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A B S T R A C T

Approximately 700 water samples from the South China Sea (SCS) and 300 water samples from the western
Philippine Sea (wPS) were collected during eight cruises from August 2003 to July 2007 to determine methane
(CH4) distributions from the surface to a depth of 4250 m. The surface CH4 concentrations exceeded
atmospheric equilibrium, both in the SCS and the wPS, and the concentrations were 4.5 ± 3.6 and 3.0 ±
1.2 nmol L−1, respectively. The sea-to-air fluxes were calculated, and the SCS and the wPS were found to emit
CH4 to the atmosphere at 8.6 ± 6.4 µmol m−2 d−1 and 4.9 ± 4.9 µmol m−2 d−1, respectively. In the SCS, CH4

emissions were higher over the continental shelf (11.0 ± 7.4 µmol m−2 d−1) than over the deep ocean (6.1 ±
6.0 µmol m−2 d−1), owing to greater biological productivity and closer coupling with the sediments on the
continental shelf. The SCS emitted 30.1×106 mol d−1 CH4 to the atmosphere and exported 1.82×106 mol d−1

CH4 to the wPS.
The concentrations of both CH4 and chlorophyll a were high in the 150 m surface layer of the wPS, but were

not significantly correlated with each other. CH4 concentrations generally declined with increasing depth below
the euphotic zone but remained constant below 1,000 m, both in the SCS and the wPS. Some high CH4

concentrations were observed at mid-depths and bottom waters in the SCS, and were most likely caused by the
release of CH4 from gas hydrates or gas seepage.

1. Introduction

Methane (CH4), the most abundant hydrocarbon in the atmo-
sphere, has a global warming potential in a 100-year time frame
(GWP100) that is 34 times that of carbon dioxide (CO2), and plays an
important role in the atmospheric chemistry (Naqvi et al., 2010; IPCC,
2013).

The global atmospheric concentration of CH4 has increased ex-
ponentially from a pre-industrial value of about 722 ± 25 ppb in 1750
to 1803 ± 2 ppb in 2011 (IPCC, 2013). This increase in CH4 concentra-
tion is very likely caused by anthropogenic activities, predominantly
agriculture and combustion of fossil fuels, but the relative contribu-
tions of different sources have not been well determined (IPCC, 2013).
Kirschke et al. (2013) stated that the surface-to-air global CH4

emission from 2000 to 2009 was 678 Tg CH4 yr−1, with a large range
(542–852 Tg CH4 yr−1). The ocean emits CH4 to the atmosphere at a
rate of less than 2 Tg CH4 yr

−1 (Rhee et al., 2009) and its contribution
to the atmospheric CH4 budget is minor (around 2%). However, the

impingement of human activities on oceanic CH4 emissions, such as
waste water discharge into the coastal areas, unlike on terrestrial
emissions, is not well understood and has been poorly quantified
(Naqvi et al., 2010). Especially, continental shelves and estuaries
contribute approximately 75% of global oceanic CH4 emissions
(Bange et al., 1994), and CH4 emissions from these environments are
probably higher due to the contribution from sedimentary sources in
well-mixed coastal zones (Borges et al., 2016).

The oversaturation of CH4 in the oxygenated ocean surface mixed
layer has been widely known for more than four decades (Lamontagne
et al., 1973; Scranton and Brewer, 1977; Forster et al., 2008). The CH4

concentrations in near-surface waters throughout much of the world's
oceans are 5–75% oversaturated with respect to the atmospheric
equilibrium (Karl et al., 2008). Previous research has revealed that
CH4 is released during zooplankton grazing (de Angelis and Lee, 1994)
or is formed in anoxic microenvironments within zooplankton fecal
pellets (Traganza et al., 1979; de Angelis and Lee, 1994; Karl and
Tilbrook, 1994), which are mostly found in the euphotic zone. Recent
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research has also determined that the formation of CH4 in oxic
environments can occur via methylphosphonate cycling in subtropical
gyres, which are phosphate-depleted (Karl et al., 2008), and by
dimethylsulfide (DMS) cycling in both polar and tropical oligotrophic
waters (Damm et al., 2010; Zindler et al., 2013). Florez-Leiva et al.
(2013) suggested that the CH4 production may be induced by DMS
cycling in the surface water of an upwelling ecosystem off central Chile
in which nutrient depletion has never been observed even in winter
(Morales and Anabalón, 2012). Overall, the enhancement of primary
production may lead to increased CH4 concentrations, which has led
Bogart et al. (2014) to suggest the possibility of a relationship between
CH4 concentration and phytoplankton standing stocks (i. e. chlorophyll
a).

Only recently has CH4 in the South China Sea (SCS) and the
western Philippine Sea (wPS) been studied and the focus has usually
been on the surface water (Chen et al., 1994; Rehder and Suess, 2001),
the bottom water and sediments (Chuang et al., 2006; Yang et al.,
2006). Chen and Tseng (2006), Chen et al. (2008a, 2008b) and Zhou
et al. (2009) reported the CH4 distribution in the water column of the
SCS but the study was only local. Here, for the first time we
investigated the CH4 distribution throughout the SCS and the wPS.
Our results elucidate the spatial and vertical distributions of CH4 in the
water column of the SCS and wPS, as well as its sea-to-air fluxes.
Further, we discuss differences between these seas and factors that
influence the distribution and fluxes of CH4.

