5 Expansion of the Frequency Response to Arbitrary Excitation

At any given frequency the y(K)'s form a complete set, or base,

of the vectorial space. Indeed, a dependency relation

Lo y(K) o

would imply, after multiplication by r!
(83), that

and use of equations

(3)

o for all j's .

% iy Gy =

Now, from equations (71) and (72)

TGy )7 T [y (KwMT 5 1% w? [ Re 1% >

and consequently all aj's are necessarily zero.
Any excitation mode may then be represented in a

unique manner as an expansion
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It will be assumed that all exciters are kept in phase so that

only real coefficients BK are to be considered; they may bé

regarded as generalized coordinates for the arbitrary excitation.
The corresponding expansion of the frequency response

will be

K= BKe'i¢Kr(K) =a- ib

where

[
"

z BKcos¢Kr(K) (85)
is the part in phase with the excitation and

b=12 BKsin¢ (86)

K" (K)

is the part lagging 90° behind.

From equations (84) and (83), and then from equation

(72),
T Y rho.Y
B = prig— = sinby g S — (87)
(K)” (K) (K)™ (K)

or, using definitions (74) and (75),

sin¢ ' Yy
_ K (X)
B, = i . (88)
K kaﬁ r(K)Mr(K)

It will be convenient to normalize the response modes by assigning
to each the same generalized mass

u = rEK)Mr(K) (89)

The phase and quadrature responses to arbitrary excitation as

given by (85) and (86) will then appear in the form

sin¢Kcos¢K

X W [I‘EK))’]I‘(K) (90)

1
a:_
u
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sin2¢
b:lz.____](.
u

oz Fw’ 1w (51

4.6 Dynamic Flexibility Matrices

If the energy input terms shown in brackets [rEK)y], are written
as the last factor in each term of the expansions (they are
scalar quantities) and if use is made of the associative proper-
ties of matrix multiplication, the excitation y may be factored

out to the right. We then find

a=Ay and b = By (92)
with 1 sin¢Kcos¢K

A== ———71, .T' 93

W YR T %)
sin2¢

1 K

B==—Y——Tr T! 94
w Ty Tt Y

They are dynamic flexibility matrices and they appear as expan-
sions ip dyadic products of the response modes. An element Aij(m)
of A is the amplitude of response in phase for the coordinate ;>
due to unit amplitude of excitation in the coordinate qj; B..(w)

1]
is the corresponding response in quadrature. Since

x = (A - iB)y
we have actually inverted relation (61) and found the reciprocal

[K - M + igR]" = A - iB . , (95)

4.7 Stationary Character of the Reactive Energy in Pure Mode
Excitation [10]

Consider the energy input per cycle under arbitrary excitation,

namely the 'active energy'
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E, = my'D = mb'y ©(96)

and define the 'reactive energy' by

E.=my'a=ma'y . (97)

By substituting equation (84) for y, equations (85) and
(86) for a and b, using equation (83) and then substituting
equation (71) for y(K), we obtain

E
a

ﬂwZBi[rEK)Rr(K)]

[es]
[}

anBécot¢K[r'(K)Rr(K)] .

Clearly Ea is a positive definite quadratic form,
which corresponds to its character of really dissipated energy.
On the other hand Er is generally not positive definite. Each
time a phase resonance is passed, one of the cot¢K coefficients
passes from a positive to a negative value, thereby changing the
sign of the expression.

The conditions for the reactive energy to be stationary
with respect to arbitrary small variations of the generalized

coordinates of the excitation are

9E
_r = 1 =
38K 2nw8Kcot¢K[r(K)Rr(K)] o for all values of K.

Except for the trivial solution of zero excitation (all

BK's zero) the conditions can only be satisfied if
(1) All BK's are zero except one, say Bj’

(2) Cot ¢j =0 or ¢j =m/2 .

It follows then from equations (77) to (80) that

W= wy (a natural frequency),
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X = _isz(i) (a natural mode in quadrature)
= B.w:Rz . a d itati .
y BJwJ Z(J) (a pure mode excitation)

Under these conditions the stationary value of E. is zero. Hence
the stationary property of the reactive energy provides a control
for the ideal excitation cases and allows the experimental deter-
mination of a pure natural mode.

