

[Click here to view linked References](#)

1 1 **Discovery of a woman portrait behind *La Violoniste* by Kees Van Dongen through**
2 2 **hyperspectral imaging**

3
4
5 4 **AUTHORS :**

6 5 Elodie Herens (Centre Européen d'Archéométrie, Sart Tilman B15, Université de
7 6 Liège, B-4000 Liège, Belgium) E.Herens@ulg.ac.be
8 7 Catherine Defeyt (Centre Européen d'Archéométrie, Sart Tilman B15, Université de
9 8 Liège, B-4000 Liège, Belgium) catherine.defeyt@ulg.ac.be

10 9 Philippe Walter (Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8220,
11 10 Laboratoire d'archéologie moléculaire et structurale (LAMS), Boîte courrier 225, 4
12 11 place Jussieu, 75005 Paris, France) philippe.walter@upmc.fr

13 12 David Strivay (Centre Européen d'Archéométrie et Institut de Physique Nucléaire,
14 13 Atomique et Spectroscopie, Sart Tilman B15, Université de Liège, B-4000 Liège,
15 14 Belgium) dstrivay@ulg.ac.be

16 16 **KEYWORDS :**

17 17 hyperspectral imaging, MA-XRF, Raman spectroscopy, Kees Van Dongen, hidden
18 18 composition

19
20 20 **ABSTRACT :**

1 21 Despite the fact that Kees Van Dongen was one of the most famous painter of the
2 22 20th century, only little information about his palette and his technique is available.
3 23 To contribute to the characterization of Van Dongen's painting materials, *La
4 24 Violoniste*, painted by the artist around 1923, has been analyzed by using three
5 25 complementary techniques: macro X-ray fluorescence (MA-XRF), Raman
6 26 spectroscopy and hyperspectral imaging. The elemental repartition given by MA-XRF
7 27 and the results obtained thanks to Raman spectroscopy help us to complete the
8 28 identification of pigments contained in *La Violoniste* (lead white, iron oxides,
9 29 cadmium yellow, vermillion, Prussian blue, titanium white, ultramarine, a chromium
10 30 pigment and carbon black) while the results obtained via hyperspectral imaging
11 31 reveal a hidden woman portrait. Besides the fact that Kees Van Dongen was
12 32 particularly renowned for his female portraits, this hidden composition presents
13 33 obvious stylistic similarities with the well-known portraits produced by the artist
14 34 during his Parisian stay (starting from 1899). Thanks to Raman spectroscopy, visual
15 35 examination and MA-XRF, we show that the original background contains
16 36 ultramarine, the hidden portrait's clothes are probably made of the same colour as
17 37 the present violinist's dress and her carnation contains zinc, contrary to the violinist's
18 38 flesh which is mainly made of lead white.

19
20 39
21
22
23 40 INTRODUCTION :

24
25 41 Born near Rotterdam in 1877, Kees Van Dongen has taken evening classes at the Fine
26
27 42 arts academy of Rotterdam in 1892. During this period, he was close to the anarchist

