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Susmary.
Consider the problem of a rocket in vertical flight in & uniform

gravitational fleld, the asrodynamic drag being naglected,

The thrust is provided by several chemical rocket engines working in parallel
that can be separated and dropped sccording to some optimal sequence in order
to provide a2 maximum payload for & givem total thrust at departure and a
prescribed velocity gain.

The mathematical formulatiom provides the possibility of a continuous
reduction ia thrust, that is for the limiting case of an {nfinity of infinitesi~
mal propulsion units. In this case it is known that, 1{f the velocity performance
is set high enough, the optimal sequence consists of a constant thrust arc
during vhich no engines are dropped, followed by a continuous reduction in thrust
that keeps the acceleration constant., There is however another type of extremal
representing the separation from a finite amount of thrust. The real technical
problem involves only this type of extremal and the constant thrust extremal,
The optimization problem is then of the bang-bang type, the continuous accelers-
tion type of extremal representing a "chattering" of the comtrol.

It is remarkable that optimal bang-bang sclutions, each corresponding

to a prescribed number of engine separations, are found by applying a minimum

principle for the Hamiltonian (instead of the usual maximum principle) during a
portion of the trajectory. Mdra precisely the optimal bang-bang trajectories
imply the use of the maximum principle up to the first reversal in the sign of
the ewitching function, then of the minimum principle with a finite number of
sign rcvirnall, then of the maximum principle again to the end. Eventually the
first or last part (or both) are missing,

The optimality of such bang~bang sclutions is established by the ana-
lysis of the second variation,
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2.

I, THE OPTIMUM STAGING OF ROCKETS IN PARALLEL

I1,I, Basic differential equatioms.

Consider a cluster of chemical rockets, wvhose instantaneous mass can be con-

ceptually subdivided as follows :

F
H-uu+aux+np+-f£ (I.1)
Mu is the payload mass or useful mass
o Hl is the structural mass considered to represent a given fraction of

the total mass M1 at departure.
These two are fixed quantities, the other ones are variables :

Hp the instantaneous mass of propellants,

He -~§E the mass of propulsion equipment, based on the assumption that the

thrust F it delivers is proportional (factor K ) to its weight
g, -
If c denotes a fixed effective exhaust velocity of burnt gasses, the thrust

is also given by

dM

-3% (1.2)

Fmw~c¢
By elimination of the mass of propellant between (I.I) and (I.2) follows one
of the basic differential equations :

dM F_1 dF

It assumes that the thrust can be continﬁously reduéed by separation of infini-
tesimal propulsion units. As will appear later, this ideslized formulation does
not only furnish a method for assessing the optimal performance ceiling that
can be reached byn the principle of parallel staging of propulsion equipment but
also provides a scientific approach to the real problem of discrete staging.
A control variable a 1s now introduced to govern the programming of engine

separation by expressing that the thrust can only decrease :

B—t- = o uz (I.’i)
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Finally a performance equation is needed to pose a mgningful problem of optimal
staging. The simplest one that offers a complete analytical solution is the

equation of motion for vertical flight in a uniform gravity field, the aerodyna-
mic drag being neglected : '

Ma-=TF-Mg , (1.5)

The basic differential system consists of the equations (I.3), (I.4) and (I.5).

1.2, Dimensionless form _ofﬁt,t_xe_ basic system.
Intréoduce the dimensionless variables

w=V/c for the velocity
T = tg/e for the time
Lo
¢ = n " for the instantaneous mass
B = % an instantaneous acceleration factor,

It is important to note that the acceleration factor has from equation (I.I)

an upper limit K when the propellants are used up (Mp = 0) and -~ Mu and

o approach zero :
(] < B < K (106)
In the new variables the basic differential system takes the form

