STABILITY ANALYSIS BY FINITE ELEMENTS

by
DR. A. P. KABAILA
University of Sydney, Australia -
and
B. FRALIJS de VEUBEKE
Professor, Universities of Liege and Louvafn

Laboratoire de Techiques Aeronautiques
_ et Spatiales, Universite de Liege
75, Rue du Val-Benoit, Liege, Belgium

TECHNICAL REPORT AFFDL-TR-70-35

MARCH 1970

This document has been approved for public release and sale;
' its distribution is unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE  SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO



-NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be regarded
by implication or otherwise as in any manner licensing the holder or any other person
or corporation, or conveying any rights or permission to manufacture, use, or sell any

patented invention that may in any way be related thereto.

This document -has been approved ior public release and sale; its distribution

is unlimited

5ST . Unij
* Chemip App”q“es ot g0
hey, athe,
8. Teujs . Matj
%000 (e B8t 852, %

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations; or notice on a specific document,

400 - April 1970 - CO455 - 114-2518



STABILITY ANALYSIS BY FINITE ELEMENTS

DR. A.'P. KABAILA
University bf Sydney, Australia

B. FRAEIJS de VEUBEKE
Universities of Liege and Louvain

This document has been approved for public release and sale;
its distribution is unlimited. '



AFFDL-TR-70-

FOREWORD

This report was prepared by the Aeronautics and Space
Laboratory, University of Liege, Belgium, under Contract F61052-69-C-
0004, Project No. 1467, "Structural Analysis Methods", Task No.
146705, "Automatic Computer Methods of Analysis for Flight Vehicle
Structures". The work was administered under the direction of
the Air Force Flight Dynamics Laboratory by Mr. James R. Johnson,
Project Engineer, and through the European Office of Aerospace
Research (OAR), United States Air Force. Lt. Colonel Richard T.
Boverie is the Project Officer for the European Office of Aerospace
Research.

The work reported herein was, conducted during the period April
1969 through June 1969. This report was released by the authors
for publication in August 1969. Professor B. Fraeijs de Veubeke,
Director of the Aeronautics and Space Laboratory is the Technical
Director and Principal Investigator for this study. Dr. A. P. Kabaila
is at the University of Liege on sabbatical leave from the Civil
Engineering Department, University of Sydney, Australia.

This report has been reviewed and is approved.

FRANCIS (J. JANIK,|JR.
. . . Chief, Solid Méchanics BYfanch
Structures Division



AFFDL-TR-70-

ABSTRACT

The application of finite elements to the analysis of
structural stability problems is examined. A variational criterion
for stability, namely the criterion that for stable equilibrium the
second variation of the total energy must be positive definite, is
used to develop a quadrilateral plate element, as well as an
element for a prismatic member. The theory is presented in such a
form that other elements can be derived therefrom with ease.
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"LIST OF ABBREVIATIONS AND SYMBOLS

Superscript (o) indicates energy, stress or strain components
which are independent of €& ' '

Superscript (1) indicates energy; stress or strain components

. with a linear tefﬁ of €

Sﬁperscript (2) 1indicates energy, stress or strain components
with a quadratic term of € , i.e., €2

A = sectional area '

a, = coordinates of a point before deformation (tensor notation)

B = matrix, defined in the text

b = vector, defined in the text

an pq = material constant (t:nsor notation)

Dm = differential operator, 33;

D = flexural rigidity of a plate

.= Young's modulus

= matrix, defined in the text"

= moment of inertia (second moment of‘area)

= stiffness matrix

axial force

.2 AR H @ oM™

= parameter which defines the applied loads
P(u) = potential energy

& = generalized displacements, a vector

R

S = stability matrix, or geometric stiffness matrix

domain of integration

T = matrix connecting a's to q

U = strain energy

(U + P) = total energy .

§(U + P) = first variation of the total energy

62(U + P) = second variation of the total energy

A(U + P) = complete increment of the total energy

ui = displapements (tensor notation)

ﬁm = perturbation of displacements (tensor notation)

u, v, w = displacement perturbations in x, y and z directions
| (scalar notatioﬁ)
'5':', '}"' = orthogonal coordinate axes

X, y = oblique coordinate axes

v



z = coordinate axis, orthogonal to the x y plane
W = strain enerygy per unit volume.