1 43 movement. After a first Parisian exposition in 1897, he decided to move to Paris,
2 44 where he began working as a drawer in satirical newspapers to denounce social
3 45 inequality. Nevertheless he came back to painting in 1903-1904 with his
4 46 "Saltimbanques" series.
5
6 47 His carrier took off with the "Salon des Indépendants", where he exhibited drawings
7
8 48 and paintings about Parisian views, the Norman coast, etc. His art studio became a
9
10 49 meeting place, where events took place. He acquired a great reputation, especially
11 50 for his female portraits. He made portraits of lots of well-known people, for instance
12
13 51 Brigitte Bardot and Jack Johnson.
14
15 52 These female portraits are characterized by exuberant accessories and over makeup,
16
17 53 especially big smoky eyes, which labels his Parisian Life. He said in 1921 "All women
18
19 54 have their beauty, their charm that I exalt. Now we have long legs, long legs of Diane
20
21 55 the Huntress, arched feet, ... long lines so supple ... and big eyes - I don't know why -,
22
23 56 long lashes, satin or matt skin ... , pearls and brilliants. And brilliants have to shine
24
25 57 and why would I not make the pearls bigger?". In 1959, he moved to Monaco where
26
27 58 he died in 1968. [1]
28
29 59 Although Kees Van Dongen was one of the most famous painters of the 20th century,
30
31 60 only few articles concern his work. A *catalogue raisonné* about his Graphic Work has
32
33 61 been created by Jan Juffermans in 2002 and another concerning his paintings is in
34
35 62 preparation (work of Jacques Chalom des Cordes) [2,3]. Some articles are also
36
37 63 available about his particular way to varnish some paintings and about the analysis
38
39 64 and treatments of a Van Dongen's painting [4.5]. However, the number of scientific
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1 articles about his technique and his palette is restricted. To overcome this lack of
2
3 information, investigations were carried on *La Violoniste*, painted by Kees Van
4
5 Dongen ca. 1923. This painting belongs to the City of Liège since 1939. During this
6
7 year, thanks to the association "Amis des musées Liégeois", the city of Liège bought
8
9 nine paintings from the gallery Fisher in Lucerne. The same year, with the rest of this
10
11 grant, the museum bought nine other paintings in Paris, among them, *La Violoniste*
12
13
14 [6]. This painting is currently exhibited in the Museum La Boverie.
15
16
17

18 To investigate the painting materials of *La Violoniste*, complementary non-invasive
19
20 techniques were used, including Raman spectroscopy, X-ray fluorescence and
21
22 hyperspectral imaging thanks to portable instrumentation. All the measurements
23
24
25 were performed in situ. [7]
26
27
28

29 In the present paper, we describe first the instruments used for these analyses and
30
31 we specify the parameters. Then we present and compare the results of these
32
33 complementary methods.
34
35
36
37

38
39 79
40
41
42 EXPERIMENTAL :
43
44
45 Hyperspectral imaging consists in the acquisition of a spectrum of reflectance as a
46
47 function of the wavelength for each point of the sample. The result is thus a data
48
49 cube made of two spatial and one spectral dimensions [8,9]. The setup used works in
50
51 a pushbroom mode, which means that the cube is built line by line, each line
52
53 containing the spectral information, which is dispersed on the 2D sensor, of the
54
55 spatial line scanned. To obtain the entire information, the scanned line is displacing
56
57
58
59
60
61
62
63
64
65

1 87 on the sample. The setup used was lended by the LAMS (Laboratoire d'Archéologie
2 88 Moléculaire et Structurale, Université Pierre et Marie Curie) and consists in the
3 89 spectral camera SWIR (made by Specim and equipped with a N25E spectrograph),
4 90 providing spectral information from 1000 to 2500 nm. The parameters used were a
5 91 scan speed of 3.72 mm/s, a frame rate of 7 Hz and a exposure time of 10 ms.
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

92
93 The second technique applied to *La Violoniste* was Raman spectroscopy [10] : it
94 consists in the detection of the scattered photons coming from a molecule excited by
95 a monochromatic beam. The wavelength shift between these scattered and exciting
96 photons depends on the vibrational energy states of the molecule analyzed and
97 allows thus to identify it. This technique gives us information about the surface
98 pigments. To do that, we used a Enwave Optronics setup (portable Raman analyzer I-
99 Dual-G), characterized by a laser at 785 nm. We used the lowest laser power
100 necessary to obtain valuable results.

