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Translation Editor's Preface

This book is based on lecture notes of the late
Professor de Veubeke. The subject is presented at a level
suitable for graduate students in engineering, physics, or
mathematics. Some exposure to linear algebra, complex analysis,
variational calculus, or basic continuum mechanics would be
helpful.

The first third of the book contains the fundamentals
of the theory of elasticity. Kinematics of continuous media,
the notions of stress and equilibrium,conservation of energy,
and the elastic constitutive law are each treated first in a
nonlinear context, then specialized to the linear case.

The remainder of the book is given to three classic
applications of the theory, each supplemented by original re-
sults based on the use of complex variables. Each one of the
three topics - Saint-Venant's theory of prismatic beams,
plane deformations, and the bending of plates - is first pre-
sented and analyzed in general, then rounded out with numerous
specific and sometimes novel examples.

The following notational conventions are generally
in force, except where noted to the contrary: 1lower case
boldface letters denote vectors or triples of Cartesian co-
ordinates, upper case boldface letters denote 3 x 3 matrices,
repeated lower case Latin subscripts are summed over (1,2,3),
and non-repeated lower case Latin subscripts are assumed to
range over (1,2,3).

The translation editor would like to express his sin-

cere appreciation to Kate MacDougall, both for her superb



vi

skill in typing the manuscript and for her cheerful approach
to the task. The figures were drawn by Mike Waldygo, whose

cooperation is also gratefully acknowledged.

D. A. Simons
Providence, Rhode Island
March 19, 1979
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Chapter 1
Kinematics of Continuous Media

1.1. Material and Spatial Coordinates

In a fixed Cartesian frame let xy denote the coordi-
nates of a material point in a configuration called a refer-
ence or initial configuration of an elastic body. (Non-
repeated Latin subscripts will be assumed to range over the
values 1, 2, 3.) Let Y; denote the coordinates of the
same point in a deformed or final configuration. The displace-
ment vector has components u; = y; - Xy

One may imagine the displacements and, therefore, the

final coordinates expressed as functions of the initial

coordinates:

u; =u(x), vy o= oxg +u(x) =y (x). | (1.1

(Lower case boldfaced letters will denote vectors, column ma-
trices, or triples of coordinates, depending on the context.)
The reference configuration is assumed to be known exactly,
and each triplet x of initial coordinates identifies a well-
determined material point. These coordinates are therefore

also called material coordinates.
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The final posiiion of a material point depends on the
deformation of the elastic body; it is not, in general, known
a priori. Moreover, it is necessary to consider the properties
of several final configurations in order to identify which
are effectively realized. A triplet y of final coordinates

therefore identifies only a point which can be occupied by

material points differing according to the configurations
analyzed; final coordinates are therefore also called spatial’
coordinates.

Material coordinates are those usually chosen as funda-
mental variables in elasticity, owing to the fact that one
studies the final configuration and its properties through
the behavior of a fixed set of material points. The necessary
integrations can be performed upon the fixed reference con-
figuration, which usually has simple geometric properties.

In fluid mechanics the material coordinates are gener-
ally called Lagrangian coordinates. In their general defini-
tion, they are formed by each triplet of constants of integra-
tion of the differential equations of the trajectories of the
particles. In a particular definition one uses the Cartesian
coordinates LI of a particle in a reference configuration;
they may be taken, for example, at a conventional state to
of evolution. This point of view thus agrees with the defini-
tion of material coordinates in elasticity.

In most problems of fluid mechanics, however, the engin-
eer is especially interested in an occurrence within boundaries
fixed in space, eventually crossed by the particles of the
fluid. This spatial configuration is fixed, while the set of

particles varies. Fluid mechanics is therefore developed
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mainly by using spatial coordinates, also called Eulerian
coordinates. Eulerian formalism considers displacements,
along with initial coordinates, as unknown functions of the

final coordinates:

u; = ui(y), X; =Y - ui(y) = xi(y). (1.2)

In using Eulerian coordinates it is difficult to for-
mulate the constitutive equations in such a manner that rela-
‘tions between stresses and deformations in elasticity can take
account of changes of orientation of the preferential direc-
tions of anisotropic media. There is no trouble with isotropic
media, for which the constitutive equations are invariant with
respect to changes in orientation of Cartesian frames. For
most fluids one is justified in assuming isotropic properties,
but such a reduction for elastic media would be too restric-
tive. The theory of elasticity will therefore be based es-
sentially on the Lagrangian point of view, as expressed by the

equations (1.1).

1.2. Neighborhood Transformations

By definition, at a regular point the field wu(x) is
differentiable. The change of neighborhood
dy. = =—— dx. = D.y. dx. 1.3
Y3 ] X5 = Dyy; dx; (1.3)
is characterized completely by the elements of the Jacobian
matrix

J = {Djyi}, (D, = v=—). (1.4)

Formula (1.3) uses, as we shall continue to do, the convention

wherein repeated subscripts are summed over (1,2,3). The for-
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mula expresses in indicial notation the matrix relation

dy = J dx (1.3")

where dy and dx here represent column matrices of Cartesian
components. The rules of matrix multiplication thus require
that in (1.4) the index i be that of the rows of J, and j
that of the columns.

The Jacobian, or determinant of the Jacobian matrix,
measures the ratio between an element of initial volume dV
and the element dQ of final volume containing the same ma-

terial points:

dQ = (det J) dv. (1.5)

Let us imagine now a continuous transformation of the initial
configuration toward the final. The value of the Jacobian,
initially unity everywhere, varies continuously along the path
of each material point. Its value cannot vanish without an-
nulling the volume of a non-empty set of material points; this
is physically impossible. The Jacobian can never change sign

and, whatever the final configuration, we see that
det J > 0. (1.6)

Among other consequences important for the measure of finite
deformations, this property assures the existence and unique-

ness, at each regular point, of the inverse neighborhood trans-

formation
dx, = 3 x, dy (3 = =2 (1.7
j mj m’ m aym * *
The easily proven relations
amijjyi = Gmi’ Djyiaixk = ij (1.8)

are the expressions in indicial notation of the inversion
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relations

. ) ] a '
Wh=9y=1, 0 s {amxj}. (1.8")

(Here Gij is Kronecker's delta: if i = j, Gij =1; if
i#i, Gij = 0.) If the displacement field (1.1) is continu-
ously differentiable on the domain occupied by the initial con-
figuration, then the relation (1.6), valid everywhere, allows
application of the theorem on implicit functions. This assures
us of the existence and uniqueness of the inverse transforma-

tion (1.2).

At a regular point the elements of the Jacobian matrix
have a geometric interpretation connected with the natural
curvilinear coordinates formed by the Cartesian planes
x; = const. of the initial configuration when they become

curved surfaces of the final configuration. Considering

vy = y;(x)ey,
the final position vector of the material point, the vectors

of the local frame of this natural system of curvilinear co-

ordinates are defined by

-4

j Djy = Djyiei.

(1.9)

Thus each column of the Jacobian matrix is formed by the

Cartesian components of one of the vectors of the local frame;

property (1.6) assures the linear independence of these vectors.
The study of properties of the Jacobian matrix is

closely related to the study of the properties of the displace-

ment gradient matrix
A= {Djui}’ (1.10)

From (1.1) we find, in fact, the equivalent formulation of a

neighborhood transformation
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(="
~<
]
(=1
el
+
[a1}
=1
n

i i i (aji + Djui)dxj, (1.11)

whence

Djyi = Gji + Djui’ or J =1+ A, (1.12)

Likewise, from the inverse neighborhood transformation

dxm = dym - du_ = (6

m - 95uy)dyy

im
we obtain

= . -1 _ . '
Bixm = Gim Bium, or J =1 X. (1.13)

For the inversion relations (1.8') we have the equivalent form

XA = AX = A - X. (1.14)

1.3. Composition of Changes of Configuration

A change of configuration is defined by assigning to
each point a displacement wu(r) in terms of its initial posi-
tion vector r. Let wu(x) be an initial change. It displaces
a material point originally at x and assigns it the new posi-
tion vector x + u(x). This becomes the original position
vector of a later displacement v(r) = v(x + u(x)). The re-

sulting displacement vector becomes
Wu,v(x) = u(x) + v(x + u(x)). (1.15)

This rule of composition may be compared with the re-
sult of reversing the order of changing configuration compo-
nents:

wv,u(x) = v(x) + u(x + v(x)). (1.16)

The composite changes (1.15) and (1.16) are generally differ-
ent, as one could verify by studying, for example, the resul-
tant of rotations about different axes. Consider now neigh-
borhood transformations cofresﬁonding to the sequence wu(x)

followed by v(r). We have
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dy; = (8;; + Dyu;) dx;

followed by

dz
m

Gim * 23V &3
resulting finally in

dz = (§

n + aivm)(sji + Djui) dxj,

im
showing that the composition corresponds to the product of the

component Jacobian matrices, taken in the appropriate order.

By expanding the product and observing that

aivmcaji + Djui) = aiVijyi = Djvm(y) = Djvm(x + ),

we obtain for the composite Jacobian matrix

Djzm = Gjm + Dj[um(x) + vm(x + u)] (1.17)

which agrees with (1.15) for the composition of displacements.
Now let the field v(x + u) be continuously differentiable

and use the theorem of finite increments

vix + u) = v(x) + uijv(g),
where

X; = x, + eiui (i not summed), 0 < 6,

< 1.
i =

Formula (1.15) becomes

"u,v(x) = u(x) + v(x) + uijv(;). (1.15")

We say that the field v(r) satisfies the conditions of geo-
metrie linearity if the nine gradients Djvm satisfy
IDij| << 1.

Then the displacements represented by the last term of (1.15')
are negligible compared with wu(x) and we have a linearized

law of superposition
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wu’v(x) = u(x) + v(x).

The same law results from inverting the order of changes of
configuration and assuming that the field u(r) satisfies
the conditions of geometric linearity.

I1f, therefore, the two displacement fields are geometri-
cally linear, their composition reduces to local superposition
and hence is independent of the order in which they are applied.

The theorem of finite increments applied to (1.17),

Djzm = Gjm + Dj[um(x) + vm(x) + urDer(x)],

requires, in order to reduce the result to

Djzm = cjm + DJ. [u (x) + va(x1,

that the hypothesis of geometric linearity be accompanied by

requirements of regularity of growth. If the terms urDrvm(;)
are negligible in comparison with um(x), the same conclusion
does not necessarily hold for the comparison of their partial

derivatives.

1.4. Measure of the State of Local Deformation. Green's and

Jaumann's Strain

In a neighborhood transformation (1.11), the square of
the distance separating two neighboring points in the final

configuration is

dyidyi = (Gmi + Dmui)(sni + Dnui) dxmdxn.

By expanding and subtracting the squaré of the initial distance

we obtain

dyidyi - dxidxi = 2¢ dxmdx (1.18)
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where

-1 =
€pn = 7(Ppu, + D u + DuDu)=e . (1.19)

The coefficients of the quadratic form (1.18) may be arranged

in a symmetric matrix

11 f12  f13
€12 €55 €53 i (1.20)
€13 €23 €33
They characterize the local deformation of the medium. If they
are all zero, in fact, the neighborhood transformation pre-
serves the distance between any two neighboring points. Then,
as will be proved in the next section, it must represent a
rotation of the neighborhood as a rigid body. Conversely, if
the transformation is a rotation and preserves the distance
between any two neighboring points, then (1.18) requires that
each €mn be zero.

The matrix (1.20), which may be expressed in terms of

the displacement gradient matrix (1.10) by the relation

T

Ty aTay = €7, (1.21)

E=%(A+A

constitutes a Lagrangian measure of the state of deformation
which will be called Green's strain.

A neighborhood transformation is a pure deformation if
its Jacobian matrix is symmetric or,.equivalently, if its

displacement gradient matrix is symmetric. Then

A=H=H

and (1.21) gives

E=H+ >H (1.22)
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for Green's strain. Clearly, to each matrix H, there corres-
ponds a unique matrix E. If the converse holds then H it-
self furnishes another exact Lagrangian measure of the state

of deformation. In Chapter 4 we will prove génerally the bi-
unique correspondence between H and E, and will call H
Jaumann's strain.* The distinction between Green's and Jaumann's
strain is important in the case of finite deformations. For

the usual case of infinitesimal deformations, the elements of

HZ are negligible in comparison with those of H and Jaumann's

strain coincides, practically, with Green's.

1.5. Rigid-Body Rotations of a Neighborhood

If the strain vanishes in the neighborhood of a material
point, then except for the translation of that point, the
neighborhood must be transformed by a rotation. The Jacobian

matrix is then orthogonal:

J = {Bij}’ BijBir = Gjro (1.23)

This is a condition necessary and sufficient for the preserva-

tion of distances in the neighborhood:

dyidyi (Bijdxj)(s. dx_ ) = B..B-: dxjdxr

irr ijtir

Gjr dxjdxr = dxrdxr.

With {Bij} = U, the relation (1.23) is equivalent to

Ty = 1,

and we get

T

det U ¢« det U (det U)z = 1.

The ambiguous sign of the determinant is settled by (1.6),

which requires

E3
Editor's note: No such proof is given.
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det U = qet{sij} = 1. ' (1.24)

We know that this additidnal property is necessary and suffici-
ent to guarantee that the orthogonal matrix U is a genuine
rotation, neither preceded nor followed by a reflection with

respect to a plane (which also preserves distances). We re-

T

call finally that, if U is a right inverse of U, then it

is also a left inverse:

wToT = 0T = wlu - nuT =0 = WTu =1,

or, using indices,

B..B (1.25)

..B . =68, .
ij mj im
The general structure of a rotation matrix appears

simply from a geometric property of the displacement field.

Figure 1.1

If w is a vector along the axis of rotation, its moment
w x m with respect to a point M 1is perpendicular to the

plane containing the axis and passing through M. The initial
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point A and the terminal point B of the moment vector are
chosen so that M is the midpoint of the segment AB. If a

and b are the position vectors of A and B, then
1 ) .
m = 7(a +b), wXxm=b - a.

The vector b can be considered as the vector a rotated
about the axis through an angle 6 which is restricted, for
the moment, to the interval 0 <6 < w. The modulus of the

displacement b - a 1is therefore

|lw x m]| =2||m]| sin ¢ tan %
where |[|m|| sin ¢ is the projection of m on the plane per-
pendicular to the axis of rotation. The modulus of the vector

product is also
llw x mil = [lwll « [Im]| sin ¢.
Comparison of these two expressions yields
Ivll = 2 tan §,

which depends only on the angle of rotation. The field of
moments of this vector is capable, therefore, of representing
the displacement field of a finite rotation, provided we
consider the moment to be applied to the mean position of each
point. The apparently singular limiting case 6 = m will be
adjusted later. Both the rotation itself and the vector pro-

duct may be expressed as matrix products:
b=Ua, b-a=Wm,

where the skew-symmetric matrix W is formed from the compon-

ents of w:
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W, w1 0
The components of w are then called strict components of W.
The elimination of m and b yields
ZW( + Va = (U- Da,

and, since a is arbitrary,

% W(I +uU) =u-1,
or after some rearrangement,
1 _ 1
(1 - Ew)u =TI +ZW (1.26)

To obtain U in terms of W we must invert the matrix

M=1- 2w (1.27)

Its characteristic equation
det(M - aI) =0
is extremely easy to develop; one finds

(l-u)3 + %(l-a)wTw = -a3 + 3a2 - a(3 + %wTw) + (1 + %wTw) = 0.

The determinant of M is equal to the constant term

1T _ 28 _ 20
1+ Y= 1 + tan 7 1/cos 7

In order to eliminate the singularity at 6 = m we multiply
the characteristic equation by cosz~%. We now appeal to the
Cayley-Hamilton theorem, that a matrix always satisfies its

characteristic equation. The result is

2

cos2 %{-M3 + 3M° - (3 + tan? %)M} +1=0,.

By multiplying by M-l, using (1.27), and regrouping, we obtain
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w1 Jw c652%+%w2 cos? 2.
Now we can find the rotation matrix:
u=M'1(1-%w+w)=1+M'1w
=1+ W+ %wz cos2 % + %wz cos %.

To simplify, we observe that

w2 = -wTwI + wa = -4 tan2 %I + wa‘
and that
Ww = 0,
The result is
W3 = -4 tan2 % w

and, after substitution and regrouping,

U=1H+W cos2 % + %wz cos2 %.

A final modification will yield a formula with an arbitrary

angle of rotation. With

the skew matrix N has for components the direction cosines
of a unit vector along the axis of rotation. We arrive at the

formulas

Us=14+sin® N+ (1 - cos 8)NZ. (1.29)
and

N2 = -1 + nnT, nTn =1, (1.30)

This is one of the possible forms of the Cayley-Klein repre-
sentation.
We have a special interest in infinitesimal rotations.

They arise from terms of the first order in the very small
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angle ©6:
U=1H+6N.

This result may be written
U=1+Q (1.31)

where Q is the skew matrix

0 -w - -of

w, = 6 n. (1.32)

about the Cartesian axes at the point under consideration.
The relation (1.31) arises because the difference bet-
ween the infinitesimal rotation and the identity is infinites-

imal; in the indicial notation we have

= 68.. + W, . |w, .| << 1. (1.33)

i7i - i3 7 fir 1%
By the conservation of squared distances,

DyyiDpys = S5p°

Now

i * 933) Oy * wgp) = Sy b0yt g ¥ w0, = S

(¢

Neglecting terms of the second order, we arrive at the condi-

tion for skew symmetry

wjm + wmj = 0. (1.34)

(1.35)
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This may be expressed by either of the formulas

--1
w. = ze

i or w = (1.36)

") -e___w_.
imn mn mn mnp p

We are using the permutation symbol emnp’ where

1, if the sequence {m,n,p} is an even permutation of {1,2,3},

=& - " " " " "
emnp 1 odd ,
0 otherwise. B

Thus emnp is antisymmetric in all its indices, and the only

non-zero values are

e = e =1

123 231 - ®312 > ©321 T €213 7 132 ©

The infinitesimal displacements caused by an infinitesi-
mal rotation about an axis through the origin correspond to a

field of moments
U= wxm,

because the vector w with components (1.32) is comparable
with the vector w, and for the moduli, ® is comparable with

2 tan %. On the other hand, one may compare m with the
position vector x of the material point at the location of
the mean position vector, from which it differs by an infinite-
simal semi-displacement. The displacement field may be for-

mulated analytically as

Uy T WXz T 03Xy,
Uy = Uz 7 01X3s
or Ug = 01Xy - WyXg,
uj = ejmnwmxn‘ (1.37)

It is analogous to the velocity field of a rotating rigid body
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in the sense that the latter obeys the same equations but with

» denoting an angular velocity.

1.6. The Kinematical Decomposition of the Jacobian Matrix

A general neighborhood transformation may be accomplished

in two steps. The first is a pure deformation

dz; = (Gij + hij) dxj’ hji = hij’

while the second is a rotation

B . =28

A = Bpidzy  Bpifpy ire det (B0 = 1.

The general transformation would then be represented by

dyp = Bpi (855 * hyy) dxy,

which raises the problem of the existence and uniqueness of

the polar decomposition

Djyﬁ = Bmi(Gij + hij)' (1.38)
The corresponding matrix form is
J = U(I + H) (1.39)

By multiplying on the left by the transposed relation
T = 1+ wyT, (1.39")

and using the fact that UTU = I, we obtain

JTJ = (I + H)Z.

