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Abstract

Optimal Steering and Cutoff-Relight Programs for
Orbital Transfers. The use of orbital parameters as state
variables has advantages both from the viewpoint of
accuracy of numerical integration with low acceleration
thrust and simplicity of correlation between cutoff
values and restarting values. The transformation to such
orbital parameters as z, the inverse angular momentum,
and 4 = ze cos 6,, B = ze sin 0,, where e is the eccen-
tricity and 6, the argument of pericenter, is effected
by a canonical transformation. The new adjoint vari-
ables turn out to be themselves orbital constants if the
transfer is open with respect to time. A general geo-
metrical interpretation of the optimal steering angle is
given. The reduced characteristic velocity is retained
as a final choice for the independant variable and the
choice of initial values discussed. In particular it is
shown that the initial values of steering angle and true
anomaly present advantages. The boundaries of the
domains in which those initial values should be taken
in order to obtain a positive gradient of the switching
function can be given in analytical form.

Résumé

Programmes optimaux de guidage et d’extinction-
réallumage pour transferts orbitaux. La variation de
paramétres orbitaux est avantageuse du point de vue
de la précision d’intégration numérique en cas de faibles
accélérations propulsives et du point de vue de la
simplicité des relations entre valeurs d’extinction et de
réallumage. Le passage & des paramétres d’orbite tels
que 2, moment angulaire inverse, A = ze cos 0,
B = zesin 0, ou e est l’excentricité et 0, 1’argument
du péricentre, est effectué par une transformation
canonique. Les nouvelles variables adjointes sont elles-
mémes des constantes orbitales, si la durée du transfert
est indifférente. Une interprétation géométrique générale
de Yorientation optimale de la poussée est exposée. La
vitesse caractéristique réduite est adoptée comme choix
final de variable independante et un choix des valeurs
d’initiation de lintégration est proposé. Il préconise
I’emploi de 'orientation de la poussée et de I’anomalie
vraie au départ comme inconnues initiales et présente
l'avantage de pouvoir définir analytiquement les
frontiéres des domaines dans lesquels ces inconnues
assurent un gradient positif du signal d’allumage.

Zusammenfassung

Optimale Schubvektor-Steuerprogramme und Pro-
gramme fiir das Aus- und Einschalten der Triebwerke
bei Umlaufbahniibergingen. Die Verwendung von Um-

laufbahnparametern als Zustandsvariable bietet sowohl
vom Standpunkt der Genauigkeit der numerischen
Integration mit geringer Antriebsbeschleunigung als auch
von der Einfachheit der Zuordnung zwischen Brenn-
schluB-Werten und Wiederstart-Werten Vorteile. Die
Transformation in solche Umlaufbahn-Parameter, wie z,
das reziproke Drehmoment, und A4 = z e cos 0,
B = zesin 0, wobei e die Exzentrizitit und 6, das
Argument des néchsten Punktes zum Zentrum ist, wird
durch eine kanonische Transformation erreicht. Die neu
zugeordneten Variablen erweisen sich selbst als Umlauf-
bahnkonstante, wenn der Ubergang in Bezug auf die
Zeit unbestimmt ist. Eine allgemeine geometrische
Interpretation des optimalen Schubwinkels wird gegeben.
Die reduzierte charakteristische Geschwindigkeit wird
als letzte, unabhingige Variable ausgewdhlt und die
Wahl der Anfangsbedingungen diskutiert. Besonders
wird aufgezeigt, daB als Anfangsbedingungen der Schub-
winkel und die wahre Anomalie Vorteile bringen. Die
Grenzen der Bereiche, in der diese Anfangsbedingungen
angewendet werden sollten, um einen positiven. Gradien-
ten der Schaltfunktion zu erreichen, kénnen in analy-
tischer Form dargestellt werden.

