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Abstract—The rigid body motion of a cavity determines an irrotational motion of the liquid filling its inside.
From the point of view of external dynamics, the fluid behaves as an equivalent solid. The purpose of the
paper is to examine general properties of the equivalent inertia tensor and to calculate it explicitly in the
case of a cylindrical fuel tank.

LEr (x, y, z) be cartesian co-ordinates referred to body axes of a cavity entirely filled with
an inviscid incompressible fluid. The motion of the cavity is described by the velocity
components (U, V, W) of the origin along, and the angular velocity components (P, Q, R)
about the body axes. The resulting rigid body velocity field is then given by

u=U+Qz—Ry
v="V+ Rx— Pz (6))
w=W+Py—0x .

The absolute velocity field of the liquid is governed by a potential ¢, satisfying the
Laplace equation :

V¢ =0 )
and the boundary conditions

o lu + mv + nw on the cavity surface S ?3)
where (I, m, n) are the direction cosines of the outward normal v. The unicity of the
solution of this Neumann problem is well established and the velocity field of the liquid is,
at each moment, completely determined by the instantaneous values of the six parameters
U, VvV, W, P, Q, R). The equivalent inertia tensor can therefore be obtained directly
from the expression of the kinetic energy of the liquid

T= %pf (grad ¢, grad ¢) dz. - )
Use of the Green formula
d
f[(gradf, grad g) + fV%] de = f f3ds ®
v S
with f = g = ¢ and of equation (2) transforms equation (4) in the well known expression
dp .. '
=1 -£ds.
T=4p qu - ds ©
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Setting
¢ = U¢u + V¢v + W¢w + P¢p + Q¢q + R¢r (7)

and substituting in the left-hand side of equation (3) while substituting equations (1) in the
right-hand side, there follows on equating the coefficients of the parameters

do, do, do,,
dv_l’ av av

8)
dg, ¢.,_ do, (
3, - ym—am, zl— xn, dv—xn—yl.

Those are the boundary conditions of the component potentials, each of which satisfying
the Laplace equation
A2¢k=0 (k=U’I,stsPsQ9R)' (9)

When equation (7) is substituted into equation (6) the kinetic energy is expressed as a
quadratic form in the parameters

T=3%) Y KHAy (10)
K H
the coefficients of which are the components of the equivalent inertia tensor and are
expressed by
d
Ay = quk P gs. an

The second Gtéen formula

dg df
Jgvo-avna-[[sg-o5)as

applied with f = ¢, and g = ¢, , establishes the symmetry

A = A (12)
of the inertia tensor.

THE TRANSLATION POTENTIALS. REDUCTION OF THE PROBLEM
TO THAT OF ROTATIONS

In contrast to the problem of the motion of a solid through a liquid [1], the potentlals
¢, , ¢, and @,, of the interior problem are trivial solutions

¢u_xs ¢u— ’ ¢w"‘z. - (13)

independent of the shape of the cavity.
Hence we find immediately

Auu=pszde=pledS=pt
s @ s

where 7 is the total volume of the cavity. Similarly for the equivalent masses in the other
two directions, so that

Ay=A,=A4,,=pt. 4
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Calculating .
: d
Auu=pfxlds=pjxmd8
s dv s
we find, transforming back to a volume integral by means of the formula (5) with f = x

and g = y, that 4,, = 0. The absence of mass coupling is also established by similar means
between the other pair of directions, so that

Auu = A’UW = AW“ = 0 * (15)
It is still possible to evaluate explicitly such cross coefficients as

A, where k=wu,v,w and h=p,q,r. (16)
Take first

A4,,= pj gb,,dis"dS = pj x(yn — zm) dS.
s dv s
With f = xy and g = z, the Green formula (5) gives
dz ;
0=| xy—dS=| xyndS
J; 4 dV J;- 4
and for f = xz and g = y it furnishes
0=sz2ds=f xzm dS
s dv s

Whence 4,, = 0 and by similar calculations
A,=A4,=4,,=0. an

Take next
Aup=pJ‘ <b,,c%‘-’dS=J‘y(yn— zm) dS.
s v s

In this case the Green formula is applied once with f = »* and g = z, then with f = yz
and g = y, giving

A4,,= —pjzdr.

The results of similar calculations can be summarized as fol]ows_

—Awq=Av,=pder ‘ (18)
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It can be concluded that all cross inertia coefficients of type (16) can be made to vanish
by placing the origin of the axes at the centre of mass of the fluid. In that case the quadratic
form of the kinetic energy is reduced to the following

T = 1pt(U? + V* + W2) +3(4,,P? + A,,0% + A,R* + 24,,PQ + 24,0R + 24,,RP). (19)

At this stage it does not seem possible to derive further results of general character.
~ The evaluation of the remaining six inertia components requires explicit calculation of the
potentials ¢, , ¢, and ¢, in relation to the shape of the cavity.

THE VELOCITY POTENTIAL ¢q FOR A CYLINDRICAL CAVITY

An important technical case is that of the cylindrical tank with flat ends. It applies
to missile reservoirs where the propellant is slowly displaced and maintained between
moving diaphragms or pistons. The geometry of the problem is shown in Fig. 1. Because
of the symmetry of revolution about Ox, ¢, = 0 and consequently

App=Apy=Ap=0
and also
Ay=0 and A4,=A4,.