2. Materials and methods

2.1. Study area

The SCS is a semi-enclosed marginal sea off the Asian continent in
the West Pacific. It is the largest marginal sea in the world with an area
of 3.5×106 km2 and an average depth of 1350 m. The SCS properly
characterized by either a tropical or subtropical climate has both deep
basin and extensive shelf systems at its northern and southern
boundaries, which are associated with large riverine inputs. At the
southern edge of the SCS lies the Sunda Shelf, which connects the sea
to the Straits of Malacca and has an average depth of approximately
50 m. The eastern part of the SCS is connected with the Sulu Sea
through the Mindoro Strait, and the northern part of the SCS is
connected with the East China Sea through the Taiwan Strait. The
northeastern SCS is connected with the wPS via the Luzon Strait, which
is around 2200 m in depth and has the deepest sill that connects the
SCS with any adjacent body of water. The SCS also features dynamic
exchange with the wPS via an upper water exchanges with the Kuroshio
and inflow at depth (Chen et al., 2001; Dai et al., 2013; Du et al., 2013).

The Asian monsoon dominates climatic variations at the sea–air
interface of the SCS. The southwest monsoon season runs from May to
October and brings a large amount of rainfall. The northeast monsoon
season runs from November to April and is characterized by the high
wind speeds (Han, 1998).

The wPS is located in the western part of the North Pacific from
123°E to 135°E and from 10°N to 35°N. The mean depth of the wPS is
about 5500 m. This study focuses on the area between 120.5°E and
130°E and between 21°N and 28°N, where the wPS connects with the
SCS and water masses exchange frequently.

2.2. Water samples collections

Samples were taken during six cruises on board R/V Ocean
Researchers I and III in the SCS (Fig. 1a; Table 1): ORIII-896
(August, 2003), ORI-695 (September, 2003), ORIII-983 (July, 2004),
ORIII-1081 (July, 2005), ORI-802 (July, 2006) and ORI-837 (July,
2007).

In this study, four contrasting physical–biogeochemical domains
(Table 1) are examined to provide a better understanding of the spatial

variability of CH4 distributions and fluxes in the SCS. Domain A is in
the northeastern part of the SCS, close to the south of the Taiwan
Strait. Samples were collected in domain A during the ORIII-896 and
ORIII-983 cruises in August 2003 and July 2004, respectively. This
area is affected by Kuroshio intrusions, which generate various
mesoscale eddies, upwelling and internal waves (Yuan et al., 2008;
Sheu et al., 2010; Chen et al., 2015; Huang et al., 2015). Cruises ORI-
695 and ORIII-1081 were conducted in September 2003 and July
2005, respectively in domain B in the wet season when the Pearl River
exhibited a large discharge (Chen et al., 2008a; Gan et al., 2009; Cao
et al., 2011; Han et al., 2012). The Pearl River (Zhujiang) is the second
largest river (after the Mekong River) that enters the SCS (Chen et al.,
2008a). Domain C is located in the southwestern part of the SCS. In
July 2006, samples were taken during the ORI-802 cruise from domain
C and time-series station SCS1, which was located in domain B. Some
sampling stations were on the Sunda Shelf and others were off the
Sunda Shelf and on the continental slope, where the depth increases
sharply. Domain D is located from the eastern part to the southern part
of the SCS. The samples in domain D were taken during July 16–31 of
2007 during the ORI-837 cruise. Surface water samples were taken
from the Luzon Strait and along the western coast of Luzon Island,
Palawan Island and northwestern coast of Borneo Island. Discrete
water samples were taken at various depths from the eastern part of the
SCS to the southern part of the SCS.

Samples from the wPS were collected during three cruises (Fig. 1b).
Discrete water samples were taken at various depths on ORI-725 (July,
2004) and ORIII-1149 (May, 2006). These two cruises were carried out
along 22°N from 121°E to126°E in July 2004 and from 121°E to124°E
in May 2006. Surface water samples were taken from the northeastern
coast of Taiwan to the Luzon Strait on ORI-837 (July, 2007). The
analysis herein also included a very limited CH4 data-set which was
obtained from 25 samples from surface waters collected exclusively in
the wPS in various cruises in the years 1992–1996.

Water samples from various areas and depths were collected using
a Rosette sampler that was fitted with 5 L or 10 L Niskin bottles, along
with a conductivity–temperature–depth (CTD) probe (Sea-Bird 911,
USA). Saturated HgCl2 was added to all samples to inhibit microbial
activity, except for those samples that were used to measure salinity.
Temperature data were obtained from the CTD profiles, whereas the
salinity values that were used in the analysis were determined from
discrete AUTOSAL measurements.

Water samples for measuring CH4 concentration were collected in
120 mL dark glass bottles. The bottles were rinsed three times with the
sampled water. After 1–2 fold of bottle volume was allowed to overflow
the bottle, 10 mL of the water sample was withdrawn from the bottle to
create an air space, and 0.5 mL saturated HgCl2 was then added. The
sample bottles were then immediately sealed with a butyl rubber
stopper and an aluminum cap. The samples were stored at 4 °C in the
dark. All the water samples were transferred to a laboratory and
analyzed within three months of collection.

2.3. Atmospheric air samples collections

Atmospheric CH4 samples were collected using modified version of
the sampling method of Chang and Yang (1997). A 12 mL disposable
plastic syringe with an 8 cm-long plastic tube was used to withdraw
12 mL of air four times from a 12 mL serum bottle to increase the
exchange of the atmospheric gas into the 12 mL serum bottle. The
serum bottle was then sealed with a butyl rubber stopper and an
aluminum cap. While making CTD casting, gas samples were taken on
the top deck to collect clean air, facing into the wind to prevent
contamination by the emissions of the ship.

