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Summary B

Thevtheory‘of equilibrium elements 1,2 shows that their
stiffness matrices may present a singular béhavior due to
the presence of mechanisms (deformation modes without strain
enefgy). The origin of such difficulties is easily traced
to the rigorous requirement of rotational equilibrium (symmetry
of the stress tensor) and eduivalently, if the discretization
is performed on the basis#stress functions, to the C1 continuity
requirement involved. Moreover loss of diffusivity (reciprocity
of surface traction distributions at interfaces) is incurred
in an isoparametric coordinate transformation to curved bounda-

ries, whenever preservation of C

1 continuity is at -stake.

Bcth difficulties are resoived_by enforcing rotational
equilihrium.Only in weak form. Firstlofder stress functions
are used to preserve rigorous traﬁslational equilibrium and
diffusivity. They need only be Co continuous, a property that

remains invariant under isoparametric coordinate transformations.

The theory of discretized rotational equilibrium has been
investigated in detail for membrane elements 3. The paper 1is

devoted to the more difficult case of axisymmetric elements.
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\1} AXISYMMETRIC EQUILIBRIUM EQUATIONS

"“REVOLUTION"

MERIDIAN SECTION

FIGURE 1

The translational equilibrium equations of the axisymmetric

state of stress are conveniently presented in the fdllowing

form
#xial direction 2_ (r ©__) + L (r 0) =0 (1)
or rz 9z z
radial direction 2 (r 0.) + 3— (r v..) =90, (2)
or r 9z zr 0
~

a moment equilibrium of a slice d6 about an axis perpendi-

cular to the mean meridian plane requires

- de [ (z t. - r t))ds -»ff z 0y dr dz J =0
(3)

‘where the curvilinear integral is around the boundary of
the meridian cross section and the meridian surface trac-

tions are given by



€. Qs =1, dr - o dz . | (4)

t, ds = o, dr‘f T, dz . (5)

The hoopstress o, gives a downward component due to

]
the curvature that is responsible for the last term.
Substitutiqn of (4) and (5) into (3) and transformation

of the curvilinear to a double integral yield

do [f [z { g—F(ror)+ e, ol (rn )5 (o ) V] drdz

+ dQ I/ (t, = t,,) rdrdz =0
Takihg (1) and (2) into account this reduces to
] (1, T‘Trz) rdrdz = 0 3 (6)

and, for an elementary surface of the meridian cross
section, to the local rotational equilibrium condition
_ - : .
Tzr ~ Trz 0 . (7
It should be observed that, even if this condition is
not fulfilled, the axisymmetric ring of same meridian -

cross section is, by reason of symmetry, in rotational

equilibrium about all axes.

G

2. A VARIATIONAL PRINCIPLE

We satisfy the axial equilibrium condition (1) by a first

order stress function

3 | (8)

= - L123¢ G =
r or

rz 9z . ) z

L L



that brings the axial component of surface traction to.

the simple form

- 1,3 3 1,
t, ds = T (3% dr + 3% dz) = = dé (9)

Because vwe first consider o, to be directly determined

through the radial equilibrgum condition (2) we do not,
at this stage, introduce another stress function. We also
conside: Tor separately from'frz but enforce the equili-
brium condition (7) by means of a Lagrangian multiplier
w. The stress energy density is then considered to be a

" positive definite function of the arguments (or y O_

z

1 ' - . . .
oe ' 7 (Tzr + th) ) with the stress—strain prope;t1es
|
! t X4 99 9%
: € " e— € B e € B e
r Bor z aoz | ' 0 300
(10)
e = 20 30 . .
rz arrz 81z zr

The fact that ¢ is a symmetrical function with respect
to both shearing stresseé ensures the symmetry of the
corresponding shear strains; moreover translational
equilibrium is assumed to hold. Thus the arguments Tos
and o, must be expressed in terms of the stress function
¢ as in (8) and the hoopstress is expressed as in (2).
The complementary energy principle then takes the follo-
wing form

o ~

ff[0+w(1z£+% %%)]tdrdz -du r(rzid?-ordz)+;d¢
stationary (11)

the displacements being assumed to be given on the

boundary of the meridian cross section.



