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Abstract

The transfer problem in a central gravitational field with minimum propellant
expenditure is analyzed by Pontrjagin’s maximum principle. Only the energy and angular
momentum of the terminal orbits are given and no restrictions are imposed on the
transfer duration nor on the transfer polar angle.

Under those conditions it is shown that there are no intermediate-thrust arcs.

When the available thrust is unbounded and the transfer achieved by means of
impulses and coasting arcs a complete analytical solution can bs obtained and the coast-
ing arcs are necessarily of the Hohmann type. ’

All the multiple impulse transfers satisfying the maximum principle can be obtained
by use of an impulse diagram. However further research is needed to eliminate transfers
of a stationary and not minimal character.

1. Equations of Motion

The planar motion of a rocket of instantaneous mass M in a central
gravitational field is described by the following differential equations
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V. is the effective ejection velocity, g, the acceleration of the gravity
field at the distance R of the center. The other notations are illustrated
on Fig. 1. '

Y/

Fig. 1

2. Reduced Variables and Parameters

With R as the natural unit of length and g, as unit of acceleration,
the natural unit of veloci.ty is ]/ 2R (the orbital velocity at distance R) and
the natural unit of time J/R/g,.

The following reduced variables are used

h=Rlr; t=1)g/R @D
and, dots denoting differentiation with respect to the reduced time,
u=—hlh; v=0. 2.2)
Finally, M, denoting any convenient refcrence value of the mass,
B = My/M. 2.3)

There are two reduced parameters in the problem

c¢=V./)/Rg, thereduced ejection velocity

a the acceleration factor.

- &M,

3. Canonical Equations of Motion ‘and Adjoint System

In terms of the reduced variables and parameters the equations of
motion (1) are rewritten in the form

h= —uh - @D
6=v ‘ ' (3.2)
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u = v*—u*—h*+-akhusiny (3.3
¥ = —2uv+aéhucosy (3.4
, 1

fi=—aut (3.5)

The control variables are:  which orients the thrust with respect to
the local horizon, § which controls the amplitude of the thrust. If the thrust
of the engine can be regulated, we may take £ to represent any value
between zero and unity. If we are only able to cutoff or relight, & can only
take the values zero or unity. If the optimal trajectory requires an inter-
mediate value of & along some subarc, it can be achieved in the second
case by chattering, that is by a fast sequence of cutoffs and relights. We
need therefore consider only the first case, the only difference in the second
being that the optimum implying chattering would be, mathematically
speaking, inaccessible.

From the right-hand sides of Egs. (3.1-5) we build Pontrjagin’s Hamil-
tonian

H= —uhl,+vig+ @*—ut—h¥)A;—2uvi,

+aép (lah siny+ A hcosy+ —i—pl,) (3.6)
and derive the adjoint system
Ay = udy+ 3K A — abu(Ag sin p+ A,cos ) 3.7
Ja=0 (3.8)
Ay = hA+2udy+202, (3.9
}-4 = —12—20134-21114 - (3.10)
As = —ak (ﬂ.,hsin p+Aghcos p+ —i—p}ls) 3.11)
Moreover, since the system is autonomous,
. OH
H=  Th 0 and H=const. (3.12)

4. Boundary and Transversality Conditions

In a parametric description of a trajectory:
h=h(x); 0=00x); u=u@); v=0o); p=puX)
the describing parameter x can be taken to vary between the fixed limits
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x = a and x = b > a. The geometry of the orbit of departure is described
by its total energy g(a) and angular momentum p(a)

R (@)
@ = . (42

The actual point of departure on this orbit is left free to be optimized.
Similarly we only specify the energy and momentum of the terminal orbit

o (6)+0°(b)
q() = —ZW —h(b) 4.3)
P& = 15 T @

leaving its angular orientation with respect to the departure orbit free
together with the actual point of arrival on it.

Our problem consists in programming the controls so as to transfer
between the two orbits with minimum fuel expenditure, that is, if the
initial mass is specified .

pl@=1 say (M,= initial mass) “.5)

we wish u(b) to be minimum.
Adding to u(b) the constraints (4.1 to 5) with constant multipliers
o; we set up the function

T = p0)+ o [u(a)— 114 o [uP(@) + 97 (a) — 2/%(a) — 2h* (a)q(@)]+- %3 [0 ()
—h(@)p(@)]+a, [ (6)+0*(B)—24°(6) 2K (6)g(b)] +ts [0 () —A*(B)p (b))
(4.6)

and derive the transversality conditions

h(0) = g = — 60 (@) — (@ (@)~ 22(@)p @)

PO

hala) = af—({,) — 22,(a)

Ao = 33—(’@ — 22,0(a)

- A@) = 378—'&2) =0
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aJ -

}. 5 \
10) = — Za5) = 60uh*(6)+ 4, (B)q (6)+205h(B)p (B)
aJ

1®) = = 3505 =0
Aa(b) = —%(Jb) — —20u(b)
A(B) = ._aj_(Jz,) = —20,0(b)—a
3s(6) = — a—% —_1
H(b) = aaé;) 0.

