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Airy stress function for equilibrium state of plane stress.
Strédss functions for equilibrium state of bending,

normal force and shear flows in plane stress,

bending and twisting moments in bending.,

transverse shears in bending. .
equivalent Kirchhoff transverse shear, defined by eq. (8).
column matrix of stress parsmeters of element m ,

ditto but in equilibrium with body loads.

with various superscripts : flexibility matrices of element

generalized loads along connecting boundaries of element m .,

associated generalized displacements.

other generalized loads pf element m .

associated generalized displacements,

loads connection (incidence) matrix defined in eqs. (26).
submatrices of C, defined in eq. (27). N
stiffness matrix of element m ,

localizing (incidence) matrix for displacementa defined

by eq. (34)0 =

incidence matrix for the P loads,
defined by eq. (38).
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Abstract.- .

For the purpose of obtaining upper bounds to displacements in a structural
analysis into finite elements, the structure must be subdivided into equilibriuﬁ
models (spe for instance references 6 and 7).. ‘

It has aI;cady been noted that, while stiffness matrices can be obtained for such|
elements, the use of a stiffness p;ogram can be wasteful because the number of
nodal displacements‘can be considerably larger than with displacement models.

On the contrary, the number of self-stressing states becomes much smaller and a:
solution by a Force program would be efficient, provided the coupling between
self-stressing states be kept to a minimum, »

It seems that the analogies noted by Southwell (reference 5) between displa-
cements in the extension problem of a slab and stress functions for the-fleku:e
problem of the slab on the one hand, and between transverse displacements in
flexure and the Airy stress function for extension on the other hand, pro&ide an
ideal set up for a good force program in such two-dimensional cases,

The nodal values of the stress function(s) are really force-type unknowns which
define minimally coupled states of self-stressing.
Considerable thought was also given to the problem of introducing.body-force

type external loading into the program, as well as interface type external loads.
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I. First Analqsz.

Let txx » tyy and txy denote the normal force flows and shear flow
(products of stresses by the local thickness) in a state of plane stress

within a finite element.
If they derive from an Airy stress function ¢(x,y)

- 2£1 = 231 - —}232—
txx 3y2 tyy ax2 .txy ax3y . (1)

t

they satisfy automatically the equilibrium equations

Btn at ot ot

X *T;1'° _.a_:.Z.._a%Z_'.o &

Hence, provided we can also secure continuity in the stress transmission at
interfaces, we have the ingredients of an equilibrium model,

The first analogy will consist in showing that, if the Airj function is
identical to the transverse deflection w(x,y) of a conforming plate bending
element, the continuity of stress transmission at the interfaces 1s‘fd1f111ed.

Indeed, along a straight interface boundary,

N T,

mns éﬁﬂ

Figo I,

> X

the normal load flow tn and shear flow t s are given by

2 2 :
.02 ns onas : :

Now in a conforming plate bending element the transverse déflection w:gand
the normal slope 3w/3n are continuous across an interface. Hence the Qame is

*
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* true of their derivatiums along the interface 3w/ds ,

32w/os2  and
22y/agdn . Thus if the Alry function is everywhere identical to the transverse |

deflection, it follows from (3) that the flows t are continuously

and ts
transmitted across the interface.

This analogy provides a direct conversion from a conforming'displacement model
for plate bending into an equilibrium model for plate stretching.

However one should observe that there is no room for the introduction of exter-
nal loading except at the boundaries of the assembled structure : there are no |
body loads and no external interface loading modes. Those should be introduced |
by superimposing to the equilibrium field generated by the Alry function a par-
ticular field in equilibrium with the desired body loading modes and interface

loading modes.

2, The second analogy.