1. Variation of Orbital Parameters

In [1] various formulations of the optimal thrust-
coast-thrust transfer problems were investigated with
the fundamental purpose of establishing analytical
properties. For the practical computation of trajec-
tories a formulation in terms of orbital parameters is
generally more accurate, especially if the ratio of
maximum thrust to reference vehicle weight is small.
It presents also obvious advantages for the transfer
of variables between cutoff and relighting conditions
during the orbital coasting phases. The orbital
parameters selected are those of section 7 of [1]

2 =1 (L1)

T Ug

the inverse angular momentum

A=1zecosl, B=zesinl, (1.2)

were e is the eccentricity and 6, the argument of
pericenter.

From eqs. (7.10) and (7.11) of [1] the parameters
A and B are expressible in terms of the polar var-
iables as
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A =u,sin 0 + (uo — _rlTo) cos 0
(1.3)

B=-—-u,.cos0—|—(ue — ri )sin@
)

With 6 as new independant variable we set up
the canonical transformation

Apdr 4 30 @6 4 A, du, + Ay duy + Ay dy — Hdt =
— 2,di + A, dz 4 A4 dA + ApdB + Ay du — L d0

Replacing the differentials of (1.1) and (1.3) in
the right-hand side and identifying with the left-
hand side, the old multipliers are found in terms of
the new ones

1

A =r*—ug(_ A, + Aqcos 0 4 Apsin ) (1.4)
lM=Alg— Bls— L (1.5)
A“r = A4 8in 6 — Ap cos 0 (1.6)

hg = — -2 hut (1 +uig)(/u cos 6 + Ap sin 6)
(1.7)
H=—1, (1.8)

Substitution of these values in the old hamiltonian
H=H,+afuH (1.9)

where H, and H, are given by egs. (3.2) and (3.3)
of [1], gives

Hy= —2z2(z+ Acos0 + Bsin6)2L (1.10)
Hy=—pdy+ siny (2asin 6 — Ag cos ) +
+cos1p(lAcosﬁ+lBsin0—|—

(1.11)

2(— A, + Aacos 0 + Apsin 0)
2+ Acosf + Bsinf

Eliminating H and H, between (1.8), (1.9) and
(1.10) and solving for the new hamiltonian L:

A+ afuH,

z(z + 4 cos 0 + Bsin 0)? (1.12)

L =

where H, is given in terms of the new variables by

(1.11).
In this new formulation the time equation

dt 0L 1
d0 ~ 24 z(z+ Acos6 + Bsinb)® (L13)

is separable. It can be left out of the search for an
optimal trajectory except if the transfer duration is
specified. The conjugate equation

dAJd0=2Lt=0

(1.14)

shows A, to be the isoperimetrical time constant as
is otherwise obvious from (1.8).

The case A, = 0, which occurs if the flight dura-
tion is left open, is particularly simple since then the
new hamiltonian is proportional to the control &
and the multipliers 1,, 14 and Ap become orbital
constants just like their conjugate state variables.
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The hamiltonian itself is no more an isoperi-
metrical constant as

dLId6=>Lp0

is not zero. However a first integral is immediatly
available from (1.5) in terms of the old isoperi-
metrical constant Ay related to the total polar angle
of the trajectory. In particular, if this angle is left
open

L=Alg— B4

(A = 0) (1.15)

The optimal steering control is still determined by
Asiny =12, Acosyp=21, A=|R + 7
(1.16)

with }“"r and 4,, calculated from (1.6) and (1.7) as

auxiliary variables together with
ug =2+ A cos @ 4+ Bsinf (1.17)

The cutoff and relighting signal is still given by
the maximum value of H,

Hy=2+-phy (1.18)
E=0 if H, <0
E=1 if H, >0

2. A Geometrical Construction for the
Optimal Steering Angle

When the sine and cosine of the optimal steering
angle are expressed in terms of the new variables
N sinp = (A48in 6 — Ag cos 0) (z 4 A cos 6 + Bsin 0)
N cosy = (Agcos 0 4 Agsin ) -

-(22z+ AcosO + Bsinf) —z 4, (2.1)

where the modulus N is of course the square root of
the sum of the squares of the right-hand sides.
Using the known interpretation (1.2) of 4 and B
and defining a new modulus m and angle 6; by