4 . 2
dt B +y

48 | o2 4 2¢p-
3o = B4+ y (8-K)

dw
r ey g -1

where the control variable a has been changed to y by

2 o c e? o2
K g2 M,

Y

A further simplification can be introduced, provided no constraints be intro-
duced on the duration of the flight, The time <t 1is then an ignorable variable
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and ¢ , which is strictly monotonically increasing, can serve as independant
variable. Hence, dividing the last two equations of the basic system by the
first, and changing once more the control variable to

v e —t ve (0,1 )
B'O'Y2
we obtain

B o g-K+Kv (1.7)

de

%-(1-%)\' (1.8)

I,3. The optim:l.zavtion‘ prob lem.
We set up the follaiing bptimization problem : the initial velocity being zero
and a prescribed terminal velocity having to be reached at burnout (Mp = 0) ,
maximize the payload gHu for a given thrust Fl available at departure.
This is equivalent to minimize the functional

g M,

.Fl

J » -

or, taking M from equation (I.I) at burnout

2
Mu Hz V] Ml Xg
and substituting
1 By -4
Jme— (o+ G- e 2) minimum (1.9)

By

This is an example of a functional depending on the initial and final values of
the independant and state variables.
The Hamiltonian of the problem is, from equations (I.7) and (I.8),

H = KB (g-K) + v-’S (1.10)

where the switching function S , which decides on the choice of the control

variasble v , 1is

. 1 ,
§ =K + - I.I1
, Ag (1 B))"d: ( )
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The adjoint differential system is
~dx'5 ) : S Y
dé o8 ] g2
3‘ dw
and has an immediate first integral
A“ = constant (I.12)

A second first integral is provided by the equation

ﬂ - -a-li ) whence
d¢ 3¢

H = constent

This avoids the necessity of integrating the first equation of the adjoint sys-
tem. In fact, if XB is eliminated between equations (I.IO) and (I.II), the
switching function can be expressed entirely in terms of the staté variable 8 ,

the control variable v and the conatants H and xw

K H+ (g-K) (1-8"") X,

S = (1.13)

g~-K+Kyv
The discussion of the maximum principle will be further simplified if we intro-

duce the new constant ¢ defined by

1:-5--1-1-1(-2;/'1 - (1.14)
W

and put the switching function in the form

' (g-0,)(8-0.)
.i.. - 1 2 (I.15)
w B(p~K+Kv)
where el-ﬂ(:-e-l
(1.16)

ez'v!(c*v‘:i"l)
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In addition to the prescribed end values
¢ =0 ®, =0 w, = W

we shall need the transversality conditions based on the fact that 02 , B

and Bz are not prescribed. They are

B -
2 1
. o ' B -
“B)l ..g%...-i.;(»g + '(-!-{3-- 1) e 2 ) (1.18)
1 Bl
S T S S
(AB)2 a8 o e "2 (I.19)

A first important conclusion stemming from (I.17) and (I.6) is that the cons-
tant of the Hamiltonian is positive

H>o (1.20)
A second is obtained from equation (I.I0) at the end of the trajectory
H = (RB)2 (8, - K ) + v, 8,
vhen we substitute (I.17) and (I.I9); thege comes
v, S2 = 0o (1.21)

Hence at the end of the trajectory we must have that either the control variable

or the switching function vanish.

I.4. Nature of the extremals,

The proBlem is regufar in the sense that the manceuvrability domain (hodograph
space) 1s convex. It is the straight line segment of figure I.
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vels

T T —

The extremals will be characterized by v =1, v =g or possibly some inter-
madiate value corresponding to the persistence of the switching function to
vanish,

a. The constant thrust extremal,

It corresponds to v =1 and, in accordance with the maximum principle, to
" positive values of the switching function, The old control variables y and
a are zero so that, from (I.4), F 1s indeed constant. There is no engine

separation and ¢ 1increases only through consumption of propellant. From (I.7)

and the accgletatibn iiﬁiﬁdrensihg along this type of arc.
b. The constant t§m§ eitr0m¢1.-
It cofrelponds to ve o and negativa values of the switching function. -

Since the old control variable- a tends to infinity, we find, by returning to
the original differential equations, that

dt = o de = 0 dV = o dF = KgdM

No propellant is used, no velocity gained, the reduction in mass corresponds




Laboratoire d’Aéronautique UNIVERSITE DE LIEGE

8.

solely to the separation of propulsion equipment. However, as the time also
stands still, we can consider that a finite portion of such an extremal arc
corresponds to the instantaneous separation of a finite thrust unit, which is
technically meaningful.
Naturally the acceleration decreases, as further indicated by

dg

-a?-B-K'!o

c. The constant acceleration extremal.