An alternative interesting proof is as follows. From
equations (97) and (92)

= [
E. = my'Ay

and if we now consider the elements of y as the excitation coor-
dinates, the conditions for stationary values are

GEr = T(Sy'Ay + y'ASy) = 2m8y'(Ay) = o
for arbitrary variations §y. Hence

a=Ay =0 . (100)

Indeed, the vanishing of the response in phase implies a natural
response mode in quadrature which can only occur at a resonant
frequency. The natural frequencies of the system are therefore

also solutions of the determinant
|A@)| =0 (101)

and the pure excitation modes Rz are the corresponding eigen-

3

solutions of equation (100).
4.8 Pure Modes from Partial Excitation
A pure excitation mode for a continuous structure would involve

distributed volume forces and is clearly impossible to achieve.

For a finite number of shaking points there arises the problem
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of optimizing the distribution of force amplitudes between the
shakers to obtain a response as close as possible to a natural
mode.

The principles involved may be illustrated on a system
with a finite number of degrees of freedom, provided only some of

the coordinates be excited.
4.8.1 The resonance principle

Let Z(r) and W, be the natural mode and the natural frequency
aimed at in a resonance test. Then, provided (1) Wy is well
separated from the other natural frequencies, so that for w = Wy
we have sin¢r = 1 and the other sin¢K's are small quantities of

» Er)Y] be of
the same order (at least) as the other input brackets, we get the

0(y) like the YK's; (2) the energy input bracket [z

following situation for w = w,:

(a) The dominant term in the response in quadrature is

[zf,.\Y]
S € Ml
) T Tz, @yt (102)

all other terms being small of 0(y2) compared to it.
b) The term in z
(b) ()

(cos¢r = 0) and the other terms are small of 0(Y) compared to the

disappears in the response in phase

dominant term in quadrature. Consequently we may determine experi-

()

measuring the response in quadrature at resonance. It 1is necessary

mentally the natural mode z , with errors of 0(y2) only, by

for this purpose to use pick-ups capable of discriminating between
the phase and quadrature components. If simple pick-ups are used,
giving only peak response amplitude, caution must be exercised in

the neighbourhood of nodes of b r For if a local amplitude of

(r)’
b(r) is large, the addition of terms of 0(y?) in phase with it
and of 0(y) in quadrature still results in a peak amplitude correct

(r)

to 0(y2?). But in the vicinity of nodes of b the error may be

of 0(y).
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Numerical results for torsional and flexural vibrations
of a continuous beam with uniform damping, excited at one end,
show that the relative importance of the response in phase grows
significantly with the order of resonance.

The situation which has just been described is an ideal
one and, provided we do not apply it to a high order of resonance,
excellent results may be obtained from tests with a single shaker.

To achieve the energy bracket requirement the shaker
should be located at a station where large vibration amplitudes
occur for each particular resonance condition.

However, the following question arises; how are we
going to decide that we have a resonance condition? An answer to

this is provided by the use of the local phase resonance principle.
4.8.2 The local phase resonance principle

Let us compute the variation in the response x for a small altera-
tion of the forcing frequency, y being kept constant. More pre-

cisely let us calculate the column matrix:

- dx
~dw?

This will be done to a first approximation by assuming
wR and K not to vary appreciably with frequency. Then, by dif-
ferentiating equation (61) with respect to w?, we obtain

-Mx + [K - w?M + iwR]v = o
and from equation (95)

v = (A - iB)Mx = (AMa - BMb) - i(AMb + BMa) . (103)

In the ideal case described earlier, the dominant term

in the-real part of v—is easily determined from equations (90),



44 B.M. Fraeijs de Veubeke

(91), (93) and (94) and found to be

]
da [z' V]

W T W2y o) (1o4)

The other terms are of 0(y?) compared to it and the terms of the
imaginary part are of 0(y).