101
102 The third technique was XRF (X-ray fluorescence) used in a macro scanning mode
103 (MA-XRF). To do that, we used a homemade XRF system, made of a Moxtek
104 MAGNUM tube 50kV with Ag anode, a detector X-123SDD Amptek (25 mm²,
105 resolution of 130 eV to 5.9 keV). The scan step was 1.4 mm (2 s/point), with a
106 tension of 35 kV and a courant of 130 µA. [11]

107
108 RESULTS AND DISCUSSION :

109 *Hyperspectral imaging*

1 110 By scanning the painting with this hyperspectral setup and by displaying this image
2 111 for different determined wavelength ranges (1000-1400 nm, 1400-1800 nm, 1800-
3 112 2200 nm and 2250-2500 nm), we highlight features that have anything to do with *La*
4 113 *Violoniste* artwork. This hidden composition corresponds to a woman portrait, which
5 114 is mostly visible in the 2250-2500 nm range (figure 2a). Beside the fact that woman
6 115 portraits were the trademark of the Van Dongen's work, the freshly discovered
7 116 portrait presents obvious similarities with the typical Van Dongen's portraits dating
8 117 from his Parisian stay. By comparing this hidden composition with a well-known Van
9 118 Dongen's painting, *La femme au chapeau vert* represented in figure 2b, we can notice
10 119 similar smoky eyes [1,12]. The hidden portrait also presents a hat on which we
11 120 distinguish a little flower. Her hair falls on her shoulders. The woman probably also
12 121 holds a flower which reaches her décolletage (see figure 2c). Therefore we can
13 122 assume that this hidden woman portrait was previously painted by Kees Van Dongen
14 123 himself.

41 124 Thanks to a first visual examination, we could highlight that the primer layer is visible
42 125 at the violinist leg level. We thus suggest that the shirt of the hidden woman has the
43 126 same color as the violinist's dress.

50 127
51 128 *Raman spectroscopy*
52
53
54
55
56
57
58
59
60
61
62
63
64
65

129 Raman measurements were performed to identify pigments of the surface layers.
1
2
3 130 Location of these punctual analyses were chosen according to the main tones and the
4
5 131 heterogeneities observed in the painting.
6
7
8 132 The Raman spectroscopy results are resumed in figure 3. Those revealed that the
9
10
11 133 violinist's dress is mainly made of Prussian blue, lead white and contains a barium
12
13
14 134 sulphate filler. Her mouth is made of vermillion, which is diluted with lead white for
15
16
17 135 the pinkish hue of her carnation (the filler is barium sulphate). The white background
18
19
20 136 contains lead white (and barium sulphate). The signature and her shoes primary
21
22 137 contain carbon black. The vase is made of ultramarine, lead white and barium
23
24
25 138 sulphate, just as the blue part of the piano, while its upper part is made of lead white
26
27
28 139 with barium sulphate. We also noticed that the whitish highlights above the piano are
29
30
31 140 based on titanium white. Raman bands lead to the identification of the anatase form.
32
33
34 141 Its presence in this 1923 painting reveals the avant-garde character of Kees Van
35
36 142 Dongen and his desire to try new materials since this form of titanium white was
37
38
39 143 introduced in artists paints in 1919 [13,14]. The bottom right corner of the painting
40
41
42 144 contains blue shades where ultramarine was detected (see figure 4). A discoloured
43
44
45 145 organic pigment or lacquer could also be contained in this area. However the
46
47
48 146 pigments being potentially present in this painting area (lead white, ultramarine, rose
49
50
51 147 madder, zinc white, Prussian blue and vermillion) have a good light fastness or
52
53
54 148 undergo changes very different from the discoloration observed [15-17].
55
56
57 149 It should be noted that eosin is not easily detected by Raman spectroscopy.
58
59 150 *X-ray fluorescence*
60
61
62
63
64
65