The end values obtained for 4,, together with Eq. (3.8) and the require-
ment of continuity of the multipliers, indicate that

Az = 0 throughout the trajectory. “.7

This is a consequence of the absence of any specification on the amplitude
of the transfer angle. It also indicates that Eq. (3.2) needs not be con-
sidered to solve the problem.

Similarly, the end values obtained for the Hamiltonian and Eq. (3.12)
indicate that, in view of the required continuity of the Hamiltonian,

H = 0 throughout the trajectory. (4.8)

This consequence of the absence of specification concermng the duratxon
of the transfer will be used in the form

—atul - (4.9)

where _
. K = uhd+ 2 — 0+ 1) dg+2uvl, (410
L = h(Ay sin y-+A,cos ¥)+ -i—;d.,. | @.11)

Elimination of «; and «; between the transversahty condmons produces
in view of Egs. (4.1 and 4.2)

K@=0." - “12)
S:mllarly, the elimination of a, and % . '
K@p)=0. 4.13)
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Then, except for the end value
» As(b) = —1 “4.19)

the other consequences of the transversality conditions merely define the
o; multipliers and are not of direct interest.
Circular orbits of departure or arrival are limiting cases for which

- 3
q=—1h; p=h%; u=0; “v=h? @.15)

so that the boundary values of 4, ¥ and v are all three specified.

5. Optimal Controls

In the Hamiltonian

= —K+afuL
only L is a function of the angle y. L reaches its maximum
Lawe=N=h/BF Tt s 6D
for the choice
. A3 A
siny = —— oSy = ——. 5.2
Ve T VA ¢
The Hamiltonian itself will then reach its maximum for
=1 if N>0 .3)

E=0 if N<O.

The indeterminate case where N remains zero on a subarc of the trajectory
and the thrust might turn out to be intermediate or undetermined will be
dismissed in the next section.

6. Impossibility of an Intermediate or Undetermined Thrust Arc

With the optimal choice (5.2) Eq. (3.11) becomes
ds= —at [h Va3+23+ %/MJ] .
Along a subarc for which N remains zero this reduces to

. 1
15 = - -?aépls.
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This equation, together with Eq. (3.5), shows that
Aspt = —ck a constant. 6.1

Hence the equation N = 0 becomes equivalent to
hY 2222 =k. 6.2)

This result is equivalent to the “constancy of the primer” discovered
by LAWDEN.! It is important to observe that the constant k is different
from zero. For otherwise both 1; and A, must remain zero along the
subarc, Eq. (3.9) shows that the same must be true for A, and Eq. (6.1)
that it must be true for A;. If all the multipliers are zero it follows from the
homogeneity of the adjoint system and the continuity requirement of the
multipliers that they will remain zero along the whole trajectory. This
would make it impossible to meet the condition (4.14). Hence 4 and A,
cannot vanish together and the optimum thrust orientation defined by
Egs. (5.2) is never indeterminate.

Since Eq. (6.2) holds along the subarc N =0 it can be dlﬂ'erentlated
The differential coefficients can be substituted from Eqgs. (3.1), (3.9) and
(3.10), whereby, in view of Eq. (4.7)

uk®+-h32 A3 = 0. 6.3

This is again differentiated, using the same equations as before and in
addition (3.3) and (5.2) to produce

k(v —1u—h%)+ 3523+ hA AT+ 20h% A, Ay = 0. 6.4)
Finally from Eq. (4.9) we can conclude that
K=abuL . =aluN=0 or uhly+@t—v*+h3A3+2uvi; =0. (6.5)
When this last equation is multiplied by A,4® and the terms in 4,43
and 2,4, eliminated by use of Egs. (6. 3) and (6.4) it turns out,that we must
satisfy the condition
‘ 3ubSA: = 0. : ' (6.6)
There are two possibilities to satisfy (6.6) and (6.3) simultaneously
(a) by taking u = 0 and A, = 0. Then, from Egs. (6.4) and (6.5)
K@ —h)+30°23 = 0;  A(vP—h%) =
enforcing v = A% and A, = 0. From this last result and (3 9) also follows
A4 = 0, in conflict with k # 0. _
(b) by taking =0 and A3 =0. Then siny = 0 and (3.3) requires
tath o2 = 43, Equations (3.9) and (6.4) are satisfied by taking h4,4-2v4, =0
and (6.5) is also satisfied. This case however turns out to be a simple circular

orbital case, for, since v remains constant with 4 and cos w 4-1, Eq. (3.4)
requires & = 0.
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The spiral arcs discovered by LAWDEN,! which are of the intermediate
thrust type, do only occur wheh either the total transfer angle or the transfer
duration are predetermined. In particular it can be shown* that Lawden’s
constant A is the isoperimetric constant associated with the polar angle
and equivalent to our constant.

