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I. GERERAL THEORY.
-I,0- Introduction.

In the analysis of a structure by decomposition into finite elements the
initial emphasis has been almost exclusively directed towards the matrix ope=
‘rations by which the final displacement unknovms or redundant force unknowns
‘can be determined. From there the name of "matrix structural ana1y51s" and the
broad classification of procedures in two classes ¢
‘The "Direct Stiffness Method" (see for instance References R.I.I and R.I.2)
which takes nodal displacements as tﬁe set of unkndwns,

The "Redundant Force Method", sometimes simply called the Force lMethod, where
a set of internal and external force redundancies is taken as the set of
unknowns (see for instance References R.I.3 and R.I.4),

The two procedure are intuitively linked, the first to satisfaction of
~compatibility conditions; the second to satisfaction of equilibrium conditions,
While this is true at the structural level, it must be emphasized that it is
generally not true at the element level, Many of the models of element beha-
vior used in the past do not comply with the existence of a continuous displa-
cement field (they are not interﬁallx.compatible) nor do they satisfy every-
where the local equilibfium conditions., The same can be said for conditions
prevailing at the interfaces between adjacent elements,

The connections are often.such that the displacements are not continuous across
.an Interface, nor are the stresses transmitted continuously, .

However, the correct representation of the structure depends fundamentally on
the value of the models.devised to represent element behavior and interface
transmission. Once the models are chosen, progress in the mathematical techni-
ques of matrix structural analysis cannot improve the resulting picture of
deflections and stress distributions; they can only provide for reduced compu-
ter time and better accuracy in the figures for the idealized structure, More
exactly; the only way that remains open to better approximate the real struc-
‘ture is by cutting it into finer pieces. The resulting multiplication in the
number of unknowns makes this a éostly’procedure\and eventually leads to loss
.in figure éccuracy by accumulation. in round off errors. As experience has
shown, it is not even certain that, with crude element models, this procedure
will succeed., This is the so-called "convergence" problem for which very few
scientific guidelines are yet availabie. |

‘As a consequence, after the development of satisfactory computer programs,
progress in thevapproximation to the real structure will stem from a develop-
ment of more sophisticated elements with an attendant reduction in the number
of pieces and better convefgence characteristics. The first realization of
this and the first attempt at a systematic derivation of discrete element
.prOperties is due to GALLAGHER (Reference R.I.5),



The simplest approach, and the ﬁdst easiiy visualized, is through the use of a
parametric displacement field, the first few parameters to introduce represen=-
ting the'rigid body motions of the element, the others esseﬁtialfdeformation
modes, Intérnal compatibility is then automatically secured, Conformity, that
is contiﬁuity of displacements at an interface, is less easily obtained, |
although.some early skin elements of triangular shape (Ref. R.I.6) and rectan-
-gular shape (Ref. R.I.7), analyzed under the assumption of linear edge displa-
cements, already had this advantage. The equivalent point loads associated to
the set of nodal displacements are best derived from the minimum total potential
'principle (equivalent to Castigiono's theorem). This approaéh, which produces
what we call "displacement models", puts the whole burden of the approximation
on local violations of the equilibrium conditions,
V The natural alternative approach, which concentrates on satisfying equili-
brium properties, is decidedly more difficult., That is perhaps the reason why
it has been so poorly represented and mostly in some indirect way. In Reference
-Rels5 a swept quadrangular skin panel model is based on a parametric equilibra-
ted stress field. The assumptions are simple enough to secure an integrable
deformation field. The integrated displacement field is thén determined by
nodal displacements and the element ;rOperties of this compatible, but not
conforming, model can be derived by the previous approach. In our terminology
.this.model is a "hybrid", It is not a displacement modei because it is not
conforming, it is not an equilibrium model because, althoug internally equili-
brated, the stresses are not transmitted continuously at the adjacent elements.,
Both types of inconsistencies occur in this case at the interfaces. All known
"Force Methods", with their natural tendancy to pay closer attention to the
equilibrium properties, have relied on "shear panel" representations of the
skin elements, This is a semi empirical approach in which the normal stress
carrying capacity is obtained by lumping the material into edge stringers and
a constant shear stress is assumed inside and determined by equilibrium consi-
derations., It is not known wether this procedure can be justified by simulta=-
neous assunptions on the displacement and stress fields, in which case its
properties could be more logically derived by Reissnér's variational principle,
The major justification for the development of equilibrium models, inter=
nally equilibrated and continuously stress transmitting, was put forward in
Reference R,I.8. It was shown that, on the basis of variational principles, a
set of displacement models produces lower bounds to local influence coefficients,
a set of equilibrium models upper bounds. A dual analysis, based on a set of
each type, then furnishes a direct measure of the accuracy of the idealizations
by a simple assessment of the width of the brackets,
The profound mathematical justification for the upper and lower bound character

of equilibrium and d13p1acemqn§ solutions is that, from the point of view of



t functional aﬂalysis, they belong to orthogonal subspaces of an inner product

- space, ' R |

At the timevthe only equilibrium models devised to prove the point were those
~of a stringer, under uniform shear feed, and the constant stress triangular
skin panel, v
'The'gené:al theory of equilibrium models was further .elaborated in Reference -

| R.I1.9. It appears quité clearly from it that the major obstacle to the previous
~development of equilibrium models was the restriction to local (nodal) displa=-
cements as ‘generalized unknowns, Except for simple cases in which the deforma-
tion field is integrable, the only information on displacements provided by
‘"equilibrium models is through weighted averages of the displacement field,

A spar web was amongst the new qquilibrium elements produced.

In this reference appear also for the first time the quadratic type triangular
ski;‘panel and the associated spar element, both more sophisticated displace-
ment types, which proved remarkably successful in the present numerical inves-
.tigations. PlateAbending elements for upper and lowver bounds determination
'wefe developped in Refercnces R,I.I0, II, I2.and I4, They were made opera-
tionalvduring the course of the present investigation and, from the few
teéting cases in which they weré compared to other available models, have been
proved équally successful, . '
Comparison studies were run on different idealizations and on the use of diffe-

"rent types of elements for structural analysis of

- a spar. This permitted separate evaluation of our displacement and equilibrium
spar elements, considered to be a major ingredient to represent correctly in
elongated structures. The results presented here are taken from Reference

R.I(I5,

- a box beam of simple rectangular cross section. This permitted to evaluate
the capability of our skin elements to represent correctly the properties

of the cover sheets,

- a nultispar swept wing. This was taken as an example of an already complex
" .- structure, The choice was further dictated by the existence of previous
. finite element studies of this structure (References R.I.I6 and I7) and of

test results (Reference R,I,I8),

-~ a rectangular plate, centrallj loaded, with either simply supported or

clamped edges.

The conclusions that emerge from the comparisons can be summarized as follows :

-

- The principle of a dual analysis, producing ﬁppef and lower bounds to struc-
tural deflections, is not only of theoretical but of great practical value,

In the swept back wing case, for instance, the almost perfect agreement



-between spar deflections, obtained in dual analyses, indicates that the dis-
~crepancies with test results must be due to difficulties in assessing the

true boundary ‘conditions at the root.

1—:80phisticated displacement elements show remarkable convergence characteris-
tics for deflections and dramatic improvements in accuracy and ease of inter-

‘pre;atloh of stress distributions,"

- Thg-presént lack of équally'sophisticated operational skin equilibrium ele-

" ments leads sometimes to difficult interpretation of the stress output,

- For a givén complexity (measd:ed for instance by the total number of genera-

”; lized coordinates) the best geometrical pattern of subdivision into given
types of elements remains an art, ' o | . .
However, the more sophisticated the.eléments, the lesé imﬁortant the influ-

ence of the pattern.

Finally we would not like to condamn the use of hybrid models of elements
(violating both contiﬁuity of the stress field and of the displacemént field)
withéut further evaluation, thdugh,‘of course, the deflections:.they produce
cannot be predicted to be upper or loﬁer bounds.

There is also a point we wish to emﬁhasize ¢ the conceptual distinction between
displacement model and equilibiium model, valid at the element level, is comple-
tely independant of the conceptual distinction between the displacement method
(or direct stiffness method) and the force method, which applies at the structu-
ral level. In fact our theory of equilibrium models produces a stiffness matrix
for the element just as in the case of a displacement model,

This has the advantage that the same computer program (in our case the A,S.E.F,
displacement type program developped by the junior author) can draw on all

types of elements and run the dual analyses, By the same token it would be per-
fectly possible to set up a force type program using any of the dual elements.
It is true however that the top@logy of connections is such that fewer generali-
zed d1Splécements are generated by arrays of displécement models and fewer
fe&undant forces by arrays of equilibrium models., | ‘

Hence the application of the A,S.E.F, program to equilibrium type analyses i§
possibly less efficient and accurate than would be a good force pfogram. A mini-

mal self-straining type of force program is presently under study.

i.I- Digplacement models for 16wer bounds,

The -starting assumption is that the displgcement field within the element
can be approximated by a linear superpoéition of a finite number of displace-
ment modes, including the rigid body modes. The unknown intensities ay of the

a;sumed modes are the parameters of the field and form-the coordinates of a



:.column matrix a. » A ,
In most applications, and in all the applications contained in this report, the

assumed modes are described by'iow order polynomials. That is,_in

R o R
us= oy Ui'(xj) 3 j=1,2,3

- S

Lo

¥

the modal vectors U

1 are'repfeseﬁted by polynomials in the space coordinates

X, e
J
From the paramcters of the field we pass to a set of yeneralized displacements

qj accordlng to the following rules :
- Along each interfaee with an adjacent element, a complete set of interface

“.displacement modes, generated by the parametric field, is chosen. The gencra-

lized displacements pertaining to this interface are defined to be the inten-

" sities of these interface modes, It often happens that local values of displa-

cement components can be chosen as generalized coordinates (sce example of

" Figure F.I.I). In that case ;hey.can belong to more than one interface.
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Figure F,I.I. Interface displacement modes defined by local displacement

components,’ The superposition determines a general parabolic

variation of the displacement component.

v

- The same interface modes must exist in the adjacent elenent, in which case
the elements are said to be ' conformlng o If the elements are conforming,
equating the corresponding generalized displacements by pair secures com=-
plete eontinuity of the diSplaecmcnt field across the interface;

'The justification of these rules is that an array of conforming displacement

models produces in the whole structure a continuous and piecewise differentia-

ble dlsplacement field. This results in lower bounds being as certained for

’ -

the 1nf1uence coefficients,




fSiﬁcé the interface modes are deduced from the parametric field, a linear

relationship is always available between the parameters a;, and the generali-

zed displacements qj ; in matrix form, there is always a S matrix such that
q - s a

" Since however it is essential that the generalized coordinates be 1ﬁdependant,

. their number may not exceed the number of parameters., This is the only source

of difficulties in trying to build up new conforming models.,

If the number of coordinates is inferior to the number of parameters, a comple-

ﬁentary set of coordinates, represented by the column matrix r » Can be so

chosen that the transformation

KN

"= S a

r

isjnon singular and has a recipfocal

a -*'rq q+T 1

In cdﬁplex cases it may be neééssary to obtain the Tq and Tr matrices by
numerical inversion of S , but it is always better, from the accuracy point
of view, to obtain them in analyticalvform..Then the diSplaéement field can be

-placed in the form
> > -+ . '
u = X a WJ (xi).+ LtV (x,) o . (1.I)

In a certain sense this means that the interface modes h;ve ﬂeen'continued
analytically in the.interior of the element and auxiliar& modes defined to.
‘complete the internal behaviour, v

~By'd1fferentiation the deformation FenSor can be found and its elements repla-
ced in the formula for the strain energy density of the element, After inte-
gration (analytical whenever possible)‘OQer the volume of the element, the
strain energy turns out as a quadratic form in the generalized_hoordinates

—

.ﬂl"' X " 1
U=34 qu 1+4q qu rtgr Kyt
The matrices (of numerical éonstants) of this form are the so-called "stiffness"
matrices of the element, | B |

By Castigliano's theorem, each partial'derivative'of'this quadratic form with



respect to a generalized displacement produces the corresponding generalized
- load. Hence, if in matrix notation the virtual work of generalized loads on

'ithe-correSponding displacements is noted
. 3 ' ) . ‘ ' - o A ) ' A' ‘: ‘

Veaig*rle - (LD

" the column. matrices of getietaiized loads are given by

2 =K "+K _r
gq -QQ-S qr '
- (1.3)
= L . ’
- By quq-o-Krrr
_:and Va2U (Clapeyron s external theoren) The virtual work can also be
. calculated from the actual external loads applied to the element, either in
; the form of body loads X (per unit volume) or surface traction 1oads 3

f'(on the whole boundary surface of the element) :
o +> & , ' ‘
Ve [ Xu dVol + [ p.u dArea , (1.4)

-Substitution of equ. (I, I) into . (I 4) and identification with (I 2) produces

the interpretation of the generalized loads :

‘ ‘++ > '
gj - J- x.Wj dvol + f p.Wj dArea
g = / X.V, dVol + / p.V, dArea

This reveals another important.roie of the modal functions' 63 and V,
. they act as weighting functions to translate any system of externally applied °
loads into generalized forces. ' '
‘The discrete elastic properties of the element are now completely described
by the stiffness relations (I.3). There is however an important difference 1in
'the subsequent treatment of the.coordinates in the q- group and in the r
group. Those of the former gfoup will be later identified with nodal displace-
ments, a proéedure which physically links the elements together and, if they
are conforming, secures the continuity of displacements, The coordinates of the
r group need not and should not be subjected to any physical interelement
‘constraint, In fact one has the possibility to eliminate the r group by
inversion of the last of equations (I.3) : .

-] et
re Krt;(gr qu q}

The matrix K. is never singular because the rigid body modes belong to the

q group.