@ = strains (tensor notation)

It

@, o, = constants, defined in the text

o,, = stresses (tensor notation)

ij

o y O = normal stress (scalar notation)
XX yy

o

= shear stress
Xy s

T
€ = arbitrarily small scalar quantity
Y

= matrix, defined in the text -



Summary.

A variational criterion of stability, namely the requirement that for
stable equilibrium the second variation of the total energy, 62(U + ?) ,
must be positive definite, is -examined. As a simple example the critical
load of a prismatic column is calculated with a finite element me;hod.

A quadrilateral element is presented for the stability analysis of plates
subjected to membrane stresses. This element is based on a compiete cubic
deflection field, which satisfies continuity of deflections and slopes

at all interfaces.

I. Introduction.

One of the variational statements of equilibrium can be written as
(U +P) =0 (1)

where U is the strain energy and P 1is the potential energy.

8(U + P) is the first variation of the total energy (U + P) .,

Equation (I) is a first order approximation of the change of the total
energy, A(U + P) , resulting from a small disturbance from the equili-
brium configuration. It does not yield any information about the stability
of the structure, To examine‘the stability, A(U + P) must be expanded

to\the second order terms :
A(U + P) =€ d(U +P) +‘€2 GZ(U + P) * e0e g e (2)

where e 1is an arbitrarily small quantity,

If the configuration of deformation is such that the structure is in equi-

)
)

librium then &6(U + P) =0 ,



and if the equilibrium is a stable one, then

§2(U + P) >0 (3)
since additional energy is required in order to produce any kinematically
admissible disturbance of the structure. Conversely, if for some kinemati-
cally- admiSSLble disturbance &§2(U + P) < O , then energy is released
during this dlsturbance, and the equilibrium configuration is an unstable
one,

If an equilibrium configuration is a neutral one, then
62(U + P) =0 ‘ (4)

for at least one mode of kinematically admissible disturbance.

The stability criterion of eq. (3) is valid for both the bifurcation and

the snap~through ﬁhenomena (6) « This generality is one of the advantages
of this variational criterion.

In this paper an application of the finite element method to the bifurca-
tion: problems is examined. Stability requirement of eq. (3) is used as the
basiS\of the method., N

No attempt is made to survey existing literature. Not only is the literature
- on elastic stability very extensive, but there is no lack of recent reviews,
c.re ref, (5) , The authors believe that both the method of solution and
the developﬁent of a compatible quadrilateral element for the stability

analysis are new.



2. Derivation of an Expression for the Second Variation of Total Lneray.

A linear elastic material is considered. Let the coordinates of a point
before deformation be denoted by a; the coordinates after deformation
by X; s and the displacement components by us where index i =1, 2; 3,

and where it refers to three orthogonal directions. Then

Let « be an element of Green's strain tensor,
It can be shown (3 that
2'amn = Dm u + Dn u. + Dm ug Dn U - (6)

where Dm is a differential operator 2 .

9a
m

The strain energy per unit volume can be written as

=a _a C (7
mn  pq mn pq
where Cmn pq is a material constant which relates strains to stresses
and which satisfies the following conditions of symmetry :
C =C =C =C =C =C =C =
mn pq nm pq mn qp nm qp. pq nm Pq mn qp mn
=C_ __=¢ : (3
pq om  qp nm ®
N -
The stresses can be expressed in terms of strain energy as follows :
\ W
. =-2-—-=7 ’ (9)

. 2 C, o
ij 3aij ij pqa pq .

Equation (6) is valid for large displacements as its derivation does not
require an assumption of magnitude of displacements or strains. At this
point we postulate that, whilst the displacements can be large, the strains
and stresses are small, so that equation (9) is the usual engineering equa-
tion between the stresses and the strains,

. s o
An increment of w from an initial value u to

3



u =u +¢ed (10)

is considered. Here ﬁm is an arbitrary distﬁrbance, whilst € 1is an

arbitrarily small constant.