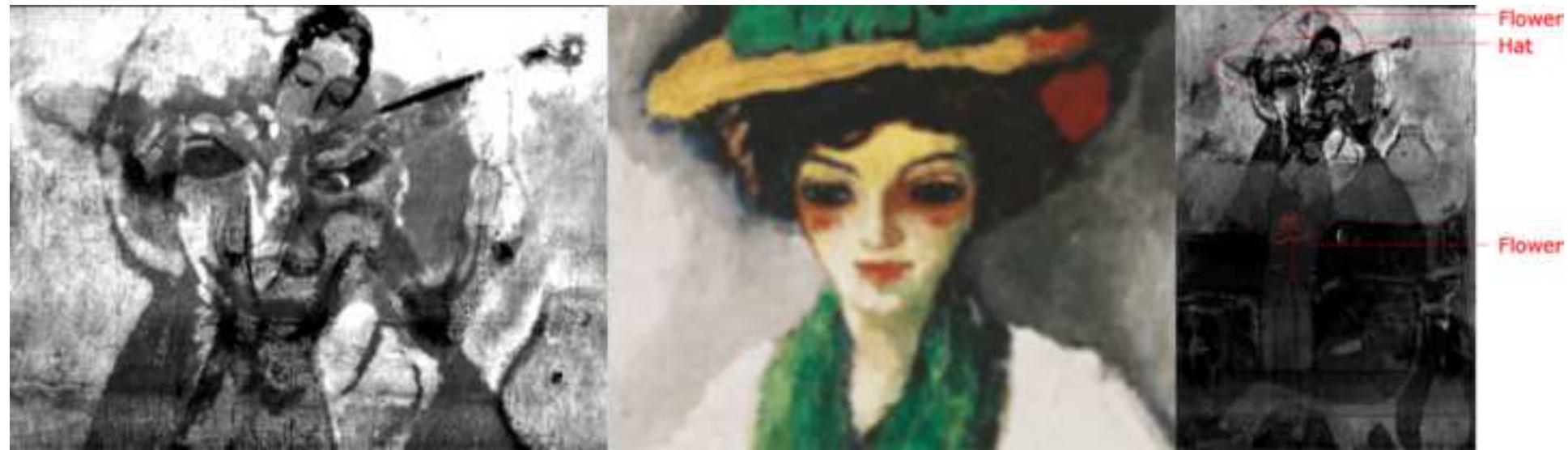
151 The area of interest analyzed with MA-XRF is localized in the portrait's eyes region.
1
2
3 152 XRF analysis reveals the presence of lead, zinc, calcium, barium, copper, chromium,
4
5 153 iron, cadmium, mercury and cobalt, whose distributions are given in the figure 5.
6
7
8 154 The presence of lead in the entire painting matches with the lead white found thanks
9
10
11 155 to Raman spectroscopy, both in the white background and in the colored parts, when
12
13
14 156 used to soften the tint. The relatively uniform barium distribution probably comes
15
16
17 157 from the barium sulphate filler revealed by Raman spectroscopy. The violinist's dress
18
19
20 158 contains copper, chromium, cobalt and iron. Iron could correspond to the Prussian
21
22
23 159 blue identified by Raman spectroscopy but not the three other elements. The
24
25
26 160 chromium presence being particularly marked, we suggest that the dress is made of a
27
28
29 161 mixture of Prussian blue and a chromium based pigment. Iron is also present in the
30
31
32 162 brown traits of the violin. This suggests that this is made of iron oxide pigments. A
33
34
35 163 cadmium based pigment composes the violin body. This is thus certainly made of
36
37 164 cadmium yellow. Mercury was found out in the mouth and the pinkish parts of the
38
39
40 165 violinist's carnation, matching with the use of vermillion to depict these parts. Calcium
41
42
43 166 is mainly contained in the violin body. Concerning the hidden portrait, zinc is the only
44
45
46 167 element reproducing clearly the hidden portrait revealed by hyperspectral imaging.
47
48
49 168 This suggests that the painter used preferentially zinc white for the carnation of the
50
51
52 169 underlying portrait contrary to the violinist's flesh which is mainly based on lead
53
54
55
56 170 white.
57
58
59
60
61
62
63
64
65

