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Purpose: One of the major hurdles in enabling personalized medicine is obtaining sufficient patient data
to feed into predictive models. Combining data originating from multiple hospitals is difficult because of
ethical, legal, political, and administrative barriers associated with data sharing. In order to avoid these
issues, a distributed learning approach can be used. Distributed learning is defined as learning from data
without the data leaving the hospital.
Patients and methods: Clinical data from 287 lung cancer patients, treated with curative intent with
chemoradiation (CRT) or radiotherapy (RT) alone were collected from and stored in 5 different medical
institutes (123 patients at MAASTRO (Netherlands, Dutch), 24 at Jessa (Belgium, Dutch), 34 at Liege
(Belgium, Dutch and French), 48 at Aachen (Germany, German) and 58 at Eindhoven (Netherlands,
Dutch)).
A Bayesian network model is adapted for distributed learning (watch the animation: http://youtu.be/
nQpqMIuHyOk). The model predicts dyspnea, which is a common side effect after radiotherapy treatment
of lung cancer.
Results: We show that it is possible to use the distributed learning approach to train a Bayesian network
model on patient data originating from multiple hospitals without these data leaving the individual hos-
pital. The AUC of the model is 0.61 (95%CI, 0.51–0.70) on a 5-fold cross-validation and ranges from 0.59 to
0.71 on external validation sets.
Conclusion: Distributed learning can allow the learning of predictive models on data originating from
multiple hospitals while avoiding many of the data sharing barriers. Furthermore, the distributed learn-
ing approach can be used to extract and employ knowledge from routine patient data from multiple hos-
pitals while being compliant to the various national and European privacy laws.
� 2016 The Author(s). Published by Elsevier Ireland Ltd. Radiotherapy and Oncology xxx (2016) xxx–xxx
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Learning from large volumes of patient data can greatly increase
our capacity to generate and test hypotheses about healthcare [1–
3]. To capture and use the knowledge contained in large volumes of
patient data, predictive models are essential [1,4,5]. Predictive
models can be trained on large volumes of data, of patients who
have been treated in the past, to make predictions about survival
and side-effects of treatment for a patient that has yet to be treated
[6–8].

A number of challenges arise when one attempts to train mod-
els from routine care patient data. First, model performance is
roughly proportional to the number of patients trained on. Patient
data are readily available at different hospitals, but unfortunately,
sharing these data between hospitals is hampered by ethical,
administrative, legal, and political barriers [9]. If these data cannot
be shared, models can only be trained on local data with the con-
sequence that performance is limited and external validation (e.g.
reproducibility and generalizability) is not possible. External
model validation is a prerequisite when developing high quality
ut data
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2 Distributed learning: learning from multiple hospitals without data leaving the hospital
(e.g. TRIPOD Type 3 or 4) models [10]. In order to circumvent the
hurdles associated with sharing data frommultiple hospitals, a dis-
tributed learning approach may be used. In this approach, many of
the barriers regarding data sharing are solved by sending the
model training application to the hospitals. The model is trained
at the hospitals and then the model is sent back to a central loca-
tion, rather than centralizing the data. At the central location, the
models trained individually at the hospitals are integrated into a
single model. Therefore, patient data never leave the hospital and
are obscured to the researcher while data are available to the
learning application.

A second problem that arises when using data originating from
routine clinical practice is data quality, with missing data being the
most common problem. Incomplete patient data require many
models (logistic regression, support vector machines etc.) to either
estimate the missing values or to leave out the patient altogether
before model training and/or validation can take place. This
impedes model performance [6]. This problem can be avoided by
the use of Bayesian networks. The mathematical foundations of
Bayesian network models allow effective handling of missing data.
We have previously shown that in datasets that have a lot of miss-
ing values, a Bayesian network outperforms a support vector
machine in terms of discriminative power [6].

