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_Abstract—Self-similar solutions of boundary layer equations obey non-linear differential equations,

automorphic under certain continuous transformation groups. Changes of variables suggested by
the theory of continuous LIE groups may reduce the problem to the integration of a first order
non linear differential equation, followed by quadratures, thereby greatly simplifying computer
integration.

The famous Blasius equation, governing the asymptotic laminar boundary layer flow over a
semi-infinite plate is presented as a typical example.

1. POSITION OF THE PROBLEM

The problem is that of the two-dimensional steady flow of an incompressible Newtonian
fluid of density p along a semi-infinite plate, whose trace is the [0, co] segment of the x axis.
At infinity upstream the flow has the uniform velocity (U, 0). Reduced co-ordinates

E=Rx=xUp n=yUp (1)

where v is the kinematic viscosity, combined with the use of U as the velocity unit and pU?
as the pressure unit, yield the following Navier—Stokes and volume conservation equations

ou Ou op 0*u 0%u

u%+va=—%+5?+l—9? 2

ug%+vg—z=—g—z+%+%z (3)

a0 @

An asymptotic solution (valid for sufficiently high ¢ values) is found, following PrandtI[1],
.by neglecting g—z and Z%’; in equation (2).
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The problem is then to solve the system of two equations in the unknowns (u, v) formed
by (4) and

ou ou du .
u% + U% an2 )
subject to the boundary conditions
u=0,v=0 forn =0
)

u=1 forn = oo.

Solving (2') for v and substituting into (4), furnishes a single partial differential equation for
u. For an asymptotic solution of type

u=17pB) B=ne@) (6)
it reduces to the form with separated variables (c is the separation constant)
d PP :
6% = g @) = — o

This solution is self-similar; that is the velocity profile u against the distance # to the plate
is only subject to a change of scale when the distance & to the leading edge of the plate is
altered. For such a solution (2') gives

v=¢{§/¢ + AcPg}. ®)
It follows from (7) that
p— ©)
, J@cd)
and that the function g obeys the differential equation
(8/8)" + Acg =0 (10)
with the following boundary conditions stemming from (5)
g0) =0 #0)=0 g(o)=2"" (11)

2. AUTOMORPHISM AND NORMALIZATION

Self-similar solution (6) contains two arbitrary parameters, A and the separation constant
c¢. By fixing the product Ac, the differential equation to be solved (10) is “normalized”.
Here we make the choice Ac = 2.

There remains one degree of freedom. Either we may choose ¢ independently and
normalize the function ¢(£), hence also the variable § in (6). Or we may choose A inde-
pendently, which would allow a normalization of the third of the boundary conditions (11).
Our choice will be guided here by the elegant modification of the boundary conditions
due to Toepfer[2].
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3. TRANSFER OF THE THIRD BOUNDARY CONDITION

Numerical integration of differential equation (10) could be achieved by a marching
procedure, provided all the boundary conditions were known in f = 0. This can be ob-
tained precisely, even after normalization of the differential equation, by the existence of
its remaining automorphism. :

Imagine the conditions (11) be replaced by

. 1 .
g0=0 g0=5 =0 (12)
under which the normalized differential equation 4
(8/8) +28=0 (13)
would yield an asymptotic value
m
g(0) = 7

By comparison, the previous boundary conditions (11) are now satisfied by the choice
A = 2/m, giving explicitly

2 n
u= ;g(ﬁ) B = m (15)
.
v = m(g/g + 2Bg). (16)

4. THE BLASIUS EQUATION
From (13), integrating from f = 0 and noting that g(0) = 0
g2 +2 f: 2(B)p = 0.
Hence introducing the new function

B
fB) =2 fo ¢(B)dp

a normalized form of the Blasius equation
f+ 1f=0 | Y
with normalized boundary conditions
f@=0 fO=0 jO=1 (18)
and asymptotic value j

f(c0) = m. (19)
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This equivalent mathematical form, due to Blasius[3], is directly related to his use of a

stream function Y
u=20y/on  v=—0y/o¢

to satisfy immediately the incompressibility condition (4). In terms of our self-similar

solution, there comes

2 1.
w=/(;)f(ﬂ> = V= g ® - 1)

5. FIRST REDUCTION OF THE DIFFERENTIAL EQUATION

New independent variable: mu = 2g = w.
New unknown function: 2g = dw/df = p.
As

d_p dp df _1dp

dw d,B dw pdﬁ
_p ldpldf _1d (1dp
dw? dﬂ pdpldw pdpl\pdp

equation (13), can also be written,

] ~dslpap - -
dg\pdp|
and is split into the pair
d?p dg 1
— =0; —_— =
Paw? W dw p
From the definition of w
w=0 forf=0; w=m forf = o0.