As the second variation of the total energy, (U + P) , is required, the
strain energy, U , and the potential energy, P(u) , will be expanded

to the second order terms of ¢ ., The expansion for strains can be written

as
a = a(°)+ € a(1)+ L2 a(z) , . (11)
mn mn mn 2 mn
Substitution of (II) into (7) yields
w=w 4 ¢ Py o g «0?)
- mn mn pq pq mn @n pq  pq
(12)
+-% g2 (a(Z)C a(°)+ a(o)C a(2)+ 2 a(l)C a(]))+ oo
mn mn pq pq mn mn pq  pa mn mn pq Pq
Here w(°) denotes a(o)a(o) C » the strain energy in terms of
mn  pq mn pq
strains before the disturbance. Let the corresponding stresses be denoted

by oég) , and let .w(l) denote the strain energy in terms of aii)

With this notation and witih substitution of equations (9) and (7), equation:

(I2) can be written as

©) ©) (), 20,

+€e O a + € o(o) a(O))+ cer (13)

I-]g W _1. ~
mn mn 2 "mn mn

With'equation (I3), equations for &§(U + P) and 52(U + P) can be uritten

immediately as follows :

(o) (1) &Y 20 .
6§U_+ P) = fR o .0 dR - P(um} =0 5 ees | (14)

for every perturbation Gm compatible with kinematical boundary conditions,

ﬁrovided that the potential energy is d linear function of u . This is tne

classical large displacement condition of equilibrium. Similarly,

§2(U + P) - [ | W)

R

Lo @ a0

4



for every perturbation ﬁm compatible with kinematical boundary conditions.
‘This is the condition of stability.

In bifurcation problems, equation (I5) can often be interpreted in terms 6f
classical expressions for strain energy.

For instance, consider buckling of a pléte, which lies in plane 1-2 and is
subjected to loads which, in a stabie equilibrium state, produce membrane -
stresses only. One can postulate a priori that :

(1) All displacement gradients are << 1 , '

(2) Displacements and their gradients in thé plane 1-2, i.e. Di u_  and

1

Dj u, , are of the same order of magnitude.

(3) Displacements and their gradients associated with bending deformations,

i.e. D, u, , may be of a larger or tne same order of magnitude as Di u

k 3 1
and D, u_ . : .
j 2 : .
With these postulations, which are justified by physical conditions, one
can write - . '
1 2
= + - (D
o, =Py r3 0y
1 .
=D u_+= (D 2 [
%22 2 U 3 (0, ) ‘ (16.)
2 = + +
a12 D1 u, Dz u, Dl u3 02 u3
o =i u ,
33 3 3 -
2a =D u +D u o (17)
13 1l 3 3 1
| 2 =D u + D_-
%3 T P2 M3 T Y3 Y
It is known a priori that there are equilibrium states with u_ =z O ,

. 3
Substitution of eq. (I0) into (I6) and (I7), and collection of terms of

first order in ¢ , yields

1) _ ~
all D1 ul
oD = g (18)
(1) _ ~ A
2 a12 =D u2 + D2 u1

\n



o .

@3 = Dy Uy

(1) - -
+

@3 =D u;+D U

¢S " "
+

@3 =D, Uy +D 4,

(19)

It is seen that equations (I8) and (I9) have the same form in terms of ﬁi

as the linearized small dispiacement equations in terms of u; .

Similarly, the terms of second order in

&, are
ff) = (D, 8%
“gg) = @, aéjz
2 fi) =D, 8D, 8
Do o

(20)

Implying substitution of eq. (I8), we can write the first variation of
of eq. (I4) in full, as follows :

(U + P)

[ &

R

whefe X

is the classical linearized form of the condition of equilibrium configu- B

i

a(l) dR -
m

[
R

(1) dR -

5y

/

P
3R 1Y

N eY)

doR = 0

H (21)

are body forces and p; are surface tractions over ®R . This

ration in the 1-2 plane. Similarly, implying substitution of (I8) and (20)

into (I5), we can write the stability condition as

fow®) ar +-%

R

[ o
R

(0)

mn

a(z) dR >0
™

(22)

With equation (18), the first integral of equation (22) has the classical

linearized form for strain energy, with displacements
perturbations

The second integral contains only the stresses in the plane 1-2, associated

Yy

with the transverse dlsplacements.

.When the stress resultants are used instead of the stresses, equations (21)

4

Yy

replaced by the



and (22) can be applied directly in some othér notation replacing the

"strains by the generalized displacements conjugate to the stress resultants.