Existing techniques to enable distributed learning exist for a
number of machine learning algorithms. Some of these techniques
focus on horizontal distribution of data, meaning that each center
has the same variables but different subjects [11,12]. Other algo-
rithms focus on vertically distributed data, meaning that the data
centers each hold different parts of the data for the same subject
[13,14]. For Bayesian networks, algorithms exist for learning both
the network structure [15–18] and conditional probability tables
(CPTs) [19,20]. However, these existing solutions are either tailored
to vertically partitioned data or assume the data contains only bin-
ary variables.

In this study we learn a Bayesian network model on horizon-
tally partitioned data located at 5 different hospitals using dis-
tributed learning, without data leaving the hospital. Our
proposed method enables the usage of discretized variables with
an arbitrary number of levels. Furthermore, we propose a method
by which discretization of continuous variables can take place in a
distributed setting. The model predicts dyspnea, a common side
effect after radiotherapy of lung cancer [21,22]. Dyspnea is a symp-
tom of radiation-induced lung toxicity, which is developed in 10%-
20% of all lung cancer patients treated with radio(chemo)therapy
[23]. Our hypothesis is that clinical and treatment parameters,
originating from retrospective clinical data from multiple hospi-
tals, can be used to predict patient outcome above the chance level.
Furthermore, we expect that we can achieve a similar performance
using a model learned from distributed data as we have previously
obtained using a centralized approach [24]. Finally, we expect that
the results of the distributed algorithm are a close approximation
of the results of the centralized algorithm when learned on the
same data.
Patients and methods

Data

Clinical data from 287 lung cancer patients, treated with cura-
tive intent with chemoradiation (CRT) or radiotherapy (RT) alone
were collected and stored in 5 different medical institutes (123
patients at MAASTRO (Netherlands, Dutch), 24 at Jessa (Belgium,
Dutch), 34 at Liege (Belgium, Dutch and French), 48 at Aachen
(Germany, German) and 58 at Eindhoven (Netherlands, Dutch)).
Although these present only a fraction of the data available at these
Please cite this article in press as: Jochems A et al. Distributed learning: Develop
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institutions, this study aims to be a proof of principle for
distributed learning for which these limited numbers are sufficient.
None of the patients received stereotactic body radiotherapy.
Patients were treated for their primary lung tumor and were not
diagnosed with another tumor in the 5 years before treatment.
Out of these 287 patients, 268 patients had post-treatment dysp-
nea recorded (PGrade 2 according to the CTCv3.0) and were
included in the analysis (123 patients at Maastro, 14 at Jessa, 33
at Liege, 42 at Aachen and 56 at Eindhoven). The patient details
can be found in Table 1.
Distributed learning infrastructure

Data were placed in a triplestore in subject-predicate-object
manner (e.g. Patient # 1 – has post-therapy dyspnea – Grade 3)
[25]. In each hospital, data were extracted from the local data
sources and then mapped to codes and stored in the local triple-
store using an ontology (NCI Thesaurus) [26]. This mapping to
codes results in triples which are independent of language and
can be accessed by applications using the same query in each hos-
pital. Data stored in this way are said to be Linked Data [27] or
Semantically Interoperable [28].

A number of open source software packages were used to
implement the infrastructure at each hospital to enable learning.
Data were queried and extracted from the electronical medical
records using Pentaho (version 6.0.1.0) [29]. Patient identifiers
were stored in a secured separate database and an associated ‘dei-
dentified’ key was generated for use by the system. Deidentified
patient data was stored in a PostgreSQL database (version 1.22.1)
before conversion to triples using D2RQ took place [30]. Triples
were stored in a Sesame server triplestore (version 2.7.7) [31]. Each
hospital had its own triplestore with data installed and these
triplestores can be queried using SPARQL [32], the query language
of the semantic web. Querying of the portals was mediated by the
Varian learning portal, a web portal developed by Varian medical
systems (Palo Alto, CA). In the Varian learning portal, the
researcher can upload his or her model application for learning.
The Varian learning portal transmits the model application and
validation results back and forth between the central location
and the hospitals (Fig. 2).
Bayesian network

A Bayesian network model was developed to predict dyspnea.
The model used tumor location (right lower lobe, right middle lobe,
right hilus), lung function tests (forced expiratory volume in 1 s, in
%, adjusted for age and gender; measured prior to medication), pre-
treatment dyspnea, cardiac comorbidity, (Non-hypertension car-
diac disorder (at baseline), for which treatment at a cardiology
department has been given) and timing of chemo (no chemo,
sequential or concurrent) to make predictions. Variable selection
was based on an earlier study [24]. The network structure of this
model was pre-specified by experts and can be found in Fig. 1.