"The first stiffness relation becomes simply

g=Kq E R ¢ X))
with N KK s K KKy S an
E ‘d = _ fU'K K..1 Co 1 é -
an ' B 8™ Rqr “rr Br | o 8)

The last equation shows that the new generalized loads associated to the q
group, after elimination, correspond to new weighting functions

_ > +
- -1 | .
(£5) = Ko, K

Kyr Koy (1.10)

‘In our spar element, for instance, there are two coordinates of the r type
(the end slopes of the neutral axis) and, under general loading conditions,
goéd results are obtained after.elhqination of those coordinates only if the
weighting functions are correcfly modified,

;One-has also the choice to wdrk‘with the extended element stiffness matrix

K . K
@ - Tqr

L ) K :
qr . rr

and to eliminate the r group at the structuril level, This presents some
advantage in uniformity of the operations required to produce a stress

output. Co-

I,2- Equilibrium models for upper bounds, '
The stress field within the element is approximated by a linear superposi-

tion of stress-modes. The modes -should be subdivided- into two groups : -

Group 1 Satisfies homogeneous equilibrium equationd in the volume (no body
forces) and on the "external boundary" (e.,b.) of the element,
By external boundary is meant the set of boundary surfaces which are
not interfaces, | ‘ N ' '



- denotes such a stress field of mode index r ,

e

R A N

9S,

o i ‘ axi]'r .o o ~ and
_ 1. o R x
: ~(L.1D)
ﬁ ,‘1 Sijor = 0 on e,b,

:'>whéfe 24 1=1, 2,_3) are the direction cosines of the outward

" normal to the boundary.

fGroﬁp_Z Satisfies non homogeneous equilibrium equations, either in the volume,

or on the external boundary, or both., If

oij - Tij.s (xm)

is sﬁch a field, of mode index -8

; —mtfa_x  (x)
i 3xi e Js8
: (1.12)
§ L4 Tij,s - pj,s (xm) on e,b.
The general parametric stress field is then
. oij - i B, Sij.r‘(xm) + g ' Tij,s (xm). o (I.13)

The presence of the second group opens the possibility of loading the structure
;byvbody forces and surface tractions on its external boundary. Those possibili-
'ties are naturally restricted to combinations of the body modes j, (x ) and
surface traCtion modes pj. (x ) if equilibrium is to be preserved.

This is an unavoidable disadvantage of the equilibrium approach in general as
compared to the displacement approach; once a stress field approximation is
adopted, the nature of the acceptable loads is limited.

The other loading possibiliéies occur at the interfaces, where continuity of
the stress transmission must be preserved in order to'build a true equilibrium
‘model providing for upper bounds of the influehce coefficients, |

At ap_intgrface, the parametric field (I.I3) generates interface traction



:modes. To each chosen mode we attach a generalized force coordinate g 3 it
‘can be a local value of a surface traction component or, preferably, a resul-
tant of the surface traction diagram of the mode,

- In general each generalized force coordinate belongs to a single interface,
,'Exceptionally, as occurs in the Kirchhoff plate bending theory, it can belong

‘ to more than one interface.

Let = Gy (xm? - (1=1,2,3)

be suchanainterface traction mode of index t . Then, the virtual work of the

1mode:will be

- f i‘ci,t“xm) u, (xm) dArea

interface -

:end, by definition of the associeted generalized displacement q, » can also
be written as 9 By Hence, by identification, the interpretation of the

.generalized displacement T

q; = f i i ¢ (x ) uy (x ) dArea i (1.14)

interface ‘

‘as a'weighted average of the displacements at this interface,

~Since the interface modes are generated by the field, each generalized force
1s a given combination of the parameters of the field :

/ .

B T : Bty _ﬁr * § Bts Vs . (1.15)

It should also be noted that, in order to preserve equilibrium, the loads
‘externally applied to the structure at an interface must correspond to a linear
superposition of modes identicallto the interface modes.,
‘We now group all the generalized loads necessary to specify the interface
traction modes in a single column matrix g , using a conventional sequence.
The corresponding sequence 18 used to group the assoclated generalized displa-
Cements in the column matrix q .+ The scalar product

q's
accounts for the complete virtual work of loads applied at the interfaces. The
‘remainder is, from (I.I2), equal to ' ik '



I Yg Pg L where
8 : ' o ‘
P = X u ”dVoiuma + "'p. u, dArea I.16
Pg I L Jis 3 £.b.§ pj,s 3 ( f )
‘since only the g parameters'give rise to body forces and surface traction
" forces on the external boundary,
“We are thus led to consider each Yg 88 an additional generalized load with
corresponding generalized displ@tement. Py » Grouping each set in correspon-

ding column matrices y and p , this additional viftualvyork is

.We also gtoup all the relationships (I.IS)'in matrix form

=C B +C - o 117
g BB_ v Y . (L.17)
where B 1s, in a chosen sequénce, ‘the column matrix of the first parameters.

We further introduce the compléte connection matrix C , paxtitioned as follows

where E 1is an identity mat:ix‘of dimensions equal to the number of Y, Ppara-
meters, This matrix connects the complete set of generalized loads to the

complete set of parameters :

& : ;f; B
(1,18)

LY oLy

The discrete element properties are now conveniently derived from the comple-.
mentary energy principle, undervthe_assumption that all the generalized displa-
cements are specified, To this ﬁurpose the complementary energQ.density (in the
present linear stress-strain case, the energy density expressed in terms of
‘stresses) is calculated from ﬁhe field assumption (I.I3). After integration
over the volume of the elementtit furnishes a} quadratic-and homogenebus form
in the parameters : Sy -

".n,...‘ .'v .U-L '..l ‘. ' l ' .
e ~2“1_?»33_B*B'FBYY+7Y"WY



:The FBB ’ FBY and F - matrices are known as the flexibility matrices of the
element. The complementary energy principle states that ‘

U-q'g-p'ys= u- q' ¢, 8- q' C# Y- p'v

.{13 ‘a minimum under specified q and P values for all possible choices of the

fa and Y values, This requires that

F +F _y = :
g P T ey Y "9
_Fl B +F _y =C'q#p
-BY. LA A §
?This 1s also expressed in a single matrix equation
N
F =c' | ' - T (1.19)
v} P :
\
F . F
o BB By S
. F | :
BY oY

The complete flexibility matrix is symmetrical and non singular. It can be
inverted (numerically if not analytically) to give

B C q
=F C
Y S P ;
And thid result, substituted into (I.18) gives
v O o |l N O R



It is thus possible in any case to express the discrete element properties of
an equilibrium model in terms of a stiffness matrix. This has the considerable
“advantage of making a direct stiffness program available for the treatment of
the problem at the structural level. :
One can then, wonder why the same difficulties that can plague the build up of a
conforming displacement element- do not seem to appear here. The answer is that
the corresponding difficulties are hidden in the perhaps too aingular nature
-of the stiffness matrix obtained.

"Let us look at the displacement modes which can leave the element unstressed

(g=o and Y= o). They are solutions of .

q
K - =0
or, equivalently; of " |
a, ‘ -
c' |- =0 ' - (1.22)
P} ' '

The rigid body modes must be solutions of (I.22) and this is always automati-
cally satisfied. If, however, the number of generalized loads that had to be
introduced exceeds the number of stress parameters by more than the number of
rigid body modes, there are additional independant and non trivial solutions

to (1,22), '

vThis means that the element contains some deformation modes which do not gene-
rate stresses, they are appropriately called "spurious kinematical freedoums",
‘The ideal case is that of an eouilibrium model without such defects, but the
difficulties inherent in this ideal are of the same nature as those of the
.conforming displacement model. It 1s also true that equilibrium models contai-
ning such kinematical freedoms, or generating them by grouping in subassemblies
can be useful, We can either make choice of special geometrical characteristics
to make them unharmful or modify them slightly to keep local violations to the
exact stress transmission property insignificant by an appeal-to the de Saint
Venant principle, Details of those methods must be’ left to the individual

cases (see sections 2, 2.2 and’ 2:2,3),
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2, MODLELS LIBRARY, _
| Most of the clements used in the prcscné report have been described in

préviOus publications. Therefore only the basic assumptions and properties
required to set up the stiffness and stress matrices are recalled.

Those clements for which there are no previous references, are treated in

greater detail,

Matrix notations common to all elements are as follows 3
q colunmnar matrix of generalized displacements

£ columnar matrix of generalized loads.

The virtual work is the scalar product q'g = g'q where transposition {is
indicated by the "prime", )

K square stiffness matrix of the element, defined by g = K q

T “stress matrix, yielding a stress column information on the basis of the

product Tq



.:2.1- Displnécmcnt Models,

2,.1.I- Bar clements.,

2,1,1.1I- Bar Qich linear displacement field (ref. R.2.I).

It is assumed that the bar element represented in Figure F.2.I undergoes
only unigxial strain and, forisimplicity of calculation, the reference axis
Oox is eaken parallel to the element., If the panels, to which the bar is
supposed to be joined, are analyzed on the basis of a linear displacement
field, intcrface compatibility requires that the axinl.displacement of the

bar be also a linear function !

u=oqg + X
1 % *

“The end displacementé u and u, are chosen as generalized coordinates,

so that :

If the loads on the bar segment consist of end loads X1 and Xz and a
shear flow qlz(x)‘, the potential energy can be written as
_ *l»z .
=D = lx q,,(x) vl dx + X w4+ X u
-2
or alternatively, in terms of generalized displacements and associated forces

. e P m uy + u - q'!
p 9ty Q=a's

so that the generalized loads conjugate to u1 and u2 turn out to be

| * %

Q 4 fx qlz(X) NS x
] xi X =X
= + .
Q2 X, - qxz(x) = dx
fhé strain in the eleﬁcnt is
U =-u o .

€x X X = X X =X ( 1 1) q‘



wvhile' the only stress component is

o = T (-1

where T is the stress matrix.
If S(x) 1is the cross sectional arca of the bar, the strain energy can be

written as

‘ U - f %2 e o 5¢( ) dx = Lo K
. p) y x X X)) d&x= =34 q.
_ 1 |
and the stiffness matrix turns out to be :
X L 4 - ,
| ' E s dx 1 =1 1 -1
K = 2 - n
A V2 -
(xl - xz) ] %
-1 1 -1 )
where Sﬁ. is the average‘croés sectional area.
Fieure F,2,I : Bar with linear displacement field,
xl . x.
] - - = — . " <
iy — N — -
W, - v v v v (L. x
2 9 (x) : '
" -

Assumption : u(x) = a +a, x | ‘ L -



TN

' The stiffness matrix can be written as
. fl‘ ‘ '
K= [ ES(x)NNdx S
e, -‘ A . . . A- . , . .‘."

’ ?or a constant crbsq qection _sﬂ there followo

7 -8 1
E.Sm :
K'.'z-‘—- -8 16 -8
1 -8 7

. For a linearly varying cross section such as

e - A - 8, + S,
3 31 - 33
] { , d 2
. L
the stiffness matrix Becomel,f'
.\" . '
7 ‘-8 1 1 -] 0
E Sm \ 4 E sd
K T -8 16 -8 + T -1 .0 1
1 -8 7 0 1 -1

' The axial stress being linear, the stress matrix should give stress values
at two points in order to describe completely the stress field, '
" The two ends of the bar are the convenient places to express these stressea.

Therefore the ltte!l matrix. defined by ¢

% -'-Z'l'l i “L

‘18 given by'_.?' T .T; R




; Fipure F.2,2 : Bar with quadr#tic displacement field.

S Assumption t u(x) = a; ¢ Qg,f".,.""“; x?

\ Yy ) .l - ot r;_'“t
IS, Is 5 |
o Sy
.. - ¢ .I
. | :
v )
Ld lo J il
2a



2,1.2= SLin elcmcnts. .
2 I 2, I- Turner triangle (linear diaplaccment field) (ref. R. 2 ).

llnear displacement field 1s assumed, so that

. . - .

u=a ¢ a,

.2x+a3y

o vee, tagxtay
in.the triangle represented in local axes in Figure'F.Z.Q.

If the displacements sequence is
ﬂ' = (v, f.uz AR AR AN

the stiffness matrix, in locai'axea, takes the well known form reproduced
1“ Figul‘e -F.Z.Il. ! '.': . °
Where 'tm denotes either the constant thickness or' the average .

t. -~% (t1 +e, ¢+ ta] in th§ case of a linearly varying thickness such as

t(x) = A+ Bx+Cy .

The stress mattix giving the local stress. componento in the sequence

\

oxl. o’ ’ 'xy is found to bc
- ’3ff-¥f'yi S 0 -- v-xz\, v xl .4-v x21
L zE B v:;;v’ "lya oo s *25  ST .'£21
(l‘v )le y’ _Z". . e - . . .
“ALx A} x AR E AR A 0




‘Figure F.2.3 : The Turner tfianglé with linear displacement fiéld.

X ‘(1ou1 or stress axes
u :

" Assumption : u -'al +a, x #'03 Yy
+ + |
vea ta x+tacy

BN

2 I.2.2- Triangle using the quadratic diaglpccmcnt field (ref. R.2.2).

~ The quadratic displacement field

u=a +a

4 , o+ 2 4 + 2 . C
. 2.:'c_ @3y ta X ag Xy % y : i

V= + x + ; x2 + + 2

. “7 ua oo 09 y alO all xy 012 y
- is assumed'for the triangle fcpresented in Figufe F.2.4=bis in local axes.
_hpsing'the corner and mid edge displacements as generalized coordinates,
the relation between the 6'.u1 displacements and the 6 first field
- coefficients is easily inverted in the local axes of Figure F,2,4-bis and

RO

- becomes . . . . . . "

cl 05 . A ql.i

‘:wherc :_5 1;6 . (a a ’ a, as'g‘)‘

(.._ R u~ 'us ")



."and the matrix A 1is displayed on Figure F.2.6. _
The same matrix A s applicable to inversion of the telation between the

s vi' duplacements and the lut six field coefﬁcien:s SR
112 '.A G e
712 " (“7 95 89 B9 ) “xz)',

€ -

(vvvvuv VJ) ~

"* The strain components are now. cxpreued as

) ‘ - e € -f(Na L Nx b 4 " Nyy) q

.""'wh"eto q is now the complete displacements vector

"= (u u u u u vyVVvYVvVVvVVv])
123'45611,23"55

.,'and vhere the N matrices are given in Figure F.Z.SI.