Differentiating (I.II) and substituting the derivatives of the state varia-
ble B and the multipliers, we find in general that

-'—.-—Si-km(]--—) (1.22)

Hence if S remains zero for some finite interval of ¢ , we must have either
xu =0 or B= /K . The first possibility is ruled out by the consequence
that, from (I.II), AB should also have to be zero and both multipliers would
then vanish along the whole trajectory, together with the Hamiltonian. The

second possibility, the constant acceleration one
B = m (1.23)

gives, when substituted into (I.7), the control value

vel-d (1.24)

K

wvhich lies in the possible range. Furthermore, there follows from (I.II) and
S=o0, that

1 1 '
XB'”_E(I-E)XN (1.25)
and, from (1.10), that
1 .2
H= ( 1--&) )«w (1.26)

Equation (I,X4) then gives

ce = ] (1027)
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so that the roots 01 and 6, of (1.16) are confluent

2
6, =0, = /K
The velocity gain is given by
1 2
d¢ /R

9.

(1.28)

(1.29)

Technically speaking, this arc 1s a limiting case. It implies a continuous

separation of infinitesimal thrust units as the rocket is gaining velocity so

that the accaleration can be kept constant, despite the reduction in mass due

to propellant consumption.
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I.5. 8ynthesis of optimal trajectories.

The general composition of optimal trajectoriess for any type of functional and
boundary conditions is easily obtained from a (B,8) graph based on equation
(I.13). This graph dapends only on the sign of the constamt A, @d on the
nature and position of the roots (el,ez). Here we shall restrict ourselves to
the particular problem at hand,

We can first observe that the end condition (I.2I) really reduces to

8, = o (I.30)

Indeed, since a velocity gain is imposed, the trajectory must contain at least
one argc of the constant thrust or constant acceleration type. If the trajectory
ends on a constant thrust arc (v = 1), condition (I.30) is needed to implement
(I.21)., If {t ends on a constant acceleration arc, (I.30) s actually satisfied.
In both cases we can switch to v = 0 and, provided the switching function
becomes negative, add a final constant time arc. However this terminal arc does
not change the terminal velocity nor the value of the functional; in fact, as
shown by cqu&tim (I.7) for vmo

(8/x - 1) o“ remains constant,

Hence tha only thing that can be achisved by such an extemsion of the trajectory
is s separation of the payload and structure from a part or from the total of
the remsining propulsion units, This new solution is not essentially differant
and there 1is no loss in generality in ending the trajectory on the constamt
thrust or constant acceleration arc.

Then from (I.30) follows

32
A == K (A,)2
B, -1 °
2
or, taking (I1.I9) into account
B -4
2
A, = .« (1.31)
8, =1 1

It {s 8lo0 obvious that wve must have
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B, >0 (1.32)

For, if this were not tr&o. the final arec would be s constant thrust ome with
continuous reduction i{n velocity and continuous increase in the value of the
funetional; the required terminal velocity would already have beem reached
earlier vith s smaller value of the functional, From (X,3I) and (I.32) it
follows that

: l. >0 (1.33)
The nature of the in{tfel arc can be fixed by considering a physical limitation 3
the optimal payload for givea rl " must still be positive or, stated otherwise,
the optimal value of the functional must be negative, Comparing (I.9) and
(I.18) this holds only if

