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SUMMARY

An alternative approach to the usual finite element treatment of steady-state temperature problems is presented,
using approximations for the field of the dual variables.

The appropriate extremum principle is established and its minimization is discussed in connection with a plane
triangular finite clement process. Original heat flow elements are derived: in conjunction with temperature
elements, they enable dual analysis of a given structure and an important estimate of the convergence to the true
solution by upper and lower bounds to the dissipation function, as illustrated by means of several examples.

INTRODUCTION

Steady-state heat conduction is one of the many field problems of engineering that can receive a variational
formulation. The basic formulation! is in terms of the temperature field alone and the discretizatioa in finite
elements makes use of parametric approximations of the temperature within each element with continuity
secured across the interfaces. In the present paper an alternative formulation is presented in terms of the duval
(vector) variable: the heat flow. In the corresponding finite element models the heat flow satisfies thermal
cquilibrium within each element and flux continuity is maintained at the interfaces. In this manner a dual
anaiysis of a steady-state heat conduction problem extends to the benefit of the dissipation function a
numerical estimate of the convergence by upper bounds (temperature models) and lower bounds (heat flow
models) when no heat sources are prescribed. When the body is in contact with a uniform temperature bath
taken as zero level, the role of bounds is reversed. The general case where both sources and non-uniform
outside temperatures prevail can be treated by superposition if convergence estimates are required.

ey

BASIC TEMPERATURE FORMULATION

“The temperature functional in a simply connected domain D

IT) = J- (3k;;0,T0; T— OT)dD + f JTdS+ f INT—T)%dS )
D J oD 0D

where "= 0, D+, D+3d, D, denotes its boundary, ;T the temperature gradient vector, k;; a symmetrical
neat cona.ctivity tensor, Q a prescribed volume heat source distribution, § a prescribed surface heat sink,
h & convection coefficient and 7, the local prescribed external temperature, is stationary under small pertur-
bations 87 of the temperature field subject to the boundary conditions

=T, 8T=0 ond D . )
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when the Euler equation

0k s T)+3 =0 ©

and the natural boundary conditic;ns (n; direction cosines of the outward normal)
' n;k;8;T+d=0 on d,D @)
n;ky;&;T+h(T—T)=0 ond;D )

are satisfied. The Euler equation is a statement of thermal equilibrium for the unit volume; under Fourier’s
law for the heat flow vector

e

g:=—ky&T ©
it becomes »
-99,;+40=0 ™
Three types of boundary conditions are distinguished. The surface heat sink condition (4) on part 9, D
of the boundary, that can also be written

) - ,-q.,-+q- =0 on aaD (8)
the convection loss condition (5) or .
—n;q;+h(T-T)=0 ond;D ' )
and the prescribed surface temperature condition (2) that can be regarded as a limiting case A—>co of
equation (9). '
The functional of this ‘principle of variation of temperatures’ is the sum of a ‘dissipation functional’

F(T) = f 3k;;0,To; TdD + f IT-T)2dS (10)
D D

of the whole system body plus surrounding,? i.e. including the boundary heat convection effect, and a
‘potential energy of prescribed thermal loads’

P(T) =-— fD OTdD+ f gTds an

D

EXTENSION BY RECIPROCAL TRANSFORMATION

As was done in the case of elasticity theory3 the basic formulation will now be extended through a reciprocal
transformation.* Fourier’s law is used to eliminate the temperature gradients in the dissipation function that

becomes

F@,T) = f VinditndD+ f  WT-Tyrds a2)
D

The heat resistivity tensor r;, is reciprocal to the heat conductivity one
| Timkig = 8mj (13)
so that Fourier’s law, solved for the temperature gradients, reads
Pimdi = —Tinkij0;T=—0,T

Considered as differential constraints
O T+1ing; =0 14

between the temperature and heat flow fields those relations are incorporated into a “dislocation functional’
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involving Lagrange multipliers A,,