7. Coasting Arcs

In the absence of thrust the vehicle coasts along an arc of Keplerian
“orbit, with the well known integrals

3 2_"}3
i‘.j';hz—zh =g const. of total energy 7.1
v/h* = p const. of angular momentum (7.2)
M = const. (7.3)
The adjoint system posseses the integrals (4, B, C constants)
M= iI:4¥-—3B ' o (7.4
‘).3 = Bu[h® o (A
A+B
=2 g (.6)
ph?
15 = C. (7.7)
These integrals satisfy the condition
K =0 along a coasting arc (7.8)

to which (4.9) reduces for & = 0. There is a third integral of the third
order differential system in (4,, 43, A45). For non circular orbits it gives
to K and consequently to the Hamiltonian a non-zero constant value and
would only come into play for transfers of specified duration or time-
optimal transfers. As can readily be verified the constants (4, B) are
uniquely determined from a local set of values of (4;, A3, 45) satisfying
K = 0 except when u and & = v®*—u?—h® vanish simultaneously. This is
the circular orbital case which warrants a special $tudy. Putting u =0
and noting that 4 and v are constants, the complete mtegratlon of the ad-
joint differential system in (l,, A3y A,) yields

ll.= PSina—'-zz—Q

A= |
" 23 = Pcos . (1.9)
A¢= —2Psin0+Q
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where ) = vt—0, and 0,, P and Q are the constants of integration. The
condition K = 0 is always satisfied, which leads to the observation that
a circular arc of this nature will never be part of an optimal transfer of
specified duration.

Owing to the special nature of the behaviour of the adjoint system
along a circular orbit, the discussions will be somewhat lengthened if one
wishes to understand thoroughly and control the limiting forms assumed
by certain results established for elliptical orbits by means of Egs. (7.4 to 6).

8. Impulse Extremals

The other type of extremal corresponds to £ = 1, that is maximum
thrust. Only the limiting case of unbounded acceleration parameter a will
be considered. It can be analyzed without recourse to numerical integration
and the results can provide insight into the difficult boundary value problem
associated with limited thrust. The orbital transfer is then accomplished
by a succession of impulses and coasting arcs, a problem whose optimization
has been widely investigated by more conventional techniques.

The approach through the maximum principle has the advantage of not
limiting in advance the number ‘of impulses. Such an approach has been
followed by BREAKWELL using an extremely ingenious set of variables.
The present version, in addition to the elimination of the intermediate
thrust case, has permitted the analytical discussion to proceed very far
towards the synthesis of the optimal trajectories. In fact very simple iterative
tests can now be applied to establish the optimal trajectory for any specific
numerical case. ' '

Impulses can be treated as regular extremals by the simple device of
the parametric description If primed variables denote differential coeffi-
cients with respect to the description parameter x, the basxc equations

(3.1 to'5) can be rewrltten as

h = —uht'
0 =vot _ ,
u = (V*—u*— k)t +av'Suhzy 8.1)

v’ = —2uvt’+arv'fuhz,
o —ar El wE

The direction cosines of the thrust (z,, z,) have been given their optlmal

values (5.2) o
A3 14

’ = = 8.2
VBER ATVRTR 2

z'=
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Putting v’ = 1/a, £ = 1, and letting a go to infinity, the evolution of
the system is governed by

v=0; K=0;, 6=0 (8.3)
U =phzy; o = phz, 8.4)

P 1 '
wo=—p (8.5)

Along this “impulse extremal” both time and position of the vehicle
stand still, while velocity and mass are modified. A similar treatment of

the adjoint system yields _
M= —pu23+23 (8.6)
Aa=0; 4=0 8.7
M= —[R\/}. + 22+ ﬁﬂzs]. 8.8)

From (8.7) follows that z; and z, remain constant, they are the direction
cosines of the impulse. The magnitude of the impulse is conveniently
measured by the total increase in characteristic velocity

., p=clnpu : 8.9)
Since, from (8.9) and (8.5)

P
¢ =c I =u (8.10)
integration of Egs. (8.4) yields for the increases in velocity components
Adu = hz;dp;  Av = hzde. (8.11)

Also integration of Eq. (8.6) gives
Al = — Ay 22+ 22, 8.12)

Equatlon (8.8) will be used to find the change occurring in the quantity

N, defined by (5.1)

, 1 1
N —?(ﬂls) = —?.“N

or again, in view of (8.10)
dN 1
Fr —?N' (8.13)
Thus, if N is zero at some point along the impulse extremal, it will
remain zero. This is always the case for, according to equation (4.9)

K = atuL,,, = afuN
and, letting a go to infinity with & = 1, N must vanish to keep K finite.