3. Application to a closed form solution.

As a demonstration of stability criterion of eq..(22), the critical load
of a cantilever column of a constant section (ref. Fig. I) will be, determined
analytically. For the investigation of a straight equilibrium state, eq. (22)
yields immediately

1 . 1 .

5 (EA(——)2 EI(—-)ZJd ffN()dX>0§ (23)

o dx?

where u and v are the displacement berturbations and where N 1is the
axial force in the strut in the straight equilibrium configuration, which
in the present example is constant.
Since the disturbances u and v are not coupled and since distuﬁﬁance u
always yields a positive contribution to 62(U + P) , one can puét uzO0,
Thus equation (23) is simplified to ' )

. L E .

5 | er (& )2d+-2-f N()de>0; (24)

o dx? o :

Evidently the potential energy, P(u) , does not appear directly in the equa-
tion of 62(U + P) , eq. (24). The potential energy is accounted for by the
second term of equation (24).
When the critical load is sought by considerations of equiiibrium, with thé
Jassumption that a bent equilibrium state of the column is a state of neutral
equilibrium, an assumption which is based on engineering intuition and expe-
‘rience, an engineering lineafized strain equations lead to an equation of
a similar form to eq. (24). In such intuitive approach the axial deformations
are ignored, and, with disturbance v replaced by actual displacement v ,
the first integral (in terms of Vv ) is obtained from the strain energy.
The-second iﬁtegral (in terms of ‘;') is obtained as the column shortening.
With N = = P , we seek the least value of P which satisfies equation

(24). Since eq. (24) is homogeneous, a norm

B
j ( )2 dx =1, 1is introduced. Thus, eq. (24) becomes

R .
d
- P f ( ) dx + EI jo = ) dx + x( j (E§)2 dx - 1) =

KZI ( 5?2 dx N AT +Pr > (25)

0 4x2 7

-e



where )\ is a lagrangian multiplier and where ¥2 = (A - P)/EI . The
smallest value of P is obtained when the augmented functional is a

minimum, Variation &v yields :

R ' L g2y a2 '
X 2 2 . ’
o . o dx dx~

Integratidﬁiof eq. (26) by parts yields the governing differential equation

2y g3 : < '
K2 g..Y.....d_l'.=o : , . 27)

dx?2  dx3

together with the boundary conditions

(i) v=0 at x =0

; dv _ _
(ii) i 0 at x=90 .
(28)
. 3 |
(1) kL -L¥_ 5 at x =g
dx d3
X
2
(iv) -c-l-l=0 at x = ¢
dx?
The general solution of eq. (27) is
.v=AsinKx + Bcos Kx +Cx + 1D ; (29)

Substitution of boundary conditions (i), (ii) and (iii) into eq. (29) yieids
v = B(cos Kx - 1) ; : (30)

From boundary condition (iv) one finds that either B = 0 , in which case

v £ 0 and the solution is trivial, or
: KL= -2-“-2-“—-!-1: Y n=0,1,2 | 4(31)
or
_Kn—égzln . n=0,1, 2 (32)



Hence,
v.= Bn(cos Kn x f'l) , ‘ (3%)

Bn can be determined by substitution of equation (33) into the adopted norm,

which vields’

| | = fl (Q!)z dx = B2 ®¢ fl sin2 K x dx = B2 ¥ £ (34)
dx "n n n n“n 2?2
[o) (o]
Substitution of (33) and. (34) into eq. (24) yields
K2 3 :
-LE L, m 2 ¥ I ;
55 3t fo cos? X x dx Tt Kn >0 3 : (35)

It is seen from eq. (35) that for &§2(U + P) _to be a minimum, Ki must be

a minimum. Hence the lowest critical load is found as Pc =72 EI/4 22 .

4, Finite element for column.

The stability criterion, §4(U + P) > O can readily be used in the finite
élement method. To demonstrate this, a finite element for a columm will be
developed.