Let the bending and twisting moments of a finite plate element be generated

by two stress functions U(x,y) and V(x,y) as follows :

9V U 1 (aV 0
M, dy My ax bixy---Z'(-;"s—;,) - (4)

Fig. 2.

z axis upvards

Then, if the transverse shears Qx and Qy ,idéfined in .the same positive

sense as 1 and Tyz , are generated by the ‘equations

xz
.1 i(_au Lol i@y _au
Qx 2 3y ‘ax ay) Qy 2 3x ‘ax ?ay) (5)
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the equilibrium equations for moments

Y )
y

M M '
T T

~are automatically satisfied. Furthermore, the shear loads (5) verify the equili-

9 )
3:_1,,;.’2.0 | %

indicating that there 1s no transverse load applied to the element,
To obtain an equilibrium model for plate bending, in the framework of the
Kirchhoff theory, we must still secure continuity of transmission at an interface)

brium equation

of the bending moment Mn and the equivalent Kirchhoff transverse shear

9
Ky = G+ 55 My ®

where is the resultant of the T shear stresses and M is the twistin
nz ns

moment at the interface

7 S

) Msn ;,’({,m)‘

Fig. 3.

> X

z and Qn upwards

If (%4m) denote the direction cosines of the outward normal to the interface,
the change of orientation from the (x,y) axes to the (n,g§~ axes introduces

the stress functions
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5
N=wgtU+mV . Sm-mU+ 48V (9)
from which we find that
3S
Mn-s-‘- (10)
1 (938 N
Uen = =7 G5 * 50 : (1
3
l1 3 39S oN
Q=7 3 Go = 3) . a2
and so, from (8), that
2

982

The second analogy consists in taking for the stress functions U(x,y) and
V(x,y) the displacement components u(x;y) and v(x,y) of a conforming dis-
placement model for plate stretching. Then the property of conformity ensures
that U and V are continuous across an interface, .

The same is true of the combinations (9) and of their derivatives in the s
direction, It follows then from (I0) and (I3) that the normal bending moment
M_ and the equivalent Kirchhoff shear load Kn are continuously :transmitted

n
across the interface.

Exactly as in the case of the first analogy there appears to be no provision for

external loads (except'at the external boundaries of the assembled elements),
However, to complete the proof of this, it must still be shown that at a common

vertex the corner loads add up to zero, The proof follows easily from the analogy

itself. The corner load on a single element is produced by the jump in the value

of Man as we turn around the corner (fig. 4),
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Z (corner load positive upwards)

= Msn(+) "Msn(-)

"Flg. 4,

Now, from (II) it appears that, except for a factor =-1/2 , the analog of the
twisting moment is the shearing strain Yen °

The jump in shearing strain, as we turn around the corner, is equal to the reduc-
tion in the wedge angle of the strdined element., Since it is obvious that, if the
vertex is an interior point of the structure, the sum of all the wedge angles of
the elements meeting there muaf remain equal to 2 v , the sum of all the wedge
angle reductions must be zero,

So then, by the analogy, is the sum of corner loads at an interior point,

The conclusion does not hold at a vertex on the boundary of the structure, the cofg-
centrated external load that must balance there the sum of the cormer loads is pa]t
of the boundary value elements of the problem, : _ '
Again, a particular stress field in equilibrium with external loading modes must qc

superimposed 1f other -external loads than boundary loads are contemplated.

3. Equilibrium model theory.

A general theory of equilibrium models, adapted to the use of direct stiffness
programs, was given in references 6 and 7., Our purpose will be to develop a new
theory adapted to a force type program, because the topology of connections betweg:

equilibrium models suggests better computational efficiency with redundant forces

as the basic unknowns. Also, as will appear later, the Southwell analogies provid
a direct approach to the best choice of redundancies. A better picture will emerg
1f both theories are developed simultaneously and the opportunity will be taken t
slightly modify and clarify previously used notatioms.

3.1, The stiffness matrix of an equilibrium model.

Let the suba;tipt m denote a particular finite element of the structure, The
equilibrium stress field within the element is taken to be a linear superposition
of stress modes which fall into two groups. In the first group the stress modes
satisfy homogeneous equilibrium equations at interior points (no body forcgs) and
at boundary surfaces b.s. which are not potential interfaces 1.f. (there are no

surface tractions there).
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In the case of our finite plate elements, in flexure or in extension, each assu-
med stress mode of the first group will thus generate no surface tractions except
on the cylindric#l boundary with generators parallel to the z axis,

In. the second group the stress modes satisfy non homogeneous equilibrium equa-
tions, Thus each of theﬁ'déterminea an external loading mode consisting either

in a given pattern of body forces, or in a given pattern of surface tractions on
b.s. or both,

The reason for the distinction 1s obvious : each loading mode of the second group|
is also an independant external loading mode of the assembled structure, while
the surface tractions applied to the interfaces will combine when the elements
are assembled to produce another type of external loading of the structure
(unless they are required to add up to zero).