D@.T, %) = - f An(On T+ ring) AD+ fa Wr-T)ds | as)

l

the second part of which also removes the necessity of satisfying a przorz the boundary constraint (2).
" The ‘three-field’ variational principle

F(g,T)+ D@, T, \, i) +P(T), stationary (16)

has the following variational equations and natural boundary conditions:
Ten@n—A) =0 or gn=12, an

as variational equation for the heat fiow field,

Oondn—0=0 (18)
—BpAy+p=0 ono D (19)
—n,A,+d=0 ond,D (20)
Ny Ay +h(T-T)=0 ond; D 1)

as variational equation and natural boundary conditions for the temperature field, and finally (14) and (2)
for the variations on the Lagrange multipliers. Equations (17) and (19) identify those multipliers with the
heat flow field and its normal component on 2; D. When incorporated into the other equations they express
all the thermal equilibrium conditions and boundary conditions of the problem. When incorporated ab
initio into (16) they reduce this principle to the thermal analogue of the Hellinger—Reissner principle of
elasticity:

gTds +f IWT-T,?*dS, stationary (22)
D -

Ny q(T—T)dS+ f

It contains only two independent fields, the temperature and the heat flow. Its corresponding variational
equations are respectively (7) and (14), while (8), (9) and (2) all appear as natural boundary conditions. An
integration by parts on the first term of (22) puts it into the equivalent form

j (qmamT"'Z 1nq;qm+QT)dD+f

{

f T(amqm’_Q)dD_f %rimqiqmdD_f anmTcdS'*'f (q-_nm m)TdS
D D oD 0D

1

)

+ f GWT-T) —n,,q,T}dS, stationary. (23)
D

THE DUAL OR HEAT FLOW FUNCTIONAL

The presence of the temperature field can be completely eliminated from the functional (23) by assuming
that we satisfy a priori the volume heat equilibrium equation (7) and the corresponding surface equation (8),
whereby the first and fourth terms disappear.

However, since the last term still contains T on d; D, equation (9) is solved for T and back substltuted
This produces, after a change of sign the ‘principle of variation of heat flow’:

I@= f VindsgndD+ f
D oD

1

Ny T,dS+ fa_ (g 2+ g T)S, stationary. @9

It is the thermal analogue of the complementary energy principle of elasticity. It is again the sum of the
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dissipation functional (10) expressed however in terms of the heat flow through Fourier’s law and (9)

g 1 1
F@ = | 3rmtandD+ [ maras 5)
and a ‘dual or complementafy potential energy’
() = T.nnq,dS (26)
2.D+2,D

The upper and lower bound character to the dissipation functional of approximations based on either

I(T) = F(T)+P(T), minimum @n
or

J(g) = F(@)+0(g), minimum ©8)
is briefly discussed in Appendix I.

FINITE ELEMENT ANALYSIS

The temperature models of finite elements have been fully described elsewhere! as based on a continuous,
piecewise differentiable temperature field with a finite number of degrees of freedom. Note, however, an
essential difference in the treatment of the heat convection boundary condition (5). This case is no longer
treated by additional generalized fluxes but results in essentially different elements because of the addition of
the second term in the dissipation functional (10). This modification is necessary to obtain bounds to this
functional. With temperature models, temperature boundary specifications 7, can be accounted for exactly
if expressible in terms of the approximating shaping functions of the models. Heat flux boundary specifications
¢ are translated into equivalent generalized fluxes, and boundary conditions such as (4) are only satisfied on
the average. The same is true for thermal equilibrium in volume, equation (3) and there are discontinuities
in heat flux transmission between adjacent elements. This behaviour is analogous to the behaviour of ap-
proximate stresses in conforming displacement models for structural analysis.

The heat flow models based on the dual principle (28) must, by contrast, satisfy in detail the thermal
equilibrium conditions (7) and (8). In general, the finite degree of freedom approximations on the heat flow
do not satisfy the intcgrability conditions for the temperature field required by equations (14). Similarly,
temperature boundary conditions such as (2) and (9) are only averaged. This averaging process results
automatically from the definitions of generalized temperature co-ordinates as weighted averages along the
boundaries of the element or in its interior, so that no restrictive conditions exist on the prescribed tempera-
tures input. This situation is again completely ‘analogous to the one governing the theory of equilibriun
models in elasticity.® Particular emphasis will be given here on the heat flow models and, for brevity, only
internally unloaded (@ = 0) elements will be considered.