It is postulated that the axial loads are applied at the junction .of two
élements. Let the applied loads be expressed in terms of a parameter .P ,

and-let n = ¥/P . Then equation (24) can be written as

'3 2
ET d2v.2 n dv, 2
> f ( ~)" dx + P > / (dx) dx > 0 ; (36)
o dx 0o :
Assume
\ = ™ 2 3 .
‘ v=ao o4 @, X ta, x° 4o X 3 | 37)
- | T
Let a= a @, a0 )
lence g§-= bla = (o 1 2x 3x%2 ) : (38)
2 2 :
d .
n [ €?%dx=n o {f bu odax ) a (39)
0 - o .



Let generalized displacements, q , be equal to
_ dv dv, T
T = ( "1 (d:;)l , (&2 ) o (40)
From (37),
1 0o o o T
-, 0 1 o0 o
q = T o = o] > (41)
' 1 o g2 33
[ 0 1 24 32 |
Substitution of (4I) into (39) yields
T I O
P54 Sqa=25a nT ([ bb dx}Tgq ; o (42)
il . o .

Lere, the "stability matrix", S , is found after integration to be equal

to @
[ 36 3 - 36 39
L . 4 g2 -3 - 22
S=nT ([ bbldx}T =0 (43)
o 36 -39
(SYH)
i 4 22 |

Similarly, the first integral of equation (3I) vields the usual form of

stiffness matrix

Loq2
-;- \f (--—d Y)2 ax = 17 qT % q with
o dx2 <
[ 6 32 -6 32 7]
) 222 -3 g2
Ck=2E : ; (44)
-_ 3 6 =~33 '
(SYM) _
2 22 |




The gross stiffness of the whole structure, KC , 1s assembled in the usual
. : 3

way. The gross stability matrix, SG ,» 1s assembled in an identical way.
Thus, in terms of the generalized displacements of the whole structure, the
stability condition, §2(U +P) >0 , can be written as follows :
1 T 1 T :
— v + - (] .
2% %6 % PTG % %70 (43)
To find the minimum value of P which satisfies equation (45), a variation
GqG in equation (45) is considered and the resulting equation is set to

zero, Hence,
. (KG + P SG) 4, =0 3 : (46)

whence the lowest eigenvalue of P can be found by iteration.

The expression for the stability matrix, S  , of eq. (43) is the same

as that reported by Martin o) , though the derivation is different.

When the member coordinate axes do not coincide with the structure coor-
dinate axes, the axes transformation for the stability matrix, S , is
the same as that usually employed for the stiffness matrix, X . Extension
for the stability of three dimensional structures made up of prismatic
axially loaded members is easily achieved. '

The convergence of the numerically computed critical load towards the
exact solution is remarkably good, as indicated by the following table,
which shows the results of a calculation of the critical load‘pf a canti-

lever column :

Number of elements  Number of generalized Degrees of Computed critical

displacements freedom load

12 FI

2'2

' C 2
2 6 4 1.0005 Z—EL

22
72 FI

22

1 | 4 2 ,1.0075

3 8 6  1.000I

11



5. Buckling of Plates.

A plate subjected to membrane stresses dfo), ng) ’ o(o) is considered.

The plate lies in the plane of orthogonal axes i X agd, ¥ « In this
section the orthogonal axes will be denoted by ¥ , § and Z , whilst the
oblique axés-wili'be denoted by x , y and z ., The displacements in X ,
¥ and Z directions are denoted by u , v and w resﬁectively,'so that
a straight equilibrium state is defined by w =0 . L

Equation (22) with Kirchhoff's theory of plate bending yields the following

stability criterion

¢H) d __ (o) AW, 2 2 1 (o) aw aw (o) uw,2 2dT
J o ars oz €27+ 25 Giay T G )&

G¢G7)

It is evident that the first integral of equation (47) yields, in view of
eq. (18), the usual stiffness matrix.

The second integral yields the stability matrix S . As in prismatic members
(section 3), this integral is similar in form to the usual expression for
potential energy (8) , and has been used for the development of a rectan- .
gular non-conforming element (4) for stability analvsis.

It will be noted that in the second. integral of eq, @ 7) the shear stresses

(0) (0)

are multiplied by 2, in order to allow for both T2 and r + LEquation
(47) is used here to find the stability matrix of a quadr11atera1 element,
with the use of a conforming displacement field. The stiffness matrix for

(1

tions which have been described in detail in ref, (1)'Aw111‘dﬁ1yfbe

such'an element has been developed and reported in literature « JOpera-
mentioned briefly in this paper.

