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A variational method is applied to derive the theoretical laws for skin
thicknesses and boom areas under which a multicellular box beam becomes
free from warping effects under either torsion or bending. For total freedom
under arbitrary combinations of bending and torsion the laws take a strik-
ingly simple form. Their practical implementation is related to the geo-
metrical convexity of a set of elementary cells, each of which contains
the shear centre in its interior. In such a case the shear centre, flexure-tor-
sion centre, and centroid are coincident, as are the principal axes of inertia
and principal shear axes. The Bernoulli-Navier and de Saint-Venant theories
are identical and exact solutions under arbitrary transverse loads.

§ 1. BOX-BEAM GEOMETRY

The box beams considered consist of an arbitrarily complex arrange-
ment of skin panels connected by stringers or spar flanges parallel to z-axis
(Fig. 1). In a given cross-section, the traces of skm panels are “arcs” separated
by nodes of co-ordinates (z,, ym) which
arethe geometrical centres of the string-
ers or spar flanges. The bending
and torsional l‘lgldlty of the string-
ers and flanges is neglected; they are
uniaxially stressed (tension or com- ¢
pression).

The skin thickness, effective in
carrying the shear flow ¢, is supposed || £
to vary according to an affinity law [

»(1. 1)  t,=h(z)a(s)

where s is measured along the arcs. Fig. 1. Box-beam geometry

In a cantilevered beam, we can take (™~ aXial stress flﬂwax‘:},f’;},'.’i'ng"e,’ 13';3‘;" flow
h(0)=1 at the root section, and a(s) " '
is the skin thickness at the root. Simi-

larly, the skin thickness effective in carrying the normal stress flow » and the
flange area carrying the normal load IV,, at node (m) will be taken to vary as

(1'2) tn::g(z)b(s)’ Am=g(z) Sm’

The difference between the thicknesses allows for an orthotroﬁic skin strue-
ture. Further, the assumption of closely spaced diaphragms, maintaining
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530 B. FRAEIJS de VEUBEKE

the geometrical shape of any cross-section without inducing axial restraints,
is adopted (only membrane stresses in the skin are then needed to resist
,,(.z; y,} e transverse loads): The displacement vec-

tor in a point P (z, y, z) of the skin is
n(y/-z’) thenresolved into three locally orthogonal
components: u,(s,z) along the normal 7,

7!

Fig. 2. Definition of r; (n, t) Fig. 3. Diaphragm displacement (z, v, 9)
is a rotated (Oz, Oy). and definitions of u, and u;.

u; (s, z) along the tangent £ to the arc, w (s, z) along the generator parallel
to z-axis. For the second component

(1.3) . u, = uz' +vy' + or
where 2/ =dz/ds, y' = dy/ds and
(1 4) r=uzay —yz

is the projection of OP on n (Fig. 2). The diaphragm passing through P has
been translated by u(z) parallel to Oz, v{(z) parallel to Oy, and rotated through
an angle 0 (z) about Oz (Fig. 3). The shear strain in the skin at P is

(1.9) T=w'+1,

where the “prime” denotes differentiation with respect to s, the “dot” dif-
ferentiation with respect to z.

§ 2. EQUILIBRIUM EQUATIONS

In the absence of axial constraints from the diaphragms and without
external axial loads on the skin, the equilibrium of a skin element in the di-
rection of a generator is

(2.1) ' ¢ -+n=0.
Similarly for a stringer element at node (m)
(2'2) | Nszm(Q)'

The operator T,, is defined with respect to a conventional sense of de-
scription along each arc:

Tm ()= (Z q)conv - (Zq)div'
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The first sum is extended to all the values of shear flows at the node related
to arcs convergent to the node, the second, to arcs divergent from the node.
Note that the algebraic value of g is itself related to this conventional sense
of description. ‘

The T, operator is extremely useful in connection with integrations
extended over the totality of arcs of a cross-section. The following formula
for integration by parts is easily established:

(2.3) gadp=§g~m(ap)_ [ 8da.
& &

Whenever one of the functions is single-valued, it can be factored out;
in the case of a single-valued «, for instance,

(2. 4) Sadp=§ame (®)— | Bda.
& &

Transverse equilibrium of a diaphragm involves the total shear forces
acting in a section:

(2.5) - S.=(qdz, S,()=[qdy,
& &
and the torsional moment about Oz:
(2.6) M (z)= S grds.
&

The bending moments are taken with respect to axes parallel to Oz and
Oy through the: centroid (z, y,;) of the section:

M,= Sn(x—xg)ds—l—ZNm(xm——l’e),

&
(2.7
l My= {n(y—yg)ds + XN, (¥, —¥o)
&
Equilibrium equations about these axes are then
(2.8) M,=S, My=Sy,

and the formula for integration by parts.
Equilibrium with applied transverse loads is eéxpressed through the re-
sultant distributions p, (z), p,(z) and m(z) as

(2.9 Se=—p, S,=—p, M=-m.

and can be recovered by differentiation of (2. 7), using (2. 1) and (2. 2)

§ 3. STRESS-STRAIN RELATIONS. BERNOULLI SHEAR CENTRE

The average shear stress t=q/(ha) in the skin is related to the shear
strain by v=G7. In terms of the unknown displacements w (s, z),  (z), v (2),
and 0(z) this stress-strain relation takes the form

3.1) %: w' +ux' 4 vy - 6r
' 34*



932 ‘ B. FRAEITS de VEUBEKE

stemming from (1.3) and (1.5). The other stress-strain relations are for
the axial components in skin and stringers:

.
gb

—Eb, ——Fu,

(3.2) 5

A Bernoulli-Navier type of assumption
(3.3) w="F,(2) + X, (2) (z — 75) + Y (3) ( — ¥)

that keeps the cross-section plane, suppresses in (3.1) the effect of warp-
ing and produces a shear flow

(3.4)  g=Gha[(X, )2 + (Y, +2)y +br].

The corresponding shear centre B (zz, ys) is obtained by setting =0
and expressing that the torsional moment vanishes

M,= S ggrgds =0
&

for arbitrary values of (X,-u) and (Y, 9). This furnishes the require-
ments

3.95) S arydr =0, S ar,dy =0;
& &

when we substitute here the value
(3.6) rB=(x—xB)y’—(y—yB)x’=r.—xBy’—l-yBx’,

we obtain a pair of linear equations to calculate the co-ordinates of the
Bernoulli shear centre:

—A,ys+ AxyzB.—_; S ar dz,
&

@.7)

—A s+ 4, 2= ar dy.

Bem

In those formulae appears the symmetrical reduced area tensor dis-
covered by Drymael [2]: - . :

A= Sa(m’)zds, A,,= Sax’y'ds:A

xx x

14 I3

o AW=Sa(y’)2ds.
v F

Yz’

(3.8)

‘The contracted tensor is the invariant

A,,+4,= S ads
‘ €
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proportional to the total shear resistant area. If the reference axes are
translated to the Bernoulli shear centre and the complete shear flow is

written as
q=Gha (w’-|- ugr' + oy 4+ OrB)

substitution of this into equations (2.5) and (2.6) produces, in view of
the properties (3.9), the formulae

{ = S av'dz 4 A, u,+ A, 0,
3.9) ! S
i _’”L_= S aw'dy + A i, + A, 0,
(3.10) ’ —ﬂGi}?:SarBw’ds + 1,6
where ’
@311 I,= S arids.
&

Clearly, this quantity is directly related to the torsional stiffness of the
box beam under the Bernoulli-Navier assumption. Indeed, the integral
in (3.10) vanishes by virtue of (3.5) if we substitute (3.3). The Ber-
noulli-Navier torsional stiffness Ip is a minimum with respect to the choice
of co-ordinates of the centre. For, in the case of another choice, corres-
ponding to

re=rz—Z,— ) ¥ + U — Y57

we obtain, again in view of (3.5),

Iy={artds=1I,+ [a(ydz—AyPds > I,
& 4 :

This minimum property was also discovered by Drymael [2].

§ 4. SCALAR PRODUCT. TRUE WARPING

To avoid lengthy formulae we introduce a convenient scalar product
notation for two single-valued functions a(s) and B(s) defined over the
cross-section. By definition

(4.1) e B)=[pds+ 25,08, =6, o).
14 .