The Euler equations resulting from unconstrained

~variations on . s T and ¢ are respectively

zr
e = (re) : ' é12)
r or 0 ' : ‘
W+ e - (re) | (13)
rz 9z 6" .
2 Y S ' '
3; (etz w) or ez _ _ (14)

Both o and T, give the same natural boundary condition

u=re¢ (15)
while for ¢ we obtain

dw “,(erz - @) dr + €, dz . - (16)

o

3. SOLUTION OF THE VARIATIONAL EQUATIONS

At this stage, in preparation of the imposition of
constraints on rotational equilibrium, we consider w(r,z)

as a given function. Setting

u =T oeg ’ . (17)

The Euler equation (12) becomes

. du - | :
er r ; ’ . (18)

apd.u is recognized to be the radial displacement.
Euler equation (l4) is solved by introducing a function

w(r,z) suach that



oo ow : : |
€ w 3T A (20)

this new function is thus the axial displacement and,

combining (20) with the last Euler equation (13)

1 Ju ow ) . -
€z =7 Gz * 37 : (21)
- v 1 du ow '
“ =7 Gz "% | 22

go that the Lagrangian multiplier is, as expected, the
material'rotation about an axis normal to the meridian
plané. L

We conclude tﬁat for unconstrained variations on oL T,
and ¢ , the compatibility equations are satisfied and the
displacement field obtained, satisfies the given boundary
data and has the given w(r,z) function as its rotation field.
This however requires an obvious global compatibility condi=

tion on the data : .
§ udr + wdz = 2 [[ w dr dz (23)

Equation (22) appears in this context as one of the diffe-

rential equations governing the displacement field.

To obtain the second, we must express the equilibrium

equations that are satisfied in terms of displacements.
\for simplicity take the isotropic linear stress-strain

laws in the form

o, =26 (er + 1 €) where G is the shear modulus

C
v

g = 2 G (ee + N €) | n o= v/ (1-2v)
o, * 2 G (ez + n €) _ € =€+ €.+ ¢

(th * th) - 2. G e

Nj=

rz
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The last is the only one generated by the complementary

energy density as a symmetrical function. To separate
the two;shear'dtresses we introduce a shear strain unbalance
function ¢ ‘
. , - -
Trz © 26 (erz e) Tar f 26 (erz £)
Replacing the strains in terms of displacements through

equations (17),(18) and (21) the equilibrium equations

(1) and (2) can now be placed in the form

(1-2v) - {rw) )+ (- L ) =0

(24)
- de

(1-v) r 3

- (i-Zv) %; { r(zg-=w) } =0

The elimination of (f-w) produces the second differential
equation governing with (22), and the boundary conditions

u=0u,vs=yv, the displacement field

2

) . ) o€
3 3 (re) + 3T (x 3;) 0 . (25)
z
u Ju ow
e " stttz (26)

I1f, on the contrary, € is eliminated between equations
(24), we obtain a differential equation satisfied by the
shear strain unbalance when the rotation w is imposed
a2 - : _
[r(z-w) ] } + == (g-w) =0 (27)
; 9z '

.
T {

C

"=
(-3 £-+
"

When w is not given, but an unconstrained Lagrangian multiplier,
its variational equation requires the shear unbalance to

vanish

- Trz) = - 4 Grg = O



and (27) becomes the differential equation governing

the distribution of the material rotation

._3_‘_[%3_(“ r)]-+-a—-—w".0 , (28)

It is worth noticing that this equation 'is not satis-

fied by 0w, 2 constant but that the simple solutions

independent of z are

r B (29)

THE ZERO ENERGY STATE

]
Our separation of the two shear stresses creates a
well-defined state of stress for which the complementary
energy vanishes. The energy density being a positive

definite function, the conditions for zero energy are
o_ 20 , whence from (1)

rT.." £(z) -

6.0 and o ~, whence from (2)

"
o

r T = g(r)

T + 1 =0 ‘ whence

-’

- £(z) = g(r) ="y - a constant

"The zero energy stress distribution, in tramslational

but not rotational equilibrium is thus characterized

by the shear stresses distribution

T. ﬂ—l . T s-‘-l

rz r . zT r

Any imposition of a global rotational equilibrium

condition



‘reciprocity of the radial surface tractions.

A f Ao + Alr + A

[[ @ (1, - Trz) rdzd@ =0

where w is one of the simple'solutions (29) will

eliminate the possibility of such a situation

to prevail.