2.4. Chemical analysis

The salinity of the discrete samples was determined by measuring
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conductivity using an AUTOSAL salinometer, which was calibrated
with standard seawater (batch no. P141) from the International
Association for the Physical Sciences of the Oceans (IAPSO). The
precision of the measurements was ± 0.003 salinity unit. Chlorophyll a
samples were collected by filtration through a 0.45 µm diameter
Millipore polycarbonate filter. A Turner Designs model 10-AU fluo-
rometer (Varian Eclipse) was utilized to measure chlorophyll a con-
centration following extraction by 90% acetone (Strickland and
Parsons, 1972) with a precision of ± 5%.

The concentration of dissolved CH4 was estimated by the modified

head-space equilibrium method (Johnson et al., 1990) using a gas
chromatograph (GC; HP 5890 Series II) that was equipped with a flame
ionization detector (FID). The samples were placed in a water bath at a
constant temperature of 25 °C, and allowed to equilibrate for at least
three hours. Finally, 2 mL of the gas from the headspace was injected
into the GC. The GC-FID had a 6 foot-long stainless steel column with a
diameter of one-eighth of an inch, which was filled with a 60/80 mesh
molecular sieve 5 A. The primary standard was NIST (National
Institute of Standards and Technology) 1 ppm V CH4 standard.
Mixtures of CH4 in N2 at concentrations of 0 (Jing-Shang, Taiwan), 1

Fig. 1. Study area and station locations: a. South China Sea stations. □: Domain A, ORIII-896 (Aug. 2003) and ORIII-983 (Jul. 2004); ◊: Domain B, ORI-695 (Sep. 2003), ORIII-1081
(Jul. 2005) and ORI-802 (Jul. 2006)-Stn.SCS1; ∇: Domain C, ORI-802 (Jul. 2006);○: Domain D, ORI-837 (Jul. 2007)); b. Western Philippine Sea stations. Δ: surface sampling stations,
ORI-725 (Jul. 2004), ORI-837 (Jul. 2007) -Stn.A-D;1–5 and unpublished data from C. T. A. Chen; ×: discrete sampling stations, ORI-725 (Jul. 2004) and ORIII-1149 (May 2006)).
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(NIST, U.S.A), 4.97 (San-Ying, Taiwan), 9.77 (Lien-Hwa, Taiwan) and
53 (All-Win, Taiwan) ppmV were used for calibration. The precision of
repeated analysis of water samples was about ± 5% in routine sample
analysis.

The concentration of the atmospheric CH4 was estimated by the
GC-FID. Atmospheric CH4 samples were placed at the room tempera-
ture (25 °C) for more than 2 h and 2 mL of the gas in the serum bottle
was injected into the GC to analyze the CH4 concentration. The
precision of repeated analysis of air samples was about ± 3% in routine
sample analysis.

2.5. Saturation ratio

The concentrations of the CH4 in the water samples were obtained
from the concentrations that were measured in the headspace by
subtracting the influence of atmospheric CH4 at the sampling sites and
using the Bunsen coefficients to calculate the equilibrium solubility,
which were described in Wiesenburg and Guinasso (1979).

Saturation, expressed in %, was calculated using R=(Cobs/
Ceq)*100 where Cobs represents the observed concentration of gas
dissolved in the water, and Ceq is the expected equilibrium water
concentration.

2.6. Fluxes

Fluxes of CH4 across the air-water interface were estimated using
F=k(Cw−βCa) where k (cm h−1) is the gas exchange coefficient, Cw is
the concentration of dissolved gas in the water (mol l−1), β is the
Bunsen solubility, and Ca is the atmospheric gas concentration. A
positive flux indicates gas transfer from the water to the atmosphere.
The value of k is a specific function of properties of the gas, the
temperature T (°C) and turbulence, and is frequently parameterized as
a function of the wind speed u (m s−1). Many equations are used for
calculating the k/wind speed relationship (Liss and Merlivat, 1986;
Wanninkhof, 1992; Erickson, 1993; Nightingale et al., 2000). As
Wanninkhof (1992) has been widely used and has recently been
updated (Wanninkhof, 2014), here, we calculated k by using the
relationship established by Wanninkhof (2014). The updated relation-
ship is expressed as k=0.251u2(Sc/660)–0.5, where k is the gas
transfer velocity, u2 is the average squared wind speed, and Sc is the
Schmidt number, which is the kinematic viscosity of water divided by
the molecular diffusion coefficient of the gas. The new estimates of the
Schmidt number (Wanninkhof, 2014) are provided, expanding the
temperature range from 0 to 30 °C to −2 to 40 °C. Wind speeds at 10 m

above the surface were obtained from the National Aeronautics and
Space Administration (NASA) QuikSCAT satellite platform (https://
winds.jpl.nasa.gov/missions/quikscat/). The average monthly wind
speed was used to estimate the sea-to-air flux.

The seawater fluxes from the SCS to the wPS were calculated as
described by Chen et al. (2001). The principle of conservation of water
mass dictates that the water flowing into the SCS must be balanced by
the water flowing out plus the water piled up within the SCS.