The model’s performance was expressed as the Area Under the
Curve (AUC) of the Receiver Operating Characteristic Curve (ROC).
The maximum value of the AUC is 1.0; indicating a prediction
model that perfectly discriminates patients with and without tox-
icity. A value of 0.5 indicates that patients are only correctly dis-
criminated in 50% of the cases, e.g., as good as chance.

A Bayesian network is a probabilistic graphical model that rep-
resents a set of variables and their dependencies in a directed acyc-
lic graph (DAG). Within the DAG, variables are depicted as nodes
and statistical dependencies are represented as directed edges.
The joint probability of variables X1, . . ., Xn, can be decomposed into
a product form of conditional probability distributions:
ing a predictive model based on data from multiple hospitals without data
p://dx.doi.org/10.1016/j.radonc.2016.10.002
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Table 1
Overview of patient characteristics per hospital.

Jessa UK Aachen Chulg Eindhoven Maastro

Number of patients 24 48 34 58 123

Neoplasm
Lung Carcinoma 10 (42%) 2 (4%) 0 (0%) 1 (2%) 6 (5%)
Non-Small Cell Lung Carcinoma 9 (37%) 30 (63%) 27 (80%) 40 (69%) 91 (74%)
Small Cell Lung Carcinoma 5 (21%) 16 (33%) 7 (20%) 17 (29%) 26 (21%)
Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Dyspnea score (pre-treatment)
CTCAE Grade < 2 6 (25%) 36 (76%) 20 (59%) 50 (86%) 119 (97%)
CTCAE GradeP 2 8 (33%) 6 (12%) 13 (38%) 6 (10%) 4 (3%)
Missing 10 (42%) 6 (12%) 1 (3%) 2 (3%) 0 (0%)

Dyspnea score (post-treatment)
CTCAE Grade < 2 8 (33%) 36 (76%) 20 (59%) 50 (86%) 89 (72%)
CTCAE GradeP 2 6 (25%) 6 (12%) 13 (38%) 6 (10%) 34 (28%)
Missing 10 (42%) 6 (12%) 1 (3%) 2 (3%) 0 (0%)

Gender
Female 6 (25%) 14 (29.2%) 13 (38%) 25 (43%) 46 (37%)
Male 18 (75%) 34 (70.8%) 21 (62%) 33 (57%) 77 (63%)
Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Chemo timing
None 6 (25%) 2 (4%) 0 (0%) 6 (10%) 16 (13%)
Sequential 4 (18%) 4 (8%) 3 (8%) 25 (43%) 22 (18%)
Concurrent 13 (53%) 28 (59%) 31 (91%) 27 (47%) 84 (69%)
Missing 1 (4%) 14 (29%) 0 (0%) 0 (0%) 0 (0%)

FEV1Percentage 82 (±22) 68 (±20) 72 (±22) 81 (±25) 78 (±22)
Missing 4 (16%) 23 (48%) 0 (0%) 21 (37%) 0 (0%)

ECOG performance status
1 7 (29%) 0 (0%) 9 (26%) 23 (40%) 34 (28%)
2 10 (42%) 0 (0%) 22 (65%) 29 (50%) 68 (55%)
3 1 (4%) 0 (0%) 2 (6%) 6 (10%) 16 (13%)
4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (3%)
5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1%)
Missing 6 (25%) 48 (100%) 1 (3%) 0 (0%) 0 (0%)

FEV1 Percentage: forced expiratory volume in 1 s, in %, adjusted for age and gender; measured prior to medication. CTCAE: Common Terminology Criteria for Adverse Events.
ECOG: Eastern Cooperative Oncology Group.