By using (1.12) and simplifying,
A+AT+ATA=2H+H2.

In view of (1.21), we recover (1.22), which is thus valid not

only for a pure deformation, but for a general neighborhood
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transformation. In the polar decomposition (1.39) the matrix
H is Jaumann's strain.
On the other hand, by taking determinants in (1.39), we
find
det J = det U * det(I + H) = det(I + H).
Because of the physical requirement (1.6), Jaumann's strain

must satisfy

det(I + H) > 0. (1.40)
The rotation operator is uniquely defined, therefore, by
U= (o« WL (1.41)

Elimination of H between (1.39') and (1.41) yields the

relation UTJ = (UTJ)T = JTU’ (1.42)

expressing the symmetry of the product UTJ.

Except in genuinely exceptional cases, the polar
decomposition does not imply the existence of partial displace-
ment fields which would be associated by their gradients
with each of the partial transformations, and whose composition
would restore the global displacement field.

Now we study the case when the two neighborhood trans-
formations yielding the general transformation are infinitesi-

mal. Formula (1.38) becomes

Di¥m = (Sps * wpy) (855 + By5)
with

|wmi| << 1, Ihijl << 1.

Expanding and omitting terms of the second order yields the

infinitesimal transformation

Di¥p = Spj * Bps * 0ps (1.44)
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and, for the displacement gradient matrix,

Djum = hmj + wmj (1.45)
Since hmj is symmetric and wmj is skew, we finally have
the explicit formulas

hmj =

"n
=2

(Djum + Dmuj) jm? (1.46)

N= N

wmj (Djum - Dmuj) -mjm (1.47)

Since Jaumann's and Green's strain are identical here, it
follows from (1.46) that the infinitesimal character of the
deformations and rotations allows us to simplify (1.19) by
dropping ité nonlinear terms.

Let us rewrite (1.47) using the components of w:

- - N § 1
205 = inj%nj 7 inj%%n * 7 ®imjlnYj

Now interchange m and j in the first term and regroup:

-1
®; = 7 ®imjPnY%j (1.48)
or '
w, = 1 (D,u, - D,u,)
1 Z Y273 3720
w, = % (D,u, - Diuy) (1.49)
2 2 371 1737 :
W, = 1 (Du, - D, u,)
3 2 Y172 2717
The conditions of geometric linearity
|Djum| << 1, (1.50)

when imposed on the nine displacement gradients, render a
neighborhood transformation infinitesimal. These conditions

are entirely equivalent to the nine distinct conditions
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lejml << 1, lwil << 1. (1.51)

1.7. Geometric Interpretation of Infinitesimal Strains

Let us consider two material points, one at x, and
another with a slightly greater Xy coordinate. Thus
dyx = {dxl, 0,~0}T with dxl > 0. In the terminal configura-

tion the relative position vector d;¥ will have components
dly1 = (1 + Dlul)dxl, dlyz = Dluzdxl, d1y3 = D1u3dx1‘

It follows that for €110 (equal to h11 to first order),

dy, - dx
= - 171 1
€11 Dlu1 = ————HEI——— . (1.52)

Except for negligible terms, dlyl is the final distance bet-
ween the points. In an infinitesimal deformation, a component
of Green's (or Jaumann's) strain with two equal indices indi-
cates, therefore, a unit elongation (elongation per unit ini-
tial length) in the direction indicated by the indices.

We study now the relations between the vectors dyx,

d and a new vector dyx = {0, dxz, O}T, dx2 > 0, with image

].y

d (under the same transformation) having components

2Y
dzy1 = Dzuldxz, dzy2 = (1 + Dzuz)dxz, dzy3 = D2u3dx2.

Initially, the two relative position vectors are orthogonal.
The angle 2P between them in the final configuration can be

calculated from the scalar product
dyy - dyy =||d1yH||d2yH cos 6;,.

On the left we find
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[(1+D ul)D2 1 + D (1+D 2) + D1 3 2 3] dxldxz,
which reduces to
(Dzu + D 2)dx dx = 2e dxldx2

when products of displacement gradients are neglected. On the
right, with higher order terms neglected, the respective

moduli are dx1 and dxz, and the principal term is
cos 912 dxldxz.

The final result is

Zelz = cos 912.

The left member is small, by hypothesis, and 912 is very

close to the initial right angle. We may write

3

812 =7 - Y12}

since cos(% - le) = sin Y12 ¥ Yyz0 We have

2e (1.53)

12 - M12°
In the Green's (or Jaﬁmann's) strain matrix for an infinitesi-
mal deformation, if we double an off-diagonal element we obtain
the small decrease in the initial right angle between the in-
dexed directions; the angle of reduction is called the engineer-
ing shear strain.

A deeper study of the state of a finite or infinitesimal
deformation may be undertaken after learning that the strain
matrices E of Green or H of Jaumann contain the components,
in a given Cartesian frame, of entities known as tensors,
certain properties of which are independent of the frame

used.
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1.8. The Eulerian Viewpoint in Kinematics. Almansi's Strain

The Eulerian measure of a finite deformation may be
based, just as the Lagrangian measure, on the change in the
distances between the points of a neighborhood. Now we use the

inverse neighborhood transformation (1.7) to obtain

dxjdxj = amxjanxj dymdyn,

whence

dymdym - dxjdxj = (8 .anxj)dymdyn = Z¢mndymdyn. (1.54)

mn ame
The quadratic form now uses the final neighborhood coordinates.

The coefficients

=1 - = - -
ban = 70mn © 2n%3%n%;) T PpUy * dpup - dus0.u5 = oy (1.55)

may be arranged in a symmetric matrix F which is designated
as Almansi's strain. We thus have

- (-0 -x =x+x% - xTx = 2r. (1.56)

Almansi's strain is in a biunique relation with another, hav-
ing matrix K, corresponding to an effective polar decomposi-

tion of the inverse Jacobian matrix
I - X=V(I - K) (1.57)
where V 1is a rotation and K is symmetric. In fact
1-0T@-x=1-2F=( -k Vv - k) = (1 - K2

and the two Eulerian strain measures are related by

F=k - 22 ’ (1.58)

We observe that the order of the factors in the polar decom-
position (1.57) is a physical reversal of that used in (1.39).

We invert (1.57), recalling that this requires interchanging
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the factors:

I+ A= (I - K)'lvT.

We note that the rotation now precedes the deformation. In

fact, from
I+ A=U(l+H = [ucl+ WU

we find by comparison

T

vi=u, -0l

= u(r + Wyl (1.59)

Though not a consequence of the biunique relation between K
and Jaumann's strain H, nor of the biunique relation between
Almansi's and Green's strain, the appearance of the rotation
operator is explained easily by the orientation of the meas-
ures. Jaumann's strain, as well as Green's, is that of a local
observer whose axes suffer the material rotation, for in the
polar decomposition (1.57) the measure is taken before turning
the material. The strain K (or Almansi's strain), on the

other hand, is seen from fixed Cartesian axes.

1.9. Eulerian Measures of Rates of Deformation and Rotation

Here we study the continuous evolution of a configura-
tion depending on a supplementary parameter t, which may de-

note time. Equations (1.1) and (1.2) become

[+
L}

u; (x53t), vy = oxg o+ ou(xst) =y, (x5t), (1.1

c
]

ui(y;t), X, =Yy. - ui(yjt)

i i xi(y;t). (1.2")

Finite increments may be considered as a succession of infinite-
simal increments, or as an integration of rates of change.

In the Eulerian viewpoint, the velocities of displaced particles
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are considered as functions of the spatial coordinates. The
velocities result, however, from differentiating with respect
to time, with the material coordinates fixed. We denote the
latter operation by Dt and refer to it as the material time

derivative. Then the components of velocity are given by
Dtyi(x;t) = Dtui(x;t) = vi(x,t). (1.60)

To get the Eulerian representation vi(y;t) for the velocity
field we should carry out in (1.60) the change of variables
(1.2").

When any quantity f(y;t) 1is represented in spatial
coordinates, its local time derivative, with spatial coordinates

fixed, will be denoted by 3_. These two types of time deriva-

t
tives are related by
Df=3f+2E Dy =0 f4+v.0.f.  (1.61)
t t 3Y; tYi t i%ite :

In the neighborhood of a particle at y at time t,
the velocity field consists of the velocity v of the particle

and an increment
dvi = ajvidyj. (1.62)

It will be helpful to décompose this field into two parts,

dvi = (nij + eij)dyj, (1.63)
where
=ln.v, - = -
Qij = 2(ajvi aivj) nji (1.64)
is the skew part of ajvi, and
6.. = 2(3,v, +3.v.) = 0,. (1.65)
ij 27574 ij ji

is the symmetric part.
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We now calculate the rate of growth of the squared dis-
tance between the particle and another chosen arbitrarily in

the neighborhood:
D {dy;dy;} = 2dy;D dy; = 2dy;d(D.y;) = 2dy;dv;.  (1.66)

Because of skewness,

Qij dyidyj =0,

and substitution of (1.63) in (1.66) yields
Dt{dyidyi} = zeij dyidyj.

By analogy with (1.54) we consider the elements (1.65)
of the symmetric matrix @ as Eulerian measures of the defor-
mation rate of the neighborhood. With the skew part we as-

sociate the vector with components
= -1 =1
Q = 7 e N T 7 € L:9.V.. (1.67)

The part of dvi given by

Qijdyj = eimjﬁmdyj (1.68)

expresses the velocity field of the neighborhood rotating as

a rigid body. This decomposition, due to Helmholtz, expresses
the velocity field in the neighborhood of a particle as a
translation with the velocity of the particle, a rigid rotation
about the particle with angular velocity vector % rot v
(called the vorticity vector), and a remainder which represents
the deformation rate by a symmetric matrix with elements given
by (1.65).

If we adopt the configuration at time t as the initial

configuration, we may identify aj with Dj‘ If also we
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adopt the configuration at time t + dt as the final con-
figuration, we recover the results (1.45), (1.46), and (1.47)
previously established for an infinitesimal change of con-
figuration. It is enough to identify u; with vidt, hmj
with emjdt, and wmj with Qmjdt.

We see again the complete equivalence of the Lagrangian

and Eulerian formulations of the kinematics of infinitesimal

deformations and rotations.

1.10. Temporal Variation of the Polar Decomposition of

the Jacobian Matrix

It is natural to ask how the Helmholtz decomposition
may be related to the temporal variation of the decomposition

of the Jacobian. By applying Dt to (1.38) we obtain

8 .D.h... (1.69)

D D.ym = D.D,y = D.v = ( h )D niltPi;

tj jTt'm jm t"mi

I1f we multiply (1.38) by er, there follows

BarD3Vm = Bmefmi (855 * Byj) = 8p3(855 + Byj) = &y * Bpyy

and if we multiply this by 8ij, we obtain

[} = = .(6_. + h_.).
B y_ =8 B8 3pr( rj )

mr p JDJ m mr- pm pr Tj

The last two formulas allow the replacement, with appropriate

adjustments of indices, of the values of 6.. + h,. and B8 .
ij ij mi

in the right hand side of (1.69), which becomes

D.V = D: y B .D_B + amxp(si h )D

j n"ni "t 'mi thij’

After multiplication by 3qxj,

3qV = BqlDthl + BqXJBmXP(G hlp)Dthlj (1.70)
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This formula resembles the Helmholtz decomposition

The first term of the right hand side is skew and has the

character of a component of rotation

w =8 .D8

mq qi“t ' mi = Dt(B iBni) - BpiDeB

qi mi mi“t qi
(1.71)

= “BpiDeBgi T -qu.
The second term has a symmetric part, but the rest may not be:

= 9 x.3.xDh + 93 x.3. x h. Dh...

9 x.9. X (6. +h. )D_h.. .
( P) tij qQj mp tp] qQjmpip t 1)

qQ j‘mpip i

In fact, for the symmetric and skew parts of (1.70)

1 1
qu aqxjamxp{Dthpj + 7hithhij + fhithhip} (1.72)

- 1 -
amq = qu + Zqujamxp{hithhij hithhip}' (1.73)

From (1.73), if hij 0 at the instant studied, then the
component of real rotation will coincide with qu and the
deformation rate will be proportional to the time derivative

of Jaumann's strain. In this case

emq = Dthpq and qu = qu

if the configuration at the instant studied is chosen as the
initial configuration.
By using (1.22), we get a more suggestive form for

(1.72):

® =2 x.3 X D.e.. 1.74
nqg  °q%j°m p t%pj (1.74)

The deformation rate is proportional to the material time

derivative of Green's strain, in spite of the fact that Green's
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measure is not of Eulerian type.

We shall now show that the deformation rate may be
related, in a clearly Eulerian way, to Almansi's strain.
From the expression for Green's strain

2e.. = DjymDiym -6

ij ij

we obtain, using (1.55),

9 x.é X.€.. = § - 9.X.9 X. = 2 .
295%399%1%15 = %pq T %p%j%q%j T 2¥pq

We may now adjust (1.74) to get

Dt(aqx.a X € _.) - 3. x € _.D .9 x. .D_ o _x

] - 9 X,
mq Jmpp) mppItq) q JEPJ tmp

= - X .D 9 x. - LE_ - . .7
Dt¢mq am pepJ ¢ qu aquepJDtamxp (1.75)

Now

5 v =3 x.D.v. =293x.D.D.y =D.(3x.D.y) - D.y D.3_x,.
pVa - 2p%iP5Vq T 2p%PeD3Vq = De(®px;D5vg) - Dy¥eDydpx;

In the last member the first term vanishes because

apijqu = qu, whence, multiplying both sides by aqxr’

x 9. v = -D.y 93 x D 9 x. = -D_3 x_.
394%r%p"q i7q°*r t%p"; t%p*r

Using this type of result in (1.75) finally yields

®nq = Dt%mq * mrlq’r * $rgPn'r’ (1.76)

The right hand side represents Lie's derivative of Almansi's

strain.



Chapter 2
Statics and Virtual Work

2.1. The Concept of Stress. True Stress

In the interior of a continuous medium we isolate a
set of points which is contained, in the final configuration,
in a simply connected domain , bounded by a simple
surface 23f. Among the exterior forces affecting these
points we distinguish:

1. Those which are proportional to mass, such as
gravity or inertia;

2. Thosé arising from the action of other material
points in the medium but outside the domain Q.

The first act at a distance. The others are intermolecular,
with a radius of action so short as to affect only the parti-
cles very close to the surface 9Q. The idealization of this
situation, due to Euler and Cauchy, presents the vector sum
of the exterior forces as a volume integral for forces acting

at a distance and a surface integral for the others:

I pg dQ + I 7 dzI.
Q 3

Here p is the density of the medium, g the body force

29
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vector, and 7 the surface traction vector representing
intermolecular forces.

The Euler-Cauchy formulation has proven satisfactory
for the theoretical treatment of the classical problems of
elasticity and fluid mechanics. The addition of a surface
layér of stress-couples introduces complications which have
not been applied enough to allow serious confrontation with
experience.

The surface traction vector depends on the orientation
of the exterior normal p to the surface element dI.
Consider first surface elements with exterior normal parallel

to one of the Cartesian axes. For an exterior normal in the

~
N
w
—— e e e = > - —— —— —

N A
\/g. T.J,.l_(’ 13
\ Ti9 ) 1
| P— AN 1L — e

Figure 2.1
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direction of the first axis the Cartesian components of 7
are (111,112,113), the first index referring to the normal,
and the second to the component. Similar notations (121,122,
123) and (131,132,133) are used for surface elements with
normals parallel to the second and third axes respectively.
As the dimensions of the parallelepiped approach zero, the

array

1 Tys Ty3 (2.1)

of the components of 7 forms, by definition, the matrix of
the state of stress.

If the direction of the exterior normal is opposite to
that of an axis, the positive direction of stress on that
face is also reversed. This convention displays simply the
law of action and reaction. If a second element of volume is
applied against the shaded face in Figure 2.1, the stresses
(tll,rlz,rls) 'represent the effect of the contact by the
second on the first. The forces exerted by the first element
on the second are expressed by stresses of opposite direction,
just as the direction of the exterior normal to the second
element is opposite to that of the first. Thus a single col-
lection of algebraic values expresses the reciprocal inter-
molecular forces on the interface.

Now we consider the relation between the state of
stress and the surface traction vector for elements of arbit-
rary orientation. Figure 2.2 shows an elementary tetrahedron

located at an arbitrary interior point O, with three faces



32 _ 2. STATICS AND VIRTUAL WORK

Figure 2.2

parallel to the coordinate planes and the orientation of the
fourth specified by its exterior normal v = vie,. By the
Euler-Cauchy principle, the equilibrium of the element under

the action of the exterior forces is expressed by

ngd9+f fdz+f rdz+f rd):+I 7 dzr=0.
Q 0BC OCA OAB ABC

As the dimensions of the tetrahedron approach zero with the
orientation of the inclined face fixed, the volume integral
approaches zero more rapidly than the surface integral. Ac-
cording to the preceding definitions, the components of 7

on OBC may be written (-111,-112,-113}. In the same way,
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we have (-121’-T22"T23) on OCA and (-131,-132,-133) on
OAB. With (Tl,TZ,TS) denoting the components of 7 on

ABC, for equilibrium we require

'Tij dzi + Tj dz = 0,

where dZi is the surface element with normal opposite to
the xi-axis. Since by geometry dzi =V dZ, we obtain

Cauchy's formula

T, = V.T... (2.2)

This gives the components of surface traction explicitly in
terms of the stress and the direction cosines of the exterior
normal to the respective face. According to the law of ac-
tion and reaction, the components of surface traction change

sign with a reversal of the direction of the normal.

2.2. The Piola Stresses

The state of stress depends essentially on the distor-
tion of the molecular array an& is therefore a function of
the final configuration. In other words, this concept is
fundamentally Eulerian. The stresses which have been defined
by isolating simple geometric elements in the final configura-
tion are the true or Eulerian stresses, and are the ones used in
fluid mechanics. By contrast, in the theory of elasticity it
is helpful to use Lagrangian or material variables. The
definition of the state of stress can be modified by relating
it to the initial configuration. The elementary tetrahedron
is now located there, and the forces dFi and dF appearing
on its faces after deformation are related to initial areas

dSi and dS. Thus we define new surface tractions
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t. = lim ox: and t = 1im 3F
1 ds;+0 asi as»0 9

with dSi = nidS; here n, are the direction cosines of the
exterior normal to the face in the initial configuration. The

equilibrium equation

dfF, + dF, + dF; + dF = 0

then takes the form
nyty + not, 4 ongtg 4t o= 0
whence follows the alternate form of Cauchy's formula

tj = nitij’ (2.3)

where the tij are the Cartesian components in the xj di-
rection of the new surface tractions for the faces with ex-
terior normal initially directed along the xi-axis.

The components tij supply a hybrid representation of
the stress, because the forces occurring in the final con-
figuration are manipulated in the geometry of the initial con-
figuration. For this reason some authors call them Euler-

Lagrange stresses. They are better known as the Piola

stresses. Their matrix is

t t

11 %12 13
T={ ty; ty, tys (2.4)

t3 t3; t3s

Analysis of the geometry of surface deformations would yield
the relation between Piola's stresses and the true stresses,
but we shall not pursue this matter.