-'-_'-If‘the strain energy is written as @

u‘.% UA" M ‘.  ',¢|de

&
with =~ | B S Y
‘,'”M.._E_L(_x_ll', v 1 | ] |
1= . :

the stiffness matrix turns out to be composed of the 9 products.

KR (N Niou'-u N+ N M N
. x 6y

y
] ] ]
‘-,.f"x“x"o’,“x“n“x*“ M, N
, ¢N' nou'u NoeNMON )
: yYy Yo x*Yhy N



which are to be calculated numerically, The matrices

| M- HA Mx dxd?
0' [ ahd.'lo on,

.are easily avaluated for the case of constant thickness t 1 -

ab :
M, = 5

- (a + d)vab

3 M

- M
x

a b2 |
P ._:..l“l.y o= M

M- =dDb (d2 + a d + a2)

XX 12 u

o ab2 (a + 2d)

R ny . 24 '
. a b3
Myy-'IZ' M

. The stresses are given, in loéal-axel. by
: . v 3 ‘

o-Me-(MN°+MNxx+MNyy)q
" Since the stresses have linear variations, enough stress information is
~ generated by the knowledge éf the stress elements at. the three vertices,

“We_thcrqfore introduce- o

TN Fl‘i'no +aN Yo Nz f ﬂo ’.d Nx.+vb Ny

and the (9 x I2) stress matrix will be given by |

1' - “ N, |

P



Other types of local reference frames could be used and would present some
"<'advantagcs but also some drawbacks.
.. For instance oblique coordinates along two edges of the trianglc, or areal
.f”coordinates. In general it is fclt that the attending simplicity 1h the
' formulation of the stiffness and stress matrices in local axes is more than
l counter balanced by the necessity to revert to the global cartcsian frame
for connecting the clements togcther. _
Ve  can neverthcless observe that a more compact formulation of the stﬁffnéss '
matrix is possible in the present set of axes by using directly the matrices
" N N and N which generate the stresscs at the vertices

[+) ’

b ' | -
K,"%; l(No*N,+N2)"M (N°+N1#N2] #N;}IN°+N;}INltN;lF112}

Figurc.F.2.4-bi§.€ Trianple usiqgrthe quadratic displacement fiecld,’

‘IY)V .44

1 . - o Y

‘l“' ~:
a L

" Local axes

v _l;f:; T - - o
* ¢ +a - x2 Xy + 2
Assumption tousao ta, *@M.a3 y+o, x2 +a xy+a y

g +a ‘:”4 y ;4 2.4 . 2
v , qz w90;4,4f99v¥. %0’ x .° xy 8, Y

e



2,1.3- Spar clcments.,

>2 I.3.I- Spar element for lincat displaccnent ficld (ref. R.2. 4).

This spar element is to be.used with skin elements undergoeing a linear- 

f‘displacgmcnt field, at least along the spar cap interface,

‘Thcrcforc, in order to satisfyAintcrface conpatibility, the longitudinal

.~ displacement in the spar has to be linehr in x (sce Fighre Fo2,6-bis). The

- other basic assumptions are that the cross section remains plane after

‘deformation and the vertical fibers inextensible (i:I= = 0) , Consecquently,

‘the axial displacement u(x, z) 1is of the form .

R (al +a, x)

. The cross sectional rotation is therefore

2 .

P(x)-w-;_ﬂ;al+a x

.

The vertical displacement will be a function of x only and the connections

.with adjacent spar elements (in x = : a) mnust be conforming.

A cubic function will give the required degrees of freedom

, e . 2 3
w(x) = GJV* u~ x+a;x"+ax

The 6 generalized coordinatel gtving a full description of the displacement

fleld coefficients are @

—— u] -' “ (+ a, + h) }A - | ‘\lz -y (-va N <+ h)
evGa o wevea
[ aw ‘ o ‘ “-' -ay-

"‘l

The six field paramcters a; are éasiiy expressed in terms of the generalizec

ndiaplacements and the displacement field can be placed in the form

2

Cu(x o, 41‘:),---1- -l‘-"‘-( u tu vo‘-(ul' .-‘uz)-:s) - z p(x).

.

GRS KRR ‘,n*f‘ CALISL R A R

SRR (.. -v,u« ) @

) .
R T4 e LY e



.. The normal load in the upper f}ange of coftant cross section S 1is
N=EShop'(x) - Y

If one assumes a constant value for the web thickness t » the bending

'vmoment and the tran?verse shear turn out to be :

_ : +h
'H‘(x) -2 N h+ [ o 2dz=EIp'(x)
e e o 2 th3 2
with an effective moment of inertia @I e —=————+2Sh
‘ I3(l-v2)
_ "'+h '
T(x) =t [ - 1 _dz=2Gth.(p +w')
A S
The strain enefgy is therefore _ . '__ -
ta .2 ‘+a ‘
- 1 M 1
Vesz I ( thh) dx'-'i'.(EIf (' (x))? dx
- =a ) -a .
+a
¢2Gh [ (o (x) +w' (x))? dx )
: -a

V:From this, the stiffnesa matrix io casily derived and diaplaycd in Figutc
F.2, 7.

- For a displacement sequence
, _
q' = (v, Y2 Y2 4 ‘) - :

The corresponding generalizédiﬁoréol are

g = (2 J;?."z' oW ee)

From virtual work conaideratlon, .nd fot tho loading deucribed in Figure
-4%2v8 they turn out to be e ' ' '



M C +a

Uy - --2—4-21 f-a ._‘.(1 +-:-:-) q(x) dx s
oM, sl | .
uz---i-z-q--% f ,..‘(‘ --2-) q(x) dx '

.

E R ‘l:x X2 s
e [ (- 0e3) e e

=
[ ]

. +a "., .
LT RANCRT NOEL R

@
]

) .-'?; fa (1'_'"7:")’(14»%)2; p(x) dx

-
4

a te x X2, e
, "t T f‘ ({f;) (r-3) p(:f) dx

L]
]

\J

:Ihe stresses have now to be expressed :

oy ..E°‘z p'(#)\: |

oz-Eovzp'(x) | '- 'EO-.I——E-—_-
1 =2
.sz =G (o (x)'+w'(x))

'd.x and Oy aré constant with respect to x , while ¢ is qUadr“ic and

x2
is therefore determined by three local values along the length of the spar.
. I

"The stress matrix has therefore to contain the following components’

Oy (.4- h) = on.,ﬁ-.;-fl—; (u‘ - uz)

| L0tV
op (+0) = E" 75 (v - )
4 . Ol-v l-.ll v .
o Txa (’.)_.E,_"-Z-_ (T\—.ol) |
R SR TP LI Y, " :
ot (O B S (2 e a T 2T 3T )

e bt gley)



or, in matrix naotation, using the same displacement sequence as defined

above o= T q with

: L -l
2 a 2 a
v v
2 a “2a
- E 1=v 1=v
T=- 2 | TH 7
1l =v
1=V 1=V 3(1-v) | _3(-v) V-1 vl
- % h 4 h _ 8 a - 8 a 8 8
1=V ley
2 h- 2

sy

Two points of theory need to be recalled for this spar elenment.

' THe first one is that conformity only requires identification of the edge

1.rotationsrepresentcd by u, and w, and of the tip deflections LA and
v, at the interfaces between adjacent spar elements. The tip slopes ¢l

~and .¢2 do not have to be identical at an interface and follow the discon-

' tinuities of shearing strain associated with a possible discontinuity of the
shear load. Identification of these slopes has usually no significant
influence on the diSplacémenté but changes completely the shear stress
picture in the spar. Thercfore the slopes are generalized displacements

‘ internal to each element which could be eliminated at the clement level,

- However it is usually more convenient to achieve all condensations at the
structure level, The stiffness maﬁrix of the spar element is therefore
retained in the form where An internal left-hand slope and an internal
right-hénd slope are present..

The second po}nt concerns the'.cz = o0 assumption which avoids a more detailed
specification of the manner in which the transverse distributed load p(x)

and the interface shear loads are actually applied but also makes the web

stiffer by a factor as mentioned in the reference papers.

1 =V .
. This means that a comparison of structures using displacement spar models or

. equilibrium spar models will exhibit convergence towards two different

"exact" solutions. . :
This can be avoided by deliberately replaclug in the dilplacement model the '

previous momen: of 1nerti¢ by the one - : ;”: L

I"% éh’ 2 sn2 R



.. of classical beam theory (a result of the stress assumption o, = o).

“* While this modified model, which now implies a stress assumption, is no more

+a rigorous displaccment model and cannot pretend to exhibit lowcrLbound,
T; characteristics with respect to the exact solution of elastici£y7theory,
' it nevertheless remains a displacement model with lower bound characteristics

within a theory which considers classical beam theory as the ideal reference

~ standard.

. Tigure F.2,6-bis : Spar clement for linear displacement field.

°

'-Ti Figure F.2.8 : Loading for a linear spar element,

v {—EL. !ff | L
r — — %
ki'g L -
Y Pep—
oM . ; 3 “y
TR T, - 2a__ " . '
e usz (u[ . a, i)'  -,' : o

- +“ x#l‘".xz 0' lx3
vEayTe, XxTa, X Tag

".'-,,V | | I .n S




S

2,1.3,2- Spar element for quadratic displacement field (ref. R,2.2 and R.2 4),

In this approach, the skin elements to which the spar is attachcd are
supposed to deform according to the quadratic displacement field described
" in section 2.I1.2.2, By simple extension of the previous considerations, the
now displacement functions will be
X+ a, x2) =z p(x)

:u(x, z) =z (al +a

w(x) = a, ta x+a x2 + o x3

where b(x) is again the cross sectional rotation,. ,

It fs worth noting that, in this approach, the above assumptions allow an
exact representation of the loading cases associated with a constant shearing

- force and linearly increasing bending moment. The solutions are only weakened
' by the stiffening assumption of inextensibility of the vertical fibers

€, =0, which again can be avéided by using the moment of ipertia’of classi-

. -cal beam theory, ' L .

* The seven generalized cod:dinatel chosen to describe the displacement field -

- are indicated in Figure F.2.9 @

u =u (+a , +h) F"  u’J- u (Ig ’ +h) ' u, = u (-a , +h)
."l =.w (+a) v'f':" .y o | wzv-vw (-a)
4 = .(aw/ax)a ~, : . 02 - (aw/ax)__a

‘;‘In terms of those generalized coordinates, the .displacement functions take

»

the following form

'j,“"ﬁ(“ +?(u -u;).%#%(u .4;“2-2..“)('3)2)'2'0 (X)

"'7(‘-'1""") 7.'(° "z) 7.'(3(" =v,) =2 (¢ *¢z) ) )

v% (6, =0) (& e (w = va (¢,*’¢2))(z)
‘.whtle_thc strain energy remains. as beforci  .. ' f' |
RO M2 ' -
...,U-% I. ( _G-m)dx

.-;.{a'x;r (,-m) ax.zcm; * ot + v ) ax
L L. . L TR, o

PN



with Ie-2th_ 4 5gp?

3(1-v?)
Substituting in the strain energy the relations of p(x) and w(x) given

above and denoting by

= (ul u3 l"‘.2.“’1 w2 cbl ¢2)

'El (! U
g' = (20, 2V, 22U, W W, o @)
the transposed columns of genéfalized displacements and forces, the stiffness
matrix is easily derived and appears in Figure r.2.10.

Using the same external loading as in the linear spar element (Figure F.2.8),

the virtual work equation yields the significanée of the generalized forces

ez ez [ (G0 1)) 960 e

G ped 1T (EE ) e e

"The forces W1 wz ¢1 ¢2 are the same as in the linear approach.

The slopes ¢_. and ¢, are again independant of interface requirements

and can be eliminated at the structural level., The interface connections
betwecen spar elements are the same as before, The newly introduced disp1a¥
cement u, must be identified with a corresponding one of a skin panel,
Turning now to the stress calculations, it turns out that

ou

exu.a—x.n:z[aé.-l-2a3x)
€, ™0 v
ou oW

o, = — z (az +2q x)
oznvE z(q +2(; x) )



To allow easy interpretation of the stress output, the following local stress

values are required.
. -‘0' = Oy (+a , +h) , o, (+a , *h) T, (+a ,A+h) » O, (-a , +h) ,

g, (-a v. +h) , T, (-a‘. +h) , 1fxz (o, +h) }

‘They are calculated by
o=Tq

with the stress matrix T given in Figure F.2,II,
A special property of the quadratic spar element is worth mentioning.
Suppose we accept the assumptions of plane cross-sections and vertical web

fiber inextensibility, implicit in

u(x, z) =z p(x) - w (x, z) = W(x)
and derive, from the variational principle of diSplaceménts, the corresponding
differential equations of beam theory : v

M=ETIop'(x)

2 Gth (p + W")

L}
[}

M' =T=2h q(x)

Tl

- pG)

then, the further assumptions on p(x) and W(x) contained in the quadraﬁic
-spar element give an exact solution of those differential equations for the
‘case q(x) = o and p(x) = o ;

Those assumptions were in fact purposedly fitted to an exact solution under
constant shear load T and linearly varying bending moment M , Hence, if
}the left-hand 'side is built-in, all deflections and rotations under tip loads
are exact within the contgmpléted beam theory. Applying the reciprocity
principle it follows that the tip deflection and rotation will remain exact
under any contemplated loading. The beneficial effect of a subdivision of the
spar in more and more elements will only apply to the convergence of interme-

diate deflections and rotations to their correct values.