A B

Fig. 1. Network structure of the Bayesian network model. The underlined node, Dyspnea, is the prediction variable. FEV1: forced expiratory volume in 1 s, in %, adjusted for
age and gender. (A) Network structure determined by experts. (B) Network structure computed by structure learning algorithm.
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PðXÞ ¼
Yn

i¼1

PðXijPaðXiÞÞ

in which Pa(Xi) indicates the parents of Xi in the network. We have
determined the DAG dependencies based on expert knowledge. The
conditional probability tables associated with each variable have
been computed using the expectation maximization (EM) algorithm
[33]. All continuous variables were discretized using a method
described by Kuschner and colleagues [34].
Please cite this article in press as: Jochems A et al. Distributed learning: Develop
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To evaluate the effect of network structure on model perfor-
mance, we have compared performance of three different network
structures by validating on the Eindhoven dataset. In addition to
the expert defined structure, we have used the same structure
without chemo timing to investigate the effect of chemotherapy
use on dyspnea. To explore the effects of using a data-driven
approach to determine the network structure, we have used the
path condition (PC) algorithm to determine the network structure
[35] based on the largest dataset (Maastro).
ing a predictive model based on data from multiple hospitals without data
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Fig. 2. Schematic overview of the distributed learning algorithm. In the first step, locally found bin boundaries are sent back to the central location. Here, a weighted average
is computed on these boundaries, and these are sent back to the sites. In the second step, conditional probability tables are learned at each hospital. These probability tables
are sent back to the central location, at which they are averaged in proportion to the number of patients at each hospital. The averaged conditional probability tables are sent
back to the sites. In the last step, the model is validated on the data and the predicted probabilities of the model are sent back to the central location.

4 Distributed learning: learning from multiple hospitals without data leaving the hospital
Distributed learning

In order to realize distributed learning, existing techniques for
learning Bayesian networks had to be adapted. A schematic over-
view of the procedure can be observed in Fig. 2. First, continuous
variables were discretized in three bins according to the method
described by Kuschner and colleagues [34]. Locally computed bin
boundaries were transmitted to a central location. At the central
location, the bin boundaries were averaged. Each site contributed
to the average in proportion to the number of patients that were
located on that site. The averaged bin boundaries were transmitted
Please cite this article in press as: Jochems A et al. Distributed learning: Develop
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back to the hospitals. In the second step, the CPTs were obtained by
learning locally from each hospital. The CPTs were sent to the cen-
tral location, where they were combined by weighted averaging.
Individual table entries were weighted in proportion to the num-
ber of patients available at the hospital. The weighted CPTs, which
comprise the global model, were sent back to each site to be vali-
dated. In the third step, the model was validated using the data
available on the site. The predicted probabilities of the model
and corresponding actual outcomes were transmitted back to the
central location.
ing a predictive model based on data from multiple hospitals without data
p://dx.doi.org/10.1016/j.radonc.2016.10.002

http://dx.doi.org/10.1016/j.radonc.2016.10.002


Specificity

Se
ns

iti
vi

ty
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

1.0 0.8 0.6 0.4 0.2 0.0

Fig. 3. Receiver operator characteristic on a 5-fold cross-validation. The Bayesian
network uses chemo timing (no chemo, sequential or concurrent), tumor location
(right lower lobe, right hilus, right upper lobe), forced expiratory volume in 1 s, in %,
adjusted for age and gender; measured prior to medication, pre-treatment dyspnea,
baseline dyspnea score (CTCAE grade < 2) and cardiac comorbidity (Non-hyperten-
sion cardiac disorder (at baseline)) to classify acute dyspnea.
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We conducted a 5-fold cross-validation of the model. Cross-
validation was done by algorithmically selecting 80% of all patients
at random at each hospital and using this 80% for learning the
model (steps 1 and 2 in Fig. 2). The models learned at individual
hospitals were combined at a central location. The combinedmodel
was subsequently sent back to each hospital to be validated on the
remaining 20% of patients on each site. This was repeated 5 times.