Besides the above two, other measures of the state of
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stress may be defined. For example, the Kircﬁhoff-Trefftz
stresses constitute a purely Lagrangian measure. In any prob-
l1ems involving large deformations the distinctions among the
various measures must be observed. Each has its own special
merits and disadvantages (some of which we shall demonstrate
in the sequel): the true stresses are symmetric in their in-
dices but their translational equilibrium equations take a
simple form only in spatial coordinates, the Piola stresses
satisfy translational equilibrium equations of simple form
in material coordinates but are not symmetric, and the
Kirchhoff-Trefftz stresses, due to their Lagrangian nature,
are convenient for the formulation of constitutive relations
but fail to satisfy simple equilibrium equations. When the
deformations are infinitesimal, however, all stress measures

become practically equivalent.

2.3. Translational Equilibrium Equations

The contact force dF on a surface element, as it
actually occurs in the final configuration, has been simply
expressed in the geometry of the initial configuration by

using Piola's stresses; its Cartesian components are given by

dFj = nitij ds. (2.5)

For the body forces, one uses the conservation of mass of an
element

p dQ = S av

where R is the local density of the medium in its reference
configuration. In view of (1.5), this conservation equation

is equivalent to

p det J = p_. (2.6)
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The translational equilibrium of a body of volume V, con-
tained initially in a surface 3V, is expresséd by annulling

the vector sum of the exterior forces:

.dV+J I = 0.

IV pogJ - n, ij ds 0

Application of the divergence theorem to the second term yields
Iv(pogj + Ditij)dV = 0. (z.7)

Since the volume V may be chosen arbitrarily, (2.7) yields

the translational equilibrium equations

Ditij + pogj = 0. (2.8)

Piola's stresses have the advantage of satisfying linear

translational equilibrium equations in the material coordinates.

2.4. Rotational Equilibrium Equations

The rotational equilibrium of a portion of the volume
of a continuous medium is expressed by annulling the moment
about the origin of the exterior forces acting upon it. It
is important to keep in mind that the forces are applied to
material points in their final configuration.

For an element of contact force the moment with res-

pect to the origin is

(x + u) x dF
with the mtP component

emnj(xn + un)dFj.

For the volume V the equations of rotational equilibrium are
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IV ®mnjPo (Xptuple; dV + Iav emnj (Xp*up)nstsy dS = 0.

We again apply the divergence theorem, which yields

]V emnj{po(xn+un)gj + Di[(xn+un)tij]}dv 0.

Again the volume is arbitrary, so we find

L[}
o

emnj{po(xn+un)gj * Di[(xn+un)tij]}
Using the simplification afforded by (2.8), we obtain

e .D.(xn +u) =0. (2.9)

.t.
mnj ij i n

This implies that the expression

t.. (8.

ijCin + Diun) = t. (Gij + Diuj) (2.10)

in

multiplying the permutation symbol must be symmetric in the
indices n and j. The relation is trivial for n = j.
Therefore, there are only three non-trivial equations for ro-
tational equilibrium, and they arise when j # n. In con-
trast with the translational equations, they are essentially
nonlinear, for the displacements are unknowns as well as

the stresses. In contrast with the matrices of the various
strain measures, the matrix of Piola's stresses is not sym-
metric. In Section 2.6 we shall see that it is fundamentally
conjugate to the displacement gradient matrix, which is also

nonsymmetric.
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2.5. Statics and Virtual Work

The designations '"'translational" and 'rotational equi-
librium equations' suggest that these equations could be de-
rived by analytical staties, i.e., by application to statics
of the principle of virtual work. In this section we shall
show that a form of the principle pertaining to rigid bodies
does in fact yield the equilibrium equations.

Let a virtual displacement &u be defined as any vec-
tor field satisfying the internal kinematic constraints of a
medium. Thus for a rigid medium it must represent a rigid
body motion, while for a deformable medium it need only be
differentiable. A virtual displacement may also bevcalled a

variation and regarded as'the difference
Su(x) = u(x) - u(x) (2.11)

between the actual field u and any other field u consis-
tent with the internal constraints.

If g; and tij are the components of body force and
Piola's stress, the virtual work & of the exterior forces on

a region V of a continuous medium is defined as

§ = .Su, dV + I n.t..fu, ds. 2.12
JV Po?;%Y; sy 1713703 (2.12)

For rigid bodies the principle of virtual work states
that a necessary and sufficient condition for equilibrium is
that the virtual work vanish for all virtual displacements.

The virtual displacements of rigid bodies are con-
strained to preserve distances between points. Suppose that
for a deformable solid the virtual work vanishes for all rigid
virtual displacements. By the divergence theorem applied to

(2.12),
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§ = .6u. + D.(t,.8u.)}dV = 0. 2.13
J fog8souy + 0y (e j0u 10y (2.13)

For virtual translations
§u, = dc. = const.,
] J
Disuj = 0 and (2.13) becomes
. .+ D.t..)dv = 0.
de; fv(oogJ itij)

Since the constants are arbitrary each integral vanishes, and
because the region V is arbitrary the integrands vanish
point-by-point. Thus there follow the translational equilib-
rium equations (2.8). Infinitesimal virtual rigid rotations

about the origin take the form

Guj = ejmndwm(xn + un),

where dwm are components of the rotation vector, and con-
vert (2.13) to the form

ejmndwn IV[(POgj + Ditij)(xn+un) + tij(Gin+Diun)]dV = 0.

In view of the translational equilibrium equations and the ar-

bitrariness of dmn this reduces to

IV ejmntij(ain + Diun)dV = 0.
Because V 1is arbitrary, the integrand vanishes, and there
follow the rotational equilibrium equations (2.9) and their
consequential symmetry relation (2.10).
By reversing the steps, one easily proves the converse,
so the vanishing of the virtual work for all rigid virtual

displacements is a necessary and sufficient condition for the
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differential equations of equilibrium (2.8) and (2.9) to

hold.

2.6. Commutativity of the Operators & and D_i

The operator § forms, for the same values of material
coordinates, the difference between two nearly equal fields
of intensive quantities. Such differences may be called
material or Lagrangian variations. Equations (2.11) are an
example for the displacement field. When a family of con-
figurations depends continuously upon a parameter, as for
example in equations (1.1') (cf. p. 23), an associated mater-

ial variation may be defined in the form

Guj = dt Dtuj(x,t) =dt v (2.15)

5
In this relation, if t is the time in a real evolution of
the medium, the variation Guj is a real variation. It is
clear that if 4&u(x,t) satisfies the conditions for interchang-
ing the order of partial derivatives, then

Dicuj = dt DiDtuj(x’t) = dt DtDiuj = GDiuj. (2.16)
More generally, the parameter t could represent a virtual
evolution of the medium from a final configuration characteri-
zed by the displacements uj(x,O). In this case the result
of the preceding commutativity prevails, but the virtual
variation from the final configuration is obtained by setting
t = 0 after performing the differentiations. Also, the
quantity Vj in (2.15) is a virtual veloeity. Thus it is

clear that all conclusions reached by using virtual displace-
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ments could have been based on virtual velocities.
If we now multiply (1.61) by an infinitesimal incre-

ment of the parameter t, we obtain
dt th = dt Btf + vy dt aif
which we may interpret as
§f = dt atf + Guiaif. (2.17)

This formula relates the material variation (real or virtual)
of the intensive quantity f(v,t) with its Eulerian or
spatial variation dt Btf, characterizing the perturbation of
its field at a fixed point in space. Let us compare the

spatial derivative of (2.17),
ajaf = dt ajatf + suiajaif + (aif)ajsui,

with the result of applying the operator ¢ of (2.17) to
3jf in place of f itself,

68jf = dt Btajf + Guiaiajf.

We see that, if the order of differentiation of f(y;t) may

be reversed,

2;6F = 63,f + (3,£)0,6u;. (2.18)

Thus while the operator & of material variation commutes with

the operators Di of partial differentiation with respect to

material coordinates, it does not commute with the operators

aj of differentiation with respect to the spatial coordinates.
There is commutativity, however, between local temporal

variations and spatial differentiation:
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dt Bt(ajf) = Bj(dt Btf). (2.19)

2.7. Virtual Work in a Continuous Medium

Reconsider the general expression (2.13) of virtual

work for arbitrary 6u:
§ = JV[(pogi + Ditij)éuj + tijDiGuj]dV.

This may be simplified by the equations (2.8) for transla-
tional equilibrium. With the commutativity of & and Di
it becomes
§ = I t..6a,. dv 2.20
g 5% (2.20)

where we have written

a.. = D.u. (2.21)

for the elements of the displacement gradient matrix. In
terms of Piola's stresses, the principle of virtual work for
a continuous medium is that the equality of (2.12) and (2.20)
is necessary and sufficient for equilibrium.

The integrand of (2.20) is the density of virtual work,
whose value is here referred to volume in fhe initial configur-
ation. It is more generally represented by a scalar product
of conjugate matrices, one representing the state of stress,
the other the state of deformation.

In the present case this product is

tr(T6A) (2.22)
where neither A nor T 1is symmetric. Since the trace of a
product of two matrices is invariant under commutation of
factors as well as under transposition of the product, we

have the equivalent expressions:
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tr(T8A) = tr(8AT) = tr(TTGAT) = tr(aATTT)',

One sees from its origin that the principle of virtual
work involves

1. & kinematical condition: the compatibility of the
virtual displacement &8u and the virtual displacement gradi-
ent 6A as expressed by equation (2.21), and

2. a statical condition: the translational and rota-
tional equilibrium of stresses and body forces.
On the other hand, the principle does not invoke any particu-
lar formulation of constifutive equations relating the state
of deformation to the stress and describing the physical na-
ture of the medium (e.g., elastic solid, fluid, or more gen-
eral rheological medium); it may therefore be applied to all

continuous media.

2.8. Statics and Virtual Power for True Stresses

Our tremarks on tHe coalescence of the various defini-
tions of the state of stress, when the rotations and material
deformations are infinitesimal, prompt us to establish the
exact structure of thé equilibrium equations satisfied by the
true stresses. This will be a simple exercise in analytical
statics. It is somewhat more difficult to establish the exact
nature of the deformation measure which is conjugate, in the
sense of virtual work, to the true stresses.

As a consequence of the very definition of true stresses,
the calculations are based here on the final configuration.

The virtual work is

5 = .a.dn+[ v, T, 0u, dz
IQ PE;°Y5 aq 11303 O

or, after applying the divergence theorem,
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§ = IQ [pgjduj + ai(rijéuj)]dﬂ. (2.24)

The vanishing of virtual work for arbitrary virtual transla-

tions yields the translational equilibrium equations

pgj + airij = 0. (2.25)

They are again linear but for the use of spatial coordinates;
they are the equilibrium equations of fluid mechanics. They

allow (2.24) to be reduced to

§ = IQ rijaicuj dq. (2.26)

The rotational displacement variation (2.14) may be

rewritten

6uj = ejmn dmmgn,

leading to the very simple result

3.68u, =
i

j ejmndw § = e. . dwm.

m ni jmi

Applying this to (2.26) with & = 0 yields

f e.miti.dﬂ = 0.
Q J J

For an infinitesimal volume, this result simply expresses the

symmetry of the matrix of true stresses, i.e.,

T T Ty (2.27)

This symmetry permits an adjustment in the expression for
virtual work. We interchange the summation indices i and
j, then invoke the symmetry of the true stresses:

Tijaiﬁuj = TjiajGui = Tijajsui'
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The virtual work now takes the form
= 1
§ = IQ Tij z(aiéuj + Bj6ui)d9, (2.28)

where the multiplier of Tij is now also symmetric. To see
the relationship of this factor to the matrix (1.65) of defor-
mation rates we interpret the displacement variations in terms

of virtual velocities 6uj = Vj dt, with the result

1 -
7(3;0u; + 2 6u) = 6,5 dt. (2.29)

A first interpretation of the theorem of virtual work is sup-

plied by the equivalent expression of virtual power
P = I T..0.. dQ (2.30)
@ 1) 1]

where the deformation rates are conjugate to the true stresses
to supply the Eulerian density (per unit spatial volume) of
virtual power, a quantity which plays an important role in fluid
mechanics.

An incremental form more useful in the theory of elas-

ticity uses (2.28) in the form
§ = I T..A¢, . dQ : (2.31)
Q

where, using (2.29), one introduces a Lie variation of Almansi's

strain

Bojs = 8655 + 65,0580 + ¢ 50 6u. (2.32)

Like Lie's temporal derivative, this cperator is perfectly
Eulerian and allows Almansi's strain to be regarded as conju-
gate to the true stress. The basic reason for choosing Lie's

variation concerns the idea of an objective differential
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operator, which arises in connection with spatial coordinates.
While waiting to clarify that idea until Chapter 4, we may
say that it is justified by the need to calculate rates of
growth which are not distorted by a local relatiﬁe rotation

between matter and the frame of the observer.

2.9. Statics and Virtual Work in Infinitesimal Changes of

Configuration

The hypothesis lDiujl << 1 which characterizes in-
finitesimal changes of configuration allows (2.10) to be sim-

plified as

thi = i (2.33)

and shows Piola's stresses to be symmetric in the first ap-
proximation, a natural result since in this instance they
should also approximate the true stresses. We notice that
(2.33) results directly from neglecting the displacement u
compared with x in calculating the moments of forces.
This indicates an essential result of the accepted approxima-
tion: the equilibrium of the medium and each of its parts is
related to the reference configuration instead of the final
configuration. We have seen that the same hypothesis of geo-
metric linearization allows the strain to be measured by the
linearized or infinitesimal strains

' €55 " %(Diuj + Dyuy). (2.34)
The combination of (2.33) and (2.34) allows the expression

(2.20) for virtual work to take the form

§ = t..8e.. dv. 2.35
JV 1) elJ v ( )

*
Editor's note: The idea is not discussed any further.
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Under the hypothesis of geometric linearity, the linearized
strain is conjugate to any of the stress measures, all of which

become equivalent and symmetric.



Chapter 3
Conservation of Energy

3.1. Constitutive Equations for Piola's Stresses

In material coordinates, as we have seen, the density
of work done by external forces in an infinitesimal change of
configuration may be expressed by

pogjc‘SuJ. + Di(tijGUj).

We assume that these changes occur at negligible velocities
so as to ignore kinetic energy, and at uniform and constant
temperature, with the necessary heat flux having sufficient
time to occur. We thus require the existence of a local
thermodynamic equilibrium, and equate the density of work by

exterior forces to the change in an energy density W:

W = pogjﬁuj + Di(tijcuj), (3.1)

W is called the strain energy density; from the thermodynami-
cal point of view it is a free energy.

If on the other hand the changes occur so rapidly that
the heat exchange between particles has no time to occur,
the local thermodynamic equilibrium calls into play the den-
sity U of internal energy, and the energy balance should

" 48
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also include changes in kinetic energy:

povjavj = -8U + pogjauj + Di(tijsuj),

. = D_u..
Vi T PtY

This equation agrees with the principle of rational mechanics
according to which the kinetic energy of a collection of
particles is the sum of the work done by external as well as
internal forces (-68U). It forms the foundation of elasto-
dynamics.

Finally, the consideration of thermal exchanges during
a global disturbance is the object of thermoelasticity.

We develop here only the consequences of the equation
(3.1) of elastostatics. It contains virtually all the earlier
developments concerning Piola's stresses, for its right hand
side is nothing but the density of virtual work, from which
analytical statics has enabled us to recover the translational
and rotational equilibrium equations (2.8) and (2.10). In
fact, the theorem of virtual work expressed by (2.20) and
(2.21) can now be transformed into a theorem of conservation

of energy by the equality

O
n

I &W av, (3.2)
\')
whence

SW = tijGaji‘

(3.3)
This equation should be interpreted as the development of an
exact differential for the strain energy density W. The
function W depends on the nine displacement gradients aij’
and Piola's stresses form its partial derivatives:
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= W
ij aaji

. (3.4
In (3.4) we have the most general form of the constitutive
equations of the theory of elasticity.

Equation (3.4) is not perfect because it'relates
stresses to displacement gradients, the latter involving rota-
tions as well as deformations. One may notice that it has
been obtained without considering the rotational equilibrium
equations. These introduce constraints responsible for a cer-

tain structure of W. Indeed, one can put equations (2.9) for

rotational equilibrium into the form

emnj (tnj * tij%ni) = O
or
W oW
e _(__+a.__)=0.
mnj Bajn ni 3aji

These are three partial differential equations which the func-
tion W must satisfy.
For m = 1 the characteristics of the partial differ-

ential equation

oW oW ow oW

—_— 4 a,. e - - Ag. =0
3a32 2i Basi 8323 3i BaZi
have the equations
da;, dayz;  dag; day; dag, day,
0 TURagg) Ay tay TR, 7D
) da11 . da22 . cla33 _aw
0 0 °

"832 333
These show that W should be a function of the first inte-
grals of the differential equations connecting the aij'
Immediate first integrals are
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1 ? a 313' ’
2 2 1, 2 2 1,.2 2
ayp * 23y, 35, * F(ag; *agy),  agg t glagg +oas),

12 ’

and
252 (1 *+ ayy) * a5, (1 + agg),
3511+ a55) + 2553,
351 (1 * 855) * agp25.

In other words, these quantities are arbitrary constants for
the differential connections of the characteristics. One

verifies that the six quantities

=1 =
eij = 2(aij + aji + amiamj) eji (3.5)

are precise combinations of these first integrals and hence,
because of their symmetry, they are also first integrals of
the characteristics of the other two partial differential equa-
tions for m =2 and m = 3.

Indeed, the expressionsl(3.5) are the only independent
first integrals common to the three systems. Because of the
definitions (2.21) and (1.19), the Eij are merely the com-
ponents of Green's strain, and we obtain the result that the
Lagrangian strain energy density W is a function of the nine

components of displacement gradient only through the six dis-

tinct elements forming the symmetric matrix of Green's strain.

3.2. The Kirchhoff-Trefftz Stresses -

The foregoing result allows the formulation of a nat-
ural energetic definition of new stresses, of a purely
Lagrangian nature, considered by Piola and Kirehhoff, of which

Trefftz has shown the importance and utility.
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For generality of indicial formulation, the function
W of the six distinct eij will be considered as a function
of the six arguments %(eij + eji), where one maintains a for-
mal distinction between eij and eji' Thus we obtain for-

mally nine partial derivatives

s.. = N (3.6)

but the symmetrization of the arguments of the function has

the consequences

CL CL
s.. S e—— = = s... (3.7)
ji Beji aeij ij

Equations (3.6) are thus considered as general con-
stitutive equations relating Green's strain to the Kirehhoff-
Trefftz etresses sij which are themselves symmetric. The
relation between these new stresses and Piola's follow di-

rectly from the chain rule:

d€. . 9€. .
qp ~ 3gw ) 32?- aalJ T %ij 331 ’
Pq 1) pq Pq
From (3.5) we obtain
Bei. 1
FZ;i = 20ip%5q * %5p%iaq * SmpliqPnj * qucmpami)’

and consequently,

).