With each stress mode suitably normed, the coefficients of the linear superposi-
tion or parameters of the field are grouped in a conventional sequencé into
column matrices. For the first group, whose parameters are denoted by Bi » the

transposed matrix will be denoted
L
bm (Bl » 82 soo )

For the second group, whose parameters are denoted n

3

hl:l- (ﬂl ’ n2 vee )

The stress energy of the element can now be calculated and becomes a quadratic

homogeneous form in the parameters

-1 pbb + bh 1l .+ phh
Y 2 bm rm bm * bn Fm hm *3 hm Fﬁ hm (14)
The matrices Hgﬁ? ’ th and th are the flexibility matrices of the element,
One can also write ‘ '
!
l bm~ e bm .
"Fm =3 . Fm ) (15)
h h




Laboratoire -d’ Aéronautique UNIVERSITE DE LIEGE

8
with the complete, non-singular, flexibility matrix
P goh
m m
™ ! = F!
F_ F! (16)
b Fob
m m
(be)v - be (th)' - th (th)v - th
m m m 7t m m m

Now, fbr each interface boundaty, we specify a complete set of surface traction
modes, A linear superposition of these modes must be able to reproduce any sur-
face traction pattern generated by the parameters of the stress field, The
choice of the modes is largely governed by simplicity in the subsequent inter-
pretation of the stress output and physical significance of the corresponding
generalized loads. A generalized load Yj » defined at an interface, is in fact
the coefficient in the expansion

3-;: Y, i?j Can

of the surface traction ; at this interface in terms of the suitably normed
modes 33 .
The corresponding generalized displacements «, are interpreted by the virtual

]

work equation on this interface

f ;.; dArea = I y

> <>
P,.u dArea = I vy, «
1., y Ii.f. J gy 40
Hence
‘J - Ii ] ?3.3 dArea . (18)

is in general a weighted average of the displacement fleld on‘éhe interface, In
exceptional cases there are generalized loads belonging to more than one intere
face. A case in point is provided by the corner loads of chq?xirchhoff p1a£e
bending theory. Such a corner load is necessarily a generalized'load and the

“w o
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assoclated generalized displacement is obviously the local bending deflection,
All the generalized loads defined at the interfaces are grouped in a conven-
tional sequence in a column matrix denoted by g, » the corresponding generali-
zed displacements in a co;umn matrix q, * The virtual work of loads on the

interfaces of the element is therefore

o & " T (19)
Since the interface modes are generated by the stress modes a linear relation-

ship is always available between the parameters and the generalized loads

g, " Bm bIn + Gm hm (20)
Some important characteristics of the 'load connection matrices"” B " and G,
will become apparent later,

Ceneralized loads due to body forces and surface tractions on the b.s. bounda-
ries are necessarily linear combination of the “j parameters of the stress
modes of the second group. If we denote them by 'j and their column matrix
by P, » Ve shall have

3

p, = H_h (21)

with a non-singular matrix Hm . In most cases the second group of stress modes
can be so devised that the n 3 parajeters themselves are suitable definitions
for generalized loads, the I-Im matrix then reduces to an identity matrix. With

body forces

X=I1 X (22)
I
and surface tractiomns
ﬁﬁmmwb
QQJ ®
pa 2 v, % (23)
- T g
peETy Le %
W 08
se“v\\

the virtual work equation

+ > +> > ‘
| X.wudvol+ [ pou dArea = I ¥, 0,
Vol b.s.

ylelds the interpretation of the generalized displacements
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> > + <+
py = / xj.u dvol + [ . Qq.u dArea (24)
Vol boao
conjugate to the "j loads., The virtual work is then, in matrix form
U - n!
T Pn " Pnn (25)
! -
with rm (Dl » 92 ee )
Equations (20) and (2I) can be combined into a single relation
En P
- C (26)
P hm
with the complete load connection matrix
B G
n m
c - 27)
0 H
m