Suppose now that the resonance condition is decided by
picking out the response in phase in one of the coordinates, say
the ith coordinate, and by adjusting the forced frequency so as
to make it vanish. This procedure may be called the local phase
resonance principle and is justified if, besides condition (2)
of the resonance principle, the amplitude Z(r)i in the ith coor-
dinate is of the same order as the other r(K)i. For then a com-
parison of the correction term
Aw? [Zir)Y]

.= - v Z .
i w uwryr(wr) (r)i

d
sz —2—3
dw T+

with the term ai(wi) which it must cancel (as may be found from

equation (90)) shows that

% = 0(y%?) only .
The natural frequency will thus be measured within a relative
error of 0(y2) and the corrections due to Aw? in the response
in quadrature consists of terms of 0(y2) with respect to the
dominant term given by equation (102).

In conclusion it may be expectedvthat, when a natural
frequency is well separated and single excitation is applied at a
point of large response amplitude, local phase resonance at any
other (or the same) point of large response amplitude provides a
measurement of the natural frequency and the mode shape both with

relative errors of 0(y2).
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It may be observed that this principle amounts to

replacing the frequency equation (101) by the approximate one
Aij(w) =o0

where j is the index of the coordinate being excited and i the
index of the coordinate where the phase response is made to

vanish.
4.8.3 The pseudo-resonance principle

In complex structures the natural frequencies are not always well
separated. In theory two or several distinct mode shapes may even
belong to the same natural frequency [11, 12]. In such cases and
more generally in the higher frequency spectrum, where there is a
tendency for natural frequencies to be closer to each other, it is
impossible to obtain pure response modes without having to resort
to a multiplicity of shaking points. By using several shakers it
becomes theoretically possible to achieve pseudo-resonance in the
response modes which are too close in frequency with the one it is
wished to measure. In other words the energy brackets of these
response modes may be made to vanish, thereby cancelling in the
expansion (91) terms which would otherwise be relatively large
because their sin¢K values are no longer of 0(y).

There remains, therefore, the problem of deciding from
experimental evidence whether these pseudo-resonance conditions
are present.

For the sake of simplicity we will.begin with the problem
of two close frequencies which will be denoted by w; and w;.
Taking only the dominant terms, when the forces frequency is close
to w; and w,, we have

e Feo Ty Y Byt o
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_ sing,cos¢, ' , Sing,cos¢,
: OIS

A YR MG

Supposing w = w,, exactly, then cos¢,; = o, sin¢; = 1,
r(l) = z(l) and the second term in b is the parasitic term to be

eliminated by an excitation vector y such that [r ] = o and

()7

[rEl)y] is of the same order as the energy brackets. It is seen
that the remaining dominant term in a disappears at pseudo-reson-
ance and that we then have almost pure phase resonance in every
coordinate.

In fact, if we have two shakers we may adjust their
relative force amplitude to have exact phase resonance at a point
of large amplitude. Again, by a small adjustment Aw?/w? of 0(y2)
we may, when taking into account the terms neglected in a, provide
for exact phase resonance at some other point of large amplitude.
It may therefore be concluded that all requirements for accurate
measurements, and in particular for pseudo-resonance in the
parasitic mode, are met by using two shakers, preferably located
at points of large response amplitude, and adjusting frequency
and relative shaker forces to provide for phase resonance in two
other (or eventually the same) points of large response amplitudes.

) If we distinguish by the subscripts j; and j, the coor-
dinates excited and by i; and i, the coordinates measured, this
method amounts to replacing the pure excitation condition of

equation (100) by the approximate one

®
"

A, . (Wy. +A. . (wy

3 E
1, 1] J1 11])2

2

a. =A. . (Wy. + A. . .
1, 12J1( )le lsz(w)sz

The extension of this principle to any number of shakers is

straightforWard and leads to the conditions

AsyY(sy = © . (105)
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where A( s) is the submatrlx of A obtained by selecting ‘the ele-
ments common to the 11nes (i1, 12, «-» 1m) and the columns
(G1s 32, cees Jm), and y(s) is the column matrix of the excitation
amplitudes used in the test.

We may note that in the special case where

1= 3¢
i.e., when phase resonance is imposed at the locations of the
shakérs, the principle is an expression of the stationary pro-
perty of the reactive energy of the partial excitation.