We consider oblique coordinate axes x, y , shown in figure 3. It can be
shown that the expression for the stability matrix, S , is the same in the
skew coordinate axes as that in the orthogonal coordinate axes, provided
that the membrane stresses of the orthogonal reference axes are replaced

by their equivalents in the oblique axes., Thus, in terms of the gcneralized

displacements, q , one can write in the oblique axes x , v ,

| A IO RN O 3y
1 T 1t 3w 2 w9 x 3
79 sa=33J/ Gf 55 . dxdy ; 43)
L @ | | .

xy Yy oy



where

© _ © .. (o) ©) cos?a .

Oux = oii sin a 2 Txy cos o + 07? Sin o H

T}(t;) = 1)_5;) oy(,;) cot o : - %9
© » |

oyy B 0?? sin a

In the derivation of stability matrix, uniform menmbrane stresses in each
of the four triangles of a quadrilateral (figure 4) will be considered.
Modification for a varying stress field can be ,readily.acco'mplished at the
cost of more complicated expressions. A uniform stress field is consistent
with finite elemeﬁt stress analysis when simple triangular elements (2)

are used. Let

¥ 7 h h, o(o) ‘l‘(o)
90X 1 3 XX Xy ¢
v S e @ >
oW o o
3y By By Ly yy
With this no'tfation eq. (48) can be written as
1 T 1 T |
a4-Sqa=5[[ Yy H ydxdy ; (51)

The following complete cubic deflection field is considered in thé first
triangle of figure 4 : '

w= +a x + + 2 4 + 2
S Y a3y *ta, x*+2a xy +o y

+ 4(0:,, x3 + a, x%y + o, xy? + ey y3) | ‘ (52)
Hence,
0 1 0 2x 2y 0 12x*% 8xy 4y’ O
y=DBa= o _ a (53)'
" 0O o 1 o 2x 2y O 4x? 8xy 12y?
where aT = ( @ 0, e al;,)*, In the first triangle the coefficients a



can be expressed in terms of the generalized displacements, ql' » as follows

a=T q ‘ ‘ -G

where Ti matrix is taken from reference 1 and shown in table 1.'and where

.TAa(w
ql o "0 0

bo Vo W) by ¥y W, &, ¥y by, ) (55)

Equation (5I) thus becomes, for the first.triangle

1 T 1 T Tw o ‘
74859 =59 T Sl'Tl' q, (56)
where
S =[] B H B dxdy | (57)
1 111

with ihtegration over the first triangle., The subscript 1 indicates that the
expressions are valid in the first triangle onl&.‘The product BT Hl Bl

is formed algebraically and the integration is performed analytically.

The resulting matrix Ea is shown in table 2. To obtain ‘Sl » Dpremulti-
plication by 'TT' and postmultiplication by T, is performed numerically.

For the second triangle, as shown in reference (1), continuity of deforma-

tion along the interface x = 0 is maintained if = au » .o, and ag
are replaced by independent coefficients a; , a; and a; , whilst the
other a coefficients are unaltered. With
@ o= (v oy by V. b, V., b U, b, ) (58)
2 o o "o 3 "3 "3 2 "2 "2 723 .

T2 and §; can be obtained by changing a into. - ¢ in the expressions

for T1 and Ea respectively, and by changing signs of all élements of E;

Similarly, in triangle 3, the new coefficients are “é . a; and “{0 .

With ' ,_, ' ’
af = (v, by v W b v, b, b, b, ) 59
3 070 Yo "1 F1 71 W Tu Yu tul

T3 and E} are obtained by changing b into = d in the expressions for

Tl and '§1 respectively, and By changing signs of all elements of E; .

1L



In tr;anglé 4, af = ( o 92 ay af og d; a) ap af ol )
With

~qf = (v 0 ¥ Wy by V3w, by ¥y 03, ) | | (60)

' T, and E& are computed from expressioﬁs for 'Tl and Eﬂ , changing a
into - b and b into -d .