With this notation (1,1) is the total root section area resisting to axial
loads. The co-ordinates of the centroid are defined by the properties

(4.2) (z—zg 1)=0, (y—y, 1)=0,
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and the momentls of inertia of the root section are given by
(4.3)  L,=@F—zm z—=z5), I,,=@—z4 ¥—y),
ly=U—Ye ¥— Ye)-

We shall denote by (i, i, iyy) the elements of the reciprocal tensor,
so that

lea‘x + lz‘J xy T 1’ a:‘.z: xy + I’xy g/g/ .'t/ T + lyy zy O’

1’.

and
Loy I, + ’yy vy

The characteristic properties of a true warping can be stated in kin-
ematical form or in terms of stresses. The function W (s) in the affin-
ity law

w=1(z2) W (s)

is a true warping if the associated axial loads from (3.2)
n=EgfotW, N, =EgfS,W,

are statically equivalent to zero. This requires the vanishing of the to-
tal axial load

[nds+ XN, =Eefw, 1)=0
&

and of the two bending moments (2.7), or
Egf(W, 2 —x6)=0, Egf (W, y—ys)=0.
A kinematical interpretation of the same conditions
(4.4) w, 1)=0, W, z—a5)=0, W, y—ye)=0

is obtained by looking for the parameters (a«, B, 1) of an average plane
w* =a(z — zg) + B(y — ye) + 1 from which to measure an arbitrary distortion
w of the cross-section so as to minimize the squared norm (v — w*, w — w").
It turns out immediately that, for the best plane, W=w — w* satisfies condi-
tions (4. 4).

§ 5. DESIGN CONDITIONS FOR ZERO WARPING

The exact solution of the integro-differential equations (2. 1)—(2. 2),
(3. 1)—(3. 2) and (2. 5)—(2. 6), with suitable end conditions at z=0
and z = L, is fairly complicated. With affinity laws such as (1. 1) and (1. 2)
the problem can be solved by separation of variables as shown first by von
Karman and Chien [4] for symmetrical shapes in torsion and then by Ben-
scoter [1] for the general case. In these approaches w is expanded in a series
of eigenwarpings. The first term of the solution is the Bernoulli-Navier
approximation. A much faster convergence is obtained by expanding the axial
stresses in eigenmodes, as shown by the author [3]. The first-order terms
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are then made of the de Saint-Venant solutions for bending and torsion.
While the first approach can be developed as a variational principle for dis-
placements, the second is really a variational principle for stresses and re-
quires the equilibrium equations to be satisfied beforehand.

Our purpose here is different, we look directly for possible functions a (s),
b(s) and S, such that the problem becomes freed from warping effects.
The net result is that the Bernoulli-Navier and de Saint-Venant theories
become identical and exact solutions for arbitrary transverse loading modes.
The only loadlng constraints remaining are in the end sections z =0 and
z= L, if eigenwarping modes are to be completely avoided.

The simplest approach to this goal is variational in nature. Lookmg
at equations (3. 9) and (3. 10) we shall try to obtain the following function-
al identities:

5.1) [awidz=0, [awiay=o,
. & &
(5.2) S argW'ds = S arpgdW =0
4 >3

for any true warping runctions W (s).

§ 6. FREEDOM FROM TORSIONAL WARPING -

First take condition (5. 2). We may replace in it the true warping func-
tion W by any single-valued function w, differentiable along each arc.
Indeed, such a function dlffers- from a true warping by a linear form with
arbltrary coefficients («, B, 7)

w=W+a(z—zd+Bly—ys)+7
and, by virtue of properties (3.9),

S arpdw — S argdW .

14 &
The condition

S argdw =0
&

just shown to be equivalent to (5.2) is now integrated by parts and
gives

Sw,T,(ars) — | wd (ars) =0.
" 4

The necessary conditions following from the arbitrariness of w are

6.1) dp=0 on each arec,
6.2) T, (p)=0 at each node,
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where p = ar,. These conditions are identical to the Kirchhoff conservation

laws for currents, the arcs being thought of as the branches of an electric
circuit. Their general solution is a superposition of currents circulating
in a complete set of independant meshes of the circuit (mesh-currents).
Let o, denote a mesh-current in the ith mesh with a positive sense of de-
scription fixed, for instance, by the rotation of Oz to Oy. Then the general
solution of equations (6. 1) and (6. 2) is

(6 3) . p:Z (1)1.3‘..

=1

The sum is extended to a given choice of £ independent meshes. The solution
is expressed with reference to the original sense of description adopted
for each arc so that

0 for those arcs which do not belong to mesh i;
1 for the arcs of mesh i where mesh sense and original sense
4= coincide;
—1 for the arcs of mesh i where mesh sense and original sense
are opposite.

In the design application to the torsion problem, the choice of the Ber-
noulli shear centre is free. Once fixed, the thickness function is defined
by the law

®.4 " a@:%

where p, as given by (6. 3), depends on k% parameters with obvious
limitations in the possible choices to maintain positive thickness
everywhere :

It is then easﬂy verified that a simple Warplng-free solution of the tor-
sion problem is at hand.