3. Result and discussion

3.1. Atmospheric CH4 concentration

The mean concentrations of CH4 in all atmospheric samples from
the SCS and wPS were 1.81 ± 0.04 ppm V and 1.82 ± 0.04 ppmV,
respectively. These values agreed closely with the mean monthly CH4

mixing ratios that were measured at stations of the Earth System
Research Laboratory under the National Oceanic and Atmospheric
Administration (NOAA-ESRL; http://www.esrl.noaa.gov/gmd/ccgg/
ggrn.php) in situ program. The mean CH4 mixing ratios at Station
BKT (Bukit Kototabang; 0°12'S, 100°19'E), Station GMI (Mariana
Islands; 13°23'N, 144°39'E) and Station MID (Sand Island; 28°12'N,
177°22'E) of NOAA-ESRL between 2003 and 2007 were 1.807 ppm V
(1.805–1.809 ppm V), 1.785 ppm V (1.777–1.798 ppm V) and 1.
821 ppm V (1.817–1.827 ppm V), respectively.

3.2. Surface seawater CH4 concentrations and sea-to-air CH4 fluxes

The average surface CH4 concentration in the wPS was 3.0 ±
1.2 nmol L−1 (155% saturation). This value is greater than the 109%
saturation that was reported by Rehder and Suess (2001) in the Pacific
Ocean, east of Taiwan, and is also greater than that in the western
North Pacific of 2.46 ± 0.23 nmol L−1 (saturation 132%) in 1991
(Watanabe et al., 1995) and 1.83–2.81 nmol L−1 in 1979 (Burke
et al., 1983). In addition to the fact that the concentration of CH4 at
the surface may increase in parallel with the atmospheric concentration
(Watanabe et al., 1995), the surface water in the wPS is influenced by
the waters from the SCS, which has higher CH4 concentrations than the
wPS. As a result, the average surface CH4 concentration in the wPS was
higher than other sites of the western North Pacific.

The mean surface CH4 concentration in the SCS was 4.5 ±
3.6 nmol L−1 (saturation 230%), and it was about 35% higher than
that in the wPS. The SCS receives a large amount of nutrients, in the
form of river discharge, atmospheric fallout, and intensive upwelling

Table 1
Surface CH4 concentrations and sea-to-air fluxes in the SCS and the wPS in the wet season.

Latitude Longitude Sal. Average Surface Wind Speed Sea-to-Air Flux Surveying Cruises/Months
CH4 Concentration

(°N) (°E) (nmol L−1) (m/s) (μmol m−2 d−1)

SCS Domain A 20–25 117–120 33.86 ± 0.34 4.5 ± 2.3 (n=31) 7.2 ± 1.8 9.9 ± 8.7 ORIII-896 (Aug. 2003)
ORIII-983 (Jul. 2004)

B 17–23 112–117 33.17 ± 1.08 5.2 ± 2.1 (n=42) 7.0 ± 1.3 12.0 ± 7.4 ORI-695 (Sep. 2003)
ORIII-1081 (Jul. 2005)
ORI-802 (Jul. 2006)-Stn. SCS1

C 3–12 104–113 33.23 ± 0.19 4.9 ± 1.5 (n=19) 6.2 ± 1.0 8.3 ± 4.1 ORI-802 (Jul. 2006)
D 4–20 110–120 32.87 ± 1.00 3.4 ± 1.0 (n=30) 6.3 ± 0.9 4.3 ± 3.9 ORI-837 (Jul. 2007)

Avg. 3–25 104–120 33.28 ± 1.5 4.5 ± 3.6 (n=122) 6.3 ± 0.8 8.6 ± 6.4

Avg. Continental Shelf and upper slope region (depth <
500 m)

33.29 ± 0.9 5.1 ± 2.1 (n=72) 11.0 ± 7.4

Avg. Deep Sea (depth > 500 m) 33.54 ± 0.7 3.8 ± 1.6 (n=50) 6.1 ± 6.0

wPS Avg 21–26 120.5–130 34.22 ± 0.27 3.0 ± 1.2 (n=68) 7.4 ± 1.3 4.9 ± 4.9 ORI-725 (Jul. 2004)
ORIII-1149 (May 2006)
ORI-837 (Jul. 2007)-Stn.A-D;1-5,
unpublished data from C. T. A. Chen
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(Chen and Huang, 1995; Chao et al., 1996). As a result, the surface
water in the SCS contains more nutrients than that in the wPS (Liu
et al., 2002; Chen et al., 2006). Higher nutrient contents lead to higher
primary production. Although the so-called methane paradox, which
concerns methanogenesis in an aerobic environment, has not yet been
fully explained, substantial research indicated the possibility that
biological processes are responsible for the formation of CH4

(Traganza et al., 1979; de Angelis and Lee, 1994; Karl and Tilbrook,
1994). The riverine input brings not only nutrients into the SCS but
also a high concentration of CH4 (Chen et al., 2008a). Consequently,
the surface CH4 concentrations in the SCS were higher than those in
the wPS.

The sea-to-air CH4 flux in the wPS was 4.9 ± 4.9 μmol m−2 d−1 and
in the SCS it was higher at 8.6 ± 6.4 μmol m−2 d−1. Most areas of the
SCS were probably moderate to strong sources of atmospheric CH4,
with sea-to-air flux values of 9.9 ± 8.7 μmol m−2 d−1 in the north-
eastern SCS, 12.0 ± 7.4 μmol m−2 d−1 in the northern SCS and the
Pearl River estuary region, 8.3 ± 4.1 μmol m−2 d−1 in the southwestern
SCS and 4.3 ± 3.9 μmol m−2 d−1 in the eastern and southern SCS
(Table 1).

In general, the observed saturations and fluxes of CH4 in the
coastal, shelf and marginal seas varied greatly within a range of 74–
10500% and 0.0095–1200 μmol m−2 d−1 (Table 2 and references
therein). The observed saturations and fluxes of CH4 in the SCS and
wPS in this study fell within these ranges. On a global scale, the mean
surface CH4 concentration in the SCS is comparable to the North
Aegean Sea, but higher than other areas such as the Arabian Sea, North
Sea and the Yellow Sea (Table 2).