1
t = =S + s + s .a . ¢+ . .
Pq 2( Pq qp ai®pi ¥ Siq%pi

By using the symmetry of qu, we finally‘obtain

.D.y

. (3.8
Sqi%57p:  (3-8)

t =s =s .(6

+s .a . .
Pq qp q) PJ qJ

. + D, =
PJ JuP)

It is easy to verify that this relation does satisfy the con-

ditions (2.10) for rotational equilibrium of Piola's stresses.
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By substituting (3.8) into the equivalent forms

t. D =t D
ap @’n - ‘aqn'q’p’
we obtain

.D D. .D.y D .

*aja"n"37p T %qj"37n"a’p

Exchanging the indices q and j in the right hand side
yields

y_D

D. Y .
Yn Jy n JyP

s .D =s.D
) q p Ja q
These equations are valid because of the symmetry of the
Kirchhoff-Trefftz stresses. We may thus consider equations

(3.8) as furnishing a definition of these stresses:

s = (3.9)

I_x_t s

qr P Taqp
enabling the replacement of the conditions of rotational equi-
librium by a simple symmetry. The formula (3.3) for conserva-

tion of energy thus takes the form

SW = simDmijDiuj = simDmijDiy

5
By interchanging the indices i and m and using the sym-

metry Smi = Sim’ it becomes

W = simDiyjstyj’

or
= 1 :
W = Sim T(Dmyjéniyj + DiijDmyj)
= s, 5D y.D.y.) =s. %5(2, - 6.)
im 27 m jTij im 2 im im”?
and finally
W =s. 6e. . (3.10)

im™ "im



54 : 3. CONSERVATION OF ENERGY

This formula is equivalent to the preceding definition (3.6).

Trefftz has given an elegant geometric interpretation
of the relations (3.8). We recall that the contact force on
a surface element is expressed as a function of Piola’s

stresses by

-dSnt e.
dF "q"qp®p

Substitution of (3.8) yields

= dS s .D. .
dF = d5 n.S0505Ypp

We have seen that

P5%p% = %
are the basis vectors of the system of natural curvilinear
coordinates generated by the convection of the Cartesian co-
ordinate planes of the initial configuration. By rewriting

dF as

= dS s .8.
dF "%qi%i’

one observes that the Kirchhoff-Trefftz stresses are forces

(3.11)

per unit of initial surface, but result from a decomposition
of the surface traction in the natural basis induced by the

change of configuration.

3.3. The Constitutive Equations of Geometrically Linear

Elasticity

Equation (2.35) for the virtual work in an infinitesi-
mal change of configuration, when compared with equation

(3.2) for conservation of energy, directly yields the result

W = tijaeij' (3.12)
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In this formula, eij denotes the infinitesimal strain given
by (2.34), and tij’ any one of the stress measures, which,
under the hypothesis of geometric linearity, are all symmetric
and practically equivalent with each other. The detailed
form of the stress-strain law arising from (3.12) will be dis-

cussed at length in Chapter 5.



Chapter 4
Cartesian Tensors

4.1. Bases and Change of Basis

Let ei be the unit vectors of the Cartesian frame.

They constitute an orthonormal basis, i.e.,
e. * e. =6, (4.1)

and in this basis each vector u has the unique representa-
tion

U =ue. (4.2)

in terms of its components u,. The orthogonal projections

of the vector on the axes,

Ut oey = uje; c ey = “161j = uy, (4.3)

are identical with its components. As long as we use only
Cartesian frames we do not need the distinction between con-
travariant components, usually defined by (4.2), and covari-
ant components, usually defined ﬁy (4.3).

Let ei be another orthonormal basis. It is fully

determined with respect to the original frame by the nine

numbers

56
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T,. = e t4.4)

A .
ki~ %k 4ic
Each Toi is the cosine of the angle formed by the vectors

ei and e, . If the Tki are arranged in a matrix T so

that k is the row index and i the column index, a row of
T gives the components of ei with respect to the e, while

a column of T gives the components of e, with respect to

thg ei.
The nine Tki are clearly not independent. Since

ek = Tkiei’ (4.5)
the fact that the new frame is also orthonormal implies
. 1 = . = =
ei e Tkiszei ej TkiTli sz. (4.6)
In matrix notation, (4.6) becomes
T - 1. (4.7)
By taking determinants on each side, we obtain
T 2
det T * det T" = (det T)® = 1. (4.8)

Multiplication of (4.7) on the right by T yields, after re-
grouping,

TTIT - 1) = o.

The matrix T is nonsingular because its determinant is 1,
so we obtain

T =
TT=1 or TkiTkj Gij' (4.9)

Thus multiplication of (4.5) by Tkj yields the formula for

the inverse change of basis

¢; = Tkjei' (4.10)

This relation also follows from the interpretation already



58 4. CARTESIAN TENSORS

given for the columns of T.

4.2. Tensors

We may refer Euclidean space to any one of an infinity
of frames (coordinate systems) which we regard as fixed with
respect to each other. A physical quantit} will be called
a tensor if one may verify its independence of the frame in
use. This independence is manifested by the invariance of a
number or a set of numbers under a change of basis. We shall
consider only Cartesian frames; the invariance then character-
izes Cartesian tensors.

A physicai quantity such as the density p at a point
and for an arbitrarily chosen configuration of the continuous
medium is expressed by a single number, which does not depend
on the frame in use. Such a scalar invariant is thus, by
definition, a tensor of order zero.

A fixed direction in Euclidean space indicated by a
vector n (preferably but not necessarily of unit length) is
a tensor of order one.* In a Cartesian frame with basis e,
this direction is represented by three numbers n,, the Cart-

esian components of this vector:

n =nmn.e.. (4.11)

In another frame ei the same direction will be represented

by three other numbers ni:

n = n'ei. (4.12)

* .
Editors note: The manipulations that follow are valid for
any physical quantity characterized by a magnitude and a

direction, and are not restricted to unit vectors.
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By combining (4.5), (4.11), and (4.12), we obtain

= ! = =
n = niek n]'(Tkiei ne,.

Thus under a change of coordinates, the components of a ten-

sor of order one, or a polar vector, transform according to

n; =0T, (4.13)

Multiplication of (4.13) on the right by Tzi yields the

inverse relation

nTos = MTeiTes = Pilun = Mg

(4.14)
One method for recognizing the tensorial character of a quan-
tity represented is to verify if its components transform ac-
cording to (4.13) or (4.14) under a change of basis.

Another method, with a simple generalization to tensors
of higher order, consists in verifying the invariance of the
scalars formed with one or more arbitrary but fixed directions
in Euclidean space. Let u; be the numbers representing in

a basis e; a quantity whose character as a tensor of order

one is to be verified. Consider the linear form

where n, represent a fixed but arbitrary direction in space.

In a new basis we have

¢! = uini = uiTkini’

If the value of the form is invariant, then ¢' = ¢ and be-
cause of the arbitrary character of the chosen orientation,

we obtain by comparison
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The invariance of ¢ thus implies that the transformation
law of type (4.13) holds and consequently that the numbers

u; are the components of a tensor of order one. Conversely,
if the u; are components of a tensor of order one, then the
linear form is invariant. The interpretation of the invari-

ant linear form is clear:

is the scalar product of two polar vectors; it depends only on
the lengths of the vectors and the angle between them.
A Cartesian tensor of order two is associated with the

invariance of the bilinear form

¢ = tlJnlmJ

containing two arbitrary directions. Invariance requires that

= - l
ti505m5 7 5T Tag ™My = tre ™™

for every choice of direction; we thus have the transformation

= = '
tie = TeiTestiy 2 55 7 TiiTajties

(4.15)
The generalization to tensors of higher order should be clear.
Tensors of order zero require no special symbol.

Tensors of order one, or polar vectors, enjoy a special symbol

such as u.  As a notation for tensors of higher order, we
shall use indicial notation for the components, and not yet
adopt a special symbol for the tensor as a whole, although

one would prefer to avoid indicial notation with its intrinsic
reference to a particular frame. A natural abuse of language
is allowed in speaking of the tensor tij’ although the numbers

tij constitute in fact the representation of the tensor only with
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respect to the particular frame in use. The sitﬁation is the
same if one defines a tensor as an invariant multilinear form
6f several directions in space. The form is characterized by
its coefficients, which are the components of the tensor in a

particular frame.

4.3. Some Special Tensors
The scalar product of two polar vectors can be expres-

sed as a bilinear form in the two directions of its factors:

The coefficients of this form are Kronecker's symbols Gij'

The form being invariant, the Kronecker symbol is a Cartesian
tensor of order two. It has the remarkable property of being
isotropic, or spherical. This means that its components have
the same value in any frame. Indeed, the components Giz in

a new frame are, according to (4.15),

S 8i5 = TkiTai = ke

ke = TkiTy;

which, in view of (4.6), gives le its meaning as Kronecker's

symbol in the new indices, and renders the superscript un-

necessary. One may show that except for modulus, Gij is

the only isotropic Cartesian tensor of the second order.
We come now to the permutation symbol eijm’ defined on
page 16. Consider the trilinear form in three directions,

whose coefficients are the permutation symbols:

¢ = eijmminjpm' (4.16)

It follows from the Laplace expansion of a determinant that
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When the directions are expressed in a new frame one finds

= tntn!
¢ = €55m kit 45 Tnn K 2Pn

but, again by Laplace's formula,

eijmTkileTnm = €en det T (4.17)

where €yyn 2T€ 2s defined on page 16. In view of (4.8),
we must distinguish two cases:

First, suppose det T = +1. Then, because the left
hand side of (4.17) is the formula for the transformed compo-
of

nents considered as a tensor of order three,

i
®ken ®ijm

. \ - ‘q s .. . .
with €xan € on the trilinear form is invariant:

¢ = exan™MiPy = ¢'-
When det T = +1, the change of the Cartesian frame conserves
the sense of the frame (right-handed or left-handed), or in
other words, the new frame can be obtained from the old by a
rotation. If only such transformations are admitted, the per-
mutation symbol may be regarded as an isotropic Cartesian
tensor of order three. It is antisymmetric under the inter-
change of any two indices.

Second, suppose det T = -1. We then have a change of
frame which alters its sense: In order to obtain the new
frame from the old, we must perform a rotation and a reflec-
tion in a plane. If one does not wish to ignore this case,

then formula (4.17) for change of components may be regarded
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as defining a pseudo-tensor. One may then say that the per-
mutation symbol is an isotropic Cartesian pseudo-tensor of
order three. The associated trilinear form takes a sign con-
nected with the sense of the frame in use.

Although in principle the permutation symbol has
33 = 27 components, it is really defined, because of its
antisymmetry, by the choice of a single value. This is con-
ventionally chosen as €123 = 1 and is called the strict com-
ponent. Because the permutation symbol, considered as a
pseudo-tensor, is isotropic, its strict component is invariant
and takes the numerical value of the associated tensor of
order zero.

It is clear that one may equally well define a genuinely
antisymmetric tensor of order three, which we denote by €ijk
to distinguish it from the permutation symbol. Its strict
component €,z is set equai to +1 for a frame of conven-
tionally agreed orientation, and it is the associated tensor
of order zero which becomes a pseudo-scalar, its sign changing
with the orientation of the frame.

Among the isotropic tensors of order four, the most

important is that obtained by contraction

§

i j
eijkequ = . (4.18)

6. - 6. 6. =
ip Jq iq Jp [p q

In order to prove this extremely useful formula, one may use

the formula

6y 835 83
det Glj sz st = eijk'
s

1k Sk O3k
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Then, because the determinant of a matrix equals that of its
transpose, and the product of the determinants of two matrices

equals the determinant of their product, one has

813 %21 833\ /%1p %19 1k

eijkequ = det Glj 62j 53j 62p GZq §

S1c %2k 83/ \%3p S3q O3k

8ip Siq Six
= 6. 6.
det | &55 %59 Sk

Sxp Skq Skx

By noting that Gkk = 3 and developing the determinant by

elements of the last column, we arrive at (4.18). For q = j
it reduces to
eijkepjk = Zéip, (4.19)
and for q = j and i = p one finds
eijkeijk = Zsii = 6. . (4.20)

4.4, The Vector Product

The vector product of two vectors u and v is written
u x v, and its general definition follows from the restricted

definition for the basis vectors:

e; X ej = eijkek‘ (4.21)

From the hypotheses of associativity and distributivity, there

then follows

uXxyve uivjei x ej = eijkuivjek' (4.22)

In detail, the components are
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(u x v)1 = UV - UgV,,

(u x v)2 ugvy - ulvs,

(u x v)3 = u v, tuvy.

Because of the permutation symbol in the definition, the vec-
tor product of two polar vectors is a pseudo-vector. Indeed,

by the definition (4.21) in the new frame,

' x

€k
and, by (4.17) and (4.10),

(- '
22 eklnen

1

v L
€y " Jet T TiTa3T

1
t =
x ki 2j nm®ijm®n T det T Tkileeijmem’

ex
or, by virtue of (4.21) in the old frame,
Tkiszei x ej =det T e, X e . (4.23)

This law of pseudo-tensorial transformation for the vector
products of the basis evidently implies the same law for the

vector product of any two polar vectors.

4.5. Structure of Symmetric Cartesian Tensors of Order Two.

Principal Axes

The symmetry of a Cartesian tensor with respect to two

of its indices is an intrinsic property. Indeed, if

to. = t.. (4.24)

in a given frame, then

1 = = = = '
tre T TkiTetiy = TisTeatys = TigTeitiy = taxe
The first equality results from the law of tensorial trans-
formation, the second involves only the interchange of the in-

dices of summation (dummy indices), the third applies the
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symmetry assumed in the original frame, and the last uses
again the law of tensorial transformation.

A symmetric tensor being a physical quantity_indepen-
dent of the frame, one may ask if it is possible to associate
favored directions in space with it. The tensor may be re-
garded as an operator (viz., a linear transformation) estab-

lishing a correspondence between vectors. Let

tijuj = Vi
be the correspondence u + v referred to the frame ey We
now inquire as to the existence of a favored direction in
space, invariant under the correspondence, and a scalar T,

called an eigenvalue of the tensor, such that if u 1lies

along that direction,

Since we allow negative as well as positive real values for
T, we agree to speak of invariance of direction, while invari-
ance of orientation would require that Tt > 0).

The problem leads to seeking solutions of the algebraic
problem

tijuj =T u; or (tij - TGij)uj = 0. (4.25)

This linear homogeneous system in the unknowns us has a non-

trivial solution only if

det(tij - 18..) = 0. (4.26)

ij
This is the equation for the eigenvalues of the tensor.

They are independent of the frame because, in another frame,

t 1 -
det(tkz - erz) = det(TkiT tT,.T,.6..)

25815 7 "TkiTe;0%ij

= det Tyi det sz det(tij-raij) = det(tij - rGij).
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The first equality uses the tensorial character of tij and
6ij’ the second uses thg theorem on the determinant of a prod-
uct of matrices, and the third applies (4.8).

It is not impossible, a priori, that an eigenvalue, a
root of (4.26), might be a complex number. If this is so,
then equation (4.25) may require that the solution us, which
is defined only up to a real or complex factor, consist also

of complex numbers. If u; are the conjugate complex num-

bers, we have the equality

* = *
uitijuj ruiui. (4.27)

Being identical with its conjugate, u;ui is a real number;

the same is true of ugtijuj, for its conjugate

® ut = ® ut = ®
uitijuj ujtjiui ujtijui

may be reduced to the initial expression by first interchang-
ing the dummy indices, then observing that the symmetry (4.24)

in real numbers is equivalent to t#*. =t It then follows

i ij°
from (4.27) that =1, a quotient of 1wo reai'numbers whose
denominator vanishes only if u; =u, =ug = 0, is itself
a real number. Thus the symmetry of the tensor has the im-
portant consequence that its eigenvalues must be real. To
each real eigenvalue there corresponds, accordingly, at least
one nontrivial real solution of the algebraic system (4.25).
Being defined only up to a real factor, it identifies only a
favored direction in space, and not an orientation.

Being of the third degree, equation (4.26) for the
eigenvalues admits, in principle, three foots. We now show
that if two roots are distinct, the corresponding orientations

are orthogonal. For the first root Tyo let ugl) be an
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associated proper solution, and u§2) for T,y By defini-

tion,
1) _ (1)
tljuJ tlul
and, therefore,
(2), (1) - 1), (2)
t13u1 T94 (4.28)

Similarly,
(2) _ (2)
tijuj = T,ug
and, consequently,

(2),(1) (2),(1) _ (1 (2)

By subtracting this last relation member by member from the
equality (4.28) and observing that the symmetry (4.24) will

annul the first term of the result, we have

0 = ['r1 - Tz]u(l) (2)

Since by hypothesis the eigenvalues are distinct, we obtain

the orthogonality relation
1),(2) :
usug 0 if 2] # T,y (4.29)

If the three eigenvalues are distinct, there exists a
set of three mutually orthogonal favored directions, called
the principal axes or eigenvectors of the tensor. As they are
defined only up to a real factor, we may make them unit vec-

tors by normalizing them such that

ugm)ugm) =1,

m=1,2,3 no sum on m.

We use these three unit vectors as a new orthonormal

frame. Referred to it, the components of the eigenvectors
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associated with ri, Tys and T are respectively (1,0,0),

3
(0,1,0), and (0,0,1). In this frame the algebraic system

(4.25) has as one solution

t11 =7 t21 =0 t31 = 0. (4.30)

For the second proper solution we choose

ty12 =0 t)2 = T t3; =0
and for the third
tyg = 0 t,s =0 tyg = Tg

It is clear that the matrix representing the tensor in a
frame of principal axes is diagonal and its diagonal elements

are the eigenvalues:

7 0 0
0 T, 0 . (4.31)
0 0 Ts

We are left with degenerate cases, those corresponding
to a multiple root of the equation for eigenvalues. In the

case of a double root, let T, be the simple root. Adopt a

1
frame whose first vector is one of the normed eigenvectors
u(l) (there are clearly two possibilities corresponding to
the two directions along the first principal axis). In such
a frame (4.30) holds and, since symmetry is an intrinsic

property, the matrix representing the tensor in the new frame

will have the form

Tl 0 0
0 t2 Y3
0 t t
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with t32 = t23.

values in the new frame, the known solution T = T, may be

After developing the equation for the eigen-

factored out and the two others become roots of

_ .2 _e2
det . _— = T° - T(t22+t33) * tyotasg tas 0
23 33

(Note that the discriminant of this algebraic equation is
2 2, _ ) 2 2
(tya*t33) " - 4(tyts3-tag) = (tpytz)” + dtp5 2 0,

confirming that the other two roots are real.) The condition
for a double root, the vanishing of the discriminant, requires

simultaneously

= tg, = 0.

t 32

= t33 (= 12) and t

22 23

Then the tensor is easily seen to have a diagonal structure

T 0 0
0 T, 0
0 0 T,

and all the axes perpendicular to u(l) are principal. Such
a tensor is said to be eylindrical. For a double root, there-
fore, the algebraic system (4.25) has two linearly indepen-
dent solutions, and the general solution is an arbitrary
linear combination of them.