For u, v, and w identically zero but an arbitraryd (z), the shear

flow

and zero axial stresses (one of the seml—lnverse assumptions of de Saint-
Venant for torsion)

(6.6) n=0, N_=0

m

satisfy all the equilibrium and compatibility conditions with zero shear
loads:

le=9GhSpdx=(§GhSarde=0,
o ® ®
6.7) : .
i Sy.—_GGhSpdy:Gtharde:O,

' & 2
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but with a couple M related to torsion by the Bernoulli torsional rigidity
(equal here to that of de Saint-Venant):

(6.8) My =0Gh | ards = 0GhIs.
&

The end conditions are compatible with both the built-in case and the free-
end case.

§ 7. FREEDOM FROM WARPING IN BENDING

To facilitate subsequent derivations, we shall assume that the orienta-
tion of the reference axes is that of the principal axes of the tensor of reduced
areas. Then

(7.1) ' A,, = S ar'dy = S ay'dz =0.

' 4 &

Let us-examine the possibility of implementing the second of conditions (5. 1).
We can replace in it the true warping function by

W=w—a(z—ze)—By—ye)—7
and, taking (7.1) into account, obtain the condition

(7.2) | awdy —pa,,=0
&

to be satisfied by any single-valued axial displacement function w. We
also note that, by virtue of (4.2), (4.3), and (4.4),

w, z—a¢) —al,,—BI,, =0,
w, y —ye) —al,,—BI, =0.

Solving these equations for § and substituting into (7. 2), the freedom
condition is finally expressed entirely in terms of the arbitrary w by

S aw'dy = g ay'dw=A4,,[i,, (W, z—z¢) + i, W, y —ye)l-
& & .

Integrating by parts and replacing the scalar products by their explicit
definitions, we conclude from the arbitrariness of w that we should have

(7.3) (ay) =[i b (x — ze) +iyyb (y — y6)] 4,,, -

(7' 4) Tm (ay,) = —[ia‘ySm (‘zm - .‘l’c) + ig/ySm (ym - yG)] Ayy'

If we consider given distributions of b-(s) and S,,, these equations provide
design laws for a (s) in order to implement the second of conditions (5. 1).
They will generally conflict with the laws (6. 1) and (6. 2), and we shall

later examine the b(s) and S, distributions needed to avoid this conflict
and obtain freedom of warping effects in both bending and torsion.
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Williams and Fine [5] gave and discussed a result equivalent to (7. 3)
for the case of a single closed cell with a plane of symmetry (so that i,,=0 too).

To solve (7. 3) and (7. 4) for ay’ we introduce the concepts of the “open”
static moments

| X0 ={_bla—20)ds + 3.8, (@, —20)
g

(1.5)
| Yols) = | 86— vo)ds + 3.8, (., —vo),

defined as follows. The closed meshes of the set of arcs are opened by a
(in principle arbitrary) choice of % cuts and a node is chosen as origin.
On each arc (or segment of cut arc) there is now a unique direction to fol-
low in order to reach the origin and this is conveniently chosen as the posi-
tive sense of shear flow. Furthermore, at each point of this tree a new cut
separates the graph into two portions. They are distinguished by the conven-
tion that, in following the positive flow sense, one passes from the negative
side to the positive side. The static moments (7. 5) are then uniquely de-
fined at each point by extending the integral and the sum at the portion
on the negative side. By moving of ds in the positive sense, we add a small
contribution to the integrals and find

(7.6) dX,=b(x—uze)ds, dY,=0b(y—ye)ds.

By stepping over a node, coming from several convergent branches and de-
parting along the sole divergent branch, we find that

(7.7) —T,(X) =5, (@, —2e)) —T,(Y)=35,Yn—Ye)

Naturally, the open static moments are different if a different set of cuts
is adopted, but they always satisfy the same equations (7. 6) and (7. 7).
Being linear these equations show that the difference between two solutions,
that is the difference between two open static moments, is a solution
of the corresponding homogeneous equations (6. 1) and (6. 2). Hence the gen-
eral solution of equations (7. 6) and (7. 7) in the case of X is

k
X=X,— ‘g:, .3,

where X, corresponds to a fixed set of cuts. The arbitrariness in the solution
disappears when one adds the requirements

(7.8) (j;j(%)ajds:o G=1,2,..., k),

the integrals being taken in the positive circulation sense around each mesh
that was opened. Such requirements yield in fact a system of & equations
in the k£ unknowns o,