This condition in turn is compatible with (I.20) and 51 < KX only vhen

4 8l > 0 , Hence, from the maximum principle,

Vl w ] (IO 35)

and the initial arc {s of constant thrust type. This conclusion also permits

to write
‘ 1
B Qg (8, =K) +8, = () (8 - )0(!-'5';) A,

When in this relation we substitute H from (I.I7), “B)‘ from (1,18) and
A, from (I,3I), we find

B B |
0t g2 2 (1.36)
8, - 8, =1

This relation completes with “, =0, ..2, - :z » ¢, =0, the set of boundary
conditions needed for the two basic differential equations (I.7) and (I.8). It

aleo shows in conjumction with (I,32) that
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’1 > 1 (1.37)

This inequality was otherwise necessary to cbtain a lift-of capability.
The correct (8,3) graph can now be constructed with this information, The sign
of l“ is known from (1.33).

Further we have

K+l
2 /X

The lower bound is justified by the fact that the trajectory ends with 8, = o

(1.38)

and from (I.15) this can only occur for B8 = 01 or 02 . Bence the roots
cannot be complex conjugate nor negative, The upper bound is justified from the
definition (I.I4) of ¢ and the fact that, according to (I.20) the Hamiltonian
is, like lu » positive,

In the range (I.38) of ¢ values we have

1 < 0 < K < e, < K (1.39)

end the (8,8) graph based on (I.,I5) is as depicted on figure 2,

As
A
vs O
~ - K Ll
,///////;: T ! B
ve ]
|
Fige. 2
naues
&
¥ %
: 9 =
e 2 &
&

G

()
/) N
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The part of the branches v = o and v = 1 which violate the maximum principle
are dravn interrupted., From the sense of description of the branches it is:
clear that an optimal trajectory can only consist of a single constant thrust
arc, like the one represented by the segment AB , The technical variant consis-
ting in adding a constant time arc is possible,

For such a solution it is found that

- ¢2
8 B, e o, < K 8, =1+0(8 ~1)

2 1

”‘

[ ]
”‘-

+
D’ —

e Lol

-L
B

1
< - enm—
8

1 2

>
| ]
wr:

The functional is negative (payload positive) if

K-Bz

8, (Bz"l )+K

This soluticn is optimal until 8  reaches /X and

/X 1 1

2 1+ (VE=-1) /E 1+0 /K

For higher values of 8,

which el - 82 = YK . The corresponding (B,5) graph is shown on figure 3,

where it can be seen that the optimal trajectory consists of an initial constamt

we must consider the limiting case ¢ =1 , for

thrust arc until the tangency point where S = o 18 reached. By switching then
to v ] - -lkg va stay at the tangency point which represents a constant accele-
ration arc, until the required velocity is reached,

Again a constant time arc can be addad aftervards to separate the payload. In
this case we find

%-1- =101 -%i-)c" gz- K

1 1 K, .1 1 1,2
) ° By 2 K

Kk % K

The solution becomes meaningless when the velocity required is so large that the
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functional J becomes positiwe,

\

Fig. 3

Figure 4 gives an example of optimal values as functions of the tcmin"al velocity
for g = O.I md Ke 25;

2, THE MAXIMUM-MINIMUM PRINCIPLE .

2.1, Chattering-free solutions of the staging problem.

Any optimal solutiom involving chattering is of theoretical interest only. In
practice it can perhaps be approximated closely {f the physical implication of
chattering i{s a high frequency commutation of an electrounic relay switch.

In the present case, a too large number of small propulsion units would bring
sbout weight increases and loss of relisbility which could only be {ntroduced
in the formulation at the price of coneiderable mathematical complications.