HEAT FLOW ELEMENTS GENERATION

Let E denote the simply connected domain occupied by the element and OE its boundary. The boundary
consists of several parts 9, E (o = 1,2, ...,5) corresponding to various adjacent elements or to pieces of the
boundary of the complete structure.

The heat flow vector field in E is taken as a linear superposition of ‘modes’ M;;(x), each in thermal equi-
librium without internal sources:
' g; = oy M;;(x) ' . (29)

uMy;=0 (j=12,..,m) (30)
Consider now the normal heat flux generated along part 9, E of the boundary by each of the heat flow modes

£%) = n(0) My(x), x€8,E @
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Determine a maximal set of independent vectors y;,, (i = 1,2, ..., M,) such that
Yimfi(¥) =0, x€0,E 32)

Then, any complementary set of vectors 7;, (p=1,2,...,P,; M,+P, = n) such that the nxn matrix, j
indexing the columns,
G = (ij)
7 g

is non-singular, will generate a set of non-zero and independent boundary flux modes along 9, E
Nipfi(X) = bp(x), x€0,E (p=12,...,P) 33)
Introducing the matrix notations
13x) = (i(®) ... [u(x)), x€8,E
bI() = (B4(¥) ... bp, (), x€8,E

(32) and (33) are equivalent to the matrix equation

0 .
| () = [b, (x)] , x€0,E 34)

Inversion of this produces A
f,(x) =BIb,(x), x€0,E (35

where BT, which is a part of G, is a n x P, matrix of rank P,. Thus, along 9, E, the general parametric heat
flow will generate a boundary flux of type

aTf (x) = (B,a)Tb,(x), x€d,E (36)
The set of ‘generalized flux co-ordinates’ for 9, E is defined by
g, =B,a (37
50 that (36) becomes equivalent to ‘
i 4 fix) = 8pby(x), x€0,E § (8)

The generalized flux co-ordinates are thus intensities of the boundary heat flux modes; their knowledge
determines the complete heat flux distribution along 9, E so that the continuity of heat fluxes at interfaces
can be secured simply by reciprocity of corresponding generalized flux co-ordinates. Any predetermined set
of boundary heat flux modes may be replaced by a new set of P, linearly independent combinations of the
elements of the old set. Advantage can be taken of this freedom to give simple physical significance to the
generalized flux co-ordinates, either as Jocal values or moments of various order.

The set of relations (37) for all parts of the boundary OF results in a global relation

g=Ba 39)

where the boundary flux co-ordinates are listed in g in some conventional order and B correspondingly
partitioned. As a determines g, we should have conversely that a compatible set g determines a uriquely.
The condition therefore is that Ba = 0 possesses only the trivial solution a = 0. If this is not true there are
‘bubble heat flow modes’ that were not taken into consideration. Bubble heat flow modes are linear combi-
nations of the modes M;;(x) that produce no heat flux along any part of the boundary JE and are therefore
not accounted for by any of the generalized boundary heat flux co-ordinates. This happens only for models
involving a large number of parameters; if the M,;(x) form a complete set of polynomials of degree <N
satisfying (30), the bubble modes begin to appear for N = 2. In the examples only N=0and N =1 have
been consndered
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It is sufficient to state here that an internal generalized heat flow co-ordinate can be assigned to each bubble
mode and relation (39) completed so that B becomes really of rank n and Ba =0 has no other than the
trivial solution. The internal co-ordinates can be expressed later in terms of the boundary co-ordinates by
minimizing the functional (28) at the element level with respect to the internal co-ordinates.