3.3. Water and CH4 exchange between the SCS and the wPS

Since the Luzon Strait is 2200 m deep, surface and intermediate
waters are exchanged unimpededly between the SCS and the wPS. Yet,
waters that are deeper than 2200 m in the wPS cannot enter the SCS.
Hence, waters below 2200 m in the SCS are relatively homogeneous,
with hydrochemical properties similar to the water at 2200 m in the
wPS (Chen et al., 2006). In the wet season, surface and intermediate
waters are net-exported from the SCS to the wPS but deep water is net-
imported (Chen et al., 2001). Chen et al. (2001) calculated the amount
of surface water that flows out of the SCS through the Luzon Strait in
the wet season as 13.9×106 t s−1 and the amount of wPS water that
flows into the SCS as 12.8×106 t s−1. Based on our data, the CH4

concentration above 350 m in the SCS (SCS surface water layer) is 4.8
± 5.7 nmol L−1; and in the wPS (wPS surface water layer), it is 3.9 ±
1.9 nmol L−1 (Table 3). As a result, the net export of surface water from
the SCS to the wPS carries 1.45×106 mol d−1 CH4 in the wet season.

According to the observational data (Chen and Huang, 1996), the
SCS Intermediate Water, defined by Chen and Huang (1996) as being
at depths between 350 and 1350 m, is a mixture of the upwelled deep
water and the surface water. The Intermediate Water flows out of the
SCS at a rate of 1.8×106 t s−1 (Chao et al., 1996; Chen and Huang,
1996). As the CH4 concentration of the SCS Intermediate Water was
3.4 ± 3.0 nmol L−1, the SCS Intermediate Water exported
0.53×106 mol d−1 CH4 to the wPS. The deep water below 1350 m flows
into the SCS year-round at a rate of 1.2×106 t s−1 (Chao et al., 1996;
Chen and Huang, 1996) and the CH4 concentration was 1.5 ±
0.7 nmol L−1. Consequently, the deep water from the wPS exported
0.16×106 mol d−1 CH4 to the SCS.

Briefly, the SCS exports 1.82×106 mol d−1 CH4 to the wPS (net
value) and emits 30.1×106 mol d−1 CH4 to the atmosphere in the wet

Table 2
Compilation of CH4 measurements in various coastal, shelf and marginal seas.

Study area Station Date Surface CH4 Saturation Sea-to-air flux Refs.
(nmol L−1) (%) (μmol m−2 d−1)

NW Black Sea 80 Jul.–Aug. 1995 13.1 ± 10.6 173–10500 32a; 53b Amouroux et al. (2002)
Arabian Sea 31 Feb.–Mar. 1995 173 ± 54 2.65 ± 3.73a Patra et al. (1998)

19 Jul.–Aug. 1995 200 ± 74 5.02 ± 4.59a

11 Apr.–May 1994 140 ± 37 0.032 ± 0.162a

Apr.–May 1996 2.6–48 140–2520 Jayakumar et al. (2001)
Aug.–Sept. 1997

Baltic sea 63 Feb. 1992 113 ± 5 0.0095–14.5a Bange et al. (1994)
23 Jul. 1992 395 ± 82 0.101–1200a

Southern North Sea 75 Mar. 1989 2.5–43 95–1430 6–600a Scranton and McShane (1991)
North Sea 117 Sept. 1992 126 ± 8 2.16 ± 1.99a Bange et al. (1994)

Aug. 1993; May 1995; 2.0–67 74–2245 Upstill-Goddard et al. (2000)
Oct. 1996; Apr. 1998;
Mar. 1999

Northern 14 Jan. 1994 6.42 ± 8.02 6.65 ± 7.36b Berner et al. (2003)
Bay of Bengal
North Aegean Sea ~5 Jul. 1993 4.80 ± 0.31 231 ± 32 1.56a Bange et al. (1996)
South Aegean Sea ~30 Jul. 1993 3.17 ± 0.45 149 ± 18 1.90a

Gulf of Lions Mar., June, Sept.–Nov. 1997; Jun. 1998 8–1360 Marty et al. (2001)
(Mediterranean Sea)
Yellow Sea 14 Mar.–Apr. 2001 3.43 ± 0.23 121 ± 5.4 0.81 ± 0.50a Zhang et al. (2004)
East China Sea 29 Apr. 2001 3.24 ± 0.59 141 ± 23.6 1.63 ± 1.67a Zhang et al. (2008)

2.77 ± 2.71b

21 Sept. 2003 9.49 ± 11.00 487 ± 555 20.9 ± 54.8a

36.3 ± 95.7b

Western Philippine Sea 68 Jul. 2004 3.0 ± 1.2 155 ± 62 4.9 ± 4.9c This study
May 2006
Jul. 2007

South China Sea 122 Aug., Sept., 2003; 4.5 ± 3.6 230 ± 184 8.6 ± 6.4c This study
Jul. 2004; Jul. 2005;
Jul. 2006; Jul. 2007

Flux estimations are follows.
a Liss and Merlivat (1986).
b Wanninkhof (1992).
c Wanninkhof (2014).
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season. Therefore, the SCS exports CH4 to the atmosphere and the
wPS, and the SCS emits more CH4 to the atmosphere than transports to
the wPS.