The same remarks will hold for the engineering bean theory by the previously
cormented modification of the moment of.inertia.

~ A special property arises in the quadratic spar element which is worth mentio-
ning. Due to the coherent assumptions formulated for the rotations o(x) and

~ the deflections w(x) the model gives under tip loads or tip moments, deflec-
tions and slopes identical to the classical engineering beam theory when the
overestimated moment of inertia is used., As the loading by a distributed load
p(x) 1is acﬁievcd on the basis of the equality of virtual works for the actual
load and for the tip forces repfesenting that load in the model, it follows
that the tip deflections and slopes obtained by that procedure are also the
ones given by the enginecering beam theory., This property can also be étated
as follows : the tip deflections and slopes of that spar element are always
those of the engineering beam theory for any distribution of transverse force
p(x) provided the correct loading functions are used. The deflections and
slopes arc therefore independant of the number 6f elements into which the

spar is divided.

4

. Fipure F,2,9 : Spar element for quadratic displacement field.
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“Assumption : u=2z (o, +o X + o x2

w=a +a X+a x2 +q x3
", 5 . .6 7



2.1.4= Plate bending clement,

~2,1.4,I- The quadrangular plate in oblique coordiﬁates (rcf. R.2.5),

A conforming element of quadrilateral shape has heen obtained from a combi-
nation of cubié displacement ficldé in the four tr@éngular regions delimited
- by the edges of the quadtilatéral and 1its diagonalé, as represented in Figu.e

F.2,12, Assuming~thht the complete cubic deflegtioh field

W e o+ x + +a x2 +2 Xy + 2
U S R A % T % ¥

o 3 2 X 2 ;3
+ f (a7 X3+ a, x%y * oy xy° + a;, Y )

is valid in the triangle O0I2 , the IO coefficients can be determined in
~ terms of the generalized displacements selected to insure the compatibility

of deflections and slopes with an adjacent element, These are the local

deflections Vo VI W, o the local 3% nlopes ¢ gg ¢ the local 5y

ZBIOpes Yo w w at points "0 , I and 2 and the T slope- , at mid

distanco along the edge 12. These generalized coordinates are aequenced as

follows . B

' - ' .
q; = (v 45 ¥, ¥ 9 v, 02 v, 4,)

The curvatures can be exprecsed as

Voex ™ 2 a, + ?4 : 97 0.8 Yy ag

9

."xy -2 as f 8 x °a + 8 y a

wyy - 2 06 + 8 x 99 ’.24 y %0
The coefficients required to cxpreaa the curvatures in terms of generalized
coordinates are easily found
a -;1-f( -3 v i z'.' ¢, *3v -—ay )

B ‘2 0_ 0_: l," l
.T_" .b( 6v° Z.QO-Zb 6006.'1-301 +2bwl
' AR o Lra -4 a
c ) 2 )



o=l (= 3w, m2hg e 3w by, )

4 1 ) . . o
a, =T e (Zw +a¢ -2w +a ¢ )
7 483 0 . ] () 1 1
LR f T (6w +;?fa 4+ 6y - § wota g =by s o -

- a ¢2 +4a ¢12 )

1 | | ) L ) '
ay = Y ( 6 v, tag¢ + 2b 18 6 w1.+.a ¢1 2 ? wl +4 a ¢12

el (2w +by -2w +b
104 p3 (2w +b v, -2, v, )

' F{gure r.2,12 : The quadranguiaprlate bending celement,

Y

Fipure T,2,I4 : The quadrangular plate bending element. .

The I6 peneralized displacements.,

X (Loul axei )

Structural axes . '



The curvatures can then be expressed in matrix form :

W
XX
Yy = w = ( 1 W + 2 x wx + ——2-1 W ) q
w
yy

where the matrices W ,-Wx Wy are built from the above coefficients,

The bending strain energy in .the oblique coordinates (x , y) is

W, +w =2WwW_COSa,

- 1 ' xx___yy xy - -
U 7T k. UI D {( A R ICED)

(wxx oy = wiy)}dxd

or, in matrix form,

U =% f/ Dy'Hy dxdy

A

where

1 - - 2 cos g cos2qy + v sin2gy
1
I = - 2cos a 4 cos?g + 2(1-v)sin2g - 2 cos a
sind o :
cos2q + v sin2qg | - 2 cos o 1

Substituting the curvature expressions into the strain energy and noting

that, for a constant bending rigidity D ,

g o ~. 2
III‘D dxdyug—b-D S III Dxdxdyn.a_()_lz.l')
: III Dy dxdy = 33—~D f; | III Dxy dxdy = ;Ez- D

| 2y . b3
ffI D x2 dxdy = 5= D ' I!I ? y2 dxdy = %if D

.



the strain energy turns out in the form
v =l
17749 % %
- where the stiffness matrix Kl of the first triangle can be evaluated from :

K1=,D
6 adp3

{3WHV+2 (WHW+W HW +W HW_+W HW
x s x y 'y

CWCHW, + W HW )+ W HW + W HW )
X X y y x y y X
Closer inspection of this formula reveals that, introducing the combinations

A

=W+W B, =W +W ' C,mW+W +1W
R x -7 y 1 P 3 y

KN
~

the number of products is reduced to three

D At ' |}
2 emtmamt—t— 1 + 1 +
K { Al 13 Al Bl I Bl (?1 H Cl }

! 6 adb3
10 B1 *and Cl are simpler than the W matrices
and are given in Figure F.2,I3, '

Furthermore the matrices A

The generation of the stiffness matrix for the second triangle follows the
same procedure, This time we obtain conformity along the interface x = o
of the deflection w (hence also continuity of 9aw/3y) and of the slope

ow/0x by retaining the values of the coefficients Gy b G, » 05 s G5 b O
ag and 0 of the first field, New values a; a; aé can be adopted

for the remaining coefficients, The coefficients of the second field are

given by the same formulas as above provided we change

a into -c¢ , w .into W ¢, into 05 wl into ¥,

1

3 ]
and into . *
12 %5 °

' The generalized coordinates for the second field are thus

q,.= (v, %ﬂwo Vo0g ¥y Wy 0y ¥y 6y5)

| The stiffness matrix is then obtained as

' = 1 ] )
Ky {A BA +B HB, +C HC, |

6 c3p3 . 2

v

"where A, , By ; C, are obtained from A, B, C1 by changing 'a into =-c



~ For triangle number 3 , deflections and slopes at the interface y = o are
" 'identical with those of field 1 1if the coefficients a o, a3 o, usfa7

and a, are retained., The new coefficients are a ; and ' “10' . To

determine the coefficients in terms of the generalizcd displaccments

g

- (w bo Yo ¥y & ¥, v, b, ¥, b,)

i we can also use the formulas of field 1 changing b into =d ,° v, into
._wu D ¢2 into ¢, wz -into v, and LI into ¢hl °
The stiffness matrix K3 is given by '

K3’ -

"HA +B' ¢ C! :
0 { Ay H A, 33 H B, + C, H c, ]
~ where As ° B3 ’ C3 derive from Al', BI , Cl by chéﬁging b 1into ~d.
Finally the fourth field conforms with fields 2 and 3 at the interfaces,

4f 1its coefficients are

0000 Gq7000

12300 10

In terms of the gencralized.coordinates
] . . ’
a) = (v, ¢ ¥o ¥y 0, wa W % Yy 05)
The coefficients derive from those of field 1 by the combined modifications ¢

a into -c , b into -d , wl ¢1 wl' respectively into w3 ¢3 wa. .;

v, ¢2 wz respectively inFo v, ¢~4¢“ and ¢12 1nt9 ¢3“

The stiffness matrix is again of the form

¢ Ry m—D—-{AlHA +B'HD scCluC |
6 c3d3
_and the matrices A, , B“ » C, are obtained from A, ,'-Bl » C, by the
double change of a into =-c¢ and b into -d . |
- The four partial stiffness matrices are then combined into a 1I9 x I9 matrix

fJf defined by energy addition o _ L . ;
: . .?;, - S , ; g _ ?
Dagkgagep'dp
) S T ' . ' '

iwhgre ‘

. - « 0 . )
P ("6 ‘o Yo ¥y A * "z * B2V N Y e s )



This can be done by adressing correctly the elements . of the K1 matrices in
J as they are generated,
~ Dut J is not yet a proper stiffness matrix since the I9 coordinates of p

. are not independant. They depend on 16 coefficients
\

P G

(A=1,2,3 ,,7'10) and a! (L=, 6,:7, 8,9, 10)

%y i

It 1s 1hterest1ng to observe fhat a a, » ay which represent the rigid

body modes and «, which represents a torsional deformation mode, are the

_ S
only coefficients valild throughout the four ficlds. Equating the four diffe-

-rent fileld expressions obtained for the as coefficient, we obtain a system

of three equations that can easily be solved for the deflection and slopes

: at the internal node :
c a ac
mma— . ¢- .
wo - a+c w% “a+c 3 32a+c5 ¢1 3(a+c$ ¢3 ’

2 ac - :
. TCare) (5507 (-4 4,444, +be, - ¢u1)'

)

3 B " a. e d b
o " are M7 W) TTmTy Y T TS ¢ TR %2t TRy Y

2

= Gro) (bed) (ad ¢,% cd 9,5 bc o, + ab *ux)

c a 2 ac '
Vo "aec Y1 * T9c 3 Za+c52b+d5 (- $12% 9237 95,7 ¢u1)

If thesq'relations are put intb'matrix form

v,
to| s s
v (
wiéhi 'f- LR "Ein *2.95 % ¥ Qﬁ:.; ‘u"nz,‘zai‘;u.¢un)
a coﬁdgﬁiqtion matrix 1lvdefi§ad by | | | '.\;f | |
o M| "‘  T ;"'
N = :



"where E 1s @ I6 x I6 identity matrix so that

p=N qi;;
f :h°“=°=°1 enorg§‘becomea
U -.%. q'l( q
" with the.(proper) stiffness matrix
K = N' J-N . i

- The-next transformation for that matrix is a reference coordinates transforma=
tion. The best policy is to refer the slopes at nodal points to global struc=
tural dxes and transform the mid edge slopes to normal slopes. In fact the
displacements known along An edge are just sufficient to express the normal
slope anywhere along that edge. In doing this, a sign has to be affected to

. tﬁé normal and the outward normal was selected. -

" From that choice follows that an iﬁentification of normal slopes at mid
distancé df an interface implies a change of sign of one of the two normal

- slopes, This is incorporated into the program of element connection. The
finél set of the I6 generalized displacements is indicated in Figure F.2.I4,

- 'Turning now to the stress matrix generation (which here is rather a matrix

- of bending and twisting moments) it is recalled that, in each triangle, the

 curvatures are given by a relation which, for the.firat triéngle, is

1 w+._2_x-.w +—Lw)

- ( : X y
a2b2 adp? a2b3

e e ...

_ It follows that the moments expresued in local oblique coordinates are

M
x ' .
me M | =DHYy -D(-—-nw+ 2 gy ¢—JL-uw) q
' Xy . n2b2 a%2 % a2p3
M
Y h

‘These moments being linear in x and y are determined by their values in
three points of each triangle and it is convenient to sclect the three
‘verticess Therefore the moments generated in the first triangle are



mn (o , o) Sl HW
D

82b2 | )
m (o , b) HW+ 2H Wy

m=|m¢(a,o)|= HW+ 2H wx q = R, q

1 71

‘The moments matrix can first be expressed in terms of the augmented set of
‘generalized displacements p . '

This entails merely an operation involving a localizing matrix L,
q, =L
whence m = RI'LI p

The second operation is a condensation expressing the moments in terms of the

I6 independant displacements, Since
p=Ngq
we have 'ﬁ =T, q © - with T, =R L N

Tl'is the final moments matrix for a triangle.

It is noted that the R1 matrix is gencrated from the field coefficients
given at the beginning of this section simultaneously with the matrices A B
and C , '

Then the localization and condensation processes are applied simultaneously
to the stiffness and moment matrices in the final version of the program.

The moment matrices for the other triangles are generated using the same
'changes in R1 as in the A , B, C matrices. The moments so computed are
given in the oblique axes and interpretation is not always easy vhen passing
from one element to the next one., This is a counterpart of the advantages of
using oblique coordinates, When general reference stress axes can be defined,

.an additional change of coordinates can be applied to the mg matrices,



2,1.5- Ripid jointed frame clement (ref. R.2.8).

This element is assumed to obey the classical engineering.beam theory.
It consists of an axially loaded bar as described in section 2,I.I to which
torsional and bending stiffness have been added. | ' }
The behaviour of such an elcment can be split into 4 modes of deformation :
the first one is axial tension, the second is torsion and the last two are
bending in orthogonal planes, |
The four modes yield independgnt stiffness matrices which are assembled at
- the end of the process, ' -
The beam is represented in Figure_F.Z.IS with sign conventions and local

axes location,

Axial deformation mode,

From 2.1.2 follows that, if

u=oqoa +a X
12

the stiffness matrix corresponding to the generalized displacements

' - .
q (u1 , uz) is

Torsion mode.

Assuming that

= a, ta X
¢x 3 4

the engineering beam theory furnishes

for a displacement row qé = (¢x1" ¢x2)

and where GJ 1is the torsional stiffness.