The boundary co-ordinates themselves are not independent: the homogeneous adjoint relation to (39)

BTz =0 40)
has at least one non-trivial solution z = v. The corresponding necessary condition for (39) to be solvable for a
vIg=0 . @41

expresses the vanishing of the total outgoing heat flux; it always exists because of the detailed equilibrium
conditions (30) and is the analogue of the over-all equilibrium conditions between generalized forces in
elasticity. If equation (40) possesses no other non-trivial solution, equation (41) is also sufficient for the
existence of a, the uniqueness of which was already discussed. This is the case for the heat flow models
presented as examples in this paper.

If equation (40) has other non-trivial solutions we have a situation analogous to that of ‘spurious kinematic
freedoms’;? techniques to deal with such situations are similar to those of the equilibrium models in elasticity
but will not be presented here.

Consider now the discretization of the functional (28) resulting from (29) or its equivalent matrix form

q=1{q;}=Ma (42)

where M is the matrix of the modal functions M;;(x). The boundary fluxes needed to evaluate the second part
of the dissipation functional are given by combination of equations (29), (32) and (36) as

Npqm = aT BE ba(x), X€ ao- E 43)

The dissipation functional (25) becomes a positive definite quadratic form in the parameters o;

F(g) = }A"(R+R)a (44)
with generalized resistivity matrices
R= f MTCIMJE, C=(ky) (45)
E
R,=3 B}‘( f %b, bT dS) B, (46)
4 OoE

Advantage is taken of the subdivision of the structure in elements to incorporate eventual heat convection
losses at interfaces where bodies of different physical nature are in contact and not only along the external
boundary 9; D of the complete domain D. Each element E is therefore provided with a (variable if the case
may be) transfer coefficient & along its boundaries OF.

At an interface without external heat supply it is readily seen that the effective transfer coefficient is given
by

where i, and A_ have been allocated to each face. Moreover an interface can be kept at a prescribed tempera-
ture T, by supplying or removing heat at a surface rate that will result from the computation, or this supply
rate will be prescribed and the temperature T, will result from the computation. In both cases it is necessary
to distinguish 4, and A_.
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For faces without convection losses /2 can be set equal to infinity. The complementary potential energy
(26) is then calculated by assuming the external temperature T, to be defined along the whole boundary OE;
it then becomes formally

0@ =3 (ez[ 7.b,a5) @)
o OoE '
We now define generalized temperature co-ordinates along each boundary by
zp=f T,b,(x)dS, x€8,E (p=1,2,...,P,) @8)
%E : _
Collected in a column matrix in the same order as for g, they yield '
t, = [ T,b,dS (49)
J GE )
_so that we can write :
' O(g) = aT X BTt, (50

Again if the co-ordinates of each boundary are collected in a single column matrix t, in the same order as the

g, into g,
; BTt =BTt (51

o

and finally
 Q(g)=aTBTt=gTt (52)

This shows that the generalized temperature co-ordinates are conjugate variables to the generalized heat
fluxes. Definition (48) shows that they are weighted averages of the external temperature distribution, the
weighting functions being the boundary heat flux modes.

The minimization of the discretized functional

1aTR+R)a+aTBTt
with respect to the parameters furnishes |
| R+R)a=~-BTt (53a)
.or '
/ a=—(R+R) BTt ‘ (53b)

Combined with (39) this result allows to relate the generalized boundary heat fluxes to the generalized
temperatures through a generalized conductivity matrix K

g=Kt (54)
with :
=—B(R+R,)BT (55)

The completé structural conductivity matrix is built up by properly addressing the elemental matrices K
just as for stiffness matrices in structural analysis. The principle used here is the identification of the interface
external temperature co-ordinates, so that corresponding hcat flux co-ordinates become either reciprocal or
balance external interface heat inputs. It should be observed that the structure (54) of the generalized
conductivity matrix is such that the compatibility condition (41) is automatically satisfied by vTB = 0.

Appendices II and ITI present the detailed matrices for constant and linearly varying two-dimensional
heat flow elements, with orthotropic conductivity characteristics.
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EXAMPLES

The following examples illustrate the main features described above in the case of constant and linear heat
flow elements.