Finally, if the equation for the eigenvalues has a
triple root, one may always determine a solution of (4.25)
and then a principal axis. By virtue of the preceding, we

then have the structure
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1 0 0
T[] 0 1 0 or t.. =16.. (4.32)
1] 1)
0 0 1

in every frame with the first vector pointing in that direc-
tion. We have seen that Gij is an isotropic tensor and,

therefore, differing only by the modulus T, tij is itself
an isotropic or spherical tensor, with the same structure in
all Cartesian frames. For such a tensor, all directions in

space are principal.

4.6. Fundamental Invariants and the Deviator

The eigenvalues being independent of the frame, so
are the coefficients of the algebraic equation (4.6), which
are symmetric functions of the roots. These coefficients are
the fundamental invariants of the tensor. Expanding (4.26)
yields

3 2
¢(t) = -t + 6. 1" -6, T+ 6, = (1;-1)(1,-1)(T,-T) = O.
, 1 2 3 1 2 3 (4.33)
The fundamental invariants ei are expressed in terms of the

eigenvalues T; as follows:

01 T T YTt T
92 =TTy Tyt TyT (4.34)
03 = 111213.

They may also be written as functions of the components
of the tensor in an arbitrary frame. For this purpose we may
return again to the Laplace's formula; in view of (4.20) one

may write

eijk(tim-Ta' Y(t. -18

in? (%50 jn)(tkp-rékp) = emnp det(tij - 16..).

1)
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Expanding and reducing yields

—1 = =
17 emnpeinptim $imtim = %ii - (4.35)
:1 -
=3 emnpemjktnjtpk Z(tJJ kk ~ kj Jk)
(4.36)
~ .2
= thatzzttazty tty ity (tzs 31%t12)
-1 . =
by = 3 emnpeijktimtjntkp det(tij). (4.37)

Let us calculate the changes in the fundamental invari-
ants when the tensor is modified by subtracting a spherical
tensor. Thus we shall evaluate the fundamental invariants of
the modified tensor

tij - uGij.
The equation for the eigenvalues is obtained by replacing T

by t+u in (4.33) whence, after reordering according to

powers of T,

3 2 2
-7+ T (01-3u) - r(ez+3u -Zelu)

3 2 _
+ 03 - ut o+ elu - Bzu = 0.

The new second fundamental invariant

8., = o

2 = -
2 2 + 3]-' = 29111 = ¢'(u)

is maximized when u = 91/3, and this value of u annuls the
new first fundamental invariant. Moreover, for this maximum
we have

8. =9, -

2 _ gl .
2 =8 " 3% =0 (3 8 20, (4.38)

(7 ]

as one sees at once from the graphs of ¢(t) and of ¢'(1)
whose roots are known to be real. The maximum vanishes only if

the three eigenvalues are equal, when the tensor under study
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¢(t)

Y.

Figure 4.1

is already spherical.
This result is confirmed by expressing (4.38) in the

components tij' From (4.35) and (4.36) we get

a 1

6, = g(tjjtkk - Stkjtjk), (4.39)
or, after expansion,
A _al _ 2 - 2 T 2
"0 =Lt t) " (tyytyg) T+ (tg3mtyy) ] 403
' 4.40
2 2 2 .
ttyp ttast oty 20

One sees easily that if 62 vanishes then

6

=

t =t =t =0 t =t =t =

12 23 1°

The tensor % leij is, by definition, the spherical part of

the tensor tij’ and its complement
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A a ~ 1a a

ti5 = ti; - 3018550 8y = Hg = 0 0, = - gt

[y

(4.41)

is the deviatoric part, or the deviator, of the tensor tij'

The first fundamental invariant of the deviator van-
ishes. The second fundamental invariant is negative and its
vanishing implies the complete disappearance of the deviator.
One sees also that the vanishing of the first two invariants
(el,ez) is a necessary and sufficient condition that the ten-
sor tij vanish identically. This is confirmed by the follow-
ing relation, easily established using principal axes:

2 2 2y _ a2 _
(11 + T, + 13) = 01 292. (4.42)

4.7. Structure of Skew-Symmetric Cartesian Tensors of the

Second Order
'For a skew-symmetric tensor, the symmetry relation

(4.24) is replaced by that of skew-symmetry

kji = -kij. ) (4.43)
Such a tensor has only three distinct components and we may

always associate with it a pseudo-vector

I |
ky 7 emnpknp (4.44)
with components
ky = kg = kgpo
ky = kg = ki, (4.45)
kg = -kyp = kyy

Inversely

P LT (4.46)
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By using (4.17), it is easy to verify that if kij
obeys the transformation laws of a genuine tensor of the

second order then km obeys those of a pseudo-tensor

- ]
k, = T, k; det T. (4.47)

Every skew tensor of the second order has an eigen-

value which vanishes. Indeed, the equation

(kij - KGij)uj =0

is satisfied by uy = kj and k = 0, because

kijkj = 'eijmkjkm =0, (4.48)
the terms canCeiling two by two. We see that « = 0 is the
only real eigenvalue. .Consequently, the tensor has only one
principal direcfion, thdt of its associated pseudo-vector.
For reasons connected with a possible kinematic interpreta-
tion of the tensor as an operator, we call this direction the
axis of rotation of the tensor.

In a frame with first basis vector aligned with the

axis of rotation, the matrix of the tensor takes the form

0 0 0
0 0 -k1
0 ky 0

(This result could have been obtained from (4.48) and the
fact that skew-symmetry is itself an intrinsic property.)

The equation for eigenvalues, always invariant, reduces to

(k% + kX = 0.

.Along with the zero root, the tensor has a pair of conjugate

complex eigenvalues «k = tikl, (i = /-10).
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Except for a factor, the corresponding eigenvectors

may be chosen as

Each satisfies the relation

2 2 2 _
Wyt Wy wg o= 0,

and each consists of a real part and an imaginary part of unit
magnitude. The corresponding parts are mutually perpendicular.
We also note that, considered as an operator, a skew-symmetric
tensor of second order behaves like a vector product. More

precisely, if the tensor operates on a vector rj then

= emjikmrj' (4.49)

u=k = -

i 7 Xi575 7 "CijnkaT;
By using (4.22) one verifies that the result represents the
vector product of the associated pseudo-vector k with the
vector r.

We have seen that the vector product of two polar
vectors is a pseudo-vector; since one of the factors here is
itself a pseudo-vector, the product becomes again a polar
vector. This remark supplies the kinematic interpretation
underlying the designation of the principal direction of the
tensor as the axis of rotation, and of k as the pseudo-vector
of rotation. If the vector r represents the position vector
of a point in space with respect to a point on the axis of
rotation, the vector u is the moment of the pseudo-vector
k with respect to that point. The field of moments of k
so generated may be identified with the displacement field

of a solid in a finite rotation about the axis. This point



4.8. Matrix Representation of Tensor Operations 77

of view will be developed during the kinematiclanalysis of

finite displacements.

4.8. Matrix Representation of Tensor Operations

Tensors of order up to two may be represented by ma-
trices, and the clarity of the matrix formulation may be ad-
vantageous in organizing the operations required to reach
an intended goal. A scalar is still represented by its unique
invariant symbol, a vector u, by a matrix u with a single
column, and a tensor aij of order two by a square matrix A.
The orthogonal matrix T for a change of frame was introduced
in Section 4.1.

Here, as with the explicit subscript notation, the
representation pertains to a designated frame.

The laws (4.13) and (4.14) for tensor transformation

of a polar vector have the respective matrix representations

n = TTn‘ and n' = Tn.

For the transformation laws of a tensor of order two, one may
either interpret the formulas (4.15) or use the invariance of

a bilinear form

o = nTAm = n‘TTATTm' = n'TA'm'

to obtain the result

Al = TATT whence also A = TTA'T.

While Kronecker's isotropic tensor is represented by the
identity matrix I, the pseudo-tensor eijk of order three
has no matrix equivalent and should be replaced as an operator

by an appropriate formalism. One may be based, as follows, on



78 4. CARTESIAN TENSORS

the vector product.

The skew matrix formed with an associated pseudo-vector

k 1is written 0 -k k
3 2 T
[k] = k3 0 -kl = -[k]" .

-k2 k1 0

The vector product k x r is represented by
[k]lr = -[r]lk and we have [k]k = 0. (4.50)

One verifies directly the important relation

[[k]r] = rkT - krT

whence easily follows the formula for the double vector prod-
uct:

[[k]lr]u = (kTu)r - (rTu)k.
On the other hand, one verifies directly that

[k1[r] = -(kTry1 + rkT, (4.51)

As an exercise in applying these formulas let us study

again the structure of a skew tensor [k]. By writing

w=v kk

we can reduce the analysis to that of a skew tensor [k] with
unit associated pseudo-vector n, where
[k] = w[n], nTn =1,
Let u be another unit vector orthogonal to n, so
uTn = 0, uTu = 1.
By operating on this unit vector with [n] one forms

v = [n]u.
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This new vector is also perpenducular to n because, by
(4.50),

nTv = nT[n]u = 0.

It is also perpendicular to u because
uTv = uT[n]u = -uT[n]Tu = -uT[n]u = 0.

Here, the first equality is from the definition of v, the
second because [n]T = -[n], and the third from the equality
of a scalar and its transpose.

By (4.51), finally, the new vector is a unit vector:

vTv = -uT[n][n]u = ~uT(-I + nnT)u = uTu = 1.

We now perform a tensor transformation with the matrix TT
defined by its columns as

TT = (n u v).

We obtain first

k17T = w(lnln  [nlu  [n]V)

= w(0 v -u)
because
[nlv = [n] [nJu = (-1 + nnT)u = -u,
and finally
o nlv  -nly 0o 0 0
T[k]TT =l 0 uTv -uTu =w{0 O -1
0 vTv -vTu 0 1 0

This is one of the canonical forms to which the tensor is
reducible by a real orthogonal transformation.

For the unitary transformation

*
TT=1,
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*
where T the transposed conjugate of T, one obtains a
complex diagonal form:
] 0 0
* .
Tk]IT =} 0 iw 0 .
0 0 -iw



Chapter 5
The Equations of Linear Elasticity

5.1. Compatibility of Strains in a Simply Connected Domain

The geometric linearization

IDiujI << 1 (5.1)

allowed the displacement gradient tensor

D.u. = e€.. + w.. (5.2)
i7j ij ji

to be expressed as the sum of a symmetric tensor of infinite-

simal strains

=1 =
eij = T(Diuj + Djui) = eji (5.3)

and a skew tensor of infinitesimal rotations

Sl - = -
wji Z(Diuj Djui) wij' (5.4)

If the latter expression is replaced by its associated pseudo-

vector
1
w =3e .Du, 5.5
m 2z mqj qj (5.5)
the decomposition of Ehe gradient tensor becomes
Diuj = eij + eijmmm. (5.6)

81
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We shall now study the conditions which the rotation
and strain fields must satisfy in order to be compatible.

There are nine equations in (5.6) and elimination of
the three displacement components yields a set of ﬁecessary
conditions for the rotations and strains. Formal elimination

begins with the equations

. DD.u, =0 ' 5.7
®ipqp ij (5.7

for each pair (q,j), expressing simply the commutativity in

the order of calculating the second partial derivatives of

uj. Substitution from (5.6) yields

eiqupeij + eipqeijmnpwm = 0.
Now

= (P 1 = -
(j m)mem D.w § .Dw,

e. e.. Duw
ipq 1jm p m Jq q) mm

and (5.5) shows that

N =

D w =

n®m div rot u = 0; (5.8)

thus the result may be put into the form

w =e . De...
Djug = €piqPpij

(5.9)
Equations (5.9) are known as Beltrami's equations.
They express the gradient of the components of rotation in
terms of the first derivatives of the strain field. On set-
ting j = q one sees that the rofations have the property
(5.8) because of the symmetry of the strain tensor. The com-

ponents of rotation may now be eliminated among the equations

(5.9) by a repeating of the process, i.e., by noting that

erijrDj”q =0
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for each pair (m,q), so that (5.9) leads to the equations

Tqm =0, (5.10)
where

Tqm = epiqerijpDreij = qu. (5.11)

Tqm is called the tensor of incompatibility of the strains.
Its symmetry appears clearly on exchange of the dummy indices
i and j on one hand and p and r on the other. One sees
also that for any eij (not necessarily a compatible strain
tensor), the tensor defined by (5.11) satisfies the differen-

tial equations

DT =0. 5.12
q qm . (5.12)

That the incompatibility tensor should vanish at each point of
the domain is seen to be a necessary condition for the exist-
ence of univalent (single-valued) rotation and displacement
fields.

As we shall now see, this condition is also sufficient
if the domain is éimply connected. The proof uses Stokes'

theorem

f a * dx = I n * rot a dS.

S

The left member is the circulation of a vector field a around
a closed contour of the domain. On the right is the flux of
the curl of this vector across a surface of the domain bounded
by the contour. If a is a polar vector, rot a is a pseudo-
vector and the positive sense of the normal n is determined
by the convention of pointing to the right if the reference
frame is right-handed, but to the left if the frame is left-

handed. In tensor notation
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f aj dxj = IS nrermijaj ds. (5.13)

The proof begins with the observation that in order to
have a single-valued rotation vector at each point, it is

necessary that on each closed circuit we have

T .
f wq qu xJ 0 (5.14)

If the domain is simply connected, then by definition each
closed circuit may be contracted to a point without leaving
the domain. During this contraction a surface is generated
whose points all belong to the domain. Now, by using Stokes'
theorem, the necessary conditions (5.14) take an equivalent

form
IS nrerijijwq ds =0
or, from Beltrami's equations,
JS anrq ds = 0. (5.15)

If the incompatibility tensor vanishes in the entire domain
then the conditions for the existence of a univalent rotation
field are satisfied. We note that the rotation field so inte-

grated is defined only up to a rotation vector

w_ = B = constant,
q q

because such a vector satisfies Beltrami's equations with van-
ishing right hand sides. |

The second part of the proof entails constructing the
displacement field by integrating equations (5.6). Here the
conditions for a univalent field are that for every closed

circuit
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§ du, = f D.u, dx. = 0.
3 i7j i
After an application of Stokes' theorem they become

[ ne .DD, u, dS=0
g rrpipi ] -

and are satisfied exactly by the equation (5.7) from which
Beltrami's equations were derived. The displacement field so
constructed is therefore univalent, but it is defined only up

to a field

uj = aj + eiijiBm

where aj, Bm are six arbitrary constants. If the origin O
of the Cartesian frame has been chosen within the domain, then
the parameters aj and Bm may be considered as the initial
values of the displacements and rotations at O for the inte-
gration paths emanating from that point. We may therefore
state the following theorem:

In a simply connected domain, the vanishing at

ever? point, including the boundary, of the six

components.of the incompatibil%ty tensor is a

necessary and sufficient condition for the exist-

ence of univalent rotation and displacement

fields. The integration of a compatible strain

field determines the displacements only up to

an arbitrary infinitesimal rigid body displace-

‘ment.

The complexity of the compatibility conditions (5.10)
makes them difficult to use for constructing compatible strain
fields, although one derives them very easily from the dis-

placement field.
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We now state and prove two lemmas starting with partial
data on the strain field. We divide the components of the in-

compatibility tensor into two groups: the diagonal group

Typ = DyDye33 * D3Dzepp - 2 DyDgeys,
Tyz = D3D3eq; * DyDyegs - 2 DiDyegys (5.16)
Tgz = DyD1egp * DyDyeqy = 2 DyDyegys
and the off-diagonal group
Tyz = "DyDgepy *+ Dy(-Dyeyz + Dyegy + Diegy)s
T3y = -DgDyegy * Dy(-Dyegy + Dgeqy + Dyeysds (5.17)
Tyy = “DyDyeg3 * D3(-Dzepy * Dyeyg + Dyegy).

Lemma 1. An arbitrary sufficiently differenti-
able field of shear strains (2e23, 2531, Zelz)

may be completed by a field of

(€110 €320 €33)
specific elongations in such a way as to be com-
patible.

In other words, it is possible to construct a displacement

field such that

Dzu3 + D3u2 = 2523, Dsu1 + Dlu3 = 2231,

(5.18)

21 = Zeg

D,u, + D
where the right hand sides are given.
We move directly to integrating the field of displace-
ments, starting with the data on shear strains. Then we obtain

the complementary specific elongations from the equations

€11 © Dlul’ €9 = Dzuz, €z3 = D3u3, (5.19)

substitute them into the compatibility conditions
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T3 =0 Ty =0, Ty, =0,

suppress the differentiation operator common to all the terms,

and obtain separate equations for each component of the dis-

placement
D,Dgu; = -Dieyz * Dyegy * Dieqy
D3D1u2 = -D2531 + D3512 + D1523 (5.20)
D Dyug = -Dzejp + Dyepz * Dyegy:

These are also the equations yielded by eliminating two of the
displacements from equations (5.18).
Each particular solution of these equations also satis-

fies the equations

Dgl2ey, - Dyuy - Dyu,]

[}
o
-

n
o
-

D, [2e,3 - Dgu, - D,u,]

D,l2e5; - Djug - Dyuyl =0,

obtained by simply adding equations (5.20) two by two; for

this particular solution one therefore has the relations

2e15 = Dyuy + Dyu, + Epy(xy,xy),

2623 = D3u2 + Dzu3 + EZS(XZ’XS)’ (5.21)

2egy = Dyjug + Dguy *+ Eqy (X5,%),

which differs from the required equations (5.18) only by the
presence of the arbitrary functions Eij'
At the same time, equations (5.20) themselves show that

from each particular solution one may subtract
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up = Frp(xsxp) * Fyg(xy,xg)
uy = Fpy(xgexg) + Fpz(x,,x5)
ug = Fgy(x5,x;) * Fgy(xg,x,)
and it is obviously always possible to choose the arbitrary

functions Eij in such a way that

D F + D.F,, = E

2712 1°21 12
D3Fp3 * DyF3p = Epg
DyF3y * DsFyg = By
In other words, no generality is lost in making Eij =0 in

equations (5.21). They and (5.19) complete the proof of the
Lemma.”

Lemma 2. An arbitrary sufficiéntly differenti-

able field of specific elongations (511’ €y

€ may be completed by a field of shear

33)
strains so as to be compatible.

Here it is enough to integrate the displacements by
equations (5.19) and to define the complementary field by
equations (5.18).

Applied in a different context and connected with prop-
erties (5.12), these lemmas allow recovery of the following
results due to Washizu:

Theorem 1. If a strain field satisfies the com-

patibility conditions T11 =0, T22

T33 =0 in a region V and on its boundary

9V, then it is sufficient for it to satisfy the

= 0, and

complementary conditions T,, = 0, T

23 = 0, and

31

* . . .
Editor's note: The author's reasoning here is somewhat
unclear.
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le =0 on 8V in order for it to satisfy
them also'in V.
According to Lemma 1, for any sufficiently differenti-

able T T 1° and T in- V there is a vector field U

23’ °3
such that

12

Tyz = DUz * D3Uys  Tgy = DgUy + DyU5, Tyy = DU, + D,U;.

Now

2 02 o2 .
IV(T23+T31+T12)dV I {T23(D U +D U ) + T31(D U1+D1U3)
(D U +D U )}dV

= IaV[Ul(n2T21+n T 1) + U (n 2*0y T 2) + U (n1 13+n2 23)]dS

- JV[U1(D2T21+D Tgp) + Uy(D3T5,+D Ty 5)

+ Ug(D T, 4#D,T, )1V,

23)

By properties (5.12) and our hypotheses we have

D;Ta1 * DgTzp = -DyTy; = 0,
DsTgy + D1 Tyy = “DpTyp = 06
DTy * DTyg = -D3T55 = 0,

while the boundary integral also vanishes by the hypotheses.
Therefore

2 2 2 -
IV(Tzs * T3y + Typ)dV =0

and the stated result follows.