(71.9) iw‘.(ﬁj?ds=§j-}%ds (G=1,2 ... k)

=1

and make the solution X imique. This solution and the similar one for Y
will be called the closed static moments.
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Since a closed static moment verifies the same equations

(7.10) : dX=b(x—uzs)ds, T,(X)=-S,(,—ze)
as an open moment, it also satisfies the following useful relations:
(7.11) |xde=—1,, (Xdy=—1,

& 4

that are immediately established by integration by parts, use of (7.10)
and identification with (4.3). Similarly,

(7.12) (Yaz=—1,, (viay=-—1,
: & &

Coming back to equations (7.3) and (7.4), one possible solu-
tion appears .to be
ay =(i,,X+1,Y)4,,

It is in fact the only one which ensures that y is single-valued, since
the conditions

cj;ijy'ds:O (G=1, 2,..., k)

are actually implemented by (7. 8) and the corresponding property for Y.
Furthermore, in view of (7. 11) and (7. 12), we can check that.

A, =\ ayde=—A4,,6,1,,+1,l,,)=0.
2 |

The final form of the condition for avoiding a warping effect in bending
(in one plane) is thus

(1.13) ay' = —A4,, (i, X +i,,Y).

The right-hand side is determined by the b(s) and S,, distributions, except
for the free parameter 4,,.
Again, if we succeed in satisfying equation (7. 13) for a practical design,
a simple solution of the bending problem is at hand. The axial stress distri-
bution of this solution is that of the de Saint-Venant theory for a bending
moment M A
n—= Myb[lzy (x - 11(,'.) + iyy (y - yG)]’

(7.14) . { N,=M,S,li,, (,—e)+ i,, Y, — o).

The corresponding shear flow distribution in equilibrium with axial
stresses is

(1.15) L g=—5,(,X +1,Y)

and has, by virtue of v(7.13), the alternate expression

S
(7. 16) qzz—y—ay'.
vy
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The bending moment M, and shear load S, in the other plane are zero.
The deformation equations are satisfied by setting

@17 =0, S,
(7. 18) i)=—-'nyg+GA (h)

(7.19) | a=—zwzi;,

(7. 20) w:(m“}—w—b) (y — ya) — i (z — ).

Hence, as expected, the cross-section remains plane, and the end con-
ditions are again compatible with both the built-in case and the free-end
case. The whole theory, repeated for implementation of the first of condi-
tions (5. 1), would yield a similar solution for bending in the other plane.

§8 FREEDOM FROM WARPING IN BENDING
AND TORSION

Here we examine the possibility of combining freedom from warping
in both torsion and bending in one plane. As we shall see this automatically
implies also freedom from warping in bending in the other plane. Suppose
we have adopted a law for a (s) that suppresses the de Saint-Venant warping
in torsion and let the origin of the axes be placed at the chosen Bernoulli
shear centre. We then have the properties

8.1) » d(ar)=0. on each are,

8.2 T,(ar)=0 at each node,
with |
(8.3) r=ay —yz'.

To remove also the de Saint-Venant warping due to shear loads S, we
need, according to the results of § 7,

(8. 4) » ayy=—A4,,(@1,,X4+1,7).

The differential of the left-hand side along an arc is mampulated to in-
corporate (8.1) as follows

d(ay')y=ard (yT) =— :—:’ ds
where
(8.5) %—x’ Yl

is the curvature of the are, posiﬁve when the normal 7 lies on the con-
vex side. The differential of the right-hand side follows from equations
like the first of (7.10). The final result ‘

or =Ayy [iey (@ — 26) +1,, ( — ya)] b
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can serve to specify the b(s) distribution. To avoid infinities for y=0
we are led to require furthermore that

(8. 6) . ixy=0 or Izy=0 and yg=0
which reduces the law to

Ay a1y (ay)
8.7 b_AW =4,y

From (8.4) and equations like the second of (7.10) we obtain

Iyy T, (ay’)
(8.8 S —_Y¥ miay)
(8.8) R

as laws governing the area of stringers. ‘
We now develop relations of symmetry to show that the same laws
suppress warping due to S, shear loads. From the identity

ar =z (ay') — y (az')

we obtain, in view of properties (8.1) and (8.2), that

(8.9) o zd (ay') = yd (az')
and :
(8.10) ZuT () =y, T, (a2').

Hence the symmétrical result can.be proved:

(8. 11) 2¢=0.