The result - .
N =0 along an impulse extremal (8.19)
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will be later exploited in the form

— 1
hY A3+ = —— s (8.15)

9. Properties Deduced from the Weierstrass—Erdmann Corner Rules

As a result of the elimination of the intermediate thrust possibility, any
optimal trajectory will consist of combinations of impulses and coasting
arcs. '

The synthesis of the trajectory is dominated by the requirement that
phase variables and multipliers remain continuous. As a consequence the
same requirements apply to the quantities K and N.

Because K vanishes along a coasting arc and also at both ends of the
trajectory, K must vanish at both ends of any impulse extremal. This
requirement suggests that we evaluate K’ along an impulse extremal.
Using Eqgs. (8.3 to 7) and (8.10)

kK
'd—q)- =u K'=n (9.1)
where ..
TNRET A
n=uhyYB+3+nr—=22_, 9.2
With the help of the same equations it turns out that
n=0. 09.3)

Thus, since n is a constant, K cannot vanish at both ends unless
n=0 along an impulse extremal. ' 9.9
Consequently K itself vanishes along this extremal and finally
K=0 along the whole trajectory. 9.5

Referring back to Eq. (8.15) it appears that, should 4; and A, vanish
simultaneously, so would A;, and conversely. It would follow from the
continuity of A; and the fact that it remains constant along a coasting
arc that A; would stay zero up to the beginning of the next impulse ex-
tremal, where (8.15) again applies. Thus A; and 4, would again vanish
.on the next impulse. This situation would repeat itself up to the end of
the trajectory, making it impossible to satisfy the end value (4.14). Ruling
this case out, there follows

(a) the direction cosines of an impulse are never undetermined,

(b) the quantity —4-%- uAg is a positive constant along an impulse,‘
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(c) A; itself is negative and decreasing.
Moreover, since both 4; and u are constant on a coasting arc it follows

. . 1 . .
from the continuity requirements that —T,ulﬁ is a trajectory constant.

There is no loss in generality in scaling the multipliers so that
—%p}.5= 1 along the whole trajectory. (9.6)

This reduces the quantity N to

N=hyi3+23—1 .
continuous and negative along a coasting arc 0.7
zero along an impulse extremal

To this property we add (9.4) which, by virtue of (9.7) becomes A
u+h*2, 3 =0 whenever N=0. - 9.8)

10. Conditions for a Transfer Orbit

Because of the special behaviour of the multipliers along a circular
orbit, the discussion of this case will be dissociated and non-circular
orbits investigated first.-

Fig. 2

The values of the multipliers can be taken from Egs. (7.4 to 7). Then,
in view of Egs. (7.1 and 2)

2
N= ]/(A';B") %,——2AB+2B’h —1 (10.1)
while condition (9.8) becomes .
u(1+24B8—3B%h) =0 ~whenever N =0. (10.2)

10.1. Provided (4+Bq) does not vanish, the function N(h) given by (10.1)
has the shape illustrated ‘'on Fig. 2.
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There can exist a positive interval « < A < f# along which the coasting
condition N < 0 is satisfied. In A = «, where N=0

(A+Bq )2% —24B+42B% = 1. (10.3)
p o L
We try first to satisfy (10.2) in & = a by taking

14+24AB—3B%*a = 0. (10.9)
Combining this with (10.3) A

(Ath )2 = B, (10.5)

This turns out to be the condition for N = 0 to have a double root (& = f).
Indeed, substitution of the left hand side of (10.5) and of 24 B from (10.4)
into (10.1) gives

B? .
N =1/ S —ay@hta)+1—1

and the N curve is tangent to the axis in & = «. This case can therefore
be dismissed as that of a circular transfer orbit along which N would
remain zero.

It can be concluded that for non circular orbits (10.2) must be satis-
fied at both ends of the transfer orbit by taking

u=0 for h=a and h=3. (10.6)

(Should we go from A = a (or f) and return to « (or ) without reaching
B (or o) we would have accomplished a complete circuit of an elliptical
orbit. This is not a real transfer since, except for an increase in time and
polar angle, all variables and multipliers return to their departure values).

From the result (10.6) follows that a transfer takes place from peri-
apsis to apo-apsis or conversely along an elliptical orbit. In other words
the transfer orbits are necessarily of the Hohmann type. The values of
h at the apsides are roots of equation

PPh*—2h—2q=0 o (10.7)
deduced from (7.1 and 2) by elimination of v and insertion of u = 0.
Hence '

arf=2ph wp=—2L (109
- 2 . a___% 10.9

From (7.5) and (10.6) follows L . .
J4=0 or singy=0 in h=a and  h=p. (10.10)
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The impulses adjacent to the transfer orbit are tangential. It also follows
that the condition N = 0 at the apsides reduces to

led@ =1; |BA,(B)l = 1. (10.11)
It will be convenient to introduce the notation
A =hi, _ (10.12)

and rewrite (10.11) as
A(@) = £1; AP = +1 (10.13)
A= +1 (cosyp = +1) corresponds to a positive impulse signal or
acceleration,
A= —1 (cosy = —1) to a negative impulse signal or deceleration.
Two types of Hohmann transfers will be distinguished