The complementary energy principle
bility conditions., To this purpose
specified and determine the stress

Y, - Gy 8, * T

its minimum value, With the stress
loads by (20) and (2I) in terms of

are

will now be used to obtain the best compati-
we assume the generalized displacements

parameters giving to

Py)
energy expressed by (I4) and the generalized
the stress parameters, the minimum conditions

bb bh -

F b +F " h =B q (28)
b hh . .

F: b+ F, b =Claq +H r (29)
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II
Or, in equivalent form,
bm q, . 4 .
= C! ‘
F c _ (30)
hm i T
Solving for the stress parameters
by . T
- = '
Fm C‘Il (31)
hm "m

This, substituted into (26), gives the stiffness relations of the equilibrium

element

= K ' - (32)

with the following stiffness matrix
- =1 v o g .
Km Ca Fm Cm Km (33)

The load connection matrix is easily obtained, the only troublesome operation
in setting up the stiffness matrix is the inversion of the flexibility matrix.
For simple models this can be done analytically, for more sophisticated ones
it must be done numerically and some loss in accuracy is to be feared.
Furthermore, because in equilibrium models most of the interface connections
are between pairs of elements only, the number of modal displacements for the
structure tends to be considerably higher than for a similar set of displace-
mént models. In counterpart there is the advantage of being able to use the same

computer program,
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3.2. The external interface loads,

The interface boundary loads g, of individual elements are added up in the
process of assembling the elements and should equilibrate the interface boundary
loads applied from the outside. This process can be described matheﬁaticaliy by
first expressing the geometrical connection between elements :

i

9 = L9 (34)

Equations like (34) state that the generalized displacements defined at the
boundaries of the m-th element can be identlfied with certain nodal displace-
ments of the structure. ¢

Those are listed in a conventional sequence in the column matrix q « If the
identification do not involve changes of reference frame, the localizing matrix
Hm of the element is only composed of zeros and ones., In the more general case
where the local definitions of the 9, coordinates require transformation to a
common reference frame at the structural level, the matrix of coordinate trans-
formation 1s incorporated in L, . '

The total virtual work of the loads g, must equal the virtual work of the
externally applied interface loads g , conjugate to q . Hence

Igy e

m
Substituting equations (34) and noting that
' - !
(: g8, LJ)a=2g8" g
must hold for any set of nodal displacements

g; Lm or

seIlig, (35)

We now make use of the load connection matrices defined by (36) and (37) in

order to express the external interface loads in terms of the stress parameters :

= 1
g :i L' (B b +G_ h)
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with ho=H'p
m m m
so that
-] '
- ' .
g : L (B b +G6 H p) (36)

i

The external generalized loads P, do not add up in the assembling process,
We list them in a conventional sequence in a complete column matrix p for the

complete structure and write for each element the incidence relation

P

m " P P

Hence L 18 simply an identity matrix with additional columns of zeros.
Finally (36) can be placed in the form

g-Pp-:‘L"’mem 37

= ' -1
where P g Lm Gm Hm Pm (38)

3.3. The solution of the boundary value problem,

The major problem is the determination of the general solution of equation
(38) for the stress parameters bm » the external loads g and p being consi-
dered as given. Of course the g and p loads are not independant but should
satisfy overall equilibrium, This is expressed by‘zero virtual work conditioms

QBT P=O a=1,2.. (39)

when 9 and L represent a set of geqeralized displacemengs corresponding

to a rigid body motion. We note that such sets of qa and r, can be obtained
by introducing a rigid body motion ﬁa into the interpretations of the generali-
zed displacements, '

Suppose the problem solved and let

b; - (g - P p) | (49)
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be a particular solution, and add the general solution of the homogeneous problem

L én b = o (41)
m 0

in the form
' b =X x (42)

vhere x 1s a column of independant unknowns,
Then

by=N, (@-Pp)+X x | (43)
represents, together with
h «=H" P p (44)

the most general state of stress in the assembled structure, aatisfying-eduili-
brium with the externally applied loads. '