Example 1

Let us consider a large composite wall with an isothermal surface at T, the other suffering convection
losses (h, T;). The unidimensional heat flow is analysed through a mesh of twelve linear heat flow elements.
In this case the temperature gradient field is itself integrable so that the generalized temperatures obtained
yield the local ones (Figure 1).

To
K L
{
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h T
(a)
L
To
25
20
15
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X
‘ ° .25 .50 75 10 2L
. (b)

Figure 1. An infinite composite wall. (a) Mesh idealization with boundary conditions; forty-six degrecs of freedom.
(b) Unidimensional temperature plot showing perfect accuracy towards the exact solution (analytical)

Example 2 : ' -

This attempts to show that the generalized temperatures give a good idea of local values even in case of
non-integrable gradient fields. Figure 2.illustrates a conduction-cooled turbine blade having its root x=0
maintained at a uniform temperature T, and operating in an effective gas with temperature T} (exact solution
under unidimensional heat flow assumption, Reference 5).
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Figure 2. Turbine blade. (a) Blade on cooled turbine disk, with insulated tip, body in ambient gas at T, and isothermal root
disk at T;. (b) Finite element idealization and temperature plots for blade core:—, exact; 0, constant heat flow model; A,
linear heat flow model

A dual analysis of the structure yields upper and lower bounds (Table I). The larger dissipation of the
exact treatment is due to the assumption of unidimensionality.

- —

Table 1. Dissipation bounds for several models of the blade

J Finite element model Degrees of freedom ' 10*E
Linear temperature field ‘ 23 . 2091
Parabolic temperature field 67 20-53
Linear heat flow field . , 88 20-47
Constant heat flow field 44 19-55
Exact dissipation under undimensional heat flow assumption 20-76
Example 3

In this example, a dual analysis of a laminated slab is presented (Figure 3).

No exact solution is known, so that temperature mapping is compared to a cubic temperature model treat-
ment, which is nearly exact with respect to energy bounds, Heat flow models tend to converge faster than
temperature ones; however, they need more degrees of freedom for a given grid and equal degrees in the
polynomial discretization. Table III shows remarkable accuracy for heat flux equilibrium at the E@ﬁhﬂd‘tyf%
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Figure 3. Laminated slab. (a) Slab with boundary conditions (ky = 08—k, = 04 W/cm °C; b, = 6-9;hz = 0-5 W/cm? °C;
To = 1,000—T, = 100°C; a = 10— b = 6 cm) and temperature maps: —, cubic temperature model; — —, parabolic tempera-
ture model; ——, linear heat flow model. (b) Dissipation bounds showing convergence versus degrees of freedom or degrees

of polynomial idealization
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Table II. Notation and number of degrees of freedom for Figure 3

Elements Symbol Degrees of freedom
Linear temperature field e) 27
Parabolic temperature field O 80
Cubic temperature field O] 163
Constant heat flow field A 53
Linear heat flow field v 106

Table III. Computed heat flux equilibrium for the slab (watt/cm)

_ Total outgoing heat flux through Isothermal boundary
Idealization the convection boundary (part of lower edge)
T, 1031-607 . —1031-607
T, 887-318 —887-318
T, 858-147 —858-147
F, 772:272 —-772-272
F, 636-289 —636-288

{

Example 4

This final example considers a heat-exchanger tube with a non-uniform surface conductance on its outer
surface (Figure 4).

o opi o091 op oz oot 03 09 0 0T Oy

T102€

1Y4,

Figure 4. Temperature distribution in a cross-flow heat-exchanger tube of unit thermal conductivity, with high temperature
gas at T,; = 370°F and cooling gas at Ty, = 70°F, flowing normal to the tube (®, relaxation; —, finite elements)
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Table IV. Distribution of surface conductances

hy hy

¢° {Btu/h ft2.°F)

0-10 25 55
10-30 24 55.
30-50 22 55
50-70 18 55
70-90 12 55
90-110 10 55

110-180 9 55

Upper and lower bounds (Table V) allow to consider the T,-solution as exact. The corresponding solution

is plotted versus a finite difference relaxation solution (Reference 5).