The value of zg is found from the property (z —a¢, 1)=0 or
ze (1, 1)=(z, 1)=§bxds+§,smxm.;

But, from (8.7) and (8.8),

y . '
1, N2 =\ Zd(ay ImT (ay
z(1, 17 gs’_,, <ay>+_§ym n (@)
andefinally, from (8.9) and (8. 10),
zo(l, )72 =—[d(az)+ W7, (az) =0
vy & |

as announced. Next calculate

4,,={ade=Xz,T,(az) — | 2d (a2).
4 " 4

Apply the symmetry relations (8.9) and (8.10) to find

— N'%n n_ (22 /
}4,,,,—;“1',,.(@) , é’yd«zy) |
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and finally reintroduce b and S, from (8.7) and (8.8):
(Z S, 22 bezds).

This relation, exhibited in the symmetrical form

4 Ayy
8.12 =22 =
(8.12) | b=TE=T
proves that the laws found for  and S,, can be placed in the form that would
have resulted from the suppression of the warping due to S, instead of the S,
shear loads.

To summarize: the skin thickness carrying shear flow must be distri-
buted to satisfy equations (8. 1) and (8. 2), the nature of this solution was
discussed in § 6. The skin thickness carrying normal loads must be distri-
buted according to the law

1 a
(8.13) b=—r

depending on the curvature of the skin and proportional to a desired ratio
of inertia moments to reduced areas.
The area of nodal stringers is given by either of the formulae

1 Tnlaz) 1 Ty(ay)
P' ‘t‘ln P‘ ym

For such designs the axes Oz and Oy are both principal axes of inertia (,,=0)
and principal shear axes (4,,=0). The origin is simultaneously the shear cen-
tre, flexure-torsion centre “and centroid. Under arbitrary transverse loads,
and provided the end loads conform with the de Saint-Venant distribution,
the section remains plane and the ordinary engineering beam theory is
an exact solution.

§ 9. THE PRACTICAL DESIGN OF WARPING-FREE SECTIONS

We still need to deal, in the simplest possible manner, with the limita-
tions of the theory of warping-free sections represented by the requirements
for positive thicknesses and areas for skin and stringers. The single closed
cell section will be considered to be the simplest building block for more
complex structures.

In a single cell we take

9.1) a=—
where k& is a constant connected with the desired torsional rigidity
(9.2) J=35ar2ds=k4;rds=29k

Q being the area of the cell. Hence % should be positive and r likewise. This
limits the choice of the shear centre (origin of the co-ordinate axes) to the in-
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terior of the cell, which, as will be seen next, must be convex. The skin
thickness for normal loads is fixed by
a k

(9. 3) b= or e
The parameter p is chosen according to (8. 12) to obtain a desired moment
of inertia and is positive. Hence p must also be positive: the section must
be convex. At the limit, zero curvature could be tolerated, if the property
b=0 can be represented by a corrugated
sheet. At angular points a concentrated
stringer area is needed and can be calcu-
lated by either one of equations (8. 14).
It is however more instructive to obtain
it by a limiting process.

..The total area of a curved skin
piece is

M, o, P2

k d k(d
S bds=— S —Z:—S —;P Fig. 4. Calculating the boom area at
& * i, A - r an angular point (corner) C.

where ¢,—@, is the angle through which the tangent to the arc has turned.
In the limit of strong curvature this formula should hold for the stringer
area where @,—, is the turning angle of the tangent at the angular point.
In this case r varies according to the law r=R cos ¢ (Fig. 4) and we find

k tang,—tang, __ K sin (¢ —¢y)
P R2 e rirs

9. 4) S =

where r; and r, are the values of » when entering and leaving the angular
point. This result is easily proven to be identical with (8. 14). For multi-
cellular sections the simplest method is to superimpose the thickness

7
— L J

Fig. 5. Principle of superposition of skin
thicknesses and boom areas of component
single cells.

and area distributions of component single cells (Fig. 5). All component
cells should be convex and contain the chosen shear centre in their
interior. In addition to the freedom in the choice of a shear centre and
the choice of p (which must be the same for all components), there are
as many independent parameters k, as component cells. The overall tor-
sional stiffness of the multicellular case is readily calculated to be

©-9) J=22kQ,



544 : B. FRAEIJS de VEUBEKE

The consideration that warping-free beams can resist rapidly varying or even
discontinuous transverse loads without stress concentrations due to shear
lag or torsion induced bending stresses warrants a careful design study.
Admittedly this ideal can in some cases conflict with a more efficient
use of the material.
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