A4 = mcos 6, Ap = msin 6, (2.2)

we can write

WNz—sinzp =sin (0 — 6,) [1 + e cos (0 — 6,)]
2.3)
%cos p=cos (0 — 6, -
- [2+ecos (B — 6p)] — A,/m

or, with f =60 — 0, the true anomaly, and 0, =

=6, — 0,
N . .
g Sy = sin (f — 0,) —

— 5 8in 0, + -sin (2 f — 6) (2.4)

N
mcosqu=2cos (f — 05) +
+ %cos@z—l-%cos 2Ff—0,) — A,/m
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These expressions lead to the geometrical inter-
pretation of Fig.1, which generalizes that due to
Marec [2] for the case of 1nﬁn1te31ma.lly close
transfers.

Fig. 1. Geometrical interpretation of the optimal steering
angle ¥

Under orbital conditions with A, =0 all the
parameters of the figure remain constant except the
true anomaly. The origin 0 of the vector describes
the small circle of radius e/2 at twice the angular
rate of the radius positioning the extremity £ on the
ellipse (with fixed semi-axes of lengths 1 and 2).

It is apparent that the amplitude of oscillation
of y is governed by the ratio 1,/m and that 1, must
be sufficiently negative (as on the drawing) to ensure
a forward thrust at a small inclination on the local
horizon.

3. Orbital Transfer of Variables

The orbital transfer of variables was established
and discussed in [1] in the so-called orbitally linear
formulation. Its final form is actually much simpler
in the present one. To convert the multipliers of the
orbitally linear formulation in the new ones we set
up the canonical transformation

A,dz +Atdt—|-/lurdu,+/lw duo + Aydy — K df =
=Aidz+ A, dt+ A4d A+ pd B+ Aydy — LdO
where the differentials of

A = u,sin 6 + (ug — 2) cos 6
B= —u,cos 0+ (ug — 2)sin 0 (3.1)

have to be substituted. There follows by identification

A, = 2, — (A4 cos 6 4+ Apsin ) (3.2)
A,= 2, | 3.3)
A, = Assinb — Apcos b = Ay, (3.4)
Ay =Agcos0 + Apsinf =1, — 4, (3.5)
Ay =y (3.6)
K=L+Bls— Alp (8.7)

Since we are in the case 4, =0, so that 4,, 14, is
and A, are constant along the coasting orbit, just as
u, A, B and z, the transfer from cutoff to relighting
values is governed simply by the relation between
6, (cutoff) and 6, (relight). Accordingly in the next

equations the variables without a cutoff or relight
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subscript are orbital constants actually determined
at cutoff. From eqs. (1.2) follow

zesin (6, — 6)) = Asin G, — Bcos 0,

zecos (6, — 6,) = A cos 6, + Bsin 0, (38)
and the true anomaly at cutoff
fe=10,—6, —n<f,<+nm (3.9)

is uniquely determined by eqgs. (3.8) as, consequently,
the argument 6, of pericenter (even after many turns
of the polar a.ngle 0).

In the case of a symmetrical relight (so-called
because it occurs at a point symmetrical to the
cutoff point with respect to the major axis of the
coasting orbit)

0,=2m—6,+ 206, (3.10)

In the case of an asymmetrical relight we must
first estimate the quantity o, defined by egs. (8.17)
of [1]. In view of eqs. (7.8) of [1] and, using (1.2)
and (3.5)

Ro ecos f,

Ayg

_ A,(Acosf,+ Bsinb,)
" 2(AacosB, -+ Agsin 6,)

e

= (4, + Ay

(3.11)

This can be further simplified if account is taken
of the fact that the theory applies to the case 4 = 0
so that (1.15) holds true. However, at cutoff, the
hamiltonian L vanishes together with the signal

H, (A, = 0) hence
Alg— Bls=0

and (3.11) reduces to

o B0 _ Al
Po zAA

and we can compute ¢ from

A \2
g = —4537 (z + ;‘z W) (312)
with

g, =2+ A cos 6, + Bsin 0, (3.13)

We recall the tests required to distinguish be-
tween the occurrence of a symmetrical or an asym-
metrical relight.