(a) Transitive transfers, which preserve the sign of the impulse. They
are characterized by

A(w) = AB). (10.19)
Calculating B and 4+ Bq from equations
4 A+B
lc(ft) = ia-) =— pa,q +Bp
AB) A+Bq
;. = = —
and replacing into Eq. (7.4), there comes in view of (10.9) and (10.14)
' A@  3a+58
M) = ———— 10.15
O = erh  wth (1013
AP  3p+5a
MP) = ————=—= . 10.16
@) V2(@+pB) a+p (10.16)

Hence, in a transitive transfer the sign of A, is also preserved; it is always
opposite to the sign of the impulse.
(b) Reflexive transfers, changmg the sign of the 1mpulse

A(ﬂ) = —A(w). . (10.17)
By a similar calculation
—34(w)
= _3A(ﬂ) —_—. 10.19

In a reflexive transfer the value of }.1 is simply changed in sign, ‘opposite
to that of the adjacent impulse.
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10.2 The case A+ Bg = 0 will be taken up later as it proves to be important
only for orbits of departure or arrival.
10.3 Circular transfer orbits.

The multipliers are taken from Egs. (7.9) with the result

N = hy/ P*cos*0+4P%sin*0—4PQ sin 6+0° —1 (10.20)

P can be assumed to be a modulus, that is to be a positive quantity by
proper determination of the phase angle 6,. To find the extremal values
of the quantity under the radical sign, the derivative is set equal to zero

cos6(6P%sinf—4PQ) = 0.

The solution sinf = (2Q)/(3P), implying |Q| < (3P)/2, gives a value
P2—}Q? always smaller than the value (2P+|Q|)? reached for sinf = 1
if Q is negative or sinf = —1 if Q is positive. Consequently N =0 is
reached at most in one position with N < 0 elsewhere around the circle.
This cannot be a transfer case. If however

0=0, N=p},]/5_#§2_0_1

and N = 0 can be reached in § = =/2 and 0 = 3x/2 with N < 0 elsewhere.
Moreover, since u# is identically zero and A, vanishes with cos® where
N = 0, condition (9.8) is also satisfied. This is a semi-circle transfer case
with tangent adjacent impulses. Because sinf changes sign between the
transfer ends, it is of the reflexive type. It is also seen to verify Egs. (10.18
and 19) for A = a = f, which proves the validity of these equations in
this limiting case.

The corresponding limiting case of a circular transitive transfer is
obtained by setting P = 0, whereby N and n remain zero around the
circle and the length of arc of this transfer is left undetermined. In fact
all variables and multipliers remain constant, except time and polar angle.
The only physical interest of such a transfer would be to delay the arrival
or to rotate at will and without fuel expenditure the axis’ of the terminal
orbit.

11. The Impulse Invariant

It is already known that A, A; and A, remain constant during an impulse
extremal. If furthermore the impulse is tangential at peri-apsis or apo-
apsis

Cu=0; A=0; VATA=Al=7
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and v
' .Z‘=hl4=/1=:l:l.
This reduces (8.12) to
1

A;ul = }»1_'_—11_ = —-,—;Aw (11.1)

and (8.11) to
- dv = Ahdgp. (11.2)

But also, from (7.2)

1

: 1
dp=p,—p_= FAv.— A4 7

Ag. (11.3)

Eliminating 4 between (11.1) and (11.3) results in
py +/“'1+ =p-+A44_. (11.9)

The quantity p+A44, is an impulse invariant.

12. Recurrence Formulas in a Succession of Transfers

Because the multipliers are exactly known along a transfer orbit and
must remain continuous, there are rules to be followed for more than
a single transfer.

Let h = «, be the inverse distance where an impulse is applied between
a first transfer from a,_; to a, and a next one from «a, to a,,,. Recurrence
formulas will be established between the ratios o,/a,—; and a,,/«, or,
more precisely, between

2 2r,

X = oo, = i (12.1)
and
y 2 - 2r,.+1 (12.2)

= l+an+1/an - r,.+r,.+1'
The impulse Ap will be represented by a point in an (x, y) diagram. If
the impulse is an acceleration '
Olnyt < Op-y or (an+l/an)‘(an/an-1) <l

which is equivalent to x+y > 2. Similarly if the impulse is a braking one
Ony1 > 0p—y and x+y < 2. Hence the straight line x+y = 2 divides the
(x, y) diagram in two domains: an upper right acceleration domain (A4)
and a lower left braking ‘domain (B).