Theorem 2. If a strain field satisfies the com-

patibility conditions T,z = o, T31 = 0, and

le = 0 in a region V and on its boundary
9V, then it is sufficient for it to satisfy

the complementary conditions T11 =0, T22 =0,
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and T =0 on 9V in order for it to satisfy

33
them also in V.
The proof is similar but uses Lemma 2, which permits
writing

= DU

T,, = D.U 33 3Uz-

11 = DUy T

= DU

22 = DUy T

We define a regular strain field as one which has these
properties:

1) The strains are continuous along with their first
and second partial derivatives. This is V. Volterra's regu-
larity condition.

2) The incompatibility tensor formed with the second
derivatives vanishes at every point of the fieild.

The first requirement may occasionally be relaxed for
the continuity of the second derivatives on certain singular
surfaces.

We may summarize the principal result of this section
as follows:

In a simply connected région, every regular strain

field may be induced by a change of configuration.

We shall see in the next section that this proposition,
in order to hold in a multiply connected region, demands

further properties of the strain field.

5.2. Compatibility of Strains in a Multiply Connected Region

We consider a region homeomorphic to a torus and study
the nature of the closed curves which may be drawn in it.
We call two circuits (closed curves) reconcilable if they can

be made to coincide by a continuous deformation without leaving
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Figure 5.1

the region. We call a circuit reducible if it is reconcilable
with a single point. All reducible circuits are reconcilable
and therefore belong to an equivalence class. The region also
has irreducible circuits, such as AA'A or BB'B; they are
not reconcilable with the reducible circuits, but are recon-
cilable with each other; they form a second equivalence class.
Such a region, having two equivalence classes of closed cir-
cuits is, by definition, doubly connected.

The region shown below, homeomorphic to a double torus,
is triply connected. Its three equivalence classes are formed
by reducible closed circuits such as the circuit (1), and by
irreducible circuits of types (2) and (3). A circuit of type

(4j, drawn as a dashed line, is reconcilable with a pair of
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Figure 5.2

circuits, one each of types (2) and (3), and is not regarded
as an element of a new equivalence class.

We return to the doubly connected region and join the
two irreducible circuits AA'A and BB'B by a "bridge'" con-
sisting of two arcs AA' and BB' which will be made to ap-
proach each other in the limit. The composite arc AA'B'BA
is reducible; it has a supporting surface entirely contained
in the region. As a consequence, by applying Stokes' theorem
as in the preceding section, one may conclude that every regu-
lar strain field integrated by equations (5.9) and then (5.6),
generates a field of rotations and displacements with the

properties

I dw_ + I dw + I dw_ + I dw =0, (5.22)
IO A'B' 94 B' 1 BA 4

I du, + f du. + f du. + I du, = 0. (5.23)
AA' 3 Jprgr 3 g J BA J
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We now study the first of these propertiés of unival-
ence in the extreme case in which A'B' = AB. The first inte-
gral becomes that on an irreducible circuit passing through A
and equals the jump in the value of mq when the circuit is

traversed once in the direction indicated:

dw = f de = A,w .
JAA‘ q A 1 A'q
Similarly, the third integral becomes
dw = -§ dw = -A
IB.B q 3 g B'q’
because the irreducible circuit passing through B is tra-

versed in the opposite direction. By using (5.6) the inte-

grals on the bridge may be expressed in terms of the strains:

I dow = J D.w_ dx, I e . D.e.. dx.
A'B' 4 ‘AB Jq J AB P14 J 1) J

I do = -I D.w_ dx,. -f e . D.e.. dx.
BA 1 AB J 4 J AB P1a J 1] J

They mutually cancel because they traverse the same arc in

opposite directions. Equation (5.22) is thus equivalent with

AAwq = ABwq = Awq. (5.24)
The increment in the rotation vector is the same for all ir-
reducible circuits in the same equivalence class traversed
once in the same direction. We say that the components mq
are polydromes with eyeclic constants Amq.
In the same limiting case the property of univalence
(5.23) generates a slightly more complicated property of the

displacement field. One has again
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I du, = § du, = A, u,
AAY D A J

I du.
B'B J

But the integrals on the bridge do not disappear cohpletely.

-{ du. = -A_u..
B J J

From (5.6) there follows

.u.dx. + D.u.dx.
IA'B'Dlqux1 IBA 1uJ X;

IAB[eij + 1Jm( n +Aw )]dx - IAB(eij + 1mem)dx

= eiijmmIAB dxi,

where we have used the continuity of the strains and the cyclic
constants (5.24) for the multi-valued rotations. The final

result is

Au., = Au. +e.. Aw (x X

Bj A7j ijm “n'*iB iA)' (5.25)

In summary, we have shown that polydromy of the dis-
placement field for a regular strain may be defined by six
parameters (Awm, AAuj), with formula (5.25) then allowing the
calculation of the cyclic constants of the displacement for
a different point B.

In a multiply connected region every equivalence class
of irreducible circuits has its own system of parameters of
polydromy, We state a few consequences of that fact.

First, the necessary and sufficient conditions that
a strain field in a multiply connected region be the result
of a change of configuration are: (a) that the field be regu-
lar (i.e., compatible and sufficiently differentiable), and

(b) that the conditions for univalence

Awp = f epiqueij dxj =0, (5.26)
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qu = { (eij + eijmwm)dxi =0 (5.27)

be satisfied for at least one circuit in each irreducible
equivalence class.

The necessity follows at once from the fact that as-
sociated with every change of configuration there is a unival-
ent field of rotations and displacements. Conditions (a) and
(b) will be sufficient if they imply (5.26) and (5.27) for an
arbitrary closed circuit of the region. We saw in the preced-
ing section that the regularity of the field implies the valid-
ity of (5.26) and (5.27) for every reducible circuit. At the
same time, (5.24) shows that if condition (5.26) hoids for one
circuit then it holds for every other circuit in the same
equivalence class; in this case (5.25) reduces to

ABuj = AAuj = Auj
and the same result may be obtained for condition (5.27).

In contrast to the compatibility conditions (5.10)
which may be described as '"local', the further conditions
(5.26) and (5.27) are "global'" compatibility conditions. One
possible interpretation for the formation of regular fields
not satisfying the global compatibility conditions is supplied
by the idea of dislocation due tc Weingarten and Volterra.
Every multiply connected domain may be reduced to simple
connectivity by introducing, for each equivalence class of ir-
reducible circuits, a cut which no circuit is permitted to
cross. Figure 5.3 shows a cut capable of preventing the
closure of every irreducible circuit in the doubly connected
region previously considered. Each cut has two faces, and any

two originally irreducible circuits of the same class (e.g.,
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Figure 5.3

AA', BB'), may be bridged by a pair of segments (AB, A'B'),
one on each face of the cut, to form a reducible circuit.

Now assume the existence of a regular strain field in
the region. Even if it does not satisfy the global compati-
bility conditions it defines (up to an infinitesimal rigid .
displacement) a univalent displacement for the cut region,
which is simply connected. Thus it corresponds to a change of
configuration of this region. It is therefore possible to an-
nul all the strains by imposing on each point the negative of
its original displacement vector. One may now interpret for-
mulas (5.24) and (5.25) as the negativeé of the relative mo-
tion which would arise during this process of complete strain
relaxation. If A 1is an arbitrary reference point on the cut
and B any other point on the same cut, formula (5.25) shows
that the relative displacement between the two edges has the
form of an infinitesimal rigid body displacement. Volterra
called this a distortion but in modern terminology it is a
diglocation. '

Starting with an initially dislocated region, it is
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possible by closing up the cuts to generate a strain field
which is regular'but violates the conditions of global compati-
bility. One sees that this operation causes no singularity in
the strain field which would permit the identification of the
location of the original cuts.

A dislocation constitutes one possible process by
which an elastic medium may develop initial stresses which

cannot be fully relaxed by a change of configuration.

5.3. Principal Elongations and Fundamental Invariants of

Strain

Being symmetric, the infinitesimal strain tensor has
at each point principal directions corresponding to eigen-
values which are here the principal strains denoted by
€;° The corresponding fundamental invariants are given by

the formulas

I1 €55 T € ¢ €, + € = Diui = div u,

21 =1 -
2 = 2% jk%mnk®in®in = 7[€35%55 ~ €13%51]
(5.28)
= elez + 5263 + e3€1’

Iz det {eij} = €1€,€5.
One sees that, up to terms of the first order in displacement
gradients,

det J = e;55 (875 + €730 (8g5 *+ €35 (85 * €55)

(5.29)

=1+1

€123 7 €11 * €35 * €33 1’

and that the first fundamental invariant therefore represents
the specific increase in volume. Also, according to the

general theory, the second invariant PZ of the strain devia-

tor
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Ilsij (5.30)

m>
n
N =

. €. .
ij ij
has the value

O P S B
€15%51 = T6t(E117E) " * (eppmegg)” * (eg57€qy) .

+ 6(e§3+e§1+ei2)}. (5.31)

5.4. Principal Stresses and Fundamental Invariants of the

Stress State

We shall continue to use the notation Tij to repre-
sent the true stress, which is symmetric. However, as we have
seen, when the changes of configuration are infinitesimal
there is practically no difference between the true stress
and Piola's stress. At each point the tensor Tij has at
least one system of principal directions associated with eigen-
values which we refer to as prineipal stresses and denote by

oi. The fundamental invariants are

Jp = T34 S0 Y9t 93
J2 = 2%35k%mnk%in%5n © Z0%3iT55 T Ti3T5i)

= 0,0, * 0,05 + 050;,
J3 = det {rij} = 0,0,07.

The second fundamental invariant of the deviatoric tensor

T - 21
N LY (5.33)
will be denoted by
= —l 2 pas = —l - 2 - 2 - 2
Iy = 77 T33%50 ° 5T T * (g tag) T 4 (T557Tyy)

2 2 2
+ 6(123+131+112)}. (5.33")
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5.5. Octahedral Stresses and Strains

Recall Cauchy's formulas (2.3) which give the surface
traction vector as a function of the stress tensor and the
orientation of the normal to the surface. With the deformed
configuration as reference, and consequently Piola's stress

equivalent to true stress,

t. = n.T,.. (5.34)

Suppose now that the frame is oriented according to a system
of principal directions, so that the stress tensor has a

diagonal matrix

o 0 0
0 02 0
0 0 03 .

Then (5.34) reduces to

t. =n

1 (o}

1%1° t, = n,0,, t3 = ny0;. (5.35)

The traction normal to a face is

= _ .2 2 2
tn = niti = njo, *+ ny0, *+ nzog (5.36)

so that, on each of the eight faces of an octahedron, equally
inclined to the principal axes (ni =+ 1//3), the normal

traction has the same value, viz.,

1 _1
ton = 5(01 to,* 03) 3J1. (5.37)

One may evaluate the magnitude of the shear traction on any

inclined face by the Pythagoras' theorem; thus

2_ .2, .2, .2 _,2_ .22, 2. 22, __ .2
te =ty Yty tty - t) = nny(0;-0,)" + nyng(0,-05)

2 2 .
+ nsni(os-ol) . (5.38)
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For the faces of the octahedron this gives

2 _ _ 2 - 2 _ 2 _
(Stot) = (ol 02) + (02 03) + (03 01) = 622. (5.39)
The octahedral normal and shear stresses are thus related res-
pectively to the first invariant of the stress state and the
second invariant of its deviator.

A similar calculation may obviously be made for the

strain tensor. It leads to defining an octrahedral elongation

(e, + €, + €5) = % I (5.40)

W=

€
on

and an octahedral shear strain Yot = Zeot such that
(3e )2 = (e;-€,) *+ (e,-¢ )2 + (e4-€ )2 = -6T (5.41)
ot 1 2 273 371 2° :

In general, the principal directions of strain and
stress at the same point will coincide only accidentally. By
one possible definition, an <sotropic medium is one whose con-
stitutive equations require that the principal directions of

stress and strain always coincide.

5.6. Mohr's Circles

If the octahedral quantities illustrate certain funda-
mental invariants, Mohr's eirecles illustrate graphically the
tensorial character of symmetric, second order tensors in
three-dimensional Euclidean space.

Let us eliminate ng and n§ between the relation

(5.36), rewritten here as

2 2 2
th T ™% T % T P39
the relation (5.38) in the form
2 2 2.2 _ 22 2
ty * tp - N0y = ny0, + nzog,
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and the relation between direction cosines

The result is

t - nZU o o
n 171 2 3
2 2 2 2 2 2 _
det |ty + t; -moy gy 03| =0
2
1 - n, 1 1

or, after reduction,

2 i 02+03 2 02-03 2 2
ty + (v, - —5) )+ nj(0;-0,) (o os). (5.42)

"
—~
(3

In a (tn,tt) plane the locus of this equation depends on

the parameter n%. If we keep n2 constant, the normal is

1
confined to a cone making a constant angle with the first
principal direction (in both orientations). To expedite the

discussion it is necessary to impose the restriction
(5.43)

a situation which may always be brought about by modifying the
order of the principal directions.
The locus of (5.42) is a circle with center at

(02 ; 03’ 0
and squared radius given by the right hand side of (5.42).
For n, = 0, the normal is confined to the plane perpendicular
to the first principal direction, and we have the Mohr's
eirecle for n, = 0. From (5.43) we see that the circle aris-
ing from any nonzero value of ni has a larger radius such
as, for example, that passing through the point P in the

diagram below. Admissible points (tn,tt) are confined to
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Figure 5.4

an arc at whose ends either n, or ng vanishes before be-
coming imaginary. When ni reaches its maximum of 1, the
arc collapses to a single point tn = 01’ tt = 0.

Similar elimination of n§ and ni yields an analog-

ous equation

2 ) 03+01 2
te () - =)

03-04 2 2
= (7)) * my(0p705) (0p70)
which arises directly from (5.42) by cyclic permutation of
indices. It corresponds to a conical sweep of the normal about
the second principal direction. This time, for n% > 0 the
radius of the circle is smaller than that of Mohr's circle
for n, = 0 and the limiting point for ng =1 is (02,0).
Finally, for the conical sweep about the third princi-

pal direction,

2 o to

tt + (t_ -

2)2
n

9179, 2 2
= (—z—-) + HS(US'GI) (0'3'02)

and the radius for n§ > 0 is again larger than that of

Mohr's circle for ng = 0. The limit point for n§ =1 is
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(03,0).

The shaded area of Figure 5.4 shows which combinations
of normal and tangential traction are possible. It also shows
the existence of three relative maxima of the tangential trac-

tion, viz.,
92 © % 91 " 9 !
2 ’ 2 ’ 2 ’

the last being the absolute maximum in this case. The three

values correspond respectively to the orientations

(]
N N N

5.7. Statics and Virtual Work

The symmetry

U (5.44)
of the stress tensor is, as we have seen, the expression
(exact for true stress and approximate for Piola's stress) of
rotational equilibrium. The equations for translational equi-

librium may be written

L (t,,) = DiT;i5 = P By (5.45)

the first equality defining the differential operators Lj
which act on the stresses to balance the body forces. A
duality between statics and kinematics results from the
"adjoint" character of the differential operators Lj and
those defined by the first equality in

=1 =
Mij(um) = E(Diuj + Djui) eij’
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which operate on the displacements to yield the strains. In-
deed, in view of (5.44) the expression

=1 .
.(um) uij(tmn) =3 ‘r.j(Diuj + Djui) + ujDit..

TijMiJ i ij

may be converted to a divergence

).

D.u, + ujDiTij = Di(uj‘riJ

fi5i
By integrating over the volume, and using the divergence

theorem and Cauchy's equation for tractions

niTij = tj’

one recovers the theorem of virtual work
T,.€,. - u.g.)dv = J ‘u,n.t,., dS = I t.u. dS.
IV( 13515 7 Po%j%;) gy 3iTi sy 33
(5.46)
One may therefore say that uj and Tij are adjoint vari-

ables, and that Tij and eij are congugate variables.

5.8. Taylor's Development of the Strain Energy

Provided that stress is a function of strain, the
strain energy density is a function of the components of
strain such that in an arbitrary local increment of strain

Geij the increment of strain energy density 6&W is

W = 1..8€e.,. = T,,0¢

ij i) 11%€11 * T22Ge

22 * T38e33
(5.47)
* Tp30Yp3 * T30Y3; * Ty20Yggs

where, we recall, the shear strains are defined by

Yoz = 26530 Y31 T 2€315 Yq, = Zeq,e

Because W 1is a perfect differential, the constitutive equa-

tions are expressible in a general way as
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oW oW oW

T = T = T =
11 aell ? 22 3522 ’ 33 3e33
. (5.48)
W W W

T = — T = — T —_—
23 8Y23 ’ 31 8Y31 ’ 12 3712
If W 1is considered as a function of €110 €220 €337 and of

+ €

Y23 = €23 * €335 Y31 T €31 Y €130 Y13 T €15 Y €310

then the formal distinction thus introduced between eij and

eji for i # j allows the collection of the six formulas

(5.48) into the single one

ij aeij ’
which also automatically expresses the symmetry = =T

» i

Assume now that W is a sufficiently regulir funciion
of its arguments to allow its development in a Taylor series.
It will be sufficient to limit the development to terms of
degree at most two:

2
— W 1 24w
W= W, eijcae—i.) * Zeijepqcaei )

W, (5.50)
3
i i%pa

Wo is the value of the energy in the reference state, which
state is chosen as eij = 0. Without loss of generality W0
may be taken as zero, i.e., the reference level of energy is
taken to vanish.

The index zero attached to the partial derivatives in-

dicates that they also are evaluated at the reference level.

At the same time, because of (5.49), one may write

W _ .0
Ge ) = Tij (5.51)
1] o

These are the initial stresses which may occur in the reference
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state and whose detailed experimental evaluation presents a
difficult problem.
Finally, with W, = 0 and the notation

2

AW = cPd
( ) ) = CI? (5.52)
Beij epq o ij

we may present Taylor's series in the form

= -° 1 .pq
W= Tijeij * 3 Cijeijepq’ (5.53)
while the relations (5.49) furnish the explicit constitutive

equations

- 9 = cPa
Tij Tij Cijepq' (5.54)

The limitation of the expansion to terms of the second degree
thus corresponds to assuming a constitutive linearity between
stresses and strains.

The linear theory of elastieity is characterized by
simultaneous geometric and constitutive linearization.

One sees that (5.53) may also be written

_ .0 1 .0y _1 o
W= Tijeij + 7 eij(rij Tij). 3 eij(Tij + Tij). (5.55)

This result, a consequence of the linearity of the constitu-
tive equations, is the Interior theorem of Clapeyron. It is
usually presented in the special case in which one assumes a
natural reference state, i.e., one in which the initial
stresses vanish.