Bending in the yx plane,

Aséuming that the y-wise deflections are given by a cubic such as
v=oa +a x+a x2+a x3
5 6 7 8

and taking v, , v, , ¢, = (av/ax)l and ¢, = (av[ax)z' as generalized

coordinates, the bending moment in the beanm

‘ 2, - =
M=fI, 2X=2EI (a +3a x)
Y ax2 y 7 8

. can be placed in the form

1 3% vl Y
M= 2B (g (0 = 0p) + (0 0 - — ) )

The bending energy being

the stiffness matrix assoclated to thée row matrix- q = (VI; 10 Voo ¢z2)

turns out as

12 =61 - 12 -61L
ET -61L 4 12 6L 2 1.2
K o —— .\‘ '
L3 : ‘
- 12 6L .12 - 6L
-6L 2 12 6 L 4 12

Bending in the 2zx plane yields a similar relation, where Iy is changed
- into Iz and 9, into - ¢y according to the sign conventions of Figure
F.2,15. | |

Assembling these matrices with the displacements sequence

ylelds the complete stiffness matrix of Figure F,2,I6.
For stress computation, as no information need be given about intermediate
sections of the beam, only the tip forces and moments are printed out so that

the so called stress matrix becomes identical to the stiffness matrix.



" Fipure F,2.15 1 Ripid joihtéd':’fi:‘anie element,
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2,2= Equilibrium Models,

2,2.I- Bar clement under constant shear (ref., R.2,3 and R.2.2),

The equilibrium equation governing the axial load N(x) in the bar
represented in Figure F.2,I7 1s 3
dN

== - (the shear flow)

In order to connect this bar with skin panels analyzed under a constant
shear assumption, this equilibrium equation can be integrated for constant

T , giving
N =28 -'T x

Two generalized forces are defined at the end points to tramsmit the axial
load to adjacent bar elements, The third is defined as the total axial load
transmitted by the constant shear flow :

-

Q = N(+a)=8B-1a

Q, ==N(-2a) == (8+1a)
. +a

Q= ] v dx=2ax
-a

The overall equilibrium condition Q1 + Q2 + Q3 = 0o 1is of course satisfied.

The three equations express the generalized loads in terms of two stress

parameters; in matrix form

with | g' = (Q Q; Q)

C= o 2 a ~ 1s known as the loads connection

matrix.



The complementary strain énergy of the bar can be written as

1 -
3 b -F B

where F , the flexibility matrix, turns outngo be

+a +a

| - dx : xdx
1 o L
F - -E . +a " +a
. ! - xdx ; x2dx
- Yea s -a 5

The complementary strain energy principle is then written as

G%_b' Fb-g'q) ~ ménimum (in which g' =b' C'),

By,differentiation with respect to the elements of b (the stress parameters

the minimum conditions are found to be

Fbe C'..q .
Then - .bwF C'gq _
-and finally g=Cb=Kq ' _; }

with a stiffness matrix K= .CF ! C',
For a constant cross section S , the stiffness matrix is found to be

2 -3 1
ES "
K - -3 6. -3
1 -3 2 B

The axial stress is given byf

. N 1 '
ox--§--§-‘(8-1’x)-l



" Being linear it is determined by its end values., Hence we generate

oxl .
q=Tq

Q

B

]
N

%2 | ? -3 o ,.2

where T 1is the so called stress matrix,

: The significance of the generalized displacements is deduced from the virtual

work equation which gives

q, =u (+a)
=u (- a)
+a

q, = --'1f u(x) dx
-a

Figure F,2,I7 ¢ Constant shear bar,
17

___.&,1 p— —— 1.9
P . . . i - . b — R
' : -d _ o . +a :
2a . ' ?‘

. Assumption : T = constant.



2,2,2~ Skin element, Constant stress quadranpgle,

The first skin element to be developped as an equilibrium model for upper
‘bound analysis is the constant stress triangle reported in reference R.2:3 or
'R.242, It is sketched on Figure F.2.I8. ' ‘

The gcneralized'loads are defined to be the stress resultants along each edge.
it was shown that, for constant thickness, the corresponding stiffness matrix
is directly deducible from that of the linear displacement field triaﬁgle of
secﬁion 2,1,2,I by taking as reference area the so-called skeleton triangle
-(hatched in Figure F,2,1I8); that is dividing the area of the physical triangle
by a factor 4, _ : ;

~Howevcr, direct manipulation of the stiffness matrices of individual elements
of this type can lead to computational difficulties, because kinematical
dcformation modes arise each time four elements are grouped to form a quadri-
lateral piece of skin., This situation is depicted on Figure TI,2.19,
Mathematically, the complete stress field contains I2 independant parameters :
-the three stress components of cach triangle, while I6 generalized loads are
involved in the stress transmission mechanism. The I6 - I2 = 4 dependancy
relations between the loads contain the 3 overall equilibrium conditions
-(corresponding to zero virtual work in a rigid body motion of the quadrilate-
ral) and one further condition that must correspond to zero virtual work in a
kincmatical mode of freedom. This mode is fairly easy to visualize if one
observes that (at least for the constant thickness case) the generalized dis-
placements can be taken to be the local displacements at mid distance of ecach
edge of a triangle. This is equivalent to having the four skeleton triangles 4
pin jointed at their vertices. Then, if one 1s considered fixed, the other
three can deform as a three bar linkage.

In references R.2.2 and R.2.3 it was proved that, providgd'the 4 internal
nodes are not subjected to external loads, this kinematical frecdom does not
restrict the loads on the 4 external nodes when the subdivision into triangles
is thfough the diagonais of the quadrilateral, In this case the kinematical
'ﬂeformation is such that each qkeleton triangle can pivot about. its cxternal
vertex; wathever the external loads on those vertices,they do not produce any
virtual work. As a consequence it must be possible to set up directly a
stiffness matrix for such a quﬁdrilateral and one Opérational procedure is now
“described, / ' '

The local axes of the quadrilateral element, as shown on Figure F,2,20, are
orthogonal, their origiﬁ is at the intersection of the diagonals and the x

- axis cuts thc'edge 12 in equal segments., )

.Although sone simplificaﬁion would result from the use of the diagonals

‘themselves as a natural set of oblique axes, the necessity of a back transfor-

‘mation to global cartesian axes will perhaps offset the advantages.,



‘ length) is first defined in the whole quadrilateral

- A basic stress field (the term stress really denotes here loads per unit

o, " Bl Oy - 82 'xy = 83

fﬂJ'Thil-il expressed in the local-axes x' y' of Figure F.2.20 by

o' =zo T .9 =40 Oy = B“

X

o Hente; there is one additional parameter abplicnble to the area 234,

p:Reverting,to the axes of the basic field, the additional field 1is

2 ' 12 : o
- cos< ¢ - sin = sin cos
Oy 48“ . oy B~ “ el | Txy By 0l 61

B "A second additional field can be injected into the area 123,

" Fipure F.2.18 : The constant'Streés.triangle.

Y.
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- A first additional field 1s.th¢n defined inside the area 234 by the condition '
) "'thht, along the interface 24 with the basic field, no stresses be transmitted.
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;ﬂ Fiprure F.2.I9 : The quadrancle composed of 4 independant trianples,

‘:.A;fumptionﬂz o, " 8,

L )

. oy - 82

Ty -'83 in each triangle 0

13 *

" Fipure F,2,20 : The quadrangle subdivided by the diagonals,




O'yn o0 .Txuyn =0 Uxu = 85

Or (the angle e2 being considered as negative on Figure F.2,20)

‘= sin ¢ cos
Ty ~ Bs 2 %

= 2 . - = + 02
ox 85 cos 62 - Gy 35 sin 02

It satisfies the conditions of zero stress transmission across the interface
24, Hence, considering'the didgonals as interfaces of stress transmission
between the four triangular subareaé, we obtain by superposition a 5 pafameter
field in equilibrium without body forces. The gencralized forces or stress

resultants along the cxternai_boundaries of the quadrilateral are

H;Z % 9% yzl * Txy x12 43' H23 " O% y32 * Txy x23
le ="’y 127 Yy Y1 N D Va3 T Oy Xyt Tyy Yy
.11:34 = ox' Vi3 ¥ Txy ¥ o Har ™ % Y ¥ Ty Xy
Vi =v'oy X3y +-jrxy Vi3 | Vy = Oy ¥u1 ¥ Txy Y1a
where xij and yij stand fof X, = xj and Yy - yj respectively,

The stresses involved in those formulas are those effective in each triangu-
lar subarea bordered by the edge under ccnsideration. This is summarized in
Figure F,2,21.

"The connection matrix C involved in the relation
g=Ch

with g'=(u v 'H _V_ H V. H V)
_ 12 12 23 23 34 3 41 14

13

b' = (8, B, B3 B, Bs) o

follows from this and is given by Figure F,2,22, Again, from the stress

‘table of TFigure F.2,2I follow the 54 _matrices defined by = _.

X o
o= | o, =s;b  i=1,1,m1I, 1.
Txy



and the flexibility matrices

expressing the energy content

b' F, b

1
Ui =3 i

of each triangle. Qi denotes ecach subarea, ts the constant thickness of

the skin and

“_l -V o
-1 .
M = -V 1 o
‘o o 2(1+v)

The total flexibility matrix is F = L Fi and is described in Figure F,2,23
for the case ti = t a common constant thickness, This matrix is inverted

numerically to produce the stiffness matrix of the quadrilateral

K=CcF ' ¢

The stresses in each subarea can be computed from

o, =8, (F!

]
i i C\) q

(the true stresses follow by division by the thickness).
From virtual work the generalized displacements are found to be

1

j .
uij = ji u ds v v associated to | Hij

- j e , T
v = vds associated to \')
i Ii ' . ' : 1j

If the thickness is constant, the real stresses and then also the strains are
constant in each subarea. A linear displacement field is obtained by integra-
‘tion and the generalized displacements can be interpreted as the local values

"of this displacement field at the middle of the edge 1j o



2.2,3- Spar clemcnt. (Web ‘only. Spar caps are assembled as bar elements).

2.2.3,1- Upper bound version (ref., R.2.2),

In this approach the skin elements adjacent to the spar cap are supposed
" to be of the constant stress type. This means that the shear flow feeding
the spar éép 15 constant, A ' .
Along a transverse cross scction of the web the distribution of shear hés to
bevsymmefrical with respect to the longitudinal axis, the distribution of
Lox strcssés anfisymmctrical. Therefore the following‘stress field is assumed

_in the web represented in'Fngre Fi2,24,

6z ’
%" 2 (Bl-fsz x)

h 2
oi ) ’ Here again stresses mean loads'per'
unit length,
z - -
T - s L d
e —— Xz B 3 3 h 2 Bz

It satisfies the inner equilibrium equations without body forces.

It is worth noting that the assumption o, =0 implies that the external
vertical loading has to take place through end loads in sections x = la .
An cxtension of the model is fequircd to take care of distributed loading.,
To characfcrize'the continubuq stress transmission to neighboring elements;

the following generaliied forces were selected

q = /_a» (1), dx=~6af +2a8
- +h S
My = I -h (ox)x-+a,f dz méh (Bl ta Bz}

.’}_Iz,-f.h.(‘o) tdz-loh(-Bli»aBz)

h (- B, + Bz)

~
[oX
N
8
[ ]

) ".d;-zh(az-ss)



" Two generalized forces T and- V are required to characterize the par&bolic
shear distribution across a vertical web cross section. T represents the -
total transverse shear load, V measures the parabolic distért‘ion; it would
‘vanish were the shear distribution constant, '

_The connection matrix follows from those relations ¢

N
.

g=Cb

. . '- . . .
."_m.' g' = (T, v, ,H‘ LN 2]
. and o bl (5, 8, 83)_" | Af
o () 4 h o (] -4 h o
oy 8 e . 8 :
‘C- = 2h 3-11 4ah._ 2 h --s-h & ah ' - I2a
2h 6 . o ‘:_ -2h o - o 4 a

A matrix form of the stress field assumptions is

o=S$ b
with - . bz e EX .0
; h2 SN R2 -
Ss= | o o o
) 2
o a3zl 1
~o - h2 .
. | I S
and g’ (ax o, sz)' B

The complerhentary ntrai_.n energy can then be expressed as 3
z I o -l Lye s
s 5 o' M o dxds_--fb F};.

with the flexibility matrix
"Fef[ "M 5 dxds

——



 For a constant web‘thiéknesaA t , F 1is easily obtained as

TBeh -0 °
16 a3 . 36 ah y ah
F= ° " Eth + 56t/ -4 Ct
o ah ah
° 4 &t R

. It would be difficult to make'use of the corresponding stiffness matrix
K=(C Flc » because of the spurious kinematical deformation modes involved.

a

* Indeed, the homogeneous system
C'z=o:

has four independent non trivial solutions, which are of course also solution

A

of the system

7’

Kzw=o

~This was to be expected, since seven generalized forces had to be introduced
for a stress field having only three¢ parameters., Therefore four relations

exist between thg seven forces, In their simplest form they are
T, + T, =0
a (T, 'Ta) +M. +H +2hQ =0
Vl * Vé'; o
My '+.uz. + 5av =o

The first two relations can be recognized as overall equilibrium_conditions
of the web, By virtual work they correspond to the two rigid body modes

zl = (1 0 0] O o 0) a vertical translation

-

z, = (a.o 1 =-a o 1.h) ' a rotation,
(The third rigid body mode, horizontal translation, is accounted for by the -
symmetry in the field assumptions). o



The last two relations correspond to deformation modes
2, " (6 1 001 o o)
z =( 52 1 o o 1 o)

which leave the model unstressed., _
They are of the same nature as the deformation modes encountered in building
~up a quadrilateral skin panel from constant stress triangles (see section
2.2.,2), It is not possible here to resort to a special geometry andrestricted
loading to eliminate excitation of the spurious modes, Instead, a slight
relaxation of the condition of continuous stress transmission will be adopted.,
By a judicious utilisation of the principle of minimum complementary energy
it will be even possible, in some cases, to preserve the upper bound property.
The procedure is described in reference R.2.,2 and can be summarized as fol-~

lows 3
The principle of minimum comﬁlementary energy 18 written in the form

°
.