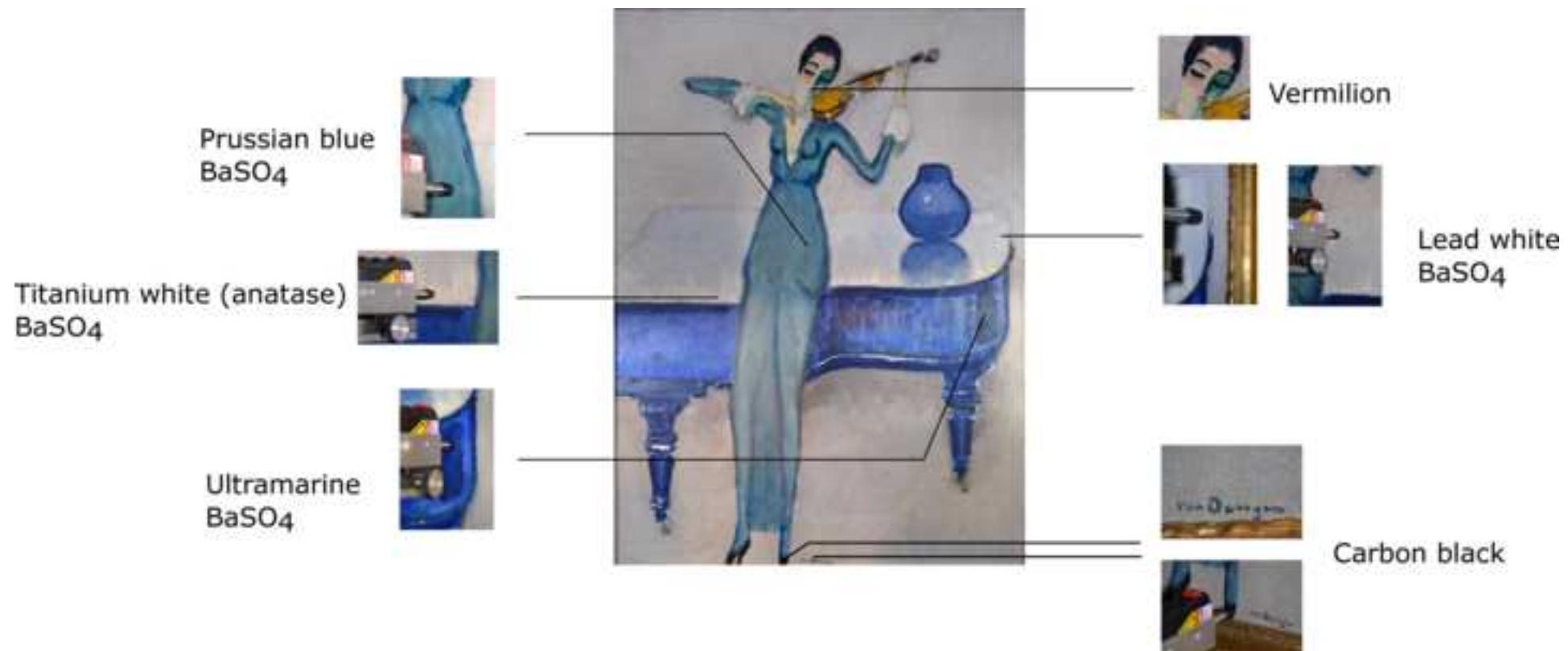
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Summary results