12.1. Succession of two transitive transfers
A(apy) = A(0py) = A(a) = 4.
From (10.16) where f = «, and o = o,_;

All_ = ___l_ 3an+5an—1

3
ﬁ(an'l'an—l)s
and from (10.15) with f = «,,, and a = a,

_L 3an+5an+l

Ady, = —— .
" l/ 2 (an+an+1)-:—

Noting that

Optimization of multiple impulse orbital transfers

—/ 2 . -/ 2
p-= ]4/”"+an—l ’ Pe= l/an+an+l‘

and substituting into the invariance relation (11.4) produces the condition

an+ 3“n+1 _ an+3an-l

3 3
(d,,—l-d,,.,,l) i (d,.+d,,-1) 2
that, in terms of the variables x fmd », becomes
Y@3—y)P = 2—x)(1+x)*
by '

Fig. 3. The recurrent impulse diagram

AAB

605

e (12.3)

(12.4)

(12.5)

- (12.6)



606 B. M. FrAeus DE VEUBEKE and J. GEERTS '

Given x, this equation has three roots for y. One is trivial y = 2—x,
corresponding to the zero impulse case. The other two are then roots
of the quadratic

Y =y(@+x)+(1+x)?*=

Finally, since y cannot become larger than 2, the only significant value is

| y=34+x—1/3@—x)} = R®). (12.7)
This curve of the (x, y) diagram (Fig. 3) lies partly in the (B) domain,
partly in the (4) domain. The part in the (B) domain has been labelled
BBB since the impulse in a, is a braking one, the previous one in a,_,
must also have been a braking one because the transfer was assumed tran-
sitive and similarly next one in a«,,; will have to be.

Correspondingly the part in the (4) domain is labelled A4A4. The
function y = R(x) is tabulated in Table 1. r

Table 1
X l Yy = R(x)
0 0.267949
0.2 0.376631
, .04 0.502944
0.6 0.647729
0.8 0.812549
1.0 1 .
1.2 1.214359
14 1.463068
1.6 1.760769
1.732051 2

The strength of the central impulse can be calculated from (11.3), or
equivalently

Ap =V [Vy—V2=x]. (12.8)

12.2. Transitive transfer followed by a reflexive one
A(an-l) = A(an) = _A(an+l) =4
While (12.3) remains valid, (12.4) must be replaced by
' —3

Al = "
" Vz(un+an+1)

(12.9)

and. (12.5) becomes
1 I

(a.+a..+1)’} : (a..+a..-x)%.

(12.10)
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or
¥ =Q2—x)(1+x)*= S().

607

(12.11)

This curve lies entirely in the (4) domain and must be la_belled AAB. The

function is tabulated in Table 2.

Table 2
x | y = S(x)

1.732051 2
1.75 1.890625
1.80 1.568000
1.85 1.218373
1.90 0.841000
1.95 0.435125

2 0

Formula (12.'8) assumes here the special form

o=V, x)/2—x.

12.3. Reflexive transfer followed by a transitive one

—A(otp-y) = A(05) = A(tpyy) =
Equatxon (12.4) holds true but (12.3) must be replaoed by
and (12.5) becomes

P
T Y2t
Olpt 3001 _ 1

(aq+au+l)_:— (an+an—l)%
or
x=2—y(3—y;=T7().

Table 3

y { x=T7()
0 2
0.05 1.564875
0.10 1.155000
0.15 0.781625
0.20 0.432000
0.25 0.109375
0.267949 0

(12.12)

(12.13)

(12.14)

(12.15)

This curve, symmetricai of y = S(x) with respect to the zero impulse
line, lies entirely in the (B) domain and must be labelled ABB. The function
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T-1(y) is tabulated in Table 3. Formula (12.8) assumes the special form
=Va2-)V>. A (12.16)
12.4. Succession of two reflexive transfers
= A = A@) = — A = 4
Combination of (12.9) and (12.13) leads to

e _ %1

a, o or x+y=2.

Hence 4p = 0 is the. only possibility and this case can be ruled out.

13. The Recurrent Impulse Diagram

The (x, y) diagram of Fig. 3 contains virtually all the multiple-impulse
transfer cases satisfying the necessary (but not sufficient) maximum prin-
ciple condition for minimum fuel expenditure.

The use of this diagram is best explained on an example.

A knowledge of the apses of the departure orbit and a decision as
to the one where the first impulse will be applied determme the x coordinate
of the first point.  °

The y coordinate determmes the sign and intensity of the first impulse.
Suppose the point is chosen in the (4) domain: the first impulse is an
acceleration.

The y coordinate is brought back as a x coordinate by reflexion in the
“mirror line” y = x. This operation produces the transfer; it prepares
the application of a second impulse at the other apsis of the orbit result-
ing from the first impulse. The choice of the second y coordinate determines
the second impulse and, if the operation 1s ended, the characteristics of
the final orbit.

This describes the simple Hohmann case.