On the other hand, if the number of units into which the propulsion equipment
1s subdivided has been specifiad beforshand, physical intuition suggests that
an optimal programming for the sequence of separation and the sire of separa-

ting wnits must still exist, Such an optimal solution would consist only on
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constant thrust arcs separated by a finite number of constant time arcs., It

has still to satisfy the requirements for the vanishing of the first vartfation

but not necessarily the stronger requirement of the maximum principle, This

means that on the

(8,8) graph of figure 2, the parts of the v= 0 and v = 1

branches which violate the maximum principle can be used, We them obtain a solu-
tion based on the first variation which is depicted on figure 5, The first

'

veo
\/\ ///’-.-‘1__—
= > ‘
e 8 =~ 8
// el /2 ™~
/ v N
/ \

Fig. 5

constant thrust arc is driven across the first switching point {n the negative
8 region wntil 8 reaches 02 o There we can return to 81 by a constant time

are, go back to 02

via a nev constsnt thrust arc and continue this gamse

until the prescribed number of constant time arcs (separations) is reached. The

choice of ¢ , or distance between o,
city. The nature of this solution is described on the

and 0, » regulates the terminal velo-
(¢,8) graph of figure 6.
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b—

¢
Fig. 6

It vill be observed that, up to the first switching point, the choice of emtrolJ
follows the maximum principle, after that a minimum priaciple (for the Hamil-
tonian). The reason for this is also clear vhen one remembers that the maximum
principle follows from the strong variation criterion,

A strong variation applied before the first switching point actually increasess
the valus of the functional. Applied after, as shown in dotted lines om figure 6,
it reduces the valua of the functional and sc theorstically provides a better
trajectory. However the number of constmmt timae arcs has been theresby increased
by one unit and does no more correspond to the prescribed number,

It is physically obvious that the use of this maximum-minimum principle provides
the optimal solution in the case of a prescribed number of constant time arcs.
A mathematical proof is given in the next section,

2,2, The sacond variation test for the discrste staging problem,
Because all differsntial aquations of this problem have alementary integrals, thq

optimisation of the discrets staging can be reduced to an algebraic problem of
coastrained minimum, The prescribed number of constant time arcs is denoted by
n . The n¢) conastsnt thrust arcs have, as yet unknown, initial and final §
values denoted by the sequence (Bl,yo) » (“I'Yl) vee (an,yn) with \ B Bz .
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The terminal velocity is easily found to be
n n
wvhere m(x) = 4n x -0-:? (2,2)
The terminal value of ¢
' Yo -1 71 n K- ﬂ‘
. ™ ¢l L =+ in
2 LAY % 1 K- Yl
inserted into the functional (I.9) gives
o 1
J = L ol L(=,Y) (2.3)
tayral T
wvhere alLe={ p(ui) - 5 p(Yi) (2.4)
p(x) = tn = (2.5)

Equating to zero the partial derivatives of the augmented functiom

f=J+ U8 ywith respact to the unknowns % and Y, , we find, that each of

them satisfies the same algebraic equation

-l‘z...x(l.;lx‘pg)_xl-o (206)

Denoting by 9 and 8, the roots of (2.6) we have

K= el 33
L {.’ - = (9,=1)(0,-1) (2.7)

Since 1 > 9 » Ve must chose

- ] the smallest root

Y- 0y = -Frl the largest root
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and we can compute
(e -1).'m
L w --—L—-—-—— > © (208)
(8,~1)"
and 3 O 2.9)
- - W s mscsema— O 209
¥ (0,-D)(e,-1) (o, -1)""!

The partisl derivative of the augmented function with respect to By » which
plays a special rols, gives

N g2 1

1

o+u(B, -1)=o (2.10)

and finally, in viewv of (2.9)

(02_1>n#1
B‘ -14+0 5 (2.1I)
: (ol-l)
n+l
and J=2 .1 €€, (2.12)
' L F e® '

This solution coincides with the one obtained by the maximum-minimum principle.
To prove its optimality we apply the sacond variation test.