 6 {,%?b' Fb-g'q}

' .- l v - ’ . . - .
§{gb"' Fb ("x.Tx cu, T, 44 Mot M +2u Q)= (v V v, V]

It turns out that, for a web of constant thickness, the deformation field is

2
parameters, It is then possible to express the unwanted part of the potential

integrable so that A and -v_ can be expressed in terms of the stress

~energy entirely in terms of the stress parameters; here -
c 132  ah
AR Aol 52

This term is then grouped with the strain energy, leaving the minimum princi-

ple in the form :
k{lﬁ'ub;h-r+§'f;¢.ﬁ+; 1}zu Q)r;o'
z7° 112 2 11 z‘zls.a

vhere H s a modified flexibilicy matrix



48 a '
Eth ° °
v ‘o o o]|. ' . '
- 32 v ah _ I6a 72ah . 8 v ah - 4 ah
HeF =5 °© 1 ote o IEm YS5Ict T ) = TGt
o o o . v
. C o - _ 4 ah -4 ah
: ' Gt . Ct

The generalized loads are redhccd to five by the elimination of Vl and v,
so that the modified connection matrix is a portion of the old :

T~

) 4 h ,:; o . <4n o
ct= [-2n 4ah 2 4 ah -12a
2h o ~  e2h . o 4 a

‘'For a force sequence given by

' - (
g (Tx. Ml'.l’z M, 2 Qa)

The stiffness matrix without kinematicai modes is then ¢

KsC H} ¢
(o] o
\

This can be worked out analytically, The result is given in Figure F.2.25,

The eliminatipn of the kinematical modes being made through the principle

of minimum complemcntary-energy,_the-guarantee of an upper bound to the
direct influence coefficients still holds, despite the possibility of local
violations in the transmission of shear stresses at the x = 2 a boundaries.
The connection loads V, and V, having disnﬁpeared, only the average of
the shearing stresses is transmitted through Tl and T2 » while the
amplitudes of parabolic shearing distribution (1 = 3 22/h2) can now suffer
‘a discontinuity at an interface. However, if we consider the difference as
absorbed by an externally applied linear distribution the fact that it is
statically equivalent to zero indicatel, by an appeal to the de Saint Venant's
principle, that its effect nu;t be local,



Turning now to the generalized displacements associated to the loads, the

virtual work equations yield the interprctations :

. +a :
Y %73 f_a (W) 9% .
3 *h
¢ = (u)x='a z dz
1. 243 "o _
5 +h
¢ = — (u)x=_ z dz
2 243 " a
1 +h
1" 7Th f—h (w)xéa dz
) +h )

‘The stress matrix has now to be expressed,
A )

Substituting in the previous expression for the stresses :

@

fo =S b

the value of the stress parameters given by
by -3 -1 '
b =1 Co q

there comes c=Tgq

with a stress matrix T=8§ H'-l C;'

-

whose analytical expression appears in Figure F.2,26,

To obtain complete informations on stresses, this matrix is computed at three

points and furnishes

ol = ¢g (+a , +h)
o, =0 (-a, +h)

0“0(:-030)



Figure Fo2e 24

The equilibrium spar element (web only).
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2,2.3.2- Dircct formulation (ref. R.2.4).

The assumptions for the stress field are exactly the same as for the

preceeding element ¢

6 z- ~
o ‘|= ——— (B S B ~—x)
X hz .ll 2
g_ =0
4
. Z
Txz = By 73 ;';_' By

However now only the 5 generalized forces (Tl » Ty Ml » My oy Q3) are
used to characterize the field. Three of them are independent, while the
other two are determined by the two overall equilibrium conditionms.

In this way the shear distributioh at the end cross sections is only related
to the forces T1 and T2 + Therefore the same type of violation of the
shearing stress transmission has to be considered as an "a priori" assump-
tion, The model is no longer an exact equilibrium model but has the advan-
tage of frcedom from spurious kinématical modes.

By comparison with other formulations it can give a more precise idea of the
shear stress discontinuity effect, |

Frbm the above assumptions the connection matrix is the reduced one C0 ,
while the flexibility matrix is the original F instead of the modified 1i

Therefore the stiffness matrix is

and is displayed in analytical'form in Figure F.2,27,

One can observe that the differences between the two stiffness matrices

affect the terms L koo Ky s Koy 0 kg

terms the factor u becomes u*¥ , whereas the term %-hz is . now multiplied

and kss o« In the first five

by (1 +wv) . The’differcncgé in these terms' are given for some values of

the ratio in the following table,

a
h



a u Yss
h »® : x

¥ 55
1 921053 | 948684
2 | ,973451 .990I39
5 .995298 .999563
10 .998806 .999964

it can be seen that the differences decrease whith growing ratios '% and
are usually rather small, The models numerically tested, using both formula-
‘tions, showed no significant differences in the results. It can therefore
4§e concluded that the small and local discontinuities in the stress trans-

mission occuring in these models will not have significant effects when the
a :

h

principle,

fatio, is normally lérge, as it can be expected from the de Saint Venant's



2.2.4- Plate eclements,

2,2.4.1- The triancular plate in bending (ref. R.2.6),

In the triangle represented in Figure F.2.28 a moments distribution

satisfying equilibrium with no shear loads can be written as

M= z dz = + X +
h fc Oy . a *oa, a, y

Moo= z dz = + +

My ft o, 2dz=a +a x+ay
M = z dz = - X -

xy ft Ty =, o, ¥

It involves 7 paramecters.,

In addition a constant shearing force distribution

O
[}
—
-

dz = ¢
. 9

is taken with an associated solution of the equilibrium equations

o ol )
-—.’Eq— X =Q a g
oX oy X 8
oM R
-—l-}--—xl:Q =
oy 90X y 9

Such a particular solution can be

' M— = x + '
“9 y q

ay 8

The complete distribution becomes therefore

M = + +
x~ % T XV ey

M = + + '
y oy tag X a Y | (1)

M _=a + (a

xy %7 g = og)x * (o = “z)y



.‘Adopting the Kiréhhoff-Loveltheory of plate bending, the continuity of
stress transmission reduces to the continuity along each interface segment

of : the normal moment M
n 3Ms

9s

n

the equivalent transverse shear distribution Vn = Qn +

At a corner poiht i , where several elements meet together, the corner loads

. must add up to balance the external transverse nodal load.
" In the triangle, using the linear moments distribution, this is automatically

achieved by taking as generalized loads the normal moments Mn at each

. 1§
vertex and for each edge, the 3 corner forces Zi and the 3 eqﬂivalent and

constant transverse shears ViJ along each edge. These loads are taken in
the order '
' \ N .\ .
g' = (i i z M M Z, M M z v..)
n n 1 n n n
12 13 Moy M3 2 My My 312023l
Nn stands for a normal moment expressed at i along the edge 1ij  accor-

,1] . . . .
diny to an anticlockwise numbering of the vertices,

If 2,, , m,,
1] 1)

ij , the moments and transverse shears along that edge are given by

are the direction cosines of the outward normal to the edge

2

Y 2

» = ' '
Jnij lij Mx + mij._:My + 2 zij mij M
2 2y,
Hs“ij = (agg = mig) My = agy myy (- M)



oM aM_ NS
= iy ('é'f‘)ij-“"‘ij Fran

.while
A 13

Hence forth the generalized loads can be written in terms of the stress

field parameters
g=Ch

where C 1is the connection matrix which, in local axes, appears on Figure
F.2,29, and where b is the column of the stress field coefficients taken

in the order

In the local axes represented in Figure F.2.28 the direction cosines can be

- computed from the formulas

12 _ _ S 12
Y3 7 Y, ¥ T %y
Y23 " ¢ M3 T ¢
23 : 3 23
SR X3 = X
' "< " T T e
31 B 1 31
. - )2 4 - v )2
with cij /(xi xj) +.(yi yj) the lenght of an edge.

The complementary strain energy of the plate, including already the assump-
tion o_=o0 , is
Z .

»

2 2 o 7.2 2 2
fVol [cx +_°y 2 v Oy Iy + 2(1+V)(txy ti, Tyz)) dv

=+ L
**7 %
After integration over the thickness with the additional assumptions of

linear distributions in z for Oy » oy and Txy ,» and parabolic distribu-

tions for 1 and T
, Xz yz

-

2 412 - 2 | 21
{ js (12 * o= 2w My + 2(1+v) M?{y) dxdy

1 1
*=7 3

2
P20 gy (@ + @) dxdy )



3
where D =-%§- is the flexural rigidity.

This expreséioh is conveniently split in two parts

o

0 =3 js (M2« ME =2 v M Mo+ 2Q04) ME ) dxdy

and

- 2 2 4 Q2
®, =35 2‘1+v) n N Q2 + Qy) dxdy

ol is the Kirchhoff energy which neglects the shearing deformations and
produces upper bounds to local influence coefficients within the framework
of this theory. Inclusion of ¢2 is only logical if ‘the boundary condi-
tions and stress transmission conditions are suitably extended, prdducing
thereby convergence towards a more correct solution of the plate bending
‘problem,
As only the equivalent Kirchhoff transverse shears are used in the stress
transmission capability of the model, the inclusion of the sccond part of
the éncrgy corresponds to local violations of equilibrium conditions,
It is an imperfect equilibrium model of a more correct plate bending theory.
The increascd flexibility is gives will nevertheless give some idea of the
importance of shearing deformations. _
Substitution of expressions (I) for the moments into the complementary
strain energy formula leads to

¢ =-—{b'"F b +‘2(l.+v)-t—2-b'F b }

2D 1 10 2

where F1 is the Kirchhoff flexibility matrix and F2 an additional flexi-
bility matrix due to shearing deformation. \ _
The integrations leading to these matrices were performed in the local axes
of Figure F.2,28 and the results are summarized in Figure F.2.30.

The stiffness matrix.is easily obtained after numerical inversion of the
flexibility matrix @ |

K mo T

for the Kirchhoff stiffness, o Lo

’ 1 =1 A~
KII = C (Fl + Fz) C



for the model including transverse shear effects.
Turning now to the generation of stress information it appears convenient

and sufficient to compute thé following I4 components

M y M y M v at each vertex
X Xy, . .
i i
Q Qy : o constant in the plate
Vij ' along the three edgcs:

These moments and transverse forces expressed in terms of stress field

coefficients are written in matrix form as
o=Sb

A

with o' = (M MoOM M ON. M M MV _V_V
X1 Xyl X2 . y2 Xy2 X3 y3 Xy3 12 23 31 Xy

M
y1

and S given by Figure F.2.3I,

Expressed in terms of the generalized displacements :

-1,
o S Fl Cc' q TI q : -

I

for the Kirchhoff model, and

-1
nS(Fl"'FZ) C'q=T

911 11 ¢

.

for the model including transverse shear energy.
It is recalled that the.numerical operation producing is already | Floc

necessary to build the stiffness matrix., Therefore the stress matrix compu-

‘tation takes place in the program just after that step.



Figure F,2,.28 : The triancular plate in bending.

Assumptions ¢ M = a v, X+a,y |
=a +o x+a
y T %R T %Y

g = + iy - ] -
M o, (a9 vas)x * (a8 “z)y
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3. NUMERICAL RESULTS.,

The spar elémcnts were described and evaluated in referénqés Re2.2 and
R.2.4 with details. The cantilever beam model illustrated in Figure F.3.1
. with various cap sections was tested with the differenﬁ previously descri-
bed idealizations. A non dimensional cross section of the spar cap was

denotced by

='Spar caps section _ S
¢ = TTVeb section th

and given the values 0, O, 2, I, 2 and 10, The ﬁodel waﬁ divided into I, 2,
4 and 8 elements in order to check the convergence propertics, The deflec-
tions are given in dimensional form (mm) and in a non dimensional form,
the deflection given by the engineering beam theory including shear being
taken as unity. The three loading cases are represented in Figure F.3.2.
They consist in a vertical concentrated tip load, a uniformly distributed
load p(x) = P, and a distributed load having the form of a Dirac measure

located in the middle of the element,

.

Loading case I : Concentrated tip load.

The tip deflections associated with the load P are given in table I in
Figure F.3.3 for the three previously described approaches as well as the
engineéring beam theory including shear deformation. For both displacement
models the results are given for the theoretical web moment of inertia

" C . . . .
I = I"/(1-v2) and for the classical but non consistent moment of inertia
» 2 th3 '
I = o
3

This removes the stiffening effect of the assumption €, = © but, violating

compatibility, also removes the guaranty of a lower bound,

However the results, using I* are significantly improved.

As expected from theory, the results for both quadratic displaccment and

. equilibrium models are indepeﬁdant of the number of elements into which the

" model 1s divided; they are exact solution in the sénse of engineering beam
thcory'for either €, =0 or ¢, # o depending on the moment of inertia

used,

" Loading with distributed loads.

The displacement models can be subjected to any load provided the correct
veighting functions are used. These functions insure that the virtual work
of the applied forces on the displacements equals the Qork done by the
generalized forces on the generalized displacements describing the behaviour
of the model. The expressions of the generalized forces to be used for:

distributed loads have been given in section 2,



In an equilibrium model the possibilities of loading depend on the assump-
tions made for the stress field. It is pointed out in the theory that the
assumption g, =0 in the equilibrium spar model implies that the transverse
loading can take place only at the tip cross sections through concentrated
shear forces. This means that a distributed load 1is ruled out in a strict
application of the principle. However a statically equivaleht,set of trans-
verse forces can be used provided the results be comparéd in terms of bounds
‘with those of displacement models under the same statically equivalent
‘representation, ' ‘

The behaviour df the three models under concentrated forces having been
illustrated by loading case number. I , the response of the diSplaceﬁent
models for a distributed load is now examined and compared with the equili-
brium model loaded by an equivalent set of transverse forces keeping in mind

that the procedure removes the guaranty of upper bound,

Loading case 2 : Constant distributed load,.