In order to assess the overall performance of the technique used,
we did an additional experiment with the network structure as
described in Fig. 1. In this experiment, we learned the network on
all data, except for the data of a single center (steps 1 and 2 in
Fig. 2). The model is subsequently validated on that last center,
yielding an ROC curve (step 3 in Fig. 2). The learning and validation
stepswere repeated so themodel could be validated on each center.

To evaluate the feasibility of learning high quality models from
larger volumes of data and higher numbers of hospitals using the
method presented in this study, additional computational analyses
were done. First, datasets of 1000, 10,000 and 100,000 patients
were created by taking random samples from the data available
at MAASTRO clinic. These data were partitioned in 10 to 100 sub-
sets to simulate the different hospitals. The algorithm proposed in
this study was used on these partitions and performance of the dis-
tributed algorithm model was compared to the model learned
locally. Both models were validated on the data used to train the
models. Model performance was evaluated using average differ-
ence in probabilities in the CPTs and difference in AUC between
the distributed model and non-distributed model. To evaluate
the performance of the algorithm under varying levels of missing
data, the experiment was repeated with 0%, 20% and 40% randomly
set missing data elements in the training data.

In all participating hospitals, internal review board approval
was obtained.
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Liege (AUC = 0.69)
Aachen (AUC = 0.63)

Fig. 4. Receiver operator characteristic curves for the model trained on all but one
hospital and validated on the remaining hospital.
Statistical analysis

Data preprocessing was done in Matlab (MathWorks, Natick,
MA, USA) The Bayesian network model was programed in Java
using the open-source jSmile framework of the Dynamic Systems
Laboratory of Pittsburg University [36] and made freely available
for academic purposes by BayesFusion, LLC (http://www.bayesfu-
sion.com/).

Analysis of ROC curves was done in R, version 3.1.3 (R founda-
tion for statistical computing, Vienna, Austria) using the pROC [37]
and cvAUC [38] packages. Comparison of ROC curves and computa-
tion of confidence intervals of AUC values was done using the
method described by DeLong and colleagues [39].

Results

A Bayesian network structure was defined based on expert
domain knowledge and can be found in Fig. 1A. The results of
the 5-fold cross-validation can be found in Fig. 3. The AUC of the
model was 0.61 (95% CI: 0.51–0.70).

Subsequently, we learned the model on all data, except for the
data of a single hospital. The model is subsequently validated on
the last hospital, yielding an ROC curve for every center. The result
of this experiment can be observed in Fig. 4. The AUC of the model
validated on the Maastro dataset is 0.59 (95% CI: 0.49–0.69). The
AUC of the model validated on the Jessa dataset is 0.66 (95% CI:
0.36–0.95). The AUC of the model validated on the Liege dataset
is 0.69 (95% CI: 0.53–0.84). The AUC of the model validated on
the Aachen dataset is 0.63 (95% CI: 0.36–0.90). The AUC of the
model validated on the Eindhoven dataset is 0.71 (95% CI: 0.41–
1). The CPTs of the learned model can be seen in Table 2.

We compared the performance of models learned in a dis-
tributed fashion to models learned locally on the same data for
Please cite this article in press as: Jochems A et al. Distributed learning: Develop
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either 1000, 10,000 or 10,000 patients partitioned over 10 to 100
subsets with 0, 20% and 40% randomly missing data. The results
of this analysis can be observed in Fig. 5. The average difference
of percentages in the CPTs between the distributed model and local
model averaged over all levels of degradation and all numbers of
hospitals is 1.6% (±0.7%) for dataset size of 100,000. The average
difference in terms of AUC between the distributed model and local
model averaged over all levels of degradation and all numbers of
hospitals is 0.002 (±0.002) for dataset size of 100,000.