An existence test (8.18) of [1] for the asym-
metrical case. In our new variables this test to be
verified by the cutoff values is

[(z + A4 cos 0, + Bsin 0,) (0'+Vo'2+2o)—z]2<

<4*+ B
It really depends on the eccentricity of the
coasting orbit and is equivalent to

1—e - 1 o - 1+4e
1+ ecosf, <G+VU + 20 <;l+ecosfc

If it fails, the relighting condition is of the sym-
metrical type. If it succeeds the second test on

&€= (0 —0.25)(Asinf, — Beosfh,) (3.16)

(3.14)

(3.15)
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is required. If sgn & > 0 the relighting condition is

of symmetrical type;.if sgn ¢ < 0 of asymmetrical

typ;;l the last case the polar angle of relight is the
smallest angle 6, > 0, satisfying
2+ Acosf,+ Bsin 0, =
= (6 + VM'S (z+ A cos O, + Bsin§,)
(3.17)

4. The Characteristic V%lbcity as Independant Variable

The differential system of canonical equations,
using the polar angle as independant variables, can
immediatly be written down from the hamiltonian L.

Moreover, the rules of orbital transfer of variables
allow to limit their integration to the powered phases
of flight, at least when time and polar transit angle
are open. It is then immediatly apparent that further
simplifications are available by turning to the reduced
characteristic velocity

D =clny

as the independant variable. In fact the canonical
transformation-

ludpy—LdO=A9d0 — MdD
yields the following relations
Ay = — L
1
M= _—c“.“)'u

4.1)

(4.3)

Thus, eliminating L, H, and 1, between the above
equations and (1.11) and (1.12), the new hamiltonian
is obtained:

==L} 42+ Acosb+ Bsin)2Ae] +
+ sin ¢ (A4 8in 6 — Ap cos 0) + (4.4)
+ coscp[}.A cos 0 + Apsin 0 +

2(— A, + Ascos0 + Apsin 0)
+— % 1 4cos6 f Beno

In powered flight (& = 1), the canonical equa-
tions for the state variables are:

a0 = A =—'exp(;¢/°)

dr M2 oy (4.5)
a4 _ :ﬁ =sm¢sin0+(1+%o)cosw°089
gg: 2% =——sin1pcosl9+(l +—:o—)coswsint9
where |

up =2 + A cos 6 + Bsin 0 (4.6)

is used as an auxiliary combination of state variables.
To simplify the adjoint canonical equations and
the computation of the optimal controls we also use

(4.2)
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the following auxiliary quantities, previously en-
countered -

Ay, = A4sin 6 — Ap cos 0 (4.7)

Rug = Ay — (1 + %9) 4, 4.8)

A, =2, — (Aa cos 0 + Agsin 6) 4.9)

A= 17z (4.10)

Asiny =4, Acosy = A, (4.11)
Inserted into the hamiltonian (4.4) they give

u=2R0) G\ rufd)+ 4 [412)

and this is used to eliminate /A, in the adjoint
canonical equations. Again, for powered flight (£ = 1)
and open time (4, = 0), those are found to be

di, oM (2 |1
ﬂf“""v*(To"'?)S"‘
1 2z Y
+A’Tg . (1—79)0031/)

dia M _ cosf z
dd 24 Tu (2§_TOA=°°M”J

. 4.13)
dip M _ sinf z (
6 =" 3B = u (28—70~Azcoszpj
dM _ oM _ 1
dd ~ 20 ¢
where

8s=A—M (4.14)

It is obvious from (4.3) that s is an equivalent
form of the switching function (1.18), so that the
powered flight phases are characterized by s> 0.
Moreover, from (1.5) and (4.2) follows the first
integral

AAp— Blg+ Ao =2

Substituting Ay from this into (4.12) and spe-
cializing to powered flight, open time and open
polar transit angle, we obtain

zu (A Ap — B A4) = asexp (Pfc) (4.16)