Integration of the weighting functions for the displaccment models is
‘straightforwvard for p(x) = constant, It leads to 4 non zero generalized
forces for each element (Wi » w; y 9 °2) . In the equilibrium model
the load is split into two tip loads for each element,

Figures F.3.4, F.3.5 and F.3.6 give the longitudinal distribution of the
" bending moment for a subdivision into I, 2 and 4 elements. The effect of the
generalized forces ) and ¢, in the quadratic displacement model is well
pointed out in the first of these diagrams. They bring moments of opposite
sign to the ones produced by w1 and W2 » Which explains the negative
sign for the bending moment at the free cnd. It is also to be pointed out
that, while the approximation for the stresses are excellent for a subdivi-
sion in 4 elements in the quadratic displacement model, the linear model
gives only a rough stress representation. For the equilibrium model the
discrepancies between the actual bending moment distribution and the distri-
bution due to the equivalent loading point to an overestimation of the
bending moment between two point loads, decreasing when the subdivision into
clements becomes finer, This.presents the .appearance of an upper bound but
should be interpreted as a refinement in the loading representation.

The tabalated deflections are given in table II, Figure F.3.7, while
table III in Figure F,3.8, gives the deflections in the middle of the beam.
They show how the quadratic model approximates the actual deflections and
show also that the tip deflections for that model are again the exact ones

-

in the sense previously understood.

Loading case 3 ¢ Dirac measure for the distributed load.

This type of loading was selected as a severe test for the special propert:



of the quadratic model. The load 1is equal to P, at nid+span and zero at
any other point of the beam idealized with one single element, This can be

represented by the Dirac.measure
p(x) = é(a) p_:
The generalized loads calculated for that particular load reduce to :

R R LR E 2
for both diSplaccment models,

Figure TF.3.9 gives the deflections for each method using the I or i
moment of inertia and for the engineering beam solution,

An equilibrium model cannot be used in this special case with a single
element, while the use of two elements produces the engineering beam

solution,

Convergence properties,

" Figure F.3,I1I0 gives for ¢ = o, and loading case 2 the convergence curves
A

of the tip deflections as function of the number of generalized coordinates.

Remark,

" These results pertain to an isolated spar. They allow a clear understan-
ding of the mechanism of spar deformation but do not give a complete picture
of its behaviour in a complex box beam structure. This is the subject of the

next sections dealing with box beams,



3.2- Box Deam,

In order to evaluate the convergence properties of beam like structures
a simple straight cantilever box beam with rectangular, cross section was
selected as illustrated in Figure F.3.II. Such a structure is still physi-
cally simple eﬁough to allow quite a few different idealization schemes and
mesh sizeé; while-alrcady complex enough to exhibit the characteristics. of
the various methods and combinations of'elements.

The stress distribution in such a structure is still accessible to physical
intuition so that the interpretation of the stress output is more fruitfull
" than in a more complex structure, ’

Two different web thicknesses ts -were used, The first one is the same
as the cover thickness t. = 3 mm . The second one is I0 mm . This will
show the influence of the different web idealizations, in particular of the
fﬁo assunptions €, =0 of the displacement model, o, =0 of the equili-
brium model.

The two loading cases are sketched in Figure T.3. II One is a bending case,
the other a torsion case, both due to tip loads on the free ends of the two
wvebs, Boundary conditions at thé other end of the box beam are those of
completely built in cover sheets and webs.

The different idealizations into finite elements are 111ustrated in
Figure F.3.,I2, Their choice was directed by two considerations, The first
was to allow comparisons between the three available cover models.on the
basis of the same pattern of elements., For that reason the first five subdi-
visions are identical for the 3 methods (linecar or quadratic displacement
field and equilibrium)., Compafisons on the basis of number of generalized
coordinates are also possible for there are schemes using about 30, 40, 100
and 300 generalized coordinatés_in each type of analysis., The second idea
was to allow some comparison of the influence of the pattern on the results,
holding the number of generalized coordinates about the same. This is the
rcason for investigating idealizations (6) to (8). Finally a few cases were
computed using special assumptions, detailed further on, and even a few
- hybrid models were tried together with an analytical solution ﬁsing lumped

bars and shear paneis (idealiiations (IO)).

Dcflectlon results,

Tip deflections are tabulated in Figure F.,3,1I3 to T, 3 I6 while convergence

curves are drawn for the 4 basic configurations (bending and torsion with
web thickness equal I0 or 3 mm)., They appear in Figures F,3,1I7 to F.3.20.
They are plotted versus the number of generalized coordinates, which is

probably the best comparison criterion between the different approaches,



The deflection results 11 for some comments :
- The upper and lovw  bound property is well illustrated by the conver=-
~_gence curves as expect from ﬁhe theory, llowever it is obvious that conver=
gence is not. directed tcward the same "exact" solution. This is of some
importance since it shows, that if a displacement model implies a lower
" bound and an equilibrium model an upper bound, if does not‘menn;that
. subseqﬁcnt refinements: of the subdivision will necessarily tend to close
the gap completely between the two bounds, The difference here comes from
. the spar ideqlization which, as already mentionned, includes two different
basic assumptions : €, " o for the éompatible spar, o, =0 for the equi-
'librium spar., 4
 Comparing the gaps for the two web thicknesses shows that, taking the average
. of the best two bounds as a reference, the gap in the bending case 1is
. 3,784 7 for the I0 mm thick web while it is of 2,178 Z for the 3 mm thick
web, This indicates the rate of gap closure with reduction in web thickness,
" To avoid this basic difference in the convergence limits more refined spar
. médcls‘arc necessary. It 1s of course possible to treat the web as an array
. of triangular elements of the quadratic displacement type. This could be
tfied in the future but would increasec the number of coordinates,
- The convergence curves ofithe equilibrium model in-torsion require some
- explanation. In the three simpler idealizations, the width of the cover is
taken at pléces by a single element, As the constant o, stress distribu-
‘tion in that element has to be antisymetrical, the only equilibrium solution
" for that case 1is with zero stress in the cover and therefore the loads are
-taken only by differential bénding of the two spars. Seen geometrically, the
- cover plates, pin jointed at their mid cdge pbints; allow a kinematical
. deformation mode under that loading. This explains the very poor results
of these idealizations. It 1s of interest to compare them with the corres-
ponding idealizatioh using the linear displacement field where the stresses
are also constant across the width of the cover. Thelr deflections are in
~ fact as poor as for the equilibrium models but on the stiff side. Only the °
idealizations using the quadratic displacement field ekhibit, even for the
véimplesc subdivision, as good a behaviour as for the bending case.
- Comparing now the 3 approaches, it can be stated that equilibrium
models converge “grosso modo" as their duals : the linear displacement
;modgls._The one uses a constant stress assumption, the other a constant
. strain in the cover. At closer look, in bending, the equilibrium models give
slightly better results than their duals, while the reverse happens in
torsion due to the previously mentioned peculiarity of the equilibrium
solution, In both loading cases a decent picture of the deflections is
obtained for about 100 coordinatel.\ﬂoweﬁer torsion ylelds much worse results

‘than bending,



Let us now compare in the quadratic displacement models the improvement
coming from the refinement in the idealization. Even the crudest idealiza-
“tion, for both loading cases, is already a good approximation, In.term§~of
- number of generalized coordinates the improvement is really significant,
since 34 generalized coordinates, using quadratic displacement fields, yield
approximately. as good results as I25 gencralized coordinates using linear
displacement fields. This represents, in terms of core memory in a compﬁter,
a saviﬁg of more that 90 Z. The computer time of course is not cut down by
the same amount but the Improvement is still very valuable, Another interes-
ting characteristic of the idealization with quadratic displacemeﬁt fields
»ié that it gives results of similar quality for both loading cases. This is
not true of the other two approaches, ' '
Finally it secms that the quality of approximation obtained by the best rum,
using quadratic displacement fields, is out of reach for models using linear
displacement fields. Such a large number of coordinates would be required
that significant inaccuracies in computation would probably appear,

- Turning to the non standard idealizations, some of them (6 to 8):purport
~ to exhibit the sensitivity of the results to the geometry of the subdivision
ipattefn. Therefore, results of idealization (6) have to be compared to those
of idealization (3), while idealization (7) or (8) is to be compared with
idealization (2).

These comparisons show that in torsion the differences are more important
than in bending and affect more the models analysed with linear displacement
fields. Those are, in this sense, less "safe" as they will be more sensitive
‘to an error of judgement in the subdivision pattern for complicated struc-
"tuies, where areas of high stress gradient are not always known a priori.

- An attempt was made to remove the effect of the €, =0 assumption
for the displacement spar models by adjusting simply Poisson's ratio to zero
in the input data., This removes in principle the stiffening effect of the
assumption €, = 0. Unfortunately the organisation of the input data is
presently such that the value of the shear modulus is generated by the
formula G = E/2(1+v) so that modifications in Poisson's ratio also affect
this value and consequently the spar shearing deformations., |
This explains probably the reason why the results obtained are better than
the original ones for the thicker web box beams using and worse for the
thinner web ones, The corfect way to achieve the test would be ﬁo run the
“same problems with a new vetoion of the spar ptograms. where the modifica=
tion affects only the moment of inertia.

N



-.To justify. the use of our spar models a computation was performed with

.

| rectangular web elements analyzed with the displacement assumptions

a, + -+ e+
u=a +a # a, Y+ a, Xy

: +a X ¢+ +
vo= as, o a, Yy *a,xy

'y

- This was performed by the program given in reference R.3.I. The idealization
. bears number (9) and uses 30 rectangular elements for half a spar web; the
'box beam being reduced by symmetry to I/4 of the actual structure, I2 ele-~

- ments were used for half a cover sheet. That quarter box bcam saturates the
capability of the program in question and is equivalent to a 224 generalized
cob;dinates model according to the standard of the other models,

: Due to the reduction to one foureh, only bending was investigated, The
results are very poor compared to those using our spar elements, although
the subdivision of the web is already abnormally high. This indicates that
for beam like structures our spar elements are an essential ingredient,

' - Idealization number (10) refers to an analytical 'solution where covers
and webs are represented by shear panels and bars to vhich the normal stress
carrying capacity is transferred, Two thirds of the normal stress carrying
section of each panel is eoncentrated in the middle of the pancl, while the
rest is equally divided along the edges.

(Ref. R.3.2). '

That sort of lumping ylelds usually hybrid models as lumping is equivalent
to a displaccment type assumption, while the shear pancl assumption is of
the stress type., That analytical solution gave results slightly more
flexible than the best equilibrium model,

Note about Stress representation.

Stress outputs are different for each type of element..For skin elements,
_stresses are constant inside an element in linear displacement and equili-
-brium modecls. The computed stress distribution in a set of these elements

is therefore, strictly speaking, represented by a succcssion of steps.:

In general, stress discontinuities occur at interfaces both in equilibrium
and displacement models, In the former case this is due to the fact that a
-continuous stress transmission does not require continuity of the direct
stress on a facet normal to the interface.
- In skin elements analyzed with the quadratic displacement field, stresses
are linear and given at each torner so that the computed qtress distribution
.18 composed of a set of linear parts which usually do not fit at an inter-

face due to lack of local equilibrium,



. In spar elements, two stresses only are considered, the longitudinal O,
" stress, which, being antisymmetrical across the height, is determined by

its maximum in the cap, and the shear stress Ty *
In spars with a linear u displacement field, o, is constant along the
length of the element so that cap stresses in the structure are also repre=-
sented by a step wise curve, Shear stresses are constant ‘across the height,
“but—-quadratic along the length; hence they are given in three points along
the length, o
In spars with a quadratic u -displacement field, 9, ié linear along .the
length but does not usually match-at an interface, while the shcar stress
. has the same lengthwise parabolic variation as before.
Ip both displacement spar elements, a o, stress compohent is generated
which is exactly v times o, a by product of the e, =0 assumption,
In equilibrium spars Oy is also linear but is continuous between spar
elements due to equilibrium requirements, while the. shear stress Txy is
"now constant along the length.but parabolic across the height,
Therefore the longitudinal distribution of shear appecars in stepwise form,
while the amount of shear transmitfed to the cover can be different in each
ielcmcnt:even.in the absence of intermediate shear load application, This
arises from the fact that only the average value of the shear stress is
transmitted at a join¥, while the parabolic distriﬁution may have a diffe~
rent intensity, The shear stress:output for that spar element gives the
minimum and maximum values of shear stress across the height.
Faced with so many stress representations, a general policy had to be
devised to allow interpretation of the output.
For those elements having a constant stress component, that stress is assu-
med to hold at the centroid of the clement, a procedure more or less equiva-
lent to taking the average stress at an interface (Ref, R.3.3). For elcments
with linear stress variations the avefage stresses are taken for the stress
state at an interface. Thcsé procedures work well in regions of low stress
gradient, but appcar somewhat arbitrary elsewhere, It is then sometimes less

confusing to use both interpretatibns as the following examples will show.