The practical imposition of conditions (105) becomes
increasingly difficult with the number of shakers in action.
More research is needed to examine the convergence of possible
methods of successive approximations. One may for instance think
about the possibility of extending the Gauss-Seidel process to
equation (105). This would consist in practice of adjusting in
succession each shaker force amplitude yjt to provide for phase
resonance in coordinate CE with a cyclic frequency adjustment as
well.

Another method would be to measure experimentally (by

(s)

and the phase responses. The frequency would then be found by

bringing only one of the exciters to life) each column of A

numerical evaluations of lA(s)l until it vanishes, and the re-
quired excitations by solving numerically the compatible system
fo equations (105). This procedure has actually been proposed
by Traill-Nash [13].

A useful control of the pseudo-resonance condition in
the neighbouring modes is provided by the purity of the response
loops (quadrature versus phase response) in each coordinate when
the frequency is varied in the vicinity of the natural frequency
under examination. A good response loop would have to resemble
that a single degree of freedom system, which is almost a pure

circle, a‘point specially emphasized by Kennedy and Pancu [9].
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4.9 Forced Response under Special Assumptions

If we make the assumption that
K(w?) = [1 + 8(w)]K(0) with 6(0) = o (106)

the natural modes are orthogonal with respect to both the
matrices M and K(o) and

! =
z r)MZ o

( (107)

K(o)z o0 T #s

2y K025y =

1f we now make the further assumption that R(w?) is defined by
R = y(w)K(0) (108)

we have the extension of a case considered by Rayleigh [2], which
leads to very simple results. Indeed the substitution of the
assumptions in equation (67) and comparison with the equation
satisfied by a natural mode shows that at any frequency we may
write

T = Z

(K) (x)

and that
wy (w)
w2
1+ 0w - [1+ 8w 7
K

tand)K =

whilst from equation (72) and the previous results

- wy(w)

Y) T T ey

Hence the shapes of the forced response modes become independent
of the frequency, the behaviour of a characteristic phase lag is
obtained explicitly and the shape of the normal excitation mode

depends only on the inertial matrix M.
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This last feature is important because from the knowledge
of the mass distribution and the measurements of the response ampli-
tudes the optimum distribution of the shaker forces may be pro-
gressively adjusted. This is the basis of a method proposed by
Lewis and Wrisley [3].

Turning back to the more general equations of motion (55),

let us introduce the assumption
¢ = ¢(t)K(0) : (109)

which affects both equations (106) and (108) when applied speci-
fically to the case of forced response. (Note that in equation
(55) K stands really for what is now called K(o0)). Then, intro-

ducing normal coordinates nk(t), we obtain

n

and pre-multiplying by Zér) and making use of the orthogonality

relations (107), we obtain the normal equations
.. ] * = N =
[z'(r)Mz(r)]nr + [z(r)l(.(o)z(r)](nr + ¢*nr) Z(r)f (r=12,...,n)

Or, normalizing the natural modes as in equation (89) and con-
sidering equation (64) we derive

. w . 1
n. + W (n, + ¢*n) = m (Ztr)f) . (110)

Because of assumption (109), the normal coordinates are entirely

uncoupled. In such a case a further test of pure excitation

(r)
excited and the excitation is suddenly cut off, Z(r) is also a

mode of decay. Moreover the analysis of the decay in any local

becomes possible, for when the natural mode z is the only one

amplitude provides information as to the exact nature of the here-

dity function ¢(t).
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In the general case where equation (109) is not valid,
z(r) is not a mode of dacay; the coupling due to damping gradually
introduces the other modes in the decay response.

The assumption made in (109) is not the most general
that will lead to entirely uncoupled modes. As pointed out by
Rayleigh [2] (in the particular case of simple viscous damping)
the same type of reduction is possible when is a linear function

of K and M, namely
® = ¢(t)K(0) + Y(t)M . (111)

Furthermore, from matrix theory, it is possible to show that this
is the most general assumption under which
z! z =0 T # s
)% ()
holds together with equations (107). Then K(o), M and & are
reducible together to diagonal forms, a property known in France
under the name of Basile's assumption [4]. The normal equations

corresponding to assumption (111) are

. wy . wy 1
etV T ey ?) e T ey 't T (2D

and all the properties of the forces response are easily deduced

from them.
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