STRESS FUNCTIONS DISCRETIZATION

In the discretization we consider the presence of Oq
in the equilibrium equation (2) as analogous to a body
load. We subdivide the stress distribution of 0. and
Tor in a particular solution taking into account a
non zero hoop stress and a general solution without
hoop stress. This can be done conveniently by introdu-

cing two new first order stress functions as follows :

- -‘:‘-lﬂ—-a——l- --l——al -AA ‘
O r 3z 9z Tar T T ar T ar - 30)

from which we find ftom'(2)

’ -——a-a-. .
06 9z v : (31)

and for the radial surface traction

‘ 1
tr ds = ey dy + da (32)
c, continuity of ¢ will thus ensure reciprocity of the

axial surface tractions and Co continuity of y and A ,

The stress functions will now be discretized as polyno-
mials in r and z and, to obtain similar surface traction
distributions for y and ), the degree of A will have

to be one unit less than that of y .

The first model corresponds to

’ . 2 2
0 T dy t e Tt 9,z T+ 24,TZ ¥ o2

V = w; + wlr + wzz + wBrZ}f zwarz +‘¢522 | ' : (33)

22
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The constants ¢o and wo are not producive of stresses,
they will only play a role in organizing diffusivity

in a finite element of triangular meridian section by
expreésing, in the usual way, the functions ¢ and ¢ ‘

by interpolation functions related to the local vaiues
at vertices and mid4edges..When.such local values are
taken as nodal values at intérfaces, C, continuity
follows. In the case of A , we see that neither Ao

nor Al,.produce any hoop stréss. As the general equili-
_brium state without hoop stress is already accounted
for by y , these terms can be dropped. However they are
needed again when organizing diffusivity, this time by
expressing A in terms of interfgihtion functions related
to the three vertex values. '

We now define the generalized boundary loads associated
with the linear distributions of re and rt, on a slice.
de .

LecAZcij denote the length of side ij of the triangle
and the distance s be measured in anticlockwise sense
from i to jAwith origin at the mid point. The non dimen-

sional distance

0 = —
C.
1)

will vary in the interval E-ﬂ.. +1 ] . We then introduce
J _ J .
R,, = J rt_ ds and Z,, = I rt_ ds (34)
r ij z

1 . .
J 1 1

the total, respectively radial and axial, loads associa-
ted with the surface tractions on a slice per unit angle

0. Correspondingly we introduce the total reduced moments

J J
pij = Ii rtr o ds and cij = ji rtz g ds (35)

"We then find easily that along 1ij
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rt: - Zt . L] * 7%%7 013
J 1)
| | (36)
| re, = Zi.; zijl+ ZZ? Lii
1) . 1)

and furthermore

1 s 1
r 7 r, (1-0) + 25 (1+0) dr = 3 (rj ri)do

. 1 1 ' 1
Lz =3 zi_(l o) + f'zj (1+0) dz = 7 (zj zi)do

From this it becomes possible to computé the matrix §
relating the generalized boundary loads to the active

stress parameters listed in the vector s :
87 = (8, 6, b5 #, 65 V] ¥y Y3 ¥, Vs Ap)
1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5 "2
fhrough the“rela;ion'
g = S s : (37)
wvhere in g the generalized loads are conventionally

sequenced

T
g = (Ryp Ry3 Ryy 295 Zp3 23y Pua P23 P31 P12 %23 %31)

(38)

The first row of S is obtained by replacing in the

definition of R the expression of rt&ds in terms of

12°
the stress parameters C
, 2 _ 2 q2 | 2
»R12 = led¢+rdk =¥ J1§r+2¢3 Ilrdr + th Il z d?
2 ' 2 2 2
+ ¢2‘JI dz + 2w4 Il rdz + 2¢5 Ilgdz+kz Jlrdz
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There follows for this first row
. 2 2 2 P 2 2 2 2
{oo0o000O0 I dr J dz J d(r%) ZI-d(rz) J d(z%) J rdz }
. 1 1 ‘ 1 1 1 L

The only geometrical integral that is not immediatly

expressible in terms of the vertex coordinates is the

last
“raz = Lamay e, [ Qeovaoske, [ (leordotelia,-a)) (xier,)
1 2 %2750 7T | NTTONA0TTy | RETOIOTERRE TR MR T

The other rows follow by similar procedures.

We now define the (weak) generéiized boundary displacements,
conjugate to the loads, by expressing the virtual work at

each partial boundary in canonical form.