The coefficients (5.52) are called moduli of elasticity.
They form a Cartesian tensor of order four, with 34 = 81
components. Involving second partial derivatives with respect
to the components of a symmetric tensor, they inherit the

following symmetry properties:
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cPd = P9 symmetry with respect to the lower indices

ij ji
c?? = Cg? symmetry with respect to the upper indices
cPq = ¢ symmetry with respect to the vertical pairs

1) PAd  of indices. (5.56)

The number of independent components is thus reduced to 21, as
is confirmed directly by formula (5.53), where they have the
status of coefficients of a quadratic¢ form in six independent
variables.

When studying the properties of isotropy in various
elastic media we shall find it convenient to characterize the
medium by a 6 x 6 matrix of coefficients of the linear system
(5.54). If we perform the summations, then using the sym-

metries we obtain

22 33 23

ij -~ ng = Ci5%11 * Cij%22 * Cijo33 * Cyj(eg3 * €35)
* Cz}(531 tegg) t Ci§(€12 * e
so that in matrix form
T=Ce (5.57)
or ‘
[ T17 | | o1 Cii ¢ cif ci o} | r‘lf
22 c; 35 €33 53 35 ) €22
33 C%% C35 C33 33 C33 C3s €33
I B R P
T3 ;1 5 G5 R G1 Gi | e
L 12 ) | Ci% ci7 i < <y <1 Joo{E12

The matrix in (5.58) is also that of the quadratic form of the

energy density, provided we use the variables (511’ €520 €337

stb Y31’ le) .
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5.9. Infinitesimal Stability

We shall now discuss the stability of the initial
strain state eij = 0 in the possible presence of initial
stresses. We define such stability by the requirement that

the strain energy

- o 1 .pq,
U = Iv(tijeij + 3 C1J i pq)dV > 0 (5.59)

have a minimum for e€,. 0 with respect to all possible in-

i
finitesimal changes ochonfiguration for which there exists a
univalent displacement field related to the strains by
€., = 2(D,u, + D,u,). (5.60)
ij 2173 ji
The equality to zero cannot occur in (5.59) unless uy in -~
(5.60) is an infinitesimal rigid body displacement, in which
case we know that the strain field vanishes identically. We
assume that no kinematic constraint is imposed on the boundary
9V which would either modify or prohibit the existence of such
rigid displacements. Indeed, the boundary will be regarded
as entirely free.

Condition (5.59) requires that the linear part vanish
and that the quadratic part be positive definite in the vari-
able eij subject to (5.60). The vanishing of the linear
part

J (D u, + D,u.)dV = I 19 D.u, dv =0
v Tij 740iY joi vy i3 i

for every field uj with continuous first derivatives implies,

after an integration by parts,
u. dS - u.(D, T dv = 0.
IaV( i 13) IV ( i 13)

This requires that the initial stress field be self-equilibrated,
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i.e., at each interior point the initial stresses must satisfy

the translational equilibrium equations without body forces

D. t.. =0, (5.61)

n.t., = 0. (5.62)

The initial stresses of a stable initial configuration
cannot be relaxed (completely annulled) by a change of con-
figuration preserving the physical continuity of the medium.
Indeed, for that to be possible we would need to find a field

of displacements ug such that the associated strains

e =€ =Lmu s+ u?)
Pq PAa 2 "pq apr

when used in (5.54) with Tij = 0, would yield

r? = -cP4 e°

. : . 5.63
ij ij “pq (5.63)

For such a field, however, (5.59) would become

O - % IV ngegje;q av > o,

and this would be inconsistent with the positive definiteness
of the quadratic part of the energy, unless it were to vanish.
But vanishing would imply that e;q = 0 and that the initial
stresses would already vanish at the outset.

One is forced to conclude tha; a relaxation of the
initial stresses implies a dislocation of the continuous
medium. If the region is multiply connected, we have already
met dislocations of the Weingarten-Volterra type capable of

explaining the presence of fields e;q which, although regu-

lar, cannot be relaxed by a change of configuration.
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One may imagine, in a much more general way, even in
simply connected regions, fields e;q connected by (5.63)
with the initial stresses and incapable of relaxation because
they do not meet conditions (5.10) for local compatibility.
The initial stresses may thus be associated with nonvanishing
components of the incompatibility tensor and, by their relaxa-
tion, cause dislocations of a much more complex nature than

those of Weingarten-Volterra.

5.10. Hadamard's Condition for Infinitesimal Stability

In view of the symmetry properties (5.56) the second

part of the criterion of infinitesimal stability may be given

the form
1 pq 21 I pq
= C:le. . dv = = CiiD.u.D dv > 0 5.64
2 [v ij%15%pq Z )y 1371 pq & 2 (5.64)

and is a fundamental constraint imposed on the moduli of elas-
ticity of the medium. This constraint may be used easily in
homogeneous elastic media, i.e., those characterized by a
matrix of moduli which is the same at every point. If we de-
fine a stable elastic medium as one which satisfies (5.64)
for all sufficiently smooth u; the following theorem may
readily be established.
Theorem. A homogeneous elastic medium with no
kinematic boundary conditions is stable if and

only if the matrix of moduli is positive definite.

The sufficiency of the condition is obvious from (5.64). It
is also necessary because; with no kinematic condition on the

boundaries, one may use a linear displacement field
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for which the strain field

€55 © %(“ji *oayy)
is arbitrary and constant. In this instance the condition
for stability reduces to the requirement that

7 eyt [, @
be positive definite, and this clearly implies the positive
definiteness of C??.

When the medium is inhomogeneous, it is a difficult
problem to find local conditions on the matrices of the moduli
necessary and sufficient for stability. A necessary local con-
dition has been established by Hadamard for the case in which
the variation in the matrix from point to point is suffici-
ently regular. For this purpose he considers a perturbation
of displacement localized in a block near the point of inter-
est, which may without loss of generality be chosen as the
origin. The displacement has the form uj = aj¢(x) where
aj is an arbitrary constant vector and
(xi-ei)z(xg-eg)z(xg-eg)z, -e, < X
¢ (x) ={

0 otherwise

The displacement and its gradients are thus continuous on the

boundaries of the block. We write

Pq = qP
Cijajaq Si

which is a symmetric, second order Cartesian tensor; one may
therefore always regard the axes as oriented along the prin-
cipal directions of this tensor at the origin. If SE is
sufficiently regular at the origin, then as €; tend to zero

the second member of (5.64) approaches the limit
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1 2 1 2 1 2
3o @+ 3| @l ps| o?a.

where Si are the eigenvalues of SE. The integrals are ele-

mentary and extend only through the block. One finds

9
2 256 .3 (€7 €5 €3)
I (Di¢) dv = 3(5.7.9) 7
A" ei

and concludes that the expression

> 0, S, >0, S3 > 0.

Because its eigenvalues are positive, the tensor SE is
thus positive definite; equivalently, the quadratic form
S?bibp is positive definite. Finally, then, the necessary
condition for Hadamard's infinitesimal stability is that, at
-every point, the biquadratic form

C??bibpajaq (5.65)
be positive definite.

Compared with the local requirement that

CP?e

.. €
1) 1) Pq

be positive definite, which is itself sufficient, Hadamard's

(5.66)

condition is weaker. The proof of this assertion begins by
using (5.56) to reduce (5.65) to the equivalent requirement
that

Pdb.a, + b.a.)(b.a_ + b

ClJ(blaJ Jal)( Paq an)

be positive definite. In obvious matrix notation the tensor

biaj + aibj may be written T = ba + ab. Its characteristic
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equation Tc = Acv always has a solution X = 0 for a princi-
pal direction ¢ which is orthogonal simultaneously to a
and b. Since symmetric tensors T with one vanishing eigen-
value form a proper subset of the set of all symmetric tensors,
it follows that the inequalities which are imposed on the
moduli of elasticity in order to meet Hadamard's condition are
less restrictive than those assuring that their matrix be posi-
tive definite.

We have seen that Hadamard's condition is not suffici-
ent for infinitesimal stability in a homogeneous medium. The
study of the inhomogeneous cases for which it will suffice

remains to be undertaken.

§.11. Isotropy and Anisotropy

Equations (5.54), (5.61), and (5.62) allow a slight
simplification of linear elasticity: they imply that the
determination of initial stresses and of further stresses
caused by changes of configuration are separable problems.
Because the initial stresses in a stable configuration form a
self-equilibrated field, the additional stresses satisfy the
same equilibrium equations with the exterior forces as the
total stresses. The problem of determining additional stresses
is thus not altered by the hypothesis that the initial state
is the natural state, i.e., that the initial stresses vanish.
This amounts to retaining only the quadratic part of the
strain energy density, (i.e., that depending on the moduli of
elasticity), as we shall henceforth do.

The determination of the initial stresses is an ex-
tremely complex problem in the physics of materials, on the

theoretical level as well as the experimental. In the rare
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cases in which the initial stresses are regarded as known, it
is enough to add them to the additional stresses to obtain
the total stresses. A

We will now consider some special hypotheses of mat-
erial symmetry which simplify the tensor of the moduli of
elasticity. The first is <sotropy, the assumption that the
material offers no preferential direction. The strain energy
of an isotropic elastic material should be expressible as a
function of the fundamental invariants of strain in such a way
as to provide the same formulation regardless of the orienta-
tion chosen for the Cartesian frame. Since we alloﬁ only homo-
geneous quadratic forms for the strain energy density, we need
consider only two distinct combinations of fundamental invari-
ants. By starting with the homogeneous quadratic combinations
2

I1 and r,, one may write the strain energy density in terms

of two moduli K and G as

1 2 '
W= 3 K I1 - 2G PZ. (5.67)
We recall that
I. = ¢ + €

17 11 7% %2 * B33

and note that, from (5.31), one may write

1, N2 .1, 2.1, 2
2T, = 3leggmey,)" + 3leyymeg3)™ + 3leg57ey)

1,2 2 2
+70rgz * Y3 *vpp)
so that the application of formulas (5.48) yields the explicit

constitutive relations

= 4 2
T < (K + 3 G)e11 + (K z G)(e22 + € (5.68)

1 33)

for a normal stress and

T3 = 6 ¥,5 (5.69)
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for a shear stress, the other elements of the tensor being ob-
tained simply by cyclic permutation of the indices.

The last relation justifies calling G the shear
modulus. On the other hand, by forming the arithmetic mean of
the normal stresses

T11 Y T2 * T3z

% = K(el1 eyt 633) =K I1 (5.70)

and recalling the interpretation of the first invariant as
change of specific volume, one reaches the justification for
calling K the bulk modulus.

An isotropic material can thus be characterized by

these two moduli. The condition

G>0, K>0, (5.71)

is necessary and sufficient for the strain energy density to

be locally positive definite. The matrix of the moduli takes

the form
(K + 46/3 X - 26/3 K- 26/3 0 0 0)
K-26/3 X+ 4G/3 K-26/3 0 0 0
K-26/3 X-26/3 K+4G/3 0 0 0
(5.72)
0 0 0 G 0 0
0 0 0 0 G 0
| 0 0 0 0 0 G|

The alternative system of Lamé's moduli is connected

with the foregoing by
r=x-%6 =G 5.73
= -?’ H = (')
and gives the constitutive equations the simple form

L.o= .. + 2ue... 5.7
T4 AequlJ M (5.74)
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This is equivalent to defining the general moduli by

cPq = s

K . .6 + 8 §. 8 5.75
PY = a6y 58,0 + ), (5.75)

§. 6. + .

ip Jq Jp 1q

in close accord with the required symmetry properties and the
result that an isotropic fourth order tensor must be a linear
combination of the isotropic tensors § , and

$

.86, 8. 6.
1) pq° 1p Jq
iq*

Formula (5.75) gives quick insight into Hadamard's con-

8.
Jp

dition for infinitesimal stability (5.65), which reduces here
to
A(a’b)2 + 2u(ara)(b*b) >0

or again, if 6 is the angle between the two vectors,

A cosze + 2u > 0,
The latter form yields Hadamard's conditions
u>0, A+ 2u>0.

In terms of the bulk and shear moduli, they become

G>0, K> - 36, (5.77)

and these hold if and only if the diagonal terms of the matrix
(5.72) are positive. We note that Hadamard's conditions do
not rule out a negative bulk modulus, but do bound it below.
It may be shown that they coincide exactly with those for

the existence of real propagation speeds of compressional and
equivoluminal waves in the medium. This observation will be
enlarged when we see the effect of Hadamard's general condi-
tion in the elliptic character of the partial differential
equations of linear elasticity.

The system of moduli (G,K) is conceptually simplest
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for an isotropic material, and gives meaning to the decomposi-
tion of states of strain and stress into an isotropic (or
spherical) part and a deviator, for one sees easily from
(5.68) and (5.69) that the corresponding invariants are pair-

wise proportional:

- Can2
g = 3K 1, £, = 46°T,. (5.78)

Thus in an isotropic medium the mechanism of distortionless
volume change under hydrostatic stress and that of equivoluminal
distortion under the action of the stress deviator operate
independently. The principal directions of strain coincide
locally everywhere with those of stress. This is not gener-
ally true in anisotropic media.

In technical applications one rarely uses the system
of moduli (G,K) or that of Lamé. This stems from the experi-
mental determination of the moduli by applying axial tractions
to the ends of a prismatic bar. If the X axis lies along
the axis of the bar, then the only non-vanishing components
of stress is Tli = F/S, where F 1is the resultant of the

axial tractions and S is the cross-sectional area of the bar.

Therefore, by formulas (5.69) =0,

Y23 % Y31 T Y12
and by formulas (5.68)

4 2
(K + 3G)e;jy + (K- 36)(ey; * €

T11 33)

o
n

4 2 ‘
(K + zG)ey, + (K - 36) (€55 + €1q)

4 2
0 = (K+ z6)egz *+ (K - 36) (e * £p).

By subtracting the last two from each other we get

= €

€22 33

and are led to define a coefficient v by
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2
K- 36

€ =€ = -ve with v = . (5.79)
22~ "33 11 ;EE‘:‘%E;

This parameter is called Poisson's ratio; it measures the re-
duction in transversal dimensions connected experimeﬁtally
with elongation of the bar. It is positive for all known
bodies, indicating that normally 3K > 2G., Its limit as K

tends to infinity is 1/2; this is Poisson's ratio for incom-

pressible media. The formula for Typ ©an now be written
_ . - 9KG  _
T Eell with E = IK+C 2(1+v)G. (5.80)

The parameter E is called the modulus of elasticity or

Young's modulus.

Inversion of relations (5.79) and (5.80) yields

_ E - E
K = _3(1'2V), G m 9 (5.81)
allowing expression of the constitutive equations (5.68) and

(5.69) in terms of Young's modulus and Poisson's ratio. These
equations become singular in the limiting case of incompres-
sibility, where v = 1/2. On the other hand, solved for the

strains and known as Hooke's law, the equations

| .
€ = E[Tll v(t,, * 15501, €ap vove s

_ 2(1+v) } (5.82)
Y23 = —F 23 Y31 T e o

are not singular.

In an anisotropic medium the expression for the strain
energy density cannot be completely independént of the orienta-
tion of the frame. If the properties of the medium are invari-
ant with respect to certain rotations of the frame, there is
reason to seek the combinations of the strain tensor invariant

under those rotations. The search may be conducted by a
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process generalizing that which leads to the fﬁndamental in-
variants.

Let E be the matrix of the strain tensor. Consider
the response of det(E-8) to a change in the orientation of
the frame produced by a rotation with matrix R. Using the

matrix form of (4.15), we find

det(E-8) = det(RIER-a) = det[RI(E - RaRT)R]

det(E-RaRT).

It follows that if the matrix @ is invariant (i.e., if

RaRT = @) then the expansion of the determinant will produce
a polynomial in the elements of @, having coefficients of
combinations of the elements of E invariant under that rota-
tion. ‘

We apply this notion first to the case of transverse
isotropy, which obtains when the medium has a privileged di-
rection such that all directions orthogonal to it are equi-
valent with regard to elastic properties. With this first

axis of the frame along the priviledged direction, elastic

properties will remain invariant under rotations of the form

1 0 0
R = 0 cos a sin o
0 -sin o cos o

where o is arbitrary. The most general matrix @ invariant

under this group of rotations is

a 0 0
Q= 0 b cl,
0 -c b

where a, b, and c are arbitrary. Hence the expression
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2.2 2
det(E-8) = a(b®+c”) + ab(e22 + 533) +ceq

+ alejgmeyyess) + blep,relsey; (eyp%ess))
+ det E
is invariant, whatever the parameters a, b, c may be.

In this way one finds two invariants of the first
degree, the coefficients of ab and c2 (whose sum yields
the first fundamental invariant); two invariants of the second
degree, the coefficients of a and b (whose sum yields the
second fundamental invariant); and the invariant I3 as an
independent term. The quadratic form for the strain energy
density must depend on the strain only through these invari-

ants. Thus it must take the form

1,2 .1 2
W= FAejy *+ 3B(eyy + €33)7 + Ceyy(e,y, + eg5)

2 2 2
* 2D(ep3 - €3,€33) * 2E(e], + €]5)

and this generates a matrix of moduli

4 N

A c c 0 0 0
C B B-2D O 0 0
C B-2D B 0 0 0
0 0 0 D 0 0
0 0 0 0 E 0
| 0 0 0 0 0 E J.

It is positive definite if all the principal determinants one
can form from it are positive. For this it is sufficient to
ensure the positive character of a nested sequence of princi-

pal determinants. Here, for example, one obtains the conditions

A>0, B>D>0, E>0, A(B-D) > 4C.

Elastic properties of orthotropic materials are sym-

metric with respect to three orthogonal planes, and the axes
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are chosen as the intersections of these planes. A rotation
of 180° about the third axis is permitted, and the correspond-

ing rotation

-1 0 0
R = 0 -1 0
0 0 1

leaves invariant matrices of the type

a d 0
a = e b 0
0 0 c

A rotation of 180° about the first axis is also permitted, so
the preceding invariant matrices are reduced to those for
which d = e = 0, and one sees that they are then also invari-
ant under a rotation of 180° about the second axis.

The general invariant expression here is
det(E-a) = -abc + bce11 + caey, + abe33
+ a(e2 S E,,Eqq) * b(e2 - Ez4E )+c(e2 ~€17€,,)
23 22733 31 33711 12 "11722
+ det E.

Here we have three invariants of the first degree and three of
the second, implying for the strain energy density a quadratic

form with nine moduli

1, 2 2 2
W= 2(A11811%Ag252 338554 2hp38 02853 2A 2A

3)+ZG

31335117 2A12611522)

2 2 2
*+ 26,3(ep357€y,85 31(531'533511)*2612(512'511522)’

with the matrix
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A
Az

{

21
1

11

-ZG21

-2G31

A

12

32

-2G

22
-2G

12

32
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A

13-2G13 0 0 0
ZS-ZG23 0 0 ]
A23 0 0 Q
G,z 0 0
0 0 G31 0

0 0 0 G124

which is positive definite under the conditions

G

AjqAgahss + (Ay3-2G,5) (Agy=2G5,) (A),-2G),) > Ay (A)5-2G,5)

23

>0,

G

31

50,

G

12

* Ayp(Agy-265,)

: ) 2
>0, Ay >0, AjgAy, > (A)572645)
2

2 2
* Agz(A15-26,5)".