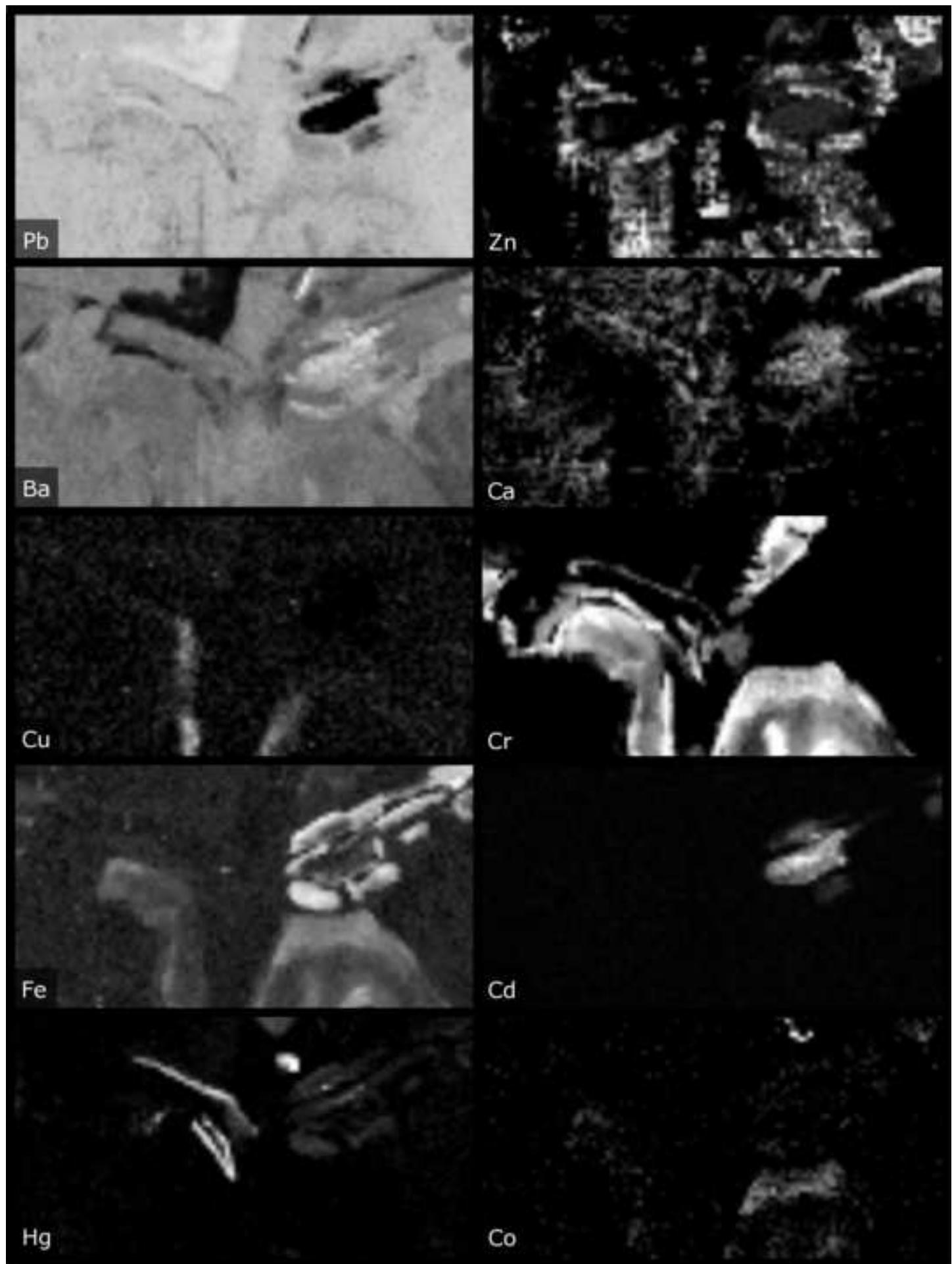
Position	Colour	Raman	XRF	Pigment identified
Background	White	Lead white	Pb	Lead white
Violin (outer lines)	Brown	-	Fe	Iron oxide pigments
Violin (inner part)	Yellow	-	Cd, Ca	Cadmium yellow
Mouth	Red	Vermilion	Hg	Vermilion
Flesh colour	Pink	Vermilion and Lead white	Hg	Vermilion and lead white
Dress	Blue	Prussian blue and lead white	Fe, Cr, Co, Cu	Prussian blue, lead white and a chromium pigment
Hidden portrait	-	-	Zn	Zinc oxide?
Top of the piano	White	Lead white and titanium white	-	Lead white and titanium white