We compared the performance of the model for 3 different net-
work structures. First, the expert defined network structure
(Fig. 1A) was compared to the same structure without chemo tim-
ing. The AUC of the model is higher without chemo timing
(AUC = 0.75, 95% CI: 0.53–0.97 versus 0.71 95% CI: 0.42–1),
however, this difference is not significant (P = 0.84). We have used
a data-driven approach to determine the network structure
(Fig. 1B). The performance of the model using this structure is
lower (AUC = 0.66, 95% CI: 0.36–0.96). However, this difference is
not significant for the expert defined structure (P = 0.8), nor is it
for the expert defined structure without chemo timing (P = 0.37).

Discussion

In this study, we developed and implemented a distributed
learning approach for Bayesian networks using data from 5
ing a predictive model based on data from multiple hospitals without data
://dx.doi.org/10.1016/j.radonc.2016.10.002
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Table 2
Conditional probability tables of the final model. Associated structure can be observed in Fig. 1. An additional table is added for Dyspnea given the same structure as observed in
Fig. 1A, without chemo timing.

FEV 1

Location Hilar Area of the Right
Lung

Upper Lobe of the Right
Lung

Lower Lobe of the Right
Lung

Cardiac comorbidity No Yes No Yes No Yes

Low (<30) 32% 27% 14% 21% 23% 8%
Medium (between 30 and 80) 8% 16% 10% 21% 19% 41%
High (>80) 61% 57% 76% 58% 58% 51%

Dyspnea

Baseline dyspnea <Grade 2 PGrade 2

Chemo timing None Sequential Concurrent None Sequential Concurrent

<Grade 2 78% 61% 76% 25% 25% 16%
PGrade 2 22% 39% 24% 75% 75% 84%

Dyspnea (without chemo timing as parent)

Baseline dyspnea <Grade 2 PGrade 2

<Grade 2 72% 30%
PGrade 2 28% 70%

Location

Hilar Area of the Right Lung 22%
Upper Lobe of the Right Lung 52%
Lower Lobe of the Right Lung 25%

Chemo timing

None 13%
Sequential 18%
Concurrent 69%

Cardiac comorbidity

No 72%
Yes 28%
Baseline dyspnea

Location Hilar Area of the Right Lung Upper Lobe of the Right Lung Lower Lobe of the Right Lung

<Grade 2 94% 95% 98%
PGrade 2 6% 5% 2%

6 Distributed learning: learning from multiple hospitals without data leaving the hospital
hospitals in 3 countries and 3 languages without the need for any
data to leave the individual hospital. We validated the performance
of the model by cross-validation and by external validation in one
hospital that was not included in the training. Finally, we com-
pared the results of the distributed algorithm to the results of
the centralized algorithm on the same data.
Implementation of the infrastructure

Distributed learning for the development of predictive models
for radiotherapy is a relatively new topic, although a frameworks
for international research data exchange have been proposed
[40,41]. A project that has successfully made use of data sharing
in a distributed manner is euroCAT (www.eurocat.info; watch
the animation at https://youtu.be/ZDJFOxpwqEA), a collaborative
project involving radiotherapy institutes from the Netherlands,
Germany and Belgium. To our knowledge, no publications exist
that use Bayesian networks for distributed learning for
radiotherapy.

The distributed learning approach circumvents a number of
human barriers issues but also raises the technical hurdle of setting
up the systems that enable distributed learning. We have encoun-
tered a number of problems associated with setting up these sys-
tems. First, extraction of the data to be used for distributed
learning still needs to be retrieved from the various medical
record- and treatment planning systems used in the hospital.
Please cite this article in press as: Jochems A et al. Distributed learning: Develop
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Therefore, we needed extensive communication with the data
managers at every institute to find the data and make sure it is
extracted properly. Different hospitals store their data in different
formats and standards, leading to problems. Some of these
problems can be solved by inferencing based on semantic web
technology. For example, ECOG performance score and Karnofsky
status can be mapped and made interoperable via the ontology,
based on existing literature on how the conversion should be done
[42]. Conversions between different units of the metric system can
also be handled by the ontology in an automated fashion. Some
issues, however, cannot be solved in an automated fashion. For
example, some hospitals have their toxicity grades described in a
free-form text field. These free-from text fields need to be read
by human eyes and converted into a database before mapping
can take place. This is the most time consuming aspect of installing
the infrastructure. Once the data to be extracted is identified and
located, semantic web technologies enable seamless mapping of
local language terms to a universal language that the computer
understands. The second issue we were confronted with was
reluctance of IT staff to open the installed infrastructure for
learning over the internet. The system administrators at the
hospitals are cautious and at first unwilling to open up ports on
the firewall for arbitrary reasons. A detailed explanation of
the workings of the system was often required to convince them
that there are no security risks involved with implementing the
infrastructure.
ing a predictive model based on data from multiple hospitals without data
p://dx.doi.org/10.1016/j.radonc.2016.10.002