In‘eacﬁ triangle different values of matrix H are used, depending on the
membrane stresses. ' _ . 1
.The assembly of the partial stability matrices Si into element stability

matrix before condensation, s* » which is in terms of
T ’ .
Poom (W 0 Vo Wy 0y Yy Wy by Uy Wy by g, by Uy 0, 5 0y, 6, )(6D)

is achieved by the addition

L
T T %
f q; S;9,=p S P (éz)

where the elements of Si.lare addressed into their proper place in s* .
The condensation of S (19 x I9) into S (16 x 16) by elimination of
wé ’ ¢0 and - wo , as well as the slope transformation from the local to
the global axes, is identical to the same operations on the stiffness
matrix, It is described in detail in reference (1), sections 4 and 5.

With the element stiffness matrix, K , and the element stability matrix,
S , known, gross stiffness matrix KG is assembled, and, in the same

G is also assembled. Thus, eq. (46) is

‘obtained, whence the critical load intensity is determined.

manner, gross stability matrix S

6. Examples of Plate Buckling.

To check the accuracy of the critical load compufed with the quadrilateral

- element developed in this paper, several examples, with known analytical
solutions, were‘evaluated. For comparison, the results obtained by Carson

and Newton (9), who developed and used a rectangulér element, are also shown.
For a simply supported rectangular plate under uniaxial compression the ana-

lytical solution yields k = 4,0 , where

k = Nb2/n2 D (63)
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where N 1is the edge loading per unit length, b is the side dimension of
the plate and D is the flexural rigidity of the plate. The following values
of k were computed numerically :

Simply supported’sduare plate under uniaxial compression.

Grid size : Rectangular element of » Quadrilaterél

Carson et Newton € : , element

k - error % ' k error 7
2 x 2 4 ,01575 0.39  4.,02964 0,74
4 x 4 4,00104 0.03 4,00224 0.056

The agreement with theoretical values is good for both the rectangular (9)
and the quadrilateral elements. ,
Under a uniform edge shear the following results are obtained :

Uniform edge shear, simply supported quadratic plate, analytical

'k =9u34
Grid size Rectangular element &) ' Quadrilateral
’ element
k error 7 k o error 7
2 x 2 10.0I6 7.2 9.6360 . 3417
3x3 0 9.577 2.5 ‘ 9.5073 I.79

Uniform edge shear, clamped edges, quadratic piate, analytical

k = 14,71
Crid size Réctangular element ) Quadrilateral
- ' ' : v element
k error 7 -k error A
2x2 . 23.264 58.2 | 22,956 ! 56.0
3 x3 16.046 -9.T° I15.516 5.5
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The agreement with the theoretical values is better for the quadrilateral
element than for the rectangular element, A possible explanation for this
is that the rectangular element is based on the incomplete polynomial of the

type &)
3 : ‘
L a.. x5 yj (64)

The complete polynomial used for the derivation of the quadrilateral element
may be expected to better represent twisting of a section.
The quadrilateral element presented here is fully compatible, therefore the

upper bounds of the critical load are obtained.

7. Conclusion.

Stability matrices presented in this paper enables one to determine critiecal
loads of a variety of problems. Quadrilateral element is particularly suitable
when the boundaries of the plate are of an irregular shape. The convergence

of the numerical results in the fact examples investigated is very satis-

factory.
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Table 1 : HMatrix Tl which relates coefficients o to generalized

~

displacements q

1 0 0 () ()} () 0 0 0 0
0 1 () 0 0 0 () (] 0 0
() (o} 1 0 0 0 () 0 0 0
-3/a2 - 2/a o 3/a? - 1/a. 0 0 0 0 0
3/ab - 1/b - 1/a 3/ab -1/2b 1/a Ao 1/2 b 0 - 2/b
- 3/b? 0 -2/ 0 0 0 3/b2 0 - 1/b o
1/2 a3 1/4 a2 0 -1/2a% 1/4 a2 0 0 o 0 ‘ 0
3/2 a% 1/2 ab  1/4 a2 - 3/2 a%b 1/4 ab = 1/4 a2 0 -1/4 ab - 0 1/ab
3/2 ab2 1/4b2 1/2ab =-3/2ab? 1/4b%2 -1/2a O 0 0 + 1/b2
1/2 v3 o 1/4 b2 0 0 () . 1/2b3 o0 1/4 b2 0
N\

a9
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