The corresponding stress energy is

l .
Yo (g'F +p'F +x'F_x)+g'F +g'F +p'F
7 @ Fos+p Fp x® e Fopr g Foox+p Fox

with flexibility matrices

oy e phb
Fog I Py Ty

PP p ® m n m m

1 bh =1 1 -1 v _hb
-7P' (,ﬁn;apm H Pm)‘?(,ﬁ(“m Pm) l?: nm)P

F
8P
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F -ZII'beX
g p m'm ‘m

-l ' _hb
px -g (Hm Pm) Fm xn

_1lo v PP xy L L '
3P (f,ngpm x) ‘2(flxm

bb
F H‘) P

‘The principle of minimum of the complementary energy is then written in the form
{ Y-aq'g-r"p+rIr (U4 +p'r)}=0
a

Where the displacements gq ana r are assumed to be specified and the equili-
brium constraints (39) added with lagrangean multipliers to allow independant
variations on all elements of g and p .

The independant variations on the unknowns (redundant forces) x furhiah

' ' - .
F X+ ng g+ pr p=o (45)

Hence the unknowns are determined in terms of the external loads by
-y} ' L
x F. (ng g+ pr p) (46)

and the complete state of stress can be determined,
The independant variations on g and p furnish the generalized displacements

= F + F + F + I A 47
9" " 8" " P T T L N “n
r = F' +F +F _x+I A r 48

gp 8T Tpp P T * T 2 Ay Ta (48)

)

Once the unknowns x are substituted the displacements are determined except
for the undetermined rigid body modes. The solution is in fact completed for the
case of an unsupported structure, Introduction of the support conditions and
determination of the reactions is a straight forward final step.
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In practice it may be of advantage to group the external loads g and p in
a single column matrix and reduce to three the number of flexibility matrices

- involved,

4. The help of the analogies in solving the major problem,

We have seen in sections I and 2 that stress functions with continuity pro-

perties analogous to those of displacement type models can secure satisfaction
of equilibrium conditions within each element and continuity of stress trans-
mission at interfaces, However this procedure does not accept body loads and
does not generate interface external loads but only loads at the boundary of
the structure, This suggests immediatly that it provides at least a direct
ansver to the problem of finding the general solution of equatién (37) in the

homogeneous case g =0 and p=o ,

4,1, Interior values of the stress function(s) as intensities of minimal states
of selfstraining, _
Let fn denote the column matrix of local values of the stress function(s)

for the m—~th element, corresponding to the local values of displacements in
the analogous displacement model, There is a linear relationship between the
stress parameters Bi of the equilibrium model and the stress function(s)

values ¢
b =A f . (49)

In the displacement model, linked by the analogy, the continuity of displace-
ments is expressed by the use of localizing matrices Mm (different from the
previous L“l ). So that continuity of the stress function is expressed by

f =M f (50)

vhere f 1s the set of local values of the stress function(s) at nodal points
of the structure, We shall have to distinguish in £ , the set of values x ,
defined at interior points of the structure, and the complementary set y ,
defined at points lying along a boundary of the structure. . ‘
Relation (50) will then be replaced by

- x y f .
£ =M x+M y (51)
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Naturally Mz is identically zero for any element that has no boundary in
common with the structure (an interior element). Combining (49) and (5I)

by = (A, M) x+ (A, M)y : | D)

Our first observation is that we can, as the identity in notation suggested,
identify the set x with the internal load redundancies and comsequently, by

reference to equation (42), adopt

X .
X =AM (53)

Indeed (see figures 4 and 5), 1f y = o , the stress function(s) is (are) iden-
tically zero along the boundary of the structure which is then unstressed.

If at an internal point, a local stress function value x, is not zeéo, but
all other local values are taken to be zero, internal generalized loads are
generated on those interfaces between the elements which meet at that point.

Fig. 4. Internal generalized loads generated along the

interfaces between elements 1, 2, 3 and 4,
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£
Fig. 5. Internal generalized loads are generated along the

interfaces between elements ) and 2 .