'
z

F1G. 1. Geometry of cylinder tank.

The problem is thus reduced to the determination of this last coefficient. It will be
necessary first to determine the velocity potential ¢, .
Dropping for convenience the subscript g, the potential will have to obey the following
boundary conditions:
on the cylindrical surface where / = 0, m = cos w, and n = sin w;

—=—Xxsinw, r=ry,

or

on the flat ends where / = +1, m = 0, and n = 0;

0
-—-¢=rsiuw, x==b.
0x
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Those conditions suggest that we should set
¢ = sin o[ —rx + Y(r, x)] . (20)

Since the potehtial satisfies the Laplace equation it is easily found that y has therefore to
satisfy

Py Py 1oy 1

Wt tia aY =0 @

with boundary conditions
oYlor=0, for r=r, 22
oYlox =2r, for x=+b. (23)

The first boundary condition was intentionally rendered homogeneous in order to obtain
an eigenvalue problem by separation of the variables x and r. Denoting by k2 the constant
of separation and noting the type of symmetry required in x, there comes

Y = sinh kxY(r)
as typical solution with Y obeying the ordinary differential equation

Y"+%Y’+(k2—-r13)l’=0 (2]
and the boundary condition
Y'(ro) =0. (25)
The appropriate solution of equation (24) is the Bessel function
Y=J,(kr)
and the eigenvalues p, = k,r, are given by the roots of
J() =0, (26)

U = 1-84 N Hy = 5-33 N U3 = 853 ) Uy = 11-1 cee o
The general solution is

Y= i Ay sinh(,x/ro) (a7 /7o) - @

The coefficients 4, are to be determined from the remaining boundary condition equation
(23) that now appears in the form ' '

1 0
- ; HnAy cosh(u,B)J 1 (uyriro) = 2r (28)
where the ratio of the tank length to diameter was denoted

B =blr, .

From equation (28) it is possible to establish the values of the 4, ‘4 1a Fourier’ by using the
Lommel integrals of the theory of Bessel functions. For the sake of completeness we give a
derivation of those integrals below. ‘
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From the differential equations
axy, 1dy, ([, 1
-— -=)Y,=0
i Ty T (” " 2) " 29

Y
satisfied by the functions Y, = J;(u,y) , we deduce

d dy, dy,
2 %) = — —_—m_ —_n
Y2 8 ATy T & [7(1’,. ay Y, dy)]

and
1
(2 — 1) L Y, Y,y dy = pd 1 () (i) — ttnd ()T’ (1) - (30)

or in our case, by virtue of equations (26)

1
J J1 () (pmy)y dy =0 ifns#m. (31

0

For the case m = n, equation (30) is first divided by (42 — p2) and the true value in the
limit u, = u,, is found by the rule of I’'Hospital. There comes

1 1
J; Ynzy d’)) = %(J iz(ﬂn) -J 1(#..)-’ '1'(!1..)) - ﬂ' J 1(”'1)‘] Il(ﬂn)

and, since

1 (d?Y,
T =_(_»)
iGa) wi\dy? / -,

we can use the differential equation (29) to eliminate the second derivative, whereby, in
general

[ st o =3 [0+ (1= 25}

or, again, in our case where equation (26) applies
! 2 1 4 1 2 ‘
Jiluy)y dy == (1 — = )J1 (k) - (32
0 2 Hn

Equations (31) and (32) are now applied to secure the values of the coefficients in expan-
sion (28). To this end both sides are multiplied by rJ,(p,r/r,) dr and integrated between
r = 0 and r = r, . Changing variables by y = r/r, and using equations (31) and (32) there
follows

=1

1

Ay, cosh(u,p) = 4r} L V2T 1(Umy) dy (33)

To evaluate the last integral we recast equation (29) in the form

&2y, dy, d [ ,dy,
22y g2 ST " _ =_(z_n_ )
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whence, by integration
1.
—u,?f P2 Y, dy = pJ () — 1 (1)
0 .

or again in view of equation (26)

1
_f Y21 (uy) dy = iz J1(n) - 34
0 H

After substitution in equation (33) we finally obtain
4r2
i, = 1)J 1(t4) cOsh (1)

The velocity potential ¢, is now determined by insertion of these values in equation (27)
and (27) in equation (20).

(35)

m=

THE EQUIVALENT MOMENT OF INERTIA Ay
FOR THE CYLINDRICAL CAVITY

According to equations (8) and (11)

Ay=p Ld)(zl —xn)dS = (4,1 + (4, -

The first part is the contribution of the boundary r = r, where

(zl — xn) dS = —ryx sin 0 dow dx

sinh(px/1o) ]
a7 — 1)cosh(p,f)

Both the integrals in w between 0 and 27 and in x between —b and +b are elementary.
There is found

and

¢=sinco[ r0x+4roz

(4491 = prrg [3‘53 8 ;E;J,,T(;_anh(#] .