2
Ji(“ reotw e )ds = Ry U %2 )Wy 0%010%2 * By By 39D

Substituting the surface traction distributions in terms

of the generalized loads,‘as.in (36) and comparing, there

follows
1 g2 1 2
U12 = ” . u ds wlz = e . ds (40)
12 12
the ordinary averages of displacements, and
3 JZ 3 2
a B e uods . B = J wods (41)
12 2¢y, )y 1290, 1 o

which are "moments" of the'displacemenﬁ distribution.
Similar definitions ensue for the two other partial
boun&aries. '

The generalized boundary displacements are sequenced in

the corresponding order as that choosen for g
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a° = (Uyy Uyy Uy Wyp Wog Wyy ayp 093 a3y By By3 B3y)

(42)

so that the scalar product ng reproduces the complete

canonical expansion of virtual work :
T T
{ (u re +w rtz) ds = qg=4q S s (43)

We have now available the discretized form of the last
“term in the variational principle (11). .

For linear homogeneous stress-strain relations, ¢ will

be a quadratic 'form of its arguments, and, after discre-
tization of the stress distfibution by means of the stress
functions, the complementary energy becomes a quadratic ’

form

JI ¢ rdrdz = % 8T Fc (44)
in the active stress parameters. This quadratic form is
merely non negative, because of the existence of the
zero-energy state.

Indeed this state is included in our approximation as

corresponding to the choice of parameters :
*1 -'¢2 - Y all other parameters zero.
This means that the stress parameter vector

5. =y (01000100000) (45)

corresponds to ss F s, =0, and, the'flexibility

matrix F being non negative, to

Fs =0 : (46)
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6. ROTATION DISCRETIZATION

Therﬂ remains to discretize the part corresponding to

‘the Lagrangian multipiier

JJ o B+ 3y 3 4raz=s" kD 1)
abilinear form in the active stress. parameters and
wvhatever coordinates hi are used in an expansion of w

.in interpolation functions.

The linear independence of the cblumns of the matrix R

of the bilinear form will appear later as a necessary '
condition for a solution to the discretized problem.

This imposes limitations on the choice of a discretized w.
It easily established that if n+l is the polynomial degree
of ¢y and ¢ (and n that of 1), the columns of R are linearly
independent when . the polynomial degree of w is not higher
than n. The proof can.be based on the fact that under the
opposite assumption : columns of R linearly dependent, we
reach a contradiction. | _ ' _

If the columns of R are linearly dependent there exists a
‘non zero vector n* such that

T R n* =0 for all s.

Rbh* =04+
Thus there would exist a non identically zero polynomial

\ wx of degree not Higher than~n, such that

* 3y, 3¢ LS =0,
JJ-“ Gr * 3zt T o) drdz =0

for arbitrary polyhomials ¢ and ¢ of degree n+l, A of
degree n.

In particular we would have

IJ w* ¥ dr dz = 0O
) or
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for an arbitrary polynomial y of degree n+l. However,

as we may choose y as a particular integral of
oY x
or ¢

we reach the contradiction

2 .
II w* dr dz = 0 for w* not identically zero.
On the basis of the discretization (33)'of the stress
functions, we may thus take .
0w =

0 + w, T f wzz ‘ | (48)

" SOLUTION OF THE DISCRETIZED VARIATIONAL EQUATIONS

The discrete form

% s? F s + sT,R h - qT S s stationary (49)

of cthe variational principle (11),.where the generalized
displacements q are assumed to be given, yields as varia-

tional equations

F s +Rh = ST q
’ (50)

o | RT s = 0

The first system of equations is generated by variations

on ¢, the second by the variatiops on h. Although F has

been seen to be singular because of (46), the matrix
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of the system is not. The proof of this assertion

consists in showing that the homogeneous system
o T
F s +Rh=0 R's =0

has only the .trivial solution. Premultiply the first
equation by sT and use the second equation in transposed
form to obtain

T

§ Fsge=e 0 + 5=y 8o

The,proof.is then achieved if we succeed in showing that

RTao # 0, because then

Iy RY 8 =0 * y=0 =+ 8=0

and then the first equation requires
Rh=0 + h=20 because R has linearly
| independent columns.
Let us examine in succession the influence of the
different terms of the polynom1a1 expansion (48) on

the condition R 8, ¢ 0.