This can be used, either as a control on the
numerical integration, or to calculate s without
integrating the last of eqs. (4.13) and obtaining s
from (4.14). It also follows from (4.16) that at cutoff
or relight (s = 0)

(4.15)

Alp— Blys=0
A condition that persists during the intermediate

(4.17)

“coasting phases, since the left-hand side is composed

of orbital constants. It was shown in section 8 of [1]
that the eccentricity of those intermediate orbital
phases cannot vanish. Hence (4.17) is never satisfied
by the simultaneous disappearance of 4 and B but
always by the condition

msin (0; — 6,) = 0

Then, either .m.is non zero and the angle 0, of
Fig.1 stays equal to zero or to s during an inter-
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mediate coasting phase, or m itself vanishes
(A4 = 0 and Ap = 0); in which case it is apparent
from (4.7) that )'“r =0 and the steering angle y
remains equal to zero or to m.

5. Initial Values

The boundary and transversality conditions for
an open transfer (4, =0, 49 = 0) can be taken as
follows.

Supposing, as in [1], the departure orbit to be
specified by its reduced apocenter « (#) and pericenter
B (a), the initial value of 2z

_ /%@ + B (a)
s = |5 ¢
is known, together with the initial eccentricity

e(a) = « (@) — B (a) (5.2)

" a(a) + B(a)

The reference direction in the orbital plane from
which the polar angle is measured is taken to be
that of the pericenter

0y (@) =0 (5.3)
which yields the following initial values
A (a) =z (a)e (a) B(a)=0 (5.4)

The vehicle mass at departure is taken as unit
[¢ (@) = 1] so that

D()=0 (5.5)
There is no loss of generality in taking
t(a)=0 (5.6)

This accounts for all the initial values of state
variables except for the initial polar angle, identical,
by virtue of (5.3) to the true anomaly at departure

0(a)="f(a) unknown 5.7)

As discussed in [1] on the basis of the trans-
versality condition H, (a) = 0, the departure takes
place when the switching function becomes positive,
initiating the first powered arc of trajectory. Thus
(4.17) holds true at departure with (5.4). In the
general case when e (a¢) and consequently A4 (a) are
non zero, satisfaction of (4.17) requires

A (@) =0 (6.8)

At this stage we look at the transversality con-
dition A, (b) = — 1, which in view of (4.3) requires
that the multipliers be so scaled that the end value
of M be strictly positive. Now M = A at a cutoff
or relight, which is a non negative value, and M
remains constant during the orbital phases. During
the powered phases (s > 0) it is increasing as shown
by the last of egs. (4.13). Hence M is an increasing
function, constant during the orbital phases.

It is easily seen that A = 0, and thus M = 0, at
departure would result in all the multipliers being
zero. Consequently we can scale the multipliers so
that

M@ =2A(a)=1 (5.9)
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Then eqgs. (4.7) to (4.11) reduce at departure to

sin y (@) = A4 (a) sin f (a) (5.10)

Az (a) P
1+ e(a)cosf(a)

= sin yp (a) cot f (@) — cos y (a) (6.11)
A,@) =4,@) + 4@ cosf(@  (5.12)

A choice of f(a) and y (a) at departure succes-
sively determines A4 (@), 4, (a) and 1, (a) so that all
initial values of the adjoint variables are then
determined. There is one exceptional case; f (@) = 0,
which requires to adopt either y (a) = 0 or p (a) = 7;
but then the indeterminate value of A4 (@) become
the second arbitrary choice.

The two arbitrary choices are in principle related
to the satisfaction of two terminal conditions. After
an undetermined number of intermediate coasting
phases, a terminal point is reached when a final
cutoff signal is received from the switching function
(a consequnece of the last transversality condition
H, (b) = 0). At this point the two final values of
z and e specify the terminal orbit. If they are not
the values required, iteration procedures will hope-
fully modify f (a) and y () untill they are obtained.