Stress distribution in the box beam, |
Stress distribution in the box beam models described above are {llustratcd

by Figures F.3.23 to F.3;65. The stresses are given for the I0. mm web models
only, They are expressed in kg/mm? for a load P of 1000 kg on each spar.
Signs conventions and idealizations are given in Figure F,3,22, A non dimen=-
sional lenght x/L and:width y/l1 are used as references.,

Looking first at longitudinal cap stress distribution in the spars, Figures
Fo3.23 to F,3.25 represent the bending case for the 5 basic idealizations in



~the three approaches.
Althdhgh the flange area of the spars has been taken to be zero (g = o) the

1term1nology of Spdr cap is used in the text to denote the line joining spar
web and cover sheet, '

. Figures F,3.26 and F.3.27 represent the cap stresses as computed before
smoothing the jumps at the interfaces.

Figure F,3.28 shows the Oy distribution for the more refined idealization
in the three methods. Linear and quadratic displacement models are practi-
~ cally coincident, while the equilibrium models produce lower stresses
everywhere except at the built-in section where the three maximum stfesses
are very near to each other, _

| Figures F.3.29 to F.3,3I give the same cap stress distribution under torsion.
- It can be seen that the linear models yield stresses which increase with
mesh refinement, while for bending.they fall almost on the same curve for
all idealizations., '

In the equilibrium models the reverse happens : stresses decrease as the
numﬁer of elements grows. This behaviour is easily understood by reference
to the associated behaviour of the deflections, Here, the quadratic displa-
cement models reveal their suberid&ity by giving, for all idealizations,
stresses falling close to the final curve,

Figure F.3,32 presents the best stress distribution for each approach,

- Shear stress distribution in the spars is trivial for both displacement
models as it is constant and equal to .5 kg/mm?2 everywhere., For the equili-
brium models it is interesting to examine the variations in the transverse
parabolic shear distribution along the spar length as illustrated in
Figure F.3.33 for bending and in Figure F.3.34 for torsion., The average
‘shear stress remains of course constant, while the Tx& mininum curve gives

“the amount of shear feeding the cover.

= Turning to the cover étresses, Figures'F.3;35 to F,3,37 give the longi-
tudinal O stress distribution along the spar (where y/1 = o) in bending,
Agreement between the different idealizations is very good and also between
the two displacement approaches, but the equilibrium approach does not show
the peak of stress at the built-in edge that could be expected from the shear ]
feed from the spar (Figure F.3.33). The differcnce is rather important as the |
equilibrium peak stress is only 76 Z of the stress given by the displacement :
models.
The shear lag effect is apparent 1n the dtffcrence between - the o, B8tresses

along the spar cap line and along the mid cover line (Y/1 - 1/2) . The last i

ones are represented in Figures F,3,38 to F.3,40,



The equilibrium'solucions do not show any appreciable shear lag, in fact
along the mid cover line they produce epsia the highest stresses,

The two displacement approaches show convergence to the same stress distri-
bution, slighﬁly below the level of the equilibrium solution. In crude idea-
lizations the linecar type produces quite scattered stress points, while the

quadratic type immediatly furnishes a good approximation,

- The direct stress distributions of the torsion case are represented in

- Figure F.3,4I to F.3.43. Assuming that the computed stresses in the linear
displacement and:equilibrium models are representative of the stress state

at each centroid, a linear extrapolation, from the torsional axis of symmetry
(y/1 = 172) to the spar axis (y/1 = 0) was made to obtain the Oy, distri-
butions of Figures F.3.44 and F.3.45., The neced for such a procedure to find
the Oy along the spar axis does not arise for the quadratic displacement
model, The procedure is empirical and, for the linear displacement models,
produces in fact slightly higher stresses than those exhibited by the quadra-
tic models. Those of the equilibrium models are much lower, the discrepancies
being more pronounced than for the bending case. This again illustrates the

difficulty for the spars to feed the cover sheet,

= The o distribution_aldng the mid line of the cover is identically zero

in torsion, by reason of symmetry,

-'The Ty shearing stress distribution is given along‘the cbvef to spar
connection line in Figures TF,.3,46 to F.3.,48 for the bending case.

For equilibrium and linear displacement models the same remark concerning
centroids location applies as for the O distribution in torsion, for in
first approximation, the transverse Txy distribution is also antisymmetri-
cal and linear. However if the extrapolation technique can be applied with
success to the linear displacemént model, this is not so for equilibrium
models, where Txy is fixed by the stress transmission requirement between
web and cover, The T distribution obtained for the equilibrium approach
is in fact exactly the same as the distribution obtained for the spar cap
(Figure F.3.32) but scaled in the ratio of thickness ts/tC . This is a case
where the concept of stressés effective at the element centroid yields a
false interpretation of the stress distribution, ‘
Comparison of quadratic displacement and equilibrium models with corrected
linear displacement models shows a very good agréement between the three
approaches, However it is observed that the correction applied to linear
displacement models, if leading to a good represéntat%on for idealizations

4 and 5, does not improve sigﬁificantly the stresses in idealizations I, 2

‘and 3 (they are still almost equal to zero).



- TFigures F.3,49 to I,.3,5I yileld the same stress distribution in torsion.,

- Here the transverse shear stress distribution should be parabolic from physi-
cal considerations and therefore correction for centroid location is no
longer simple. This explains probably the very different oﬁtpﬁt of the diffe-
rent idealizations,. |

- Shear stresses are identically zero along y/l1 = 1/2 in bending.

- Figures F.3.52 to F.3.54 show the shear stress distribution along
y/1 = 1/2 under torsion..In contrast with the previous results, no immediate
correspondence is evident between the different idealizations, nor between
the different approaches,

Closer inspection however reveals that the idealizations yielding the worst
scatter are those having a single element across the width of the cover,

If idealizations 4 and 5 only are compared, some trends in the stresses can
be observed., The fact that equilibrium models yield zero stress for ideali-
zations I, 2 and 3 corresponds to cases where a single element spans the
width of the cover,

Displacement models, which generate stresses in any circumstances, yield,

as a rule, rather confusing stresses in this case,
A )

- Figures F.3.55 and F.3.56 represent the distribution of transverse
stresses Oy along the spar for linear and quadratic displacement models in
bending. For the equilibrium model Gy is identically zero as it should be
from equilibrium considerations. In displacement models, these stresses are
a measure of the lack of satisfaction of equilibrium conditions, |
Figure F.3,57 -to F.3.59 show the same stress distribution for bending along
y/l =1/2 , )

There, Oy stresses exist in all models due to Poisson's$ ratio effect.
Good agreement is observed between the finer idealizations of the three

approaches,

- Looking finally at stresé distributions across the .chord, TFigures F,3,060
to F,3.62 represent the o distribution in bending at x/L = 1/12 , close
to the built in section.

Examined in conjunction with the longitudinal disgributions given in Tigures
F.3.35 to F.3.40, they confirm what was previously said about o distribu-
tions. Shear lag effect is very similar in both displacement models, while

it 1s obvious that stress transmission follows another pattern in equilibrium
models.

Figures F.,3.63 to F.3.65 represent the same distribution in torsion and jus-
tify the corrections made for centroid location in linear displacement
models. The distribution in equilibrium models can be seen to be entirely
different and shows also why the concept of stresses located at the centroids

of elements has to be used with care in such a case}



- 3,3= Multiwebbed swept back wing.

This section presents the capability of a dual analysis of a realvcomplex
structure, using the three types of cover elements described before,
Additional comparisons are made with test results and with results generated

. by the displacement program described in reference R.3.I and by the Douglas

Redundant Torce Method,.

Descrlptlon of the structure,

"The multi spar 30° swept back wing model to be 1nvestlgated was tested in
Sweden (ref, R.3.4), then analyzed by a force method in reference R.3.5 and
- by a displacement method in reference R,3.3. The model is described in
Figurcs F.3.66 and I,3.67 reproduced from reference R.3.4. It has five spars
and three ribs perpendicular to the spars and is untapered throughout,

All elements were made of Swedlsh 245-T aluminum alloy whose elastic proper-

ties are

Compression tests, | Tensile tests,
- Components Youn;'s modulus Young's modulus
E, (Kg/mm2) E, (Kg/tom?2)
Spar and rib booms ) .7600 ?300
Spar and rib webs 6950 6850
Cover plates 7450 ) 7350

The top and bottom covers are made out of a single sheet and all joints
glued. The central part of thc wing is filled with a machined aluminum alloy’
block, detailed in Figure F.3.67 to provide a support consisting of 2 hard
steel balls along the axis of.symmetry of the wing.

_ Two loading cases were considered as sketched in Figure F,3,68. Support and
loadinglare such that the semi-span can be considered as a cantilever suppor-
ted 39 mm out _board of the vettical plane of symmetry. '

The stresses were recorded by strain gages located on the cover, spar and
rib webs as indicated by Figure F.3.69. The description of the test stresses
in the cover is good in the neighbourhoad of the root but the tip of the
wing and the spars were not provided with enough gages to obtain a detailed

description of stress flow in these regions, -



Numerical checks for equilibrium, included in the test report, indicate that

" the normal stresses in the covers are affected by errors ub to - 4,2 7

meaning that the resultant of the measured stresses falls shofﬁ of the applied
forces by 4.2 Z. In spars and ribs the shear stresses are affected by much

larger errors, as reported in reference R.3.5.

Idcallzatlon of the structurec,

The phy51cal structure is idealized in such a way that all the matter is
concentrated in the mid planes of covers and webs and on axes defined by the
intersections of these planes for the spar and rib.booms. This is achieved
in such a way that the moment of inertia of the wing cross sections is iden-
tical to that of the physical structure,
Figure TI',3.70 shows the idealization of a cross section perpendicular to the
spars. Bending stiffness of the spar and rib booms as weil as of the cover
plates has been neglected.
Subdivision of this idealized structure leads to the pattern of finite ele-
ments.
Using the displacement and equilibrium models, advantageﬁhas been taken of
the horizontal plane'of syrmetry of the wing to idealize spar and rib webs
by the spar elements used in the preceeding sections,
The displacement program of reference R.3.I and the Douglas redundant force
method of reference R,3.6 having no such elements it becomes necessary to
idealize the wing without usiﬁg that symmetry property,
The Force Method output resulted from the work accomplished by the Douglas
Aircraft Company under Contract AF 33(615)-2483 sponsored by the United
States AF Flight Dynamics Laboratory, These results were made available by
FDTR/Mr. J.R. Johnson,
Comparison between the different analyses were conducted on the aSSumption
that the refinement of the idealization is measured by the number of genera-
lized coordinates and not by the number of elements or modes, This gives a
more uniform appreciations of Ehe total labour involved especially when
comparing the quadratic displacement approach to thg others. llence the fine
'grid was chosen to represent about 375 generalized coordinates rather than
to correspond to a given subdivision into elements,
The number of generallzed coordinates counted is that of the so called
"effective" coordinates in the ASEF program, '
It includes only the displacements for which a non zero diagonal stiffness
coefficient is generated in building up the master stiffness matrix of the
structure. This concept being peculiar to the stiffness method of resolution
does not apply to the redundant force method. In the case of analyses run
with a redundant force method, the number of generélized coordinates esta-
blished for comparison purposes was taken to correspond to the same idealiza-
tion solved by the direct stiffness method,



Comparison of the respective advantages of stiffness and force methods for
the final solution is beyond the scope of the present work,

" The fine grid idealization using linear displacement models is represented

in Figure F.3.?I and is close to that used by TURNLR in reference R.3.3.

It involves 378 generalized coordinates and is given the code reference
LD-378. TFipgure T.3.72 shows the fine grid of equilibrium models representing
350 coordinates code reference EQ-350, A local refinement near the rear sp.
root is indicated in Figure F,3.73, Its code reference is EQ-367 as 367 coor-
dinates are. involved, FigurevF.3.74 represents the fine grid of quadratic
displacement models coded QD-353, involving 353 effective coordinates, Two
simplified idealizations were used to show convergence propertles.

LD-189 is a linear dlsplacement idealization using the same grid of elencnts
as QD-353 as represented on Figure TF,3,75. .

EO-IBS is again the same grid. for equilibrium models and appears on Figure
‘F.3.76.

All the above idecalizations take advantage of the availability of spar ele-
‘ments., In an effort to obtain better agrecment with test results, a special
'Case of EQ-350 was run using an idealization of the central block introducing
some flex 1b111ty to the support. .

This special case is coded EQWB-383, The idealization is represented in
Figure F,3.77 and will be discussed later,

Figure I,3.78 shows the idealization associated with the displacement program
of reference R.3.I and using only rectangular panels and bars. It required '
I80 generalized dlsplacements and is coded LD-RECT-I80, Finally Tipgures
F.3.79 and TF.3,80 show the two subdivisions used with the redundant force
method and respectively coded RFM-304 and RFI[-569.

As mentioned before, the number of generalized coordinates implied by the
code numbers are those that would be required by a direct stiffness rcsolu-

tion,

Deflection results,

The test report does not contain tabulated deflections but only deflection
curves of front and rear spars, They are reproduced in Tigures F,3.81 and
F.3.82 for both loading conditions, The accuracy of the information is not
better than approximately I.5 7 of the tip deflection, '

The problems of presenting and comparing analytically and experimentally
determined displacecments or influence coefficients have been considered

in numerous past studies (e.g. references R.3.6 = R.3.7).

For comparison purposes two presentations of the test and theoretical results
Varg provided, One is tabular, Figures F,3.83 through F;3.85 present a listing
of the deflections at the spar-rib intersection points under both loading '

conditions. They‘are'given in thousands of mm for I Kg load on the tip rib.



For loading condition nbr 2 the deflection is numerically equal to the
’inflﬁcﬁce coefficient at the tip end of the rear spar., The second type of
presentation is a graphical comparison of a limited number of results taken
from tables F.3,83 through F,3.85. These graphs, which take the form of

carpet plots of the deflected shape, appear as Figureé F.3.86 through F,3,I0I.
Presentation of all derived results would be unWieldy.and confusing,

For this reason only a limited number are shown. They generally consist of

the test data, against one or two computed data.

A global study of these results discloses first the remarkable consistency
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