For hf = (1 O 0), that is, using only the constant
term of w , the first column r, = Rh1 of R is found to be

rf - JI drdz (0 1 0 28 22 1 0 28 28 0 0)

i

(z1‘+ z 4 z

where £ = ) 3)

W=
N
]
Wi+,

(r) + r, +ry)

-
are the coordinates of the center of area of the meridian
section. Whence, by reference to (45)

T
1

r, sg = 2 v IIdr dz =1 ‘ - (51)



17.

if the zero energy vector is “"normed" by the condition

y = (2 JI dr dz)'-l ‘ .

Hence the condition RTso # 0 will be satisfied if the wg

term 1s retained,

For hg = (0 1 0), selecting the term'w

1T ve find

3= [[araz 0 2 0 2w 2w or 0 2w 2w oo

;?‘IJ dr dz = IJ r2 dr dz
‘Tz JJ dr dz = JJ rz dr dz
i :

where

and

8. =T >0 wi;h the same norm bf 8 (52)

0
Hence again, it is sufficient to retain the w;r term
in w to satisfy the condition.

However for the last term w.,z , hT = (0 0 1),

3

r'ga“drdz(o 2 0 2rz 22z 2 0 2tz 2zz O
and r

which depends on the origin of axes and can be made to
venish by letting the r axis. pass thfodéhAthe center of
area of the element. N

In conclusion, the variational eﬁuations will be invertible
if the discretization of the rotation contains either the

W, term, or the w,r term.

0)

0)



The structure of the inverted matrix is

FF Rr™
F*f (FﬁF)T . Gﬁk - (G:‘F)T
R—sr'.l' c¥

Postmultiplying by the originél matrix, we find the

rglations
F¥F + RTRT = (s/s) "F¥R =0
‘ . (53)
()T F + ¢¥rTY = 0 K'Y R = (h/h)

where (s/s) and (h/h) denote identity mat;ices of

respectively the size of s and of h. It is seen that F ¥

typically satisfies a pseudo-inverse;relationship with F

FYFF*=°r¥%
from which it can be concluded that it is also a non

negative matrix.,

In practice the inversion

6§ = F ST q o ' (54)
h=©xr1T gl g . (55)

is obtained numerically. It gives simultaneocusly the
values of the active stress parameters, thus the state
of stress, and the rotation fieldof the element, when
the boundary displacements are given. |

The stiffness matrix of the element is obtained as a

consequence of (37) and (54) in fhe form

g = K q K = sF¥ sT (56)

18.
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The determination of.the stiffﬁess matrix allows the use
of the same.assembling software as in the case of elements
based on a discretized displacement field. The nodal dis-
'placément identification is here replaced by the identification
of the weak generaliied displacements at the interfAceé and

insures diffusivity instead of conformity.

e

THE_ AXIAL =~ RIGID BODY MODE

In principle thé stiffnes; matrix of an axisymmetric
element, being representative of a complete "ring",
should contain only one rigid body mode, the axial
translation mode. '

Any radial translation of the meridian section should
generate hoop stresses and deformatién energy. Likewise,
rotation of the meridian section should generate twisting
energy. It is easily verified that the axial translation

mode is correctly built into the model. If we input

w o= w°' a constant
into the definitions (40) and (41) of the generalized

displacements, we find a rigid body mode vector

qz =w, (0 0 01 110000 0 0) (57)

that should generate no loads and consequently satisfy

49 = 0 )
C
In fact it does so because it already satisfies STq0 = 0.
We may prove it by showing that qg S s =20 for all s
vectors or, in other terms, by reverting to the discreti-

zation (43) of virtual work at the boundary, that

{ (u rtt + w rtz)ds = § u(dy + rd)) + w d¢ =0
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for any state of discretized stress, when u = O and
WO W This follows obviously for any discretized model

where the stress function ¢ is single-valued

{ d¢ = 0 L]

SELF STRESSINGS

To see whether this axial rigid body mode is the only

~solution of problem

st g =0 o (58)

we cad use the algebraic property
n(s) + n(r) = n(g) + n(x) (59)

linking the number n(s) of columns of S, n(r) of lfnearly
independent solutions of our problem, n(g) number of rows
of S and n(x), number of linearly independent solutions

of the homogeneous adjoint problem
S x =0 : (60)

This last problem is that of the so-called self-stressing
states'of:the element, we look for the‘npn éero stress
states that produce no boundary loads, that is no surface
tractions at all. ‘ .