1	Bottom of the	Blue	Ultramarine and	-	Ultramarine
2	piano		lead white		and lead
3					white
4					
5					
6					
7					
8	Vase	Blue	Ultramarine and	-	Ultramarine
9			lead white		and lead
10					white
11					
12					
13					
14					
15					
16	Signature	Black	Carbon black	-	Carbon black
17					
18	Shoes	Black	Carbon black	-	Carbon black
19					
20					
21					
22					
23					
24					
25	172				
26					
27					
28	173	Table 1 Pigments identified in <i>La violoniste</i> painting			
29					
30					
31	174	CONCLUSION :			
32					
33					
34	175	Hyperspectral imaging allows to highlight a hidden woman portrait behind <i>La</i>			
35					
36	176	<i>Violoniste</i> painted by Kees Van Dongen around 1923. This portrait is particularly			
37					
38					
39	177	visible in the 2250-2500 nm wavelength range and has some similar stylistic features			
40					
41					
42	178	with the well-known Van Dongen's portraits dating from his Parisian life (especially it			
43					
44					
45	179	presents comparable smoky eyes). We thus suggest that this hidden composition had			
46					
47					
48	180	been painted by Van Dongen, but no dating could be made. Some pigments of the			
49					
50	181	palette used in <i>La Violoniste</i> have been identified thanks to Raman spectroscopy,			
51					
52					
53	182	including lead white, iron oxides, cadmium yellow, vermillion, Prussian blue,			
54					
55					
56	183	chromium pigment, titanium white, ultramarine and carbon black. MA-XRF highlights			
57					
58					
59	184	the presence of lead, zinc, calcium, barium, copper, chromium, iron, cadmium,			
60					
61					
62					
63					
64					
65					


185 mercury and cobalt. The zinc distribution is particularly interesting because it
1
2
3 186 highlights clearly the face of the hidden female portrait and could indicate that her
4
5 187 carnation is made of zinc oxide, contrary to the violinist's flesh which contains lead
6
7
8 188 white. The Raman analysis performed in the lower right corner reveals the presence
9
10
11 189 of ultramarine. Moreover, since the primer layer is visible in the violinist's legs level,
12
13
14 190 we suggest that the portrait's shirt has the same colour as the violinist's dress.
15
16
17 191 Future works on this painting will include a XRF mapping of the whole surface and
18
19
20 192 further investigations to probe the pigments mixture and potential discoloration
21
22
23 193 found in the bottom right area.
24
25
26
27
28 195 ACKNOWLEDGEMENTS
29
30
31 196 The authors would like to thank Jean-Marc Gay (director of the Liège Museum) and
32
33
34 197 Régine Rémon (head conservator of La Boverie) for having allowed them to analyze
35
36
37 198 this painting.
38
39
40
41
42 200 AUTHOR CONTRIBUTIONS
43
44
45 201 DS, CD and EH performed the experiments and interpreted the data. PW lent the
46
47
48 202 hyperspectral setup and helped in its usage and data analysis.
49
50
51
52
53 204 COMPETING INTERESTS
54
55
56 205 Declaration: none of the authors have any competing interests in the manuscript.
57
58
59
60
61
62
63
64
65


207
1
2
3 208 IMAGE CAPTIONS
4
5 209 Fig 1. *La Violoniste* by Kees Van Dongen c.a. 1923
6
7
8 210 Fig 2. (a) Hidden woman in the 2250-2500 nm wavelength range. (b) "La femme au
9
10
11 211 chapeau vert" by K. Van Dongen around 1910. (c) The hidden woman wears a hat
12
13
14 212 with a flower. She also holds a flower which reaches her décolletage.
15
16
17 213 Fig 3. Raman spectroscopy results
18
19
20 214 Fig 4. Discoloration in the bottom right area
21
22
23 215 Fig 5. Elemental distributions obtained by MA-XRF
24
25
26
27 217 REFERENCES:
28
29
30 218 [1] Hopmans, A. Van Dongen, fauve, anarchiste et mondain. PARIS musées: Musée
31
32
33 219 d'art moderne de la ville de Paris. 2011
34
35
36 220 [2] Juffermans, J. Kees van Dongen : The Graphic Work. Catalogue of the Prints, Books
37
38
39 221 and Posters. 2nd ed. Ed. V+K Publishing; 2003.
40
41
42
43 222 [3] Wildenstein Institute. [http://www.wildenstein-
44
45 223 institute.fr/spip.php?page=wildenstein-notice&id_article=79](http://www.wildenstein-institute.fr/spip.php?page=wildenstein-notice&id_article=79). Accessed September
46
47
48 224 2016
49
50
51
52 225 [4] Blewett, M. A preliminary report on the visual and technical analysis of artist's
53
54
55 226 varnish from two paintings by Kees Van Dongen. AICCM bulletin. 2006. 30(1), 59-
56
57
58 227 62.
59
60
61
62
63
64
65