If the game is to continue by at least a second transfer, the second
y coordinate must be such that the second point falls on one of the curves
AAA or AAB or ABB (the first impulse was an acceleration); suppose
that it can be taken on the 444 curve. Then, after a second reflexion
on the mirror, the third point must be taken in the (4) domain and we
have the representation of a three acceleration impulse transfer.

Again if the game is to continue the third point will have to fall on
either the 444 curve again, or the AAB curve. The general rule is of
course that if the previous impulse lies on a curve, the next usable curve
must have its two first letters coincident with the two last ones. of the
previous curve. Suppose we are now on the A4B curve. After reflexion
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the game can be ended by the use of a braking impulse or prolonged by
use of the ABB curve.

The next prolongation makes necessarily use of the BBB curve on
which a series of points can be taken in succession. A result of these rules,
based on the considerations of Section 12, is that after switching fiom
acceleration to braking is impossible to revert to acceleration.

14. Classes of Terminal Orbits

A terminal (departure or arrival) orbit will be said to be of class 1
if N remains negative on it except of course at the point of departure or
arrival itself where it must vanish together with ».

Such orbits mark certainly complete stops for the trajectory. Orbits
of class 2 are those on a portion of which at least appears a “ﬁrmg signal”
N>0.

The frontier between the two classes consists of course of the transfer
orbits where N < 0 but vanishes at both apses. The distinction is presumed
to be significant, for sufficiency conditions and will be shown to be asso-
ciated with allowable domains in the (x, y) diagram.

-

14.1. Non-circular orbits with A4 Bg# 0

This is the general case. It was established that if N and n vanish si-
multaneously for some A, a range of negative N values exists only if u
also vanishes there. The same is true then of 4, so that departure or arrival |
is tangential at an apsis & = w of the terminal orbit. For N to be negative
elsewhere it is clearly necessary and sufficient that it should be negative
at the other apsis # = w* where u and A, are again zero. Thus one should
have

= |w*Ay(0*)|—1 = [4d(w*)|—1 < 0. (14.1)
In Fig. 2 this situation corresponds to elther w=0 or o= B and
o< o*<pf.
Taking the multipliers from (7.4 to 6) and ehmmatmg A and B between
A(w A(0*)

the expressions of A,(w*)=

- Ao _—.% and Ay(w)

there comes

A(w* .
%——(4% ) 142 ) L )
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with
_ 22(w)

IO
Noting that A’(w) = 1, condltlon (14.1) is equivalent to

((A«»*)) <1

, A(w)
and, using Eq. ‘(14 2) takes the form
(1+ )x’+2(4+3—)x+3(5+3—) 0. (14.3)

Whence, after evaluation of the roots,

21, (w) _3w+5w'
rd(w ) wto*

Thus inequality (14.1) is translated into an authorized range for the
first multiplier at departure or arrival. Replacing p in terms of the apsis
value w and w* and distinguishing between the possible signs of A(w),
these ranges are

—3>x= (14.4)

~ 3w+5w* _ .
- mﬂl(a’» S @tenieTey “@=1043
3 ' 3w+ Sew* '
—— e - _ 4'
' 1/2(“’+w*)< A< (04 0*))/ 2(w+w*) A@) 1 (14.6)

Should A,(w) reach a boundary value, the. orbit becomes of the transfer
type. Comparison with Eqs. (10.15 and 16) or (10.18 and 19) shows that
the boundaries on the left are for reflexive transfers, on the right for tran-
sitive transfers. When A,(w) lies within the authorized range the terminal
orbit is of class 1. Otherwise it is of class 2 and has in the neighborhood.
of the opposite apsis w* a range of positive N values.

14.2. Non-circular orbits with A+Bg =0

N=V2B*(h+g)—1.
From Fig. 4, where this case is illustrated, it appears that the range
of h for with N < 0 depends on the energy ¢ of the orbit. '
Since N vanishes for h= o . :
2B%(g+w) =1 ' (40
and condition (9.8) becomes

‘ Jw+2g e
u(l 2(w+q)) 0. (14.8)
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Of the two possibilities offered by (14.8): w =0 or # = 0 only the last
can be retained for orbits of class 1. Departure or arrival are still tan-
gential at the largest value of /: on the orbit, that is at peri-apsis. We must
now distinguish between the elliptical and the hyperbolic case.

N
q>o0
q=o0
/ G<o
/ h
w J
-1
. Fig. 4
Elliptical case g < 0. At the apo-apsis
] (w*)?
h=o*<w, o*tg w+w*>0’
and N is still real and negative.
B ___ 3w+w;“
Aw) = ;(360—1—2(]) =—32B "
_ A(w) oo 2 o A(w*)
Ay(w) = = Bp.— Bg/w—i—w* = l(w*) = oF

Hence the value authorized for 4,(w) is given by

20(w) w*

It verifies inequality (14.3) if due account is taken of w* < w. It can
therefore be concluded that it is the value of 2;(w) within the previously
defined range for which 44 Bg = 0 occurs as a particular but non singular
case.