In the model proposed under section 5 it is easily shown

that no gelf-sttessingé exist., For if there are no boundary

tractions, we must have by integration of (2)

IJ o, dr dz = § rt dr - ro dz = 4 rt ds =0 (61)
zr r , r

and, consequently,

JE\Y, VIV-9N
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As AO and Al are improductive, we may take A = 0.

Then, the vanishing of boundary tractions requires.
‘d¢ = 0 dy = 0 on boundary

so that both stress functions mdst reduce to their
improductive constant terms. ' A
-Since for the present model n(s) = 11l and n((g) = 12,
"we have n(r) =1 and qo‘will be the only non trivial

solution to problem (58).

10. MECHANISMS

The other possible‘solutions to the homogeneous problem
Kq=25FFsT qamo

may be.termed kinematical deformation modes or '"mechanisms",
They consist in boundary displacements that would normally
deform the ring and create strain energy but do, in fact,
produce no virtual work because of what may be considered
as a deficiency in the model. Since F¥is non negative,

such modes are in fact solutions of

distinct from (58). We must therefore look after solutions .

of problem
F¥m =0 : | (62)

and, having found then, look after the solutions of the

inhomogeneous problem

S q=m L (63)
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From the first of equations (53) in transpose we obtain
that if m satisfies (62), it satisfies also

‘R RmhT m = m

so that any solution m is mnecessarily a linear combination
‘of the columns of R. Furthermore, from the second of
equations (53), we see that all columns of R are solutions
‘and, those columns being linearly independent, we have all
possible mechanisms by looking after the solutions of '
ST q=Rh h arbitrary (64).
The necessary and sufficient condition for the existence
of solutions, is that the right-hand side be orthogonal

to all the solutions of the homogeneous adjoint problem
(60) |

xT Rh =20 all self-stressings x (65)

In the present model, there is no self-stressing and
equation (64) has a solution, a mechanism, for any choice
of h. Thus any weak enforcement of the rotational equili-
brium condition (7) will create a mechanism. On the other
hand at least one enforcement based onAeither the constant

rotation field w or on the field w = W T, is necessary

’
to prevent the zgro energy state. This is a characteristic
weakness of the present model, that has however no counter-
paft in the simple two-dimensional membrane case. It remains
to be seen whether this inconvenience will disappear after
assembling at least two elements togefﬁer. ’

The following remarks are pertinent to this last aspect :

1. If one uses the complete rotation field (48), the linear

function

r(t -1 ) = 2, 3 +r CLY. L(r,z)

zr rz or 23z 3;

A | = (‘pl + ¢2) + (2w3*2¢4+11)1’+2(¢4*¢5)z
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submitted to the c&nstraints
/[ L dr dz = 0 J[ r L dr dz = o0 /[ = L dr dz = 0

must vanish completely and.rota;ional equilibrium is
‘enforced exactly. We thus retrieve a pure equilibrium
model with three mechanisms, an interpretation of which
can be obtained as follows. Introduce the barycentric

coordinates L., defined by

1l = L1 + L2 + L3

z =z, L, + z, L, + z_ L. (66)

and express the stress functions symmetrically as

2 9 2
¢ = ¢ L7 *+ ¢ Ly + 4Ly + 20,51 Ly + 24,51 Ly + 244, L1

2 2 2
Vo ovgly ¥ Ly ¢ ¥gly 20,01y ¢ 29y3L,ly ¥ 205, L0 (67)

A= AILI + A2L2 + A3L3

(the coefficients ¢i , wi

with the preceding ones). If A = ff dr dz denotes the area

, Xi bear no direct relationship

of the triangle, it is easily found that

S

3L1 , ‘ 31.1 : -
2A3-2—-=r-r . 2 A — =2z, - 2 (68)

2 3 ) - 9r 3 2

and the other derivatives follow by cyclic permutation.

The quantity

3z + == + ; 5T . (69)



24,

is then easily expressed as a linear homogeneous
function of the Li and its complete vanishing requires

the vanishing of the coefficient of L1
6 (Epmrg) 4y (rgmr ) 4g, (1m0 ) +4y (2572040 5 (2 "2 g) tby, (2p72))

r .
ot El{*l(23'22)*‘2(21'23)+§3(22'z1)}'0 - (70

and those of.L2 and L3 that follow by cyclic subscript
permutations. ’
Equation (70) is now reinterpreted as a constraint between

boundary loads in the vicinity of vertex 1.