The constraint éu, » 0 on the first variations is

2
s a
- ] - ] -
Fo= Grpddyy ’1: m'(a)éa, ~m'(8))88, = o
Because of the first variation conditioms ¢ 3f/3x = o , which require
Lp'(x) +XKum'(x) =0 Xx=a , vy

it can be placed in the more convenient form

omp
-]

L - g
p' (73)‘75 -z ! p' (a)da, - -;%- 88, = o (2.13)

L
) 4
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The second variation of the augmented function {is

2 n
ﬂu%iﬂmﬂﬁféwmwuww)mm
1
LT Ly s v arey) v
T o XP Yy oy 1
n n !
-1 ¥ ( vopiny - ptepen)’

Its last term can be simplified in view of (2,13) and the resulting form of

the second variation contains only squares of variations 3

n n
e alnes)? 44 Af Ba)? v 5L (87,) (2.14)

where
Ae =g p(a) = um"(a,) = = F p"(8)) = b u"(8))
vhich, after computation is seen to be
L 02(92 - 0‘)

A= 2 > °
% 02 (0,=1) (6,-1)

Cm g B () ¢ u () = F pU(B,) + u w(8,)

L 01(02 - ol)
or Cw 2 2 > o
K oz(ol-x) (02-1)

2 2 2
el B8 Ll no-2usus 55

2 .LgY 3 L
38y 1 8 B1

Tollt:wv that this coefficient i{s also positive we use (2.3) and (2,10) to f£ind

-3 oK
B-Bl ('H-TJ)
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But from (2,9) ¥ 1is negative, from (2.8) L 1is positive and, to have physical
significance, J must be negative (If it {s positive the velocity performance
vas set too high for a solution with positive payload to cxlot).

Hence B 4is also positive and it is clear without further calculations that the
constraint (2.I3) cannot prevent the second variation (2.I4) from being positive
definite,

Although it {s unnaecessary in this case, the constraint can be applied to
transform the second variation test in an eigenvalue problem 3ok « Substracting
the eigenvalue parameter [ to the (diagonal) matrix of second derivatives of

f and bordering by the coefficients of the constraint, we obtain the eigen-

values from the determinant

B - (4 m'(Bl)

A-g n'(el)

A=~ m' (8,)

C=-1 -m'(az)

C-g -m'(ez)

m'(s,) m'(e)) w'(s)  -u'(e,) ='(s;) O

This 1is equivalent to the equation

(') = (='(s))  (@+1) (m'(8,)?
5 -¢ T A-¢ c-¢ "e
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which shows that there are exactly two aigenvalues, one In each of the intervals
defined by the numbars (A, B, C) . They are certainly positive £f A, B and C

are positive, hence the second variation is positive definite,

2,3, The maximum-minimum principle in general,

There are many other binary systems, with a bang~bang control, which, for corud
functionals and boundary conditious, exhibit optimal trajectories involving
chattering, One of the simplest examples is

L W 279
q,(0) = o qy(0) = o q,(T) = b T> |af + 5]
q (T) minimum

A common characteristic of the chattering condition of such systems 1s that it
takes place in some algebraic variety of the state space (8 = /K for the
staging problem, q, = o for the exampla sbove). A genasral theory of such
binary systems {s possible and shows that any optimal trajectory involving a
chattering arc can be approximated by a bang-bang law of coutrol with a prescri-
bed number of switching points, This lav is optimal 1if the control is chosen
according to the maximum-minimum principle., The wmaximum principle is applied up
to the first zero of the switching function.

After that the control ninimizes the Hemiltonian and the switching funection
exhibits an oscillatory behavior. When the prescribed number of switching potnti
is reached the trajectory is either at an end or one must revert to the maximum
principle after the last switching point, ’

Physical intuition suggests that the maximum~minimum principle applics to bang~
bang contrclled systems of higher order. In such cases the situation gets complis
cated from the fact that ghattering is generally no more confined to a varlety
of the state space. For instance, if we complicate the rocket staging problem by
imposing a terminal total emergy (kinetic plﬁs potential) per unit mass instead
of a terminal velocity, the differaential equation

..
»
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governing the total energy e must be added to the system,
The condition of persistance of & zero value of the switching function does no

more result in some holonomic constraint between state variables but gives

directly the control as a

Chattering can in principle take place so long as this function has a value

between zero and one.
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