While from the definition of p
p(0) = 24(0) =1

) = 20) ( T 24(0) =0

(20)

@1

(22)

(23)

24

These results establish the initial values and the domain of integration of the differential

system. The existence of an asymptotic value of g when f — oo, leads to

g(0) =0;  hencep(m) = 0.

25)
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6. SECOND REDUCTION OF THE DIFFERENTIAL EQUATION

The first of differential equations (21) has itself an automorphism. It remains invariant
under the continuous group of transformations

p=7"1p;  w=yw (26)
Setting r = dp/dw, the extended group of infinitesimal transformations is easily found to be
ow op or

and the following first integrals are available:

2/3

wp~ P = ¢y rp” 7 =c,.
This suggests a solution of the form
d .
= —pPF@);  @=wp (@7)

which is equivalent to ¢, + F(c,) = 0.
From (27) the required computations can be conducted as follows:

d?p 2394 139F do
= TG TP g a

but
do 55 5 55,90 s 2. .
G =P T Pw = p (4 50F);
whence
dp | _, dF
ZF 1 -13p2 _ -3 2
aw? 3P F*—p dco(l + 30F)
and the first of differential equations (21) splits into
dF F*+ 3w
do 3+ 20F (28)
1 dp 3F
e = 29
p do 3 + 20F 9)
with as boundary conditions, )
forf=0, w=0 and p=1, hencea)=0} o)
forf=0, w=m and p=0, hencew = o©
d
P _0, forw=0, henceF(0)=0
dw
@31

and p(0) =1
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The differential equation (28) itself shows that F'(0) = 0 and an extremely accurate starting

solution is obtained by (alternating) power series
11 1 59 151 16.539
_o2ft 3 16 9 12 15
F=ots =202 *30% ~13.200° T92.400° ~35.132.800° )

After the numerical integration of F, we have from (29) and the boundary conditions a
quadrature for the computation of p:

3Fdw
p=oo |~ [ 550w @)

Similarly, from the second of equations (27) and the previous result, a quadrature for the
computation of the horizontal velocity

2Fdow’
=2¢ = = 213 — —f P
w g = mu = wp wexp( N 2a)’F)

Finally a second quadrature is required to obtain the co-ordinate B. Using the second of
equations (21) and the second of equations (27).

dg dﬂ dw
dco dw da)

the starting value of which is f(0) =
The asymptotic value m of w is one of the essential numerical results. As equation (33)

yields in the limit w — oo, an indeterminate product, the following transformation is
indicated

(33)

p 21 + 30F)7! (34)

w=explnw = ex J @
- p - p L COI
and (33) is modified for w > 1 into
W= ex J‘ 2Fdw f“’(ﬁ B 2Fdw’
= ©xp 31 20F) “P\), @ T3+ 20F|
After reduction of the second integral, that becomes a convergent one
3de’

w= W(l) CXI)J‘1 m (35)
1
w(l) = exp( -], 3—3%) (36)

The asymptotic behavior of F for large w is obtainable from the approximate differential
equation

dF F + 3

do 20 ' 2F
the two contributions to the derivative having the same order of magnitude if F is of the
order of \/w.
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Setting
F = /(w)H
the resulting approximate differential equation
2HdH = 3d—w
W

has the exact solution
H*=K+3ho
and an asymptotic value of F is given by
F=o/(K+3nhw)

The numerical integrations were carried out on the IBM 370-155 computer of the Uni-
versity by the junior author. They are in complete agreement with the numerical results
obtained by Smith[5]; in particular for the asymptotic value

m® = 4-53465

whence the friction coefficient m~3/2 in the tangent stress formula

v -
T=PU2\/(m)(m 3/2)

receives the already widely accepted value of 0-664.
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