http://www.eurocat.info
https://youtu.be/ZDJFOxpwqEA
http://dx.doi.org/10.1016/j.radonc.2016.10.002


Percentage difference AUC difference

0% degrada�on
14% 10 0.03
12% 20 0.02
10% 30 0.01
8% 40 0.00
6% 50
4% 60
2% 70
0% 80

90
100

20% degrada�on
10
20
30
40
50
60
70
80
90

100

40% degrada�on
10
20
30
40
50
60
70
80
90

100

1000

10000

100000

1000

10000

100000

Pa�ents -> Pa�ents ->

Hospitals ->
Hospitals ->

Hospitals - >

Fig. 5. Comparison of distributed learning versus local learning. Datasets were
created by random sampling from the MAASTRO clinic data (N = 123). The first
column shows the average difference in percentages of the conditional probability
tables for the global and distributed model. The second column shows the
difference in AUC for the global and distributed model. Rows depict the levels of
artificially introduced random missing data (0%, 20%, 40%, respectively).
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Techniques for distributed privacy-preserving linear, log-linear
and logistic regression have already been proposed. Our method
has an advantage over the earlier proposed methods. Bayesian net-
works do not require separate imputation methods to handle miss-
ing data. They circumvent this problem by Bayesian statistics
which is important as hospital datasets often contain numerous
missing values as we demonstrated in previous work [43]. The
capacity to handle missing values properly is therefore crucial. As
the goal of distributed learning is to learn from large numbers of
patient data, using a method that is relatively fast is essential.
Our algorithm finished learning from the 268 patients in less than
5 min. The bottleneck of the system was transmission of models
back and forth between the central location and the hospitals,
which accounted for over 80% of the time.
Distributed learning in Bayesian networks

Numerous algorithms for distributed learning for Bayesian net-
works have been proposed, for both horizontally and vertically dis-
tributed data with various levels of privacy protection [11–14,30].
Please cite this article in press as: Jochems A et al. Distributed learning: Develop
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Most of these studies focus on learning the Bayesian network
structure. Our work is an important addition to these existing stud-
ies, as our proposed method deals with the learning of the CPTs,
rather than learning the network structure. Meng and colleagues
propose a method by which distributed CPT learning can be done
on horizontally distributed data [20]. However, their algorithm
assumes all variables are binary valued. This is a restriction that
is detrimental to model performance. Our approach enables learn-
ing from discretized variables of any number of levels and included
determining the optimal bins of such discretization. Other CPT
learning methods have been proposed [19,45], however, these
algorithms focus on vertically partitioned data. Our algorithm pro-
vides a solution for horizontally partitioned data.

Although that it can be observed from Fig. 5 that the models
learned from distributed data have near-equivalent performance
in comparison to that of models learned locally, a number of issues
could arise in the future using our variable discretization approach.
For example, a site with a low volume of patients may yield bin
boundaries that are not representative due to overfitting. Addition-
ally, bin boundaries cannot be computed in a hospital if there are
no events available for the outcome in the data of that hospital.
A number of solutions exist for problems with variable discretiza-
tion. First, the experimenter can reject the bin boundaries com-
puted in hospitals if they seem clinically implausible. Bin
boundaries computed at the remaining sites may be combined to
yet come to an acceptable global solution. Second, the binning
strategy suggested in this paper may be replaced by setting bin
boundaries manually based on locally learned data or observations
in the literature.