Table V. Dissipation bounds for the exchanger tube

. Finite elcment model Degrees of freedom 2x104E
Linear temperature field 35 13-970
Parabolic-temperature field 107 13-875
Linear heat flow field 144 13-871
Constant heat flow field 72 13-677

APPENDIX I

Upper and lower bounds

- 'We now sketch briefly the theory of functional bounding by the dual approach. Let g denote a vector of a
linear space F, representing a field of heat flow in each element of the structure. Define a scalar product

in F by

R . 1 . R
(g.9) = f Rerls dD+ f zaE;("iqi) ("mdn)dS =(4,9)

(56)

The squared norm (g, q) is equal to twice the dissipation functional for the whole structure and its surrounding.

(9,9) =0 implies ¢g=0

i.e. the complete vanishing of all heat flows.
A field will be called integrable if a temperature field exists in each element such that

0T =—rimg;
and such that the external face temperature
’ T, =T—(n;q;/h)

be continuous at interfaces. If i denotes an integrable field, we have from equation (56)

G §) =— f G;0;TdD+ f (T=T) 1y G,rn dS
K D LOE

or, after integration by parts,

G,4) = f 180,40~ | T tmdnds
D oE :

(14)
7

(58
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A temperature compatible field is an integrable field with the additional conditions
T,=T, along¥,0E | (59

where 3, 0F comprises the set of interfaces and boundary faces of 9D where the external'tcmperature is
prescribed. Any particular temperature compatible field is denoted by ¢,. The set of all temperature compatible
fields satisfying the homogeneous conditions

T,=0 along 3,0E (60)

where T, = 0 is some uniform reference temperature, is a subspace of F denoted by C. An arbitrary member
of C is denoted by c. Thus ¢y+c is an arbitrary temperature compatible field for equation (59) and belongs
to the linear manifold ¢,+ C.

A balanced heat flow field is one for which

9;4; = 0 within each element (61)
and
n,d,=4 along >,0E ‘ 62)

where Y, 0E comprises the boundary faces of 0D where surface sources § are prescribed and the set of
interfaces where surface sources (4, +4_) are prescribed. Note that a positive 4 is really a heat sink. The set
3. OF is complementary to }; 0E. Any particular balanced heat flow field is denoted by /. The set of all
balanced heat flow fields satisfying the corresponding homogeneous conditions

3’q‘, = 0 in D, n,"q’l"l = 0 along 22 3E (63)

is a subspace of F denoted by H. An arbitrary member of H is denoted by /. Thus h,+ A is an arbitrary heat
flow field balanced with respect to conditions (61) and (62) and belongs to the linear manifold A, + H.
From equations (58)—(63) we readily find

(k) =— L Teindnds | (64)
(c, hy) = fDTQ dD— fz.aET°qu ‘. (65)
(cor o) = (cor )+ (c, o) ' (66)
(eh)=0 ’ 67

This last result shows that subspaces C and H are orthogonal. :

The exact solution s must satisfy simultaneously equations (14), (57), (59),-(61) and (62); it is the inter-
section of the linear manifolds ¢, + C and h,+ H. In approaching the solution from two sides either by tempera-
ture compatible fields or by heat balanced flows, it is thus natural to require that the squared distance between
each approximation

P2 = (Co+c_ho_‘h, Co+c_ho—h)
be minimum. Using property (67) it is easily verified that
p2 = (Co'l‘c_ho, CO+c—h0)+(ho+h_Co, Ilo+h—'c°)_(h0_00, ho_ct))

The last term is constant; the first term is positive and depends only on the choice of the arbitrary element c;
the second is also positive and depends only on the choice of the arbitrary element 4. Thus we can minimize
separately the first and second term. In the first we can drop the constant (k, /i) and, dividing by 2, obtain
a statement equivalent to the minimization of the temperature functional: .

