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NUMERICAL INTEGRATION OF PLANE
ORBITAL TRANSFERS WITH
MULTIPLE POWERED ARCS
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ABSTRACT

The purpose of this numerical investigation has been to evaluate the penalty on
propellant expenditure in a transfer using a chemical rocket of small thrust. The thrust
acceleration at departure was taken to be 0-03 times the gravitational acceleration.
Results show that the excess expenditure over that of a bi-impulsive transfer can be
reduced by a factor 4 when passing from a TCT optimal solution to a TCTCT one.

POSITION OF THE PROBLEM

The problem is a planar one. The time and the angle are open. The orbit
of arrival is defined by its total energy and its angular momentum. Optimi-
zation is for minimum propellant expenditure of a rocket of limited thrust
with respect to both thrust orientation and cutoff-relight capability. All
state variables are made non-dimensional by using the radius of the circular
departure orbit, the corresponding orbital velocity and the initial mass as
units. The 4 state variables are

z: inverse of the angular momentum

A and B: related to eccentricity e and argument of pericenter 6o by:

A = zecos Og

B = zesin Gy

~ 0: the polar angle with respect to a fixed direction
z, A, B are osculating variables, they remain constant during a coasting
arc. The independent variable is the characteristic velocity
d=clnyu

where u is the (reduced) reciprocal of instantaneous mass.
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The two dimensionless parameters of the problem (excluding the geomet-
rical characteristics of the orbits of departure and of arrival) are
c: the reduced effective exhaust velocity,
a: the ratio of thrust acceleration to gravitational acceleration at depar-
ture. . :
The numerical values adopted for the parameters were

c= 0f3228 a =003

The method of Runge-Kutta-Gill was used to integrate the system of 8 dif-
ferential equations® (4 equations for the system of state variable and 4
equations for the adjoint system). According to the maximum principle, it
is possible to compute at each step the optimal thrust orientation y, while
the sequence of powered and coasting arcs is ruled by a switching function
also calculated step by step. -

For open time transfers, the Lagrangian multipliers are orbital constants
just like the osculating variables. The only variables during a coasting arc
are the polar angle 0 and the time (which is here a separable variable any-
way). Hence, if 6, denotes the polar angle at a cutoff, the only unknown
will be the polar angle 0, at the next relight condition. From the analytical
results®> 2 there are two types of orbital jump, a symmetrical one and
an asymmetrical one and the type of jump can be decided by tests. There
are two unknown initial values: v, and 0,; their choice determines a dis-
crete set of orbits of arrival. The choice of 6, and v, is limited by the con-
dition that the initial rate of growth of “the switching function” be posi-
tive; this condition can be expressed analytically.®

THRUST-COAST-THRUST TRANSFERS (TCT)

- With a program, named ORVAL, written in FORTRAN 1V for
IBM7040 it has been possible to draw Fig. 1. It is a region of initial values
allowing a TCT transfer, starting from a circular orbit. This region is very
narrow and therefore difficult to delimitate. Some points, corresponding to
different r, (radius of a circular orbit of arrival) are plotted on this figure.
Another program (named CATI) determines y, and 6, for an imposed
transfer. The values of ¢, and 0, are automatically improved by a conver-
gent process to satisfy the end conditions. This is achieved, classically, by
experimental measurement of the sensitivities of end conditions to small
increments in initial values, followed by linear corrections. After several
iterations, it is possible to obtain the initial values with sufficient accuracy.
A typical co-circular transfer obtained with the CATI program will be
illustrated. The radius of departure is 1'0 and the radius of the orbit of
arrival is 1'5. The following figures show the evolution of some of the
variables.
Figure 2 presents y and r against 0 (r reduced radial distance).
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F1G. 3. ue and u, against 6 (in radians).

Figure 3 presents, against 6, the tangential velocity u, and the radial
velocity u,.

Figure 4 presents the optimal thrust orientation y against 6.

Figure 5 is a picture of the co-circular transfer in polar coordinates.
The thrusted arcs are the solid curves, the coasting arc is dashed.

Figure 6 also depicts a TCT transfer but the radius of the final orbit is
raised to 3:03.

FIG, 4. y (in degrees) against 0 (in radians).
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F1G. 6, Co-circular transfer with r, = 3-03,
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COMPARISON BETWEEN TCT TRANSFERS, TCTCT
TRANSFERS AND HOHMANN BI-IMPULSE TRANSFERS

If myy is the residual mass at arrival fora Hohmann bi-impulsive transfer
and my,, the residual for a TCT transfer: .

is the relative penalty of propellant expenditure.
Figure 7 shows how this penalty increases in a co-circular transfer with
the increase in the ratio of radii.
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FIG. 7. € against r(b). N

A companson was also made between several types of co-cn'cular trans-
fers by varying the number of coasting arcs. The ratio of radii was held
fixed at 1'5. A simple TCT transfer was compared with two TCTCT trans-
fers (containing two coasting arcs). The best one of those, which has a first
symmetrical jump followed by an antlsymmctncal reduced the penalty by
a factor of 4.

The residual masses at arrival orblt (for r, = 1'5) were found to be re-
spectively

mpg = 05696 (reference Hohmann value) ‘
myrercr = 0°5693
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CONCLUSIONS

The characteristics of the orbit of arrival are extremely sensitive to the
initial parameters 6, and v,. i

The penalty in propellant expenditure due to finite thrust is either small
or can be made so, even for large energy changes, by introducing a second
coasting arc.
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