1 228 [5] Klausmeyer, P. A., Albertson, R. P., Schmidt, M. R., Woodland, R. T., & Blewett, M.
2
3 229 Analysis and Treatment of a Painting by Kees van Dongen: FTIR and ELISA as
4
5 230 Complementary Techniques in the Analysis of Art Materials. e-PS. 2009. 6, 151-162.
6
7
8
9 231 [6] Les musées de la ville de Liège. BAL, Musée des Beaux-Arts de Liège.
10
11 232 <http://lesmuseesdeliege.be/wp-content/uploads/2013/03/doss-ped-BAL.pdf>. Accessed
12
13
14 233 june 2016.
15
16
17
18 234 [7] Alfeld, M., & Broekaert, J. A. Mobile depth profiling and sub-surface imaging
19
20
21 235 techniques for historical paintings—A review. Spectrochimica Acta Part B: Atomic
22
23
24 236 Spectroscopy. 2013. 88, 211-230.
25
26
27 237 [8] Delaney, J. K., Zeibel, J. G., Thoury, M., Littleton, R., Palmer, M., Morales, K. M., et
28
29
30 238 al. Visible and infrared imaging spectroscopy of Picasso's Harlequin Musician:
31
32
33 239 mapping and identification of artist materials in situ. Applied Spectroscopy. 2010.
34
35 240 64(6), 584-594.
36
37
38 241 [9] Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and
39
40
41 242 art conservation. Applied Physics A. 2012. 106(2), 309-323.
42
43
44 243 [10] Chillón, M. C., Ferrer, P., Ruiz-Moreno, S., & López-Gil, A. Avoiding frauds: Raman
45
46
47 244 spectroscopy, a fundamental tool in the analysis of artworks. In Proceedings of the
48
49
50 245 3th International Conference on Heritage and Sustainable Development
51
52
53 246 HERITAGE2012, Oporto. 2012.


1
2
3 247 [11] Hocquet, F. P., del Castillo, H. C., Xicotencatl, A. C., Bourgeois, C., Oger, C.,
4
5 248 Marchal, A., et al. Elemental 2D imaging of paintings with a mobile EDXRF
6 system. Analytical and bioanalytical chemistry. 2011. 399(9), 3109-3116.
7
8 250 [12] Sothebys.
9
10
11 251 [http://www.sothbys.com/en/auctions/ecatalogue/2015/impressionist-modern-art-](http://www.sothbys.com/en/auctions/ecatalogue/2015/impressionist-modern-art-evening-sale-n09415/lot.12.html)
12
13
14 252 evening-sale-n09415/lot.12.html Accessed 21 sept 2016.
15
16
17 253 [13] Stanley, W., Mayer, J. W. *The science of painting*. Springer Science & Business
18
19
20 254 Media. 2001.
21
22
23 255 [14] McCrone, W. *1500 Forgeries* (vol. 38), The Microscope
24
25
26 256 [15] Feller, R. Artist's pigments, A handbook of their history and characteristics
27
28
29 257 (volume 1). National gallery of art, Washington: Oxford university press; 1986.
30
31
32 258 [16] Roy, A. Artist's pigments, A handbook of their history and characteristics
33
34
35 259 (volume 2). National gallery of art, Washington: Oxford university press; 1993.
36
37 260 [17] Fitzhugh, E. Artist's pigments, A handbook of their history and characteristics
38
39
40 261 (volume 3). National gallery of art, Washington: Oxford university press; 1997.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