3.4. Sources of CH4 in the SCS and the wPS

3.4.1. CH4 sources in the surface layer of the wPS
The concentrations of both CH4 and chlorophyll a were high in the

150 m surface layer of the wPS (Fig. 2a and b), however, no significant
correlation between CH4 and chlorophyll a concentrations in the
surface 150 m layer was identified herein.

Scranton and Brewer (1977) revealed the presence of a maximum
CH4 concentration above the pycnocline in the western subtropical
North Atlantic. A subsurface maximum has also been widely observed
in the open sea (Burke et al., 1983; Watanabe et al., 1995; Kelley and
Jeffrey, 2002). In fact, the subsurface CH4 maximum is common when
examining the vertical CH4 distribution in the water column in the
open sea. Although the formation of CH4 in the surface water layer may
relate to the biological activity, and some studies (Owens et al., 1991;
Damm et al., 2008; Zindler et al., 2013; Bogard et al., 2014) have
indeed shown a correlation between the CH4 and chlorophyll a

concentrations in surface waters, no significant correlation between
CH4 and chlorophyll a concentrations in the surface 150 m layer was
identified herein. This result not only shows that the formation of CH4

may not be directly associated with the photosynthetic process or
phytoplankton biomass, as has been suggested in some studies (Zindler
et al., 2013; Bogard et al., 2014), but it also reveals that other
processes, such as the physical mixing of different water masses may
affect the distribution of CH4 in the wPS.

3.4.2. CH4 sources in the surface layer of the SCS
CH4 maxima were observed in the subsurface layer at most stations

(Fig. 2a) and the highest chlorophyll a concentrations throughout the
water column were found above 100 m (Fig. 2b). As for the wPS, no
significant correlation between CH4 and chlorophyll a concentrations
in the surface 100 m layer was identified.

Domain B is near the Pearl River estuary where the hydrogeochem-
istry is influenced by the fresh water inputs, especially in the wet
season (Yin et al., 2000). Chen et al. (2008a) reported extremely high
CH4 concentrations from 23 to 2984 nmol L−1 in the Pearl River, its
tributaries and estuary. Although the high CH4 concentration quickly
declines offshore, rivers export a large amount of CH4 and organic
matter into the coastal ocean. The riverine water brings large amounts
of nutrients into the SCS (Dai et al., 2006, 2008; Chen et al., 2008a;
Han et al., 2012), increasing the primary productivity and the
chlorophyll a concentration. The river inflow caused the surface water
closer to shore to have lower salinity, higher chlorophyll a and CH4

concentrations (Fig. 3). In 2005, a very large amount of fresh water
flowed into the SCS and greatly reduced the salinity of seawater near
shore (Fig. 3d). This very large amount of the fresh water was brought
by the Super-typhoon Haitang (category 5 on the hurricane scale) close
to this area one week before the research cruise, causing intense
precipitation and increased river discharge. Fig. 4 shows that the
surface CH4 concentration decreased with increasing salinity near the
Pearl River estuary in 2005. Based on the linear equation (Fig. 4; [CH4]
=−0.62 salinity+26, n=19, r2=0.34), when the salinity is 0, CH4

concentration of the Pearl River in the estuary should be around 26
± 6.9 nmol L−1, which falls within the range of 6.9–173.7 nmol L−1

reported by Zhou et al. (2009). This result indicates that the high
surface CH4 concentration in domain B was caused by fresh water
inputs, as was also reported in other areas such as the North Sea
(Scranton and McShane, 1991; Rehder et al., 1998; Upstill-Goddard
et al., 2000).

Domain C is in the southwestern SCS and most of it is on the Sunda
Shelf. The sampling stations that were closer to the Mekong River
estuary exhibited higher surface CH4 concentrations but lower salinity
comparing with other sampling stations in Domain C (Fig. 5). It
revealed that although the Mekong River mouth is more than 150 km
away from the sampling stations, it still affected our sampling area.
According to the model simulations, the Mekong River sediment can
transport to more than 250 km away from the Mekong River mouth
(Xue et al., 2012). In addition, the sediment core and isotopic data
showed that over the past 5500 yrs, tremendous amount of Mekong
River sediment input has allowed the Mekong River Delta to prograde

Table 3
CH4 concentrations, water fluxes and CH4 fluxes of various water masses in the SCS and wPS.

SCS wPS

Avg. Concentration Water Flux CH4 Flux Avg. Concentration Water Flux CH4 Flux
nmol L−1 ×106 t s−1 ×106 mol d−1 nmol L−1 ×106 t s−1 ×106 mol d−1

Surface Water Layer 4.8 ± 5.7 −13.9 ± 1.8 −5.76 3.9 ± 1.9 12.8 ± 1.1 4.31
(0–350 m)
Intermediate water Layer (350–1350 m) 3.4 ± 3.0 −1.8 ± 0.4 −0.53
Deep Water Layer (1350–2200 m) 1.5 ± 0.7 1.2 ± 0.2 0.16

Positive and negative numbers represent inflow and outflow, respectively.

Fig. 2. Vertical distributions of (a) CH4 (nmol L−1) and (b) chlorophyll a (µg L−1) in the
western Philippine Sea, obtained at 43 stations during three cruises from July 2004 to
July 2007 and in the South China Sea, obtained at 122 stations during six cruises from
August 2003 to July 2007.
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more than 250 km to the southeast (Nguyen et al., 2000).