Figure 2

y4

Along boundary 12, where L3 f o, dL1 - *dLZ, ds = 2c12dL2,
we have

~ ) ]
rtrds = 2w1L1dL1+2¢2L2dL2+2w12(leL2+L2dL1) : ‘ -

+ (rIL + r

1 Lz)(AldL +A dL2)

2 1 72

| | . ]
or €Tt = ¥ L+ Loty o (L =Ly 45 (x  Ly+r,L,) (Ay=2y)
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1-1, LzhO, in this relation we obtain the

resultant load V12, applied at one third of the edge

'By setting L

from 1 and due to the linear-rtr distribution sketched

on figure 2.
v =y - ¢"+ > r, (A, - A )
12 12 1 2 "1 72 1
The complémentary distribution has the resultant

A +

21 = V2 T ¥y, r, (=)

N

obtained by setting L, = 1 and.L, = 0. By cyclic permuta-

2 1
tion of this last result we obtain also

(A, = Ay

\' 1 3)

1
13V " ¥t 3T

1

In a similar fashion we can obtain from the rtz distribu-

tion

H - ¢1 - .and H

12 © %12 13 7 ¢ 7 ¢413
We can then observe that the éondition for the resultant
moment of V12’ V13. le and H with respect to the bary-

‘ 13
center of the element to vanish

1
3 U V(272 )4V, g (2 -2 ) -H) , (r)=r ) -H, 4 (r)-ry) } = 0

turns out to be identical to Fhe requirement (70).
Hence, as sketched on the figure, the element behaves -
as if made of three parts articulated at the barycenter.‘
The situation is exactly similar to that of the pure
equilibrium membrane element of same degree. In that case
however, the rotation of the element as a whole about its
barycenter is a rigid body mode on its own right and the
relative rotations of the parts only represent two mecha-
'nisms.‘Here this globél rotation is also a mechanism as it

‘Tepresents an energyless torsion of the ring.
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The interpretation of the mechanisms yields at the same

time the answer to the problem of their inhibition by the

composite element technique -

Figure 3

Locking of mechanisms by composite element technique.

If we really discretize rotational equilibriumiby restric-

ting the rotation field to one of the terms w, Or w,T,

necessary to prevent the zero energy state, the ele;ent
will present a single mechanism.

In the case of w=w only the‘average value of expression
(69) must vanish. '

The cofrespondingvrequirement follows by taking the arith-
metic mean of the 3 equations of type (70) and is reinter-
preted as a rigid body rotation of the meridian section

about the barycenter; this represents a pure twisting me-

chanism of the ring. It is inhibited as soon as we assemble’

two elements with barycenters of different z coordinate.

"HIGHER ORDER APPROXIMATIONS, THE LINEAR HOOP STRESS

MODEL

The stress functions are of higher degree; complete

cubics (in barycentric coordinates)

3 3. .3
= L + L + L

| 2 2 L2 L2 2L

+ 01 L1k, * 4y Lok + 4y, 2L3+¢32 3Lp*té5 L3l e, 5L

* b3l oty

2
1t
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w - q’l Li + o o 0

for ¢ and ¢y , complete quadrﬁtic for'A

A o= aLZean2er L2

1120, 33+2,)\ L. L,+2Ax,,L L _+2)

12-112* 2223020 31831

this corresponds in cartesian coordinates to

Pl

A= Yo ¥ YTt vzt 73r2-+ 274rz + yszz

and the hoop stress

- - 09X _
o 5z (vy + 2v,r + 2y52)

(]

can have a linear distribution. The coefficients (Ygrvy2Y3)
are in fact improductive and may be cancelled at will.

The number of active stress parameters is thus, discounting
‘one improductive in ¢ , onme in y , and three in A , n(s)=21.
The parabo;ic distributions of re_ and rt, require a total
of 6 generalized loads per side, a total of n(g) = 18.

Let us now make a count of the independent self-stressings.

The abéence of loads requires that at the boundary
d¢ = O - and dw.+ rdx = 0 .