Hyperbolic case g > 0. While condition A+ Bg = 0 yields nothing new in
the elliptical case it is essential for hyperbolic terminal orbits of class 1.
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Only then can N remain negative up to the point at infinity A = 0.
The authorized A;(w) value is unique: From

A(w) = —B(3+2‘/)

M) = Bo = 2 y/3(gT o).

“this value is

(524} 4@

14.3. Circular orbiis

The complete discussion should again be based on the values (7.10)
of the multipliers. It was already observed in Section 10.3 that the general
case can provide a class 1 orbit.

(a) @ > 0. N=0 is an isolated maximum of N for sinf = —1 pro-
vided w(Q+2P)—1 = 0. Hence A(w) = wi(w) = w(Q+2P) =1 and the
adjacent impulse is an &cceleration. Also

3v 29

hw) = =3P ——Q =P

. 1. .
Moreover P has an authorized range 0 < P < 55,10 order to satisfy the

assumption that both P and @ are positive. The corresponding authorized
range of the first multiplier is

3v 2v

~% —> ).1(co)>——2 (A(w)=1) (14.10)
(b) Q9 < 0. N=0 is again an isolated Amaximum of N for sin0 = +1

provided w(2P—Q) =1 this gives A(w) = —1 a braking 1mpulse The

authorized range of P is as before and then

23 2 <) <o (@)= D). (14.11)
Noting that for a circular orbit L the ranges (14.10 and 11) for

w? ]/co
class 1 orbits are identical to those deduced from (14.5 and 6) in the limit
w* = w. In conclusion (14.5 and 6) are uniformly valid.
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15. Allowable Domains for Class 1 Terminal Orbits

15.1. Departure orbits

If a departure orbit («,, ;) is of class 1, the value of A;_(¢;) must
satisfy inequalities (14.4), where w = «, and w* = «,. Corresponding
inequalities are found for A;,(«;) by use of the invariance relation (11.4)

with
/ 2 V 2
p-= -§ aptoy’ P = atoy
They are : .
—1 ) 2 3
- > A‘ M)+ —F—="> _ ot “93_—. (15.1)
(ap+ay)* (@) Veato, (opt+ay)

If the transfer following the impulse is transitive, Eq. (10.15) gives the
value of 21, () and (15.1) becomes

1 o+ 3u; o+ 30
<& 2 1+ 30

1 3 3
(xp+ary)® (CREAR (ap+ay)®
T y
2‘ / ‘/3—
4%
B 4 .
&
%o X
/,;> Ay
%,
1r % e
. P
L)
%%
ABB \
i z X

Fig. 5. For class 1 departure orbit, first impulse must lie in shaded area when second

is of same sign
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or, using definitions (12.1 and 2) for n =1,
2—x <yB—yP< —x)(1+x)02. (15.2)

These inequalities are satisfied when the departure point in the (x, y)
diagram lies in the shaded areas of Fig. 5. Should the transfer following
the impulse be reflexive, Eq. (10.18) is used for 4,,(«;) and yields

1 1
. < . < a1—|—3oc03_
(ta)®  (utw)®  (epto)?
2—x<y<—x)(14+x)> - (15.3)

The departure point should lie in the shaded area of Fig. 6. It will be
observed that in this case the first impulse is necessarily an acceleration.

or

LY

V3

_

AAD

\

ABB

X

1 2

Fig. 6. For class 1 departure orbit, first impulse must lie in shaded area when second
is of opposite sign

15.2. Orbits of arrival
If the final orbit (xy, ay—;) is of class 1, 4, (xy) is submitted to the

inequalities (14.4) with w* = ay.,. They are modified into

- V2_ ) (et > — St (454

L > ST 3
G R
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»

ABB %

. 1 2 X
Fig. 7. For class 1 arrival orbit, last impulse must lic in shaded area when previous
impulse is of same sign ‘

5 V3

AAB

ABg

i Z —

‘ 1 2 b3
Fig. 8. For class 1 arrival orbit, last impulse must lie in shaded area when previous
impulse is of opposite sign
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by the invariance relation (11.4). Calculating 4,_(«y) by means of (10.16)
if the preceding transfer is transitive
1 ;< dN+3aN-1—3; < O‘N+3aN+1—3:
(ant+oys1) * (on+ O‘N—_l) 2 (antoty41)®
or, using definitions (12.1 and 2) for n=N ‘
Y<@—x)(14+x)*<y(B3—y)- (15.5)

The final impulse in the (x, y) diagram must lie in the shaded area of
Fig. 7.

Should the last transfer be of the reflexive type, A;_(ay) is calculated
from (10.19) and (15.4) yields

1 < 1 < ant3any

1 T3 )
(ay+ayg)® (ay+oy-p)* (ay+oysn)?

or
. y<2—x<yQ@—yy
and the final jmpulse should lie in the shaded area of Fig. 8.
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