Privacy preservation is of vital importance when learning from
medical data, as patient privacy and confidentiality of the physi-
cian are at risk [46]. In our approach, no data are transmitted
between hospitals, other than the average bin information and
model parameters. This information is an aggregate statistic and
does not convey individual patient data, as long as there are mul-
tiple patients stored at each hospital. The hospitals communicate
with the central location, but again only aggregate statistics rele-
vant to the model are sent back and forth. If we consider the cen-
tral location to be a trusted source, our algorithm is privacy
preserving. Care must be taken that a sufficient number of patients
are available at each site, so that none can be identified on the basis
of the aggregate statistics.
Model comparison

Previously, our group has developed a model for radiation-
induced lung toxicity based on single site data [47]. The previous
model performed with an AUC of 0.67 on an external validation
set. The model in this study performs better in some hospitals
(Eindhoven, Liege) and worse in others (Maastro, Aachen, Jessa).
Both studies were done on a limited number of patients (268 in
this study versus 259 in the previous study [47]). This in turn
results in large confidence intervals mentioned in the results
section.

It can be observed from the CPTs in Table 2 that baseline dysp-
nea greatly modulates the post-RT dyspnea score. The model pre-
dicts an 84% chance of dyspnea in the event that a patient has
Pgrade 2 baseline dyspnea and concurrent chemotherapy,
whereas a 24% chance of Pgrade 2 post-RT dyspnea is predicted
for patients with <2 grade baseline dyspnea. This is in line with
previous work on dyspnea prediction [47]. Removing timing of
chemotherapy from the network structure gives a slight boost in
performance, however this is not significant. This could be due to
the small data set size, as other work indicates that chemo timing
does modulate dysphagia occurrence [47,48]. Using a data-driven
method to determine the network structure reduces model perfor-
ing a predictive model based on data from multiple hospitals without data
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mance, although this difference is non-significant. This is in con-
trast to a study conducted by Sesen and colleagues that indicates
that data-driven network structures outperform experts [49]. Our
conflicting findings could be because we are predicting different
outcomes, use different variables and use different datasets. As
can be observed in Fig. 1B, data-driven networks do not take into
account the temporal ordering of information. All arrows point
away from dyspnea, although this is the outcome to predict. Such
a network structure may be less likely to be adopted by physicians
because it makes little intuitive sense. Further research is required
to determine the most suitable network structure for a particular
cancer and treatment outcome.

A modeling study done by Oberije and colleagues on dyspnea
prediction used age, WHO-performance scale, FEV1, nicotine use,
and mean lung dose as variables to predict acute dyspnea [50].
The performance of this model leaves room for improvement
(AUC of 0.61 on external validation). FEV is the only common vari-
able used this study and in the work done by Oberije and colleagues
which seems in line with the importance of pre-therapy dyspnea
which is correlated with FEV1. The difference in chosen variables
could be due to the difference in modeling techniques used for both
studies. Logistic regression analysis is unable to model non-linear
interactions between variables whereas Bayesian networks can.

The use of historical data from routine clinical practice for deci-
sions concerning new patients or to test new hypotheses is known
as rapid learning [4,43]. Rapid learning brings numerous advan-
tages, such as the large number of available patient data and the
reduced selection bias present in the data in comparison to that
of clinical trials [43]. Using the distributed learning method pre-
sented in this study, we make a large stride toward the implemen-
tation of the rapid learning healthcare practice. Some hurdles need
to be resolved to make proper use of the distributed learning
approach. First, getting access to- and locating the data stored at
the individual hospitals requires substantial time investment. Sec-
ond, one has to make sure the data is properly mapped onto the
ontology. Third, the IT staff at each hospital has to be convinced
that the learning infrastructure is safe before it can be connected
to the internet.
Conclusion

In this work, we have shown that it is possible to develop a
Bayesian network model to predict dyspnea after radiotherapy
treatment on distributed data of lung cancer patients. As future
work, we intend to use the distributed learning method described
in this study to train models to predict multiple outcomes for a
wide variety of cancers based on large volumes of data originating
from multiple sources.
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