3(co+c, co+0)—(co+c,hy), minimum (68)
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In the second we drop the constant (c,, c,), divide by 2, and obtain a statement equivalent to the minimization
of the dual functional:¥
-~ 3(ho+h, hy+h)— (h0 +h,c;), minimum (69)

Any approximate solution to (68) by discretization in n degrees of freedom consists in taking ¢ = o;c;,
where the ¢; are chosen members of C, the summation index running from 1 to n, and determining the best

coefficients of. Then (68) becomes
1L (O )+ (g, €o— ho) +3(co, €) — (B, ¢p), minimum

and furnishes the set of linear equations in the unknowns o}

a;."(c,;, ) +(cco—h) =0 (i=1,2,..,n) (70)
With cf = ¢y + o ¢; denoting the best approximation, equation (70) can also be placed in the form

Coct—h) =0 (i=1,2,...,n)
Then, multiplying each equation by o and adding
' \ (cd—cocd—hy) =0 _ 7
A similar (reatment of problem (69) yields
(h§—co b —hg) =0 (72)
Obviously the exact solution obeys the same relation ,
(s—cp5—hy) =0 (73)

This can in fact be considered as an application of (67) since s— ¢, belongs to C and s—h, belongs to H.
Consider now the inequalities

3 )= (et o) > 35, ) — (s, by) (74)
_ kg, h) — (hg', ) = 3(s,5) — (s, ¢o) (75)
resulting from the fact that the minima. of (68) and (69) are reached by the exact solution. Eliminating in
them (s, s) through (73) and combining with (71) and (72) there comes
(c5's ho—co) < (5, g — €0) < (hig', g — ) (76)
This upper and lower bound characteristic for the linear functional
(5, ho—co) = (5, ho) — (S:. co) = (c+¢g, ho) — (B + hy, ¢o)
= (¢, hg)—(h, c)
=f TQ0d4dD+ T.n,q,dS— T,4ds
D T.0E I.0E
can be used directly in solving a mixed boundary value problem but does not guarantee convergence in norm.

1 Complete analogous.statements to equations (27) and (28) are in fact:

1. Principle of variation of temperatures:
i(Co"' c— ho, Co +c— ho) - i(ho —Co, hO - Co), minimum
or .
Aco+c, co+)—=(c, hy), if we drop the constant (cy, ¢o) .
2. Principle of variation of heat flow:
3(ho+h—co, o+ h—co)—1(ho—co, hy—cy), minimum
or
3(ho+ h, hy+h)—(h, c,), if we drop the constant (ky, Ag)
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To obtain a measure of convergence in norm it is necessary to solve the problem in two steps by super-
position.

First step. ¢, =0, the prescribed temperatures are set equal to zero, only the prescribed heat sources are
taken into account. Then c¢f = c* and the previous result becomes

(M b <(s,hp) < (h::a ho)
However from expressions (71)—(73) also '
(c*,c*) =(c*hy) (5,9)=(s,h) (h§,hg) = (h§, ho)
so that we obtain upper and lower bounds for the quadratic dissipation functional
(c*, ) <(s,5) < (Mg, h)

Second step. hy = 0, the flow rate of the prescribed heat sources is set equal to zero but account is taken
of the prescribed temperatures. Then h§ = h* and (76) becomes

(cg's co) = (5, ¢0) = (h*, o)
Furthermore from expressions (71)—-(73)
(c3sc0) = (c5,c3)  (s5,¢0) =(5,8) (h*,c0) = (h*, 1)
ind the dissipation functional of that case is now bracketed in the reverse way

(cg>€5) = (5,5) = (h*, h¥)

APPENDIX II

Constant heat flow element

=

.