When the system of initial conditions just devel-
oped is applied to the limiting case of zero initial
eccentricity, it seems surprizing at first sight that
(5.8) would still be generally valid, because (4.17) is
now verified by 4 (a) = B (a) = 0. It must however
be remembered that for A=1and e=0

A4 (@) cos f (@) — cos p (a)

siny = A4sin§ — Apcos 0
cosp=41,—24,
A, = A, — (Aa cos 6 + Ap sin 6)
So that
A4 = sin 0 sin p + cos 0 (4, + cos p)
Ap = — cos O siny + sin 6 (4, + cos yp)

and the initial values of 14 and Ap clearly depend on
the initial value chosen for 6. This choice makes the
initial value of Ap zero, provided

A, (@) = sin y (a) cot 0 (a) — cos yp (a)
and when this is substituted

sin y (a)
sin 0 (a)

Aa (@) =

This agrees with the limiting case e () = 0 for
(6.11) and (5.10) and (5.12). There is however a
difference in interpretation because, as will be shown,
(5.3) is no more true so that 0 () is not the same
thing as the initial true anomaly. As a matter- of
fact the true anomaly is undetermined on the circular
departure orbit but, as shown in [1], its instantaneous
value becomes determinate as soon as thrust is
applied:

1

tan f (a¢) = g~ tan y (@)
O0<f@<=zm if siny(@) <0 (5.13)
—n<f(@)<O0 if siny(a)>0
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Since 6 (¢) and y (@) are chosen independantly
to generate the complete set of initial values asso-
ciated with Ap(a) =0, f(a) will in general differ
from 6 (a). If so desired, the difference can be com-
puted to obtain the initial value of 6.

In conclusion it appears that the general formulas
(5.8) to (5.12) are applicable to the limiting case
e (@) = 0, provided in them f (a) be now interpreted
as 0 (a) and f (a) taken from (5.13). This makes the
initial 6, discontinuous with respect to the initial
eccentricity, a fact which is not abnormal in view
of the discontinuous behavior of 6, when a con-
tinuously modified elliptical orbit passes through a
state of zero eccentricity.

6. Initial Switching Funection Gradient

The possible choices of f (a) and y (a) are limited
by the obvious condition that the initial rate of
growth of the switching function must be positive.

+TT dy(a)

f@a)

-

Fig. 2. Hatched domains for positive initial gradient of
switching function. Initial eccentricity e = 0.64

From (4.16) it can be seen that this condition is
equivalent to

d
Calculating the left-hand side with the help of
the canonical equations and the initial conditions,
this gives, after reduction, the condition
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cot f (tan p)* — 2 tan p +
esin f

+ 1+ ecosf >0

(x=a) (6.2)
The roots of the second degree polynomial in

tan p

tan p = tan f (1 + —1-) (6.3)

V1 + ecosf

define the curves of Fig.2 which are boundaries of
the hatched regions where (6.2) is satisfied. Note
that

. 1 1
lim tan ]l ———————— | = —e¢
f—n2 f( V1+ecosf) 2

In the limiting case e (a) = 0, (6.2) reduces to
(6.4)

and, along the boundary curves obtained by setting
the bracket equal to zero, 0, is either zero or =
(Fig. 3).

tan y (cot ftany — 2) > 0 (x = a)

A
y(@)

iV

M
N N \\ !_____

&(a)
+T

Fig. 3. Hatched domains for positive initial gradient of
switching function. Limiting case of zero initial eccentricity

"References

1. FrAE1LJS DE VEUBEKE, B., “Canonical transformations
and the thrust-coast-thrust optimal transfer problem,”
Astronaut. Acta 11, 271 —282 (1965).

2. Marec, J. P., “Transferts orbitaux économiques (or-
bites elliptiques coplanaires coaxiales, durée illimi-
tée),” La Recherche Aérospatiale 105, 11—21 (1965).

B. Fraeijs de Veubeke
Professor of Aerospace Engineering
Laboratoire de Techniques Aéronautiques et Spatiales
Unaversité de Liége
- 75, rue du Val-Benoit
Liége, Belgium

Printed in Austria
Druck: Paul Gerin, Wien II.