3.4.3. CH4 sources in the intermediate and deep water layers
At most stations in the SCS and in the wPS (Fig. 2a), CH4

concentrations generally declined with increasing depth beyond the
euphotic zone and remained constant below 1,000 m. In the deep
ocean, CH4 is typically undersaturated relative to the present atmo-
spheric mixing ratio because of lower atmospheric CH4 concentrations
at the time when deep water was formed (Rehder et al., 1999), and
because of bacterial oxidation (Scranton and Brewer, 1978).

The average CH4 concentration in the deep water layer (1350–
2200 m) were 1.5 ± 0.7 nmol L−1 in the wPS and 1.9 ± 1.7 nmol L−1 in
the SCS. However, there were some high CH4 concentrations (4.2–
14.8 nmol L−1) at mid-depths (800–2300 m; Fig. 2a) in the SCS. High
CH4 concentrations were found in the bottom water in the area
between latitude 20–22°N and longitude 118–120°E (in Domain A)
and stations #19, #20 (Fig. 6; in Domain B). These signals may be
related to the sediments on the upper continental slope, which are rich
in organic matter and CH4 may have been generated in the anoxic
sediments. The same phenomenon has been observed in the East China
Sea (ECS). For instance, Lin et al. (1992) found that the organic carbon
concentrations in the bottom sediments increased across the shelf
break, reaching their highest value in sediments at depths of 1000–
1500 m in the ECS. Further, Zhang et al. (2008) found high concentra-
tions of CH4 (around 40 nmol L−1) in bottom waters in the ECS, which
may have been related to the production within and emission of CH4

from the organic-rich sediments. Tseng et al. (2016) reported in the
same sampling area, high N2O concentrations which may have been
produced in sediments on the continental slope.

Regions of CH4 seepage were also discovered in Domain A with
buildups of authigenic carbonate, named the Jiulong Methane Reef
(Suess, 2005; Han et al., 2005, 2008). Previous research (Suess et al.,
1985; Boetius et al., 2000; Boetius and Suess, 2004) has reported that
the formation of authigenic carbonates at cold vent sites of continental
margin has been associated with methane-rich fluid and the activity of
chemosynthetic communities.

Fig. 3. Surface distributions of (a) salinity (b) CH4 (nmol L−1) and (c) chlorophyll a (µg L−1) in September 2003; surface distributions of (d) salinity (e) CH4 (nmol L−1) and (f)
chlorophyll a (µg L−1) in July 2005 near the Pearl River estuary, obtained at 41 stations during two cruises in September 2003 and July 2005.

Fig. 4. Surface CH4 (nmol L−1) versus salinity near the Pearl River estuary, obtained at
19 stations during one cruise in July 2005.
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The depths of sampling stations #19 (19°30.975′N; 114°49.508′E)
and #20 (19° 40.427′N; 114° 55.462′E) were 850 and 1500 m,
respectively. Worth mentioning is that both sampling stations had
high CH4 concentrations throughout the water column (Fig. 7), which
is not common in the deep sea domain. Zhou et al. (2009) reported
high bottom CH4 concentrations (between latitude 18–20°N and
longitude 113–116°E) near these two sampling stations and possibly
due to CH4 seeps from seafloor sediments. Wu et al. (2009) revealed
that a large amount of hydrocarbon may be accumulated in the

continental shelf of the SCS. Seismic profiles of these areas also show
that bottom simulating reflectors (BSR) are widespread under the sea
floor, indicative of possible gassy sediments (Wu et al., 2005).
Additional geochemical evidence also suggests the presence of sub-
marine gas hydrate deposits around these area (Chen et al., 2005; Su
et al., 2005). As a result, these high mid-depth CH4 concentrations and
especially the one that was 115 nmol L−1 at a depth of 35 m - most
likely originated from gas hydrates (Chen and Tseng, 2006) and oil gas
beneath the sediment with subsequent vertical migration and advection
of CH4. The CH4 that is released from the seafloor will migrate upward
through the water column either as dissolved CH4 or as bubbles (Zhang
and Zhai, 2015).

Domain D includes the eastern and southern parts of the SCS, from
the southern Luzon Strait southward along the western coast of Luzon,
Palawan and Borneo. High surface CH4 concentrations were measured
along the coast of Brunei (Fig. 8a), in agreement with previous study
(Rehder and Suess, 2001). The occurrence of pockmarks, indicating the
recent or ancient seepage of gas or fluid from the bottom, as well as
some gas seeps that have recently been active, have been identified off
the shore of Brunei (Hovland and Judd, 1988). Fig. 9 presents the
cross-section between the eastern and the southern SCS in 2007 (ORI-

Fig. 5. Surface distributions of (a) salinity and (b) CH4 (nmol L−1) near Mekong River estuary in the South China Sea, obtained at 19 stations during one cruise in July 2006.

Fig. 6. Cross-section of CH4 (nmol L−1) near the Pearl River estuary, obtained at 10
stations during one cruise in July 2005.

Fig. 7. Vertical distribution of the CH4 concentrations (nmol L−1) at stations #19 and
#20 near the Pearl River estuary in July 2005.
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837). The water column of the section was well stratified in both
salinity and temperature during the wet season (Fig. 9a and b). But
surprisingly, from sampling station SL1–SL5 (near Brunei), the CH4

concentration did not decrease with the depth beyond euphotic zone
but reaches the maxima in the bottom water (Fig. 9c). At all sampling
stations near Brunei, high CH4 concentrations were found in the
bottom waters (Fig. 8b). At sampling station SL1, the CH4 concentra-
tion reached 12.6 nmol L−1 in the bottom water at a depth of around
1000 m. The high CH4 concentrations in the water column close to
Brunei may reflect seepage from the abundant fossil fuel and gas
deposits (OPL, 2000).