Figure 5. Constant heat flow element

qz = 04, — = l 0 = T —
= n=2 M (0 | ) E, aT=(y o)
M _.l f’l‘—-l_( ii X57)
=1 1I;= I; Yij Xij)s Xy =V
L : v G, =
P =1 bT=— -\l xulLy
' L;;

. .- l -
Ba = (yji xij)’ g? =0 y,-i+ Oly Xyjs tg = rj- fa . T,dS
’ , () 2

=1j
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where _ A
L;; = Length of edge i—j, x;=X;—X;, Yi=Yi—V;
g7 = (212 &2 ga;), tT = (ty2 1y t3)
2,
Ya X2 Y, —-2- SYM
: 1k, O o hij Ly
B= y32 x23 ’ R=A 0 l/k ’ Rc_ o
X v > Xij Vi » Xij
N5 Tm ' e hijLij s hyLy;
where

A = Area of the element, h;; = Uniform transfer coefficient for edge i—j
= 00 if (T)y; = (T)y;

{

APPENDIX III

Linear heat flow element

Figure 6. Linear heat flow element

9z =g tasXx+a,),

_ (1 00y x . '
gy =g tagx—agy, " M'"(o 1 x0 —y)’ at = (%0 05)

- L”(yji Xy XXig WVii XVii—YXij)

-2 =y y=»w
YLy’ ¢

2
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B = 1 (yji Xij XXy ViVie X:Vi— Y xij)
O 2WUn Xy XXy Vive Xy ~ V3%
(0‘1 Yiit 0 Xij+ 0 X; Xy + g Y3 Vi + (X i — 34 xij))

0 Yji g Xy 0t X Xyj -+ 04y V3 Vi + a5(X; Yy — vy Xi5)

5/ i)
tr=2 T(L;;—s)ds J T,sds
7 LE\) am=ij Ly=9) doE=ij *

gT=(g12 81 83 82 &n &in)

tT=(tyy ty tyy ty Iy ta)

[N T

&=

I

Yar X1z X1X32 ViV X1V — Y1 X1p
Vo1 X1z XgX1p YVoVar XpVay— Vo Xy

B= 1 Va2 Xog XpXoz VyVaz XpVaa-r Vo Xps
28 yss Xos X3Xpg Y3V X3V3a— V3 Xog
Y13 Xs1 X3gX3 Va)iz X3)Vi3— Vs Xz
N3 Xa1 X1X3 ViViza XaVis— Vi Xy,
. Alk,
0 Alk, SYM
R= 0 Sglk, Lk,
Sylk, 0 0 Ik,
Szlk, — ky, — Jzulky Jolks Lfk,+ Lk,
where
A=f dxdy, S’=f xdxdy, I“”:f x2dxdy, Ju=f xydxdy, etc.
E - JE E E
'Rll . 3
R, = Ry Ry Ry
) Ry Ry Ry Ry
R;; Rs; Rj3 Ry Ry
where

_ o Ot x) x5 v st x)xd
Ry = §——2 Fis Ly =Ry, Ryp= § hiI hrL; =Ry

Ry = XX+ x) 3y Ry =z Vit
o g

i Ly 3hi]' L‘tf
R = z()’i +y) Vi _ Ry, Ryn=3% (i3 X V5 —R . oSO,
41 D) hij Lij 14> 42 T 2 hij Lij 24 . Qq\\ ) 3
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R43=§( X Vit XY+ Xyt JC,y,))cmgl:Ra4

6/11:j L‘L}

. Y2 —(y- N Xoi Vs
Ry = §(x,+x,)),1, (i +29) Xi5Vis _ R,

2hi; Ly
Rsz _ § (s +x)) xi{ J”ji —(y;+3) x% = Ry
) 2h45 Ly
Rew = 3 20842024+ X7) X5 V3= QXY+ X3 Y5 + X3 v+ 2x59) X5 p
3 = = Rys
v 6h;; Ly
Ry =% @y ys+ X Y5+ X; 9+ 25 9) Vi = Qy3 - ¥e ¥y + ¥ X5 Vi _ Res

6/71']' LU

Ry=3% O34y + 3D x5+ O3+ 335+ X7 1 — (g py+ X 05+ X5 9+ 2%, ) X5 V5
g 3hii Ly ‘
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