It was shown that because of the continuity of the stress function(s) those
internal loads were reciprocal across each interface; no external generalized
loads are produced. .
Consequently, each local value of a stress function at an interior point repre-
sents a state of self-straining. Furthermore this state is of a minimai type;
it induces self-equilibrating stresses in the smallest number of elements. This
property is extremely valuable since 1tﬁdecreasea.the coupling of redundancies
to a minimum and produces the best conditioned equations to solve,

In the case of figure 5, which is one of a local value defined at mid distance
of an interface, only two finite elements are stressed, Each generalized load
along the common interface must already be statically equivalent to zero

(pinch type load).

4.2, Development of a particular state of stress due to an external load.

This problem, which is that of finding a nm matrix for each element, is
also simplified by the analogies, i.e. by the introduction of local stress
function values,

As depicted on figure 6, we can select a chain of elements to transmit an
external load ? up to the boundary of the structure. Preferably we choose a
segment of the boundary which is supported. Only the elements of the chain

will be stressed.
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o/

element
m=C

Fig. 6.

Let us distinguish the partial boundaries of the chain denoted by (a) , (b) ,
(c) and (d) . In the elements composing the chain, the stress parameters are

calculated by
b°=A £ =A M z (m belongs to the chain)
m ‘mm m m

Where M: is a localizing matrix, a part of Hm , which expresses continuity
of the stress function(s) on the partial stfucture represented by the chain.
In fact z 1is the set of nodal local va%uesion this chain. Tﬁé values of the
elements ¢, of the matrix z are takén as follows B

I) g =0 along the boundary (a) including the end points.

This ensures that this boundary is unstressed.

2) Along the boundary (b), end points included, the g; values form a rigid
body displacement mode of the stress function(s). Then, according to the
analogies, the boundary (b) is also unstressed.

3) At all nodal points interior to the chain we can take gg=o0.

4) Independant arbitrary values are assigned at nodal points along (¢) and (d)
wvhich are not end points.

According to either one of the analogies, there are 3 independant degrees of

freedom in a rigid body mode., Hence the complete matrix 2z can be wriften in

the form
z = 9l zl + 92 z2 + 03 z3 + I ci ei

where zl . 32 and z3 are rigid body type modes and the ?1 unit vectors for

the independant values assigned along (c) and (d). £
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Hence we have

° -

by =D ¢ , | : (54)

;
where t' = (el 02 33 0.9.9. Ci ooo)

z

and . Dm - Aﬂ Hﬂl (zl 22 23 eee ei ooo) (55)

The t; pertaining to (d) generate only pinéh loads along (d), associated to
stress parameters in the last element of the chain only, Even then no loads are
generated along the other intepfaces of this last element, Their determination
from compatibility conditions can be left to the final adjustment of Boundary
conditiones for the complete structure,

Hence we particularize further our particular solution by setting those ¢y
values equal to zero and in Dm retain only the & pertaining to (c). 

Let m = ¢ be the subscript of the first element of the chain, adjacent to (c),
and denote by Gz that part of the loads connection matrix generating the -
generalized loads 8(c) along (c). The 8(¢) loads are, in our case, the

external interface loads to transmit statically along the chain. Then

8(c) = Cc be = Gg Do t (36)
The matrix Gi Dc is non singular and

t (Gc Dc) g(c)

This inversion operation is not costly since the total number of generalized
loads along a single interface is not large. We finally obtain the required
particular solution in all the elements ef the chain in terms.of the external

loads 8(c) as

° - [ -'l .
by = Dy (G D)~ 8¢ (57)
Again this procedure is economical because the coupling between the particular
solution and the hyperstatic unknowns is reduced to a small number of elements,
We can deal in a similar fashion with external loads of typé ‘pm + For loads
of this type in the element m = c¢ we must first determine the associated

A

reaction loads of g type in this element
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B = G B = G, By pe

We have, to this purpose, used equation (20) under the assumption that in this

element b, = o . Hence in the element c the stress parameters reduce to -

The reaction loads g, are then considered as external interface loads applied

to the adjacent elements and transmitted by the previous procedure.
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