Chen and Huang (1996) and Chen et al. (2015) reported that a mid-
depth boundary between 350 m and 1350 m exists near 122°E above
the continental slope near the Luzon Strait. To the east of it, the water
mass belongs to the wPS, whereas to the west, it is mainly the SCS
water. Fig. 10 displays the CH4 vertical distribution above 2000 m
along 22°N from 121°E to 126°E. The CH4 vertical distribution in the
intermediate water along 22°N reveals rather high CH4 concentrations
west of 121.5°E. These high CH4 concentrations in the intermediate
water were presumably exported from the SCS. However, determining

whether the high CH4 concentration signals disappeared east of
121.5°E because of mixing with the wPS intermediate water, which
has a lower CH4 concentration, or because of being transferred north
by the Kuroshio Current, requires further investigation.

The vertical distributions of CH4 in the SCS and the wPS (Fig. 2a)
show that many CH4 data were higher in the SCS than in the wPS.
Those higher CH4 concentrations appeared above 2300 m in the SCS
and might come from the riverine input in the surface water layer or be
released from the sediment in the intermediate and deep water layers.
In order to exclude the effects of sea-air exchange and the influence
from the fresh water and the SCS, the correlation between CH4

concentrations and potential temperature below 100 m in the wPS
east of 121.5°E was examined (Fig. 11). The CH4 concentrations
correlate positively with potential temperature (CH4=0.12T+1.28,
n=103, r2=0.44). As the water masses above 2200 m exchange freely
between the wPS and the SCS, and waters deeper than about 2200 m
originate in the 2200 m deep wPS water outside the Luzon Strait (Chen
et al., 2001), the correlation of CH4 concentrations with potential
temperature in the SCS should be similar with the one in the wPS.
Therefore, the values above the linear regression plus 2 sigma were
likely released from the sediment in the SCS (Fig. 11).

3.5. CH4 in the continental shelf of the SCS and future aspects

In the continental shelf and upper slope region (depth < 500 m) of
the SCS, the average surface CH4 concentration was 5.1 ± 2.1 nmol L−1

while at depths of greater than 500 m, it was 3.8 ± 1.6 nmol L−1.
Coastal regions receive more terrestrial nutrients and organic matter
than deep seas, and the stronger coupling in such regions between
sediments and surface waters favors high dissolved CH4 concentra-
tions. During the wet season, the southwesterly monsoon induces
upwelling along the coastal ocean over the continental shelf of the
northern SCS (Shaw, 1992; Li, 1993; Su, 1998; Gan et al., 2009) and
the Vietnamese coast (Ho et al., 2000; Kuo et al., 2000; Xie et al.,
2003). During the dry season, the northeasterly monsoon causes
coastal upwelling off northwest Borneo Island (Yan et al., 2015),
resulting in the input of nutrients. Combining CH4 with wind speed
data obtained using satellites yields estimated sea-to-air CH4 fluxes of
11.0 ± 7.4 μmol m−2 d−1 in the continental shelf and upper slope
regions, and 6.1 ± 6.0 μmol m−2 d−1 in the deep-sea regions of the
SCS. The continental shelf and upper slope regions cover around 60%
of the SCS area and account for approximately 72% of the CH4

emission from the SCS.
Global warming has increased the stratification of the surface

ocean, possibly expanding oxygen minimum zones (Stramma et al.,
2008), and possibly increasing CH4 production (Naqvi et al., 2010).
Additionally, coastal regions are subject to increasing terrestrial inputs
of nutrients and organic matter (Chen et al., 2008b; Howarth, 2008;
Conley et al., 2009), and decomposition of the settled organic matter
causes hypoxia when the oxygen at the bottom is insufficiently
replenished. Consequently, an increasing number of coastal ecosystems
are reported to exhibit hypoxia (Diaz and Rosenberg, 2008; Lui et al.,
2014). Changes in nutrient and carbon exported from rivers have been
demonstrated to affect exchange of biogenic trace gases, such as CO2

(Gypens et al., 2009) and DMS (Gypens and Borges, 2014), with the
atmosphere. As increasing amounts of nutrients and organic matter
have been exported from the land and the hypoxic areas of coastal
oceans have been increasing, more CH4 may have accumulated in the
coastal regions and more CH4 emission may occur in the future.

4. Conclusions

In both the SCS and the wPS, CH4 in the surface water was
oversaturated with respect to the atmospheric equilibrium, and CH4

concentrations generally declined with increasing depth below the
euphotic zone, but remained constant below 1,000 m. In the SCS, some

Fig. 8. Distribution of CH4 (nmol L−1) in the (a) surface water and (b) bottom water in
domain D (defined in Fig. 1a) in the South China Sea, obtained at 30 stations during one
cruise in July 2007.
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high CH4 concentrations at mid-depths were observed, and could most
likely be attributed to the release of CH4 from sediments or seepage
from gas hydrates or gassy sediment.

The SCS influences the surface and intermediate waters in the wPS.
This study has established that the SCS emits CH4 to the atmosphere
and also exports CH4 to the wPS. The SCS emits more CH4 to the
atmosphere than transports to the wPS in the wet season.

The continental shelf and upper slope are responsible for approxi-
mately 72% of the emissions of CH4 from the SCS. Since marginal seas
represent a large percentage of coastal regions and are strongly affected

by anthropogenic activities, the situation in marginal seas may have
become more severe comparing with other sea areas. Importantly, as
terrestrial input increases and coastal areas under hypoxia expand,
more CH4 may be emitted.
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