The first condition is equivalent to ¢ = O, by adjustement
of the improductive additive constant, and is satisfies by
the last term
-/. . .
¢ = 913 Ly Ly Iy ' : : <

that represents a self-stressing of the axial traction
"~ loads t, alone. For the self-stressings between the radial
traction loads, it is preferable, for reasons of symmetry,
to treat y and A together and revert to ro. and T, . '

-Those are quadratic polynomials, and we can describe them

- as
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2 .2 .2
rTpr T dilpteglyteglyt2e kg byttt byl

' 2 . L
o, BIL *8, +‘33"3‘”2‘512"11‘2‘”2‘3231‘21“3‘”2'5‘311‘3"1

Along the boundary L, = 0 we must have

rT dr = r o_ dz
zZr . T

12420 ,) (rdL +x,dL,) = (8 L2481 2+2s

2 12 1 1 72 )

(o) 1] e 1241k

(zldL1+zzdL2)

As dL1 - - sz'we obtain, equating the coefficients oeri,
2 .

L, and L L,

al(rlfrz) = 81(21‘22)
a,(ry=ry)) = B,(z,72,)

ay (ry=ry) = By,(2,-2))

Proceeding in the same manner for the two other sides,

we find that we must have

oy = a, = agy = 0 B1 = 82 = 53 = 0

but @, = 03(zl—z2) . 812 = 03(r1-r2)

o © ‘ T .
o3 = 93(zp723) - Byg = 0y (myTT3) 075050,
a3 =.02(z3-z1) : 831 = 02(r3-r1) arbitrary

We thus find 3 self-stressing states, each proportional

to a o.
i
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i
!
|

T, = 93027200 Lo%o, (2ymzy)L)Lavo, (2472, ) L,L,

TOp = og(m Ty Lytoy (ryrgd Lyl (rymr) ) Lgly
From this it is easy to compute the hoop stress distribution

Oy = ol(Lz-L3) + 02(L3-L1) + 03(L1-L2)

whose average value is zero in accordance with condition
(61).

From the result n(x) = 4 we deduce that, again,
n(r). = n(g) + n(x) - n(s) = 18 + 4 - 21 = 1

80 that equation (58) has, again, only one solution,

the axial rigid body mode. The mechanisms will be the
solutions, if they exist, of equation (64). By the same
argument as before, a matrix R with linearly independent
columns is found by the choice of a complete quadratic

for the rotation (one degree less than the stress functions

¢ and y) :

w = w1L2+m L2+y L2+2w L,L. +2w,.L L _+2q (74)

1 W2t ealgtew ol byt 2ugslolyt2ug Lyl
and the weak enforcement of rotational equilibrium of
a slice is equivalent to rigorous enforcement (pure.
equilibrium model) if we keeb the 6 parameters. The
existence condition for solutions of (64) will be, as
before, ' o
-

+ y4rdz = 0
zZr 9z

xTRh = IJ w (rzr-trz)rdrdz = JI w(rt
(75)

where rT, . is replaced by (72) and ¢ by (71), the result

holding for arbitrary self-stressing intensities (01,02,

O319123)
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To reach conclusions, the bilinear form is presented

in the reduced format
yT M h with yT = (g,(z,-2 )A' o,(z,-z.)A 0,(z.-2z,)A ¢ )
1*“2 "3 2'°3 71 371 "2 *1237

T
h™ = (uy wy w3 w3 w3 wy)
'The integrations required to obtain the -matrix M were performed

is barycentric'coordinates, using the HOLAND-BELL formulas

m.n _p o minlp!
JJ Ll L2 L3 Qr dz (m+n+p+2)! ZA
.
1 3 3 4. 2 2
1 3 1 3 2 4 2
M= '
180
3 3 1 2 2 4
(rymry) | (rymrg) | (rpmry) | (rpmrg) | (rymry) | (g 7ry)

Mechanisms will be present for a choice of h such that

Mh=0 = yT Mh=20 for any y .

The rank of the matrix is 3 and there will Be 3 independent
solutions yielding mechanisms. By simple iQ§ﬁection it is
found that ' o

. ‘ , .
| nl = (e 8 vy o B ¥)
is a solution, provided a + B + y = 0, which gives two
independent solutions.

ni=(8 8 8 -7 -7 =7)

is a third solution, independent of the others.
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However when the rotation field is reduced to its linear

|
| B
\ art

in which case we know that the 'zero energy state is prevented,
the existence condition for mechanisms
Pl T ~ >~
y Mh=20
for every y

WY = (5. B.

has a matrix M of maximal rank

2 4 4

ﬁ 1 4 2 4
120

. ' 4 4 2

(ry=ry) [ (ry=rg) | ry-rg)

and no mechanisms are generated; the stiffness matrix is

well behaved.
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