The second part is the contribution of the boundaries x = +b. Symmetry allows simply
to double the contribution on the side x = b, where (zI — xn) dS = r? sin w dw dr and
e tanh(u,,ﬂ) J l(ﬂnr/ "o)]

Ty — 1) J1(uw)

The integral over o is trivial, the one over r, when transformed .over y, involves only the
result equation (34). There is found '

¢ =sin co[—rb + 4r}

tanh(Byu,) ]
pa(u — 1)

Before adding the two contributions, advantage can be taken of the formula

® 1
8y 5—5——=1. 36
e D o of %i

(Aqq)z = Pm'o[ i’ﬁ + 8 Z
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A proof of this is obtained by multiplying both sides of equation (28) by * dr and integrating
between 0 and 7, . On the left-hand side the integrals reduce again to equations (34); and
equation (36) follows once the A4, are replaced by their values (35).

The final result can then be placed in the form

9 = nprg(%ﬂ3 —-3f+ H) (37
where
tanh(Bp,)
H 16 (3®
B =163 =D
A short table of the values of H(B) is appended.
TABLE
B H(p)
0 0
02 0-383
04 0:679
06 0-868
0-8 0973
0-866 0-995
09 1-005
1-0 1-028
1-4 1-068
2:0 . 1-079
30 1-081
(<) 1-082

In comparing the results with the corresponding ones for a solid body, we may note
that in the latter case the total moment of inertia I, is the sum of two contributions

I,=p f (2 + x?) dv = mpri3° + mprisf

The first is the moment of inertia of a rod, the mass of each normal cross section being
concentrated on the x-axis. The second takes into account the rotation of each cross
'section about an axis parallel to oy in its own plane.

For elongated tanks (8 large) one would expect the fluid to behave approximately as
a solid rod; for very flat tanks as a solid plate. In between, the ratio of the moment of
inertia of the liquid to that of the solid would go through a minimum when the length is
comparable to the diameter. In that case the tank shape approaches that of a sphere for
which obviously the entrainment of the liquid by the walls vanishes. The ratio in question
is plotted as curve 1 of Fig. 2 and furnishes a confirmation of this reasoning. The sharp
minimum seems to occur for the value f = ./(3)/2 where the two parts of I, are equal.
The fractional value of each of those parts are drawn for comparison as curves 2 and 3.

To estimate A,, practically in the whole range of § values one can proceed as follows.
For g > 1 take it to be the moment of inertia of a rod affected by a reduction factor C,:

. . .
Ay = %mpr3b>C, | C,(l—?) =1- I +3H.
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Fi1G. 2. Curve 1—ratio Agq/I4e of moment of inertia of liquid to that of solid of same specific
mass. Curves 2 and 3—ratios to I of moraent of inertia of circular plate and homogeneous
rod of same total mass.
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FiG. 3. Correction factors to calculate 444 as an equivalent rod or an equivalent plate.
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For B < 1 take it to be the moment of inertia of a plate affected by a reduction factor C,:

2
Ay =13nprghC,  C,(p)=4%p>*-3+ EH

The two correction factors are displayed in Fig. 3.
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Résumé—Le mouvement en corps solide d’une cavité détermine un écoulement irrotationel du liquide au
sein de celle-ci. Du-point de vue de la dynamique externe le fluide se comporte comme un solide équivalent.
L’objet de cette étude est d’examiner les propriétés générales du tenseur d’inertie équivalent et de le calculer
explicitement dans le cas d’un réservoir & combustible cylindrique.

Zusammenfassung—Die Bewegung eines Hohlraums als ein starrer Koérper bestimmt eine wirbelfreie
Stromung der Fliissigkeit die den Hohlraum ausfiillt. Vom Standpunkt der Aussendynamik verhilt sich die
Fliissigkeit wie ein gleichwertiger Korper. Der Zweck dieses Berichts ist es, die allgemeinen Eigenschaften
des gleichwertigen Trigheitstensors zu untersuchen und diesen explizit fiir den Fall eines zylindrischen
Brennstofftanks zu berechnen.

Sommario—Il movimento in corpo solido di una cavita determina un movimento irrotazionale del liquido
che la riempie. Dal punto di vista della dinamica esterna, il combustibile si comporta come un corpo solido
equivalente. Lo scopo di questo sutdio & di esaminare le proprieta generali del tensore d’inerzia equivalente
e di calcolarlo, esplicitamente nel caso di un serbatoio di combustibile cilindrico.

AHHoTaumsa — JIBimKeHNe 3KECTKOI'0 TeNa MOJIOCTH ONpeHNesseT HEBMXPEBOE ABIKEHME MKUTKOCTH
HaNOJHMKIEH ero BEYTPeHHOCTh. C TOUKM BpeHHA BHEMHEH AMHAMUKM KHAKOCTD BEHET Ce6A Kak
COOTBETCTBYIOIIEe TBEPHOE TElO.

Ilenblo CTaTEM ABIAETCA N3Y4aTh O0MINe CBOMCTBA DKBMBANICHTA TEH30Pa NHEPIUA U BHYUCIATE
€ro B YaCTHOCTH B CIy4Yae IMIMHAPHYECKOro 6axa HJIA ropydero.