If the first axis coincides with an axis of ternary

symmetry (i.e., symmetry with respect to rotations of 120°

about the axis), then one sees easily that the only matrices

@ invariant under the operator

1
= 0
0

cos 120°
-sin 120°

0

0 -2 0 0
sin 120° | = - % o 1 -3
cos 120° 0 /3 1

are those invariant under rotation through an arbitrary angle

about the same axis.

Ternary symmetry is equivalent, there-

fore, to transverse isotropy with respect to that axis.

5.12.

Criteria for Elastic Limits

For most materials, especially metals, behavior may be

regarded as elastic in a region of the stress state which is

sufficiently restricted, and it is important to know these

limits.

Here we develop only a few classical criteria related

to isotropic materials.

The Tresca eriterion (1864), reexamined by Guest (1900),
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asserts that the limit is defined by a certain Qalue of the
maximum shear stress. In a simple tension test the state of
stress is uniaxial; the axis of the bar is principal and
corresponds to the stress o = F/S, where F is the force
and S the cross-sectional area, while 0y = 0z = 0. The
theory of Mohr's circles then indicates the value 01/2 for
the maximum shear stress. If the analysis of the tension test
1eads.to limiting the elastic region to |o;| < o , a value
known as the elastic limit, the Tresca criterion applied to a

general stress state requires that at each point

o) - 0 < 0, (5.83)

where oy and oy are the maximum and minimum principal
stress, respectively.

Indeed, the isotropy of the medium requires that the
criterion be expressed in terms of invariants of the stress
state. Application of the Tresca criterion (5.83) at a point
requires a knowledge of the principal stresses. This usually
necessitates solving a third degree equation.

The most general form for a criterion for isotropic
material would be

£(3;, J,, Jg) < 0.
Using the fact that, within certain 1limits, experience indi-
cates that the elastic behavior of a metal is unaffected by
superposing a state of hydrostatiec (spherical) stress, von
Mises (1913) suggested using only the invariants of the de-

viator. In fact, he proposed the criterion
- _ 2 _ 2 _ 2 2 .2 .2
6%, = (T1y7Tpp)7 ¢ (Tpp7T33) "+ (T337Typ) #6(Ty34T14Ty))

= (01-02)2 + (02-03)2 + (03-01)2 < Zci. (5.84)
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Hencky (1924) interprets this criterion as restricting, in

(5.67), the "distortion'" part of the strain energy density

_ 1 1 2
‘ZGFZ = Z—G- Ez < 6G er

Nadai (1937) interprets it using the idea of octahedral shear

stress defined by (5.39); then it takes the form
[t | <= 0. (5.85)

The Hiiber-Hencky-von Mises criterion is easy to apply because
it is expressed rationally in terms of the elements of the
stress state for any frame whatever.

For most metals it is in better agreement with experi-

ment than Tresca's criterion.

C Von Mises

Tresca

Figure 5.5
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The difference between the two criteria may be illus-
trated simply by a graphical construction (Figure 5.5). Con-
sider a system of three coplanar unit vectors g€ making
anglés of 120° with each other, so that

1 if 1=

g. * g. =

. (5.86)
i { cos 120° = - 1 if i# :

The point representing a stress state with principal values

(ol, Ty 03) is defined by the position vector
s = 0.8 + 0,8, * Oz€5. (5.87)
Stress states differing only by a hydrostatic state have the
same representative point because the basis vectors are con-
nected by the relation
g + g, * g5 = 0. (5.88)

This is unimportant for the two criteria under study, which
depend only on the differences between principal stresses.

From (5.86) and (5.87) one finds that
_ 2 2 2 _ _
$'8 T 0y + 0y ¥ Oz = 010, = 0,03 = 0309

2

Hoy-0,0% + (070907 + (05-0)7]

and then, in view of (5.84), the von Mises criterion becomes
S's = ~3£2 < oz,
so that the region where the elastic 1limit is not exceeded
is a circle of radius Og-
The Pythagorsan theorem allows the calculation of the
component PQ, normal to the ol-axis, of a typical stress

point s:

0,-0
762»= s's - (s’zl)2 = 3(—£7—§)2.
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In order that the shear stress %(02-03) not exceed Tresca's
limit it is necessary that

ﬁ<7@0e,
restricting the elastic region to the strip between the lines
AB and ED. Since %(03-01) and %(ol-oz) may also be the
maximum shear stress, the elastic region for Tresca's criterion
is the hexagon ABCDEF inscribed in the circle for von Mises'
criterion.

Tresca's criterion is clearly slightly more demanding
than von Mises', both having been formulated so as to coincide
in a uniaxial test like that represented by the point C. We
observe that they coincide also in biaxial states (oz =0,

Oz =0, = ce) like those represented by the point D.

While it is true that materials can endure an apparently
unlimited hydrostatic compression without suffering permanent
deformations, there should be an approximate limit for their
collapse in a state of hydrostatic temnsion. Experimental
realization of such a state is so difficult that, although
knowledge of this limit is important on the theoretical level,
it is doubtless less so on the practical level.

One may believe that the state of hydrostatic stress
would be taken into consideration by a criterion of the type

22 = f(Jl), equivalent in Nadai's interpretation to a relation

tor = f(ton) (5.89)

between the octahedral normal and shear stresses. General
criteria of this type amount to neglecting the effect of the
third fundamental invariant of stress.

Another criterion, due to Mohr, is called that of the

intrinsic curve. It assumes that the elastic limit is reached
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Figure 5.6

on a face when the magnitude of the shear tractions tt on it
reaches a level depending on the normal traction tn. The
equation tt = f(tn) of the 1limit is the intrinsic curve of

the isotropic material. In Mohr's diagram (Figure 5.6) the curve
is an envelope of Mohr's circles for n, = 0, when the princi-

pal stresses are-arranged according to the convention (5.43).

We thus have the equation
2 01+02 2 01703 2

tg* (ty - =) = (=)

stating that the point of contact on the envelope belongs to

Mohr's circle for n, = 0, and the equation
0,40
1 S 3y o e
tt (tn 2 ) £ (tn)

stating that the line joining the center of the circle to the
point of qontaét is perpendicular to the tangent to the in-

trinsic curve. With t, replaced by f(tn) this equation

becomes
01+03
2

=t ¢ f f! (5.90)
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and the prceeding one becomes

[ o)
A 3. g/1 4+ £02, (5.91)

2

Equations (5.90) and (5.91) may be regarded as equations in
a parameter t of a 1limiting locus

04,-0 0q,+0
—12—-"- = F( 12 3 (5.92)

which evidently generalizes Tresca's criterion.

5.13. Navier's Equations

Navier's equations of linear elasticity are the partial
differential equations which control the displacement vector.
They are obtained from the translational equilibrium equations
by first writing the stresses in terms of the strains by the
constitutive equations, and then the strains in terms of the
displacement gradients:

Di(CIi)?Dpuq) + 0, 85 = 0. (5.93)
These equations are accompanied by boundary conditions which
consist in imposing some displacements

=7 ' 5.94
Yq T Yq (5.94)

on a part 81V of the boundary, and some surface tractions
;T T nicg?npuq = Ej (5.95)
on the complementary part 32V.

We now establish the elliptie charactef of these partial
differential equations. According to the method of Cauchy-
Kowalewska, it suffices to show that the simultaneous assign-
ment of the values uq and t. on a part of the boundary al-

J
ways allows the calculation of the partial derivatives of the



5.13. Navier's Equations 129

displacement to any desired order. On that portion of the
surface the displacements will have a complete Taylor expan-
sion and, if it converges, the solution of Navier's equations
will be analytic in a neighborhood of that portion of the sur-
face.

A few special notations will be helpful in the proof.
If n, denotes, as usual, the direction cosines of the normal

to the surface, we introduce

é = niDi (5.96)

for the derivative along that normal. Three derivatives in a

plane tangent to the surface can be formed by the operators

as = esmranr' (5.97)

They are clearly not independent, as one sees from the identity

nsas = 0. (5.98)

Each of these derivatives is taken in a direction perpendicu-
lar to both the normal and one of the Cartesian axes. A
partial derivative along a Cartesian axis may now be expressed
as

D =nA

p = Ppt 7 Cpts™t?

o (5.99)

as one readily verifies by substituting from (5.96) and (5.97)
and recalling that n.n, = 1.

The values of uq being given‘on the surface, the deri-
vatives asuq in the tangent plane are known. Using (5.99)

in the expressions (5.95) for tj on the surface, and bring-

ing known terms to the right-hand side, yields

Pq = Pq
nianijAuq tj + eptsntnicijasuq’ (5.100)
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a system of three equations for the three still unknown first
partial derivatives of the uq. According to Hadamard's con-

dition of infinitesimal stability, the matrix

Pq . qq
nlan1J SJ

of this system is positive definite and therefore invertible.

The three remaining derivatives are thus uniquely determined.

Navier's equations now yield

c®PdD D.u = -p g. - D.uD,cPd
ijop i T Po®j T Tplqrivij

where the right-hand side is known. Once again, the deriva-
tives. Diuq being known on the surface, the same is true of
the second derivatives asDiuq’ and substituting Dp yields
Pq = Pq - - Pq
anIJAD uq eptsntcljas 1% pogj DpquIClJ
with a known right hand side. Calculation of the still unknown
derivatives ADiuq comes down finally to that of AAuq as

we see from the equations
ADiuq = nrDrDiuq =D, (nrDruq) 1nr . Druq

= DiAuq - Dinr . Druq

(niA - eitsntas)Auq - Dinr . Druq

niAAuq - (e. tsntasAuq + Dinr . Druq)’

where only the first term of the right hand side is unknown.
Consequently, substitution from this'equation into Navier's

yields a result of the type

n.n cP%au_ = a..
i'prij q J

These equations, with known right hand side, are of the
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same type as (5.100) and always supply a unique'solution for
the still unknown second derivatives. One has thus succeeded
in calculating on the surface the set of all second partial
derivatives of uq. The process may be repeated indefinitely
by taking successive partial derivatives of Navier's equations.
It is obviously necessary for this that the field of moduli of
elasticity and the curvature tensor of the surface should have
derivatives of all orders on the surface.

Thus we have shown that Hadamard's necessary condition
for infinitesimal stability is also a sufficient condition for
the ellipticity of Navier's equations.

On the other hand, as we shall now demonstrate, the
uniqueness of the solution of Navier's equations under their
boundary conditions follows upon verification of the criterion
of infinitesimal stability, and is therefore assured by every
system of conditions sufficient for that purpose; in particu-
lar, by the local positive definite character of the energy
density. Indeed,_since the equations are linear, uniqueness

is assured if the homogeneous system

Di(c??D u) =0,

1Jpq
uj =0 on 31V,
Pq =
niCiJ_Dpuq 0 on BZV,

has only the trivial solution. By multiplying each homogeneous
Navier equation by the corresponding component of displacement

and integrating, we get
u.D, (cP% u ) av = 0.
IV J 1( i)p q)

After integration by parts, this becomes
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u. (n.cP% u ) ds - J cPdp.u.pu_ av = 0.
Iav J( 11)p q) viJ1Jipaq

The first integral vanishes because of the homogeneous bound-
ary conditions. If the condition for infinitesimal stability
is satisfied, the second can vanish only if

€.. = l(D.u. + D.u.) = 0.

ij e ji
By a mild extension of the usual interpretation, we consider
this result as corresponding to the trivial solution: On one
hand the homogeneous kinematic conditions imposed on 31V may
be sufficient to exclude the existence of every kind of rigid
displacement (as is the case in most problems) and eij =0
implies the solution uj = 0, properly called trivial; other-
wise these conditions are insufficient or inapplicable and the
solution of the initial problem is defined only up to a rigid
type of displacement.

In the special case of a homogeneous isotropic medium,

where the moduli are constant and are given by equations (5.75),

Navier's equations without body forces take the simple form

(n + u)Dj(Diui) + uDiDiuj =0, (5.101)
where )
2 2
_ 9 3 3 _ o2
DlDl-—+-—z+—2--V

is the harmonic operator. By multiplying each equation by
Dj and adding, then suppressing the factor X + 2u > 0, we
get

VeI, = 0. (5.102)
The first invariant is thus a harmonic function. Applying the

Laplacian to Navier's equations shows that each component of

the displacement satisfies the biharmonic equation
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VZVZuj = 0. ‘ (5.103)

These results illustrate the important role of harmonic
and biharmonic operators in all those problems of elasticity
in thch the medium is taken to be isotropic and homogeneous.
They enter as well in the case of body forces which depend on
a harmonic potential, as with the gravitational field with no

attracting masses:

. = -D. with v = 0.
EJ J¢ ¢

5.14. The Beltrami-Michell Equations

One may in principle transform the equations of local
strain compatibility by substituting in them the stresses in
terms of strains obtained by inversion of the constitutive
equations. This has been done by Beltrami and Michell in the
case of an isotropic homogeneous medium for which one already
has the inverted equations (5.82), which may be combined in
the form

(5.104)

Eeij = (1+v)rij - VTrrGij’ Tor = Jl.

In order to simplify the result by using the equilibrium equa-
tions, it is appropriate to modify first the presentation of

the compatibility equations. Multiply them by e , use

stqenum
formula (4.18), then put n = s to obtain

DiDi®ey * DeDyeis - DeDi®iy - DyDi®y¢ = O
By using (5.104), this becomes
(190303 Ty~ VOeuPiPi%kk * Pelutii

- (1'0-\))DtDi'riu - (1-!-\>)DuDi'|:it = 0.
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The last two terms may be transformed by the equilibrium

equations to yield

(1+v)DiDirtu - vstuDiDiTkk + DtDu-rii + (1+V)po(ngu+Dugt) =0.

For t = u one gets an equation permitting elimination of the

second term. After division by (1+v) the final result is

2 1 \ _
VTew T leluii t po[Dtgu+Dugt * TTUGtuDigi] = 0. (5.105)

The stress should satisfy these six partial differential
equations of the second order along with the three equilibrium
equations of the first order. It follows that, for body forces
depending on a harmonic potential, the first invariant J1 is
a harmonic function and each component of the stress is bi-
harmonic.

It must be kept in mind that if the domain is multiply
connected, the conditions of global compatibility also trans-

form into supplementary conditions on the stresses.



Chapter 6
Extension, Bending, and Torsion
of Prismatic Beams

A prismatic beam is a region bounded by an exterior
cylindrical surface, two terminal plane sections perpendicu-
lar to the generators and, if the beam is hollow, one or more
interior cylindrical surfaces. The axis 0z of an orthogonal
Cartesian frame is taken parallel to the generators of the
cylinder. 1In a plane section perpendicular to the generators
and referred to axes Ox and Oy, the region D 1is bounded
by the exterior directrix o and the interior directrices
< (i =1,...,n) of the cavities (Figure 6.1).

The use of cuts, forming bridges between S and each
cavity directrix, permits the definition of a complete path,
designated by c, traversed in the mathematically positive
sense along o> and in the negative sense along the other
;- It is such that the exterior normal n of the region,
the tangent t in the direction of thé path, and the unit
vector e, form a trihedron with the same orientation as the
Cartesian frame.

If 6 denotes the angle between the exterior normal

and the axis Ox, with the agreed direction of passage, then

135
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cos 6 = 3x/dn = dy/ds, sin 6 = 3y/don = -3x/3s. (6.1)

Figure 6.1

6.1. Green's and Stokes' Formulas

The theory for isotropic materials as presented in the
general equations of Navier and Beltrami-Michell introduces
a number of harmonic functions of the variables (x,y). The
corresponding versions of Green's and Stokes' formulas are
therefore very useful. Let a(x,y) be a univalent differ-
entiable field of vectors in D. The divergence theorem
yields

n
[ div a dx dy = I (arn)ds = } f (a-n)ds
D c 0 ‘c,
i
because the integrals along the sides of each bridge cancel
each other. With a = ¢(x,y) grad y(x,y) we get Green's

first formula

. _
I (ov%y + grad ¢ - grad y)dxdy = ] f o ¥ gs (6.2)
D 0’c

where
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v = div grad = 2%/3x% + 3%/ay".

Green's second formula is found by subtracting from the first
the result of interchanging ¢ and ¢:

n
[ orvwtnaey < 1| o 3o v i as. (6.3)
C.

i
In both of these formulas we may reverse the direction of the
directrices < without changing the sign of the right hand
side, as long as the normal derivatives are still formed to-
ward the exterior of the region.

Stokes' formula

n
J e, * rot a dxdy = [ (a-t)ds = § f (a-t)ds
D c 0 <

applied also to a = ¢ grad ¥y and a Y grad ¢ vyields

n n
(20 3¥ | 30 Ay 4.qy - [ 6 Ay = - f v dé (6.4)
ID ax 3y 9y ox g C. g C.

i
but here it must be noticed that 3y/3s and 3¢/3s change

sign with a change in the direction of traversing the path.

6.2. The Centroid

In an arbitrarily chosen Cartesian coordinate system,
one may find the area 9 of the domain D and the coordi-
nates (X,y) of its centroid as follows. With ¢ = x and

y =y in Stokes' formula, one has

n n
Q= I dx dy =} J x dy = -§ I y dx. (6.5)
D 0 ‘c. 0 ‘c.

1

Also, with ¢ = % x2 and ¢ = y, and with ¢ = x and
2

Y = % y“, one has
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A 7 1.2 n
QX = I x dx dy =} [ 7 x° dy = - f y x dx,
D 0 ‘c. 0 ci
(6.6)
N n n 1 2
2y = f y dx dy = ] I xy dy = -} I Fv° dx.
D 0 ] 0 ‘c.

In these formulas the directrices are traversed in the direc-
tion determined by the complete contour ¢, positive for <,
and reversed for the ¢ of the cavities.

We will also need to find the areas and centroids of
regions bounded by each one of the separate directrices. If

we traverse the boundaries in the mathematically positive

sense this yields

o= [ xay -] oy i=0,1,...,0 (6.5)"
i
c. c.
i i
Qi ﬁi = J % xz dy = -I y x dx,
¢i €3 (6.6)"
Q. y. = xy dy = - 1324y, i=0,1 n
iyi c y ay c 5 Yy s slyeee,m.

i i
Translating the origin of the frame to the centroid
of the domain D is an elementary operation. Since this
simplifies the statement of results we assume it done and use

the corresponding properties

J x dx dy = 0, I ydxdy = 0. (6.7)
D D

6.3. Moments of Inertia

The moments of inertia of a cross section of the beam

with respect to the axes Ox and Oy are defined as
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n n
I, = f x? ax dy = 1] I x> dy = -} f x2y dx,
x D 0 ’‘c. 0 ‘c,
1 1
n n
I, = I xy dx dy = - % 1 I xyz dx = % )
Xy D 0 ‘c. 0
1 1
n n
1 = I yz dx dy = - % ) I y3 dx =} f xy2 dy.
Yy D 0 'c. 0 ‘c.

1 1
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I xzy dy, (6.8)
C.

These are the elements of a symmetric tensor of order two in

two dimensions:

X i xz
f { }{x v} dx dy = f ( 2) dx dy.
D'y D ‘yx vy
y
y {
x
a
0 e X
Figure 6.2

The rotation of axes

x X [ cos o sin a
{_} = R[ } where R =
y y -sin a cos o

yields the new matrix of the tensor
b3 v x '
[} ex a7 - a” [} nax ay | #T,
D'y D'y

or, explicitly,

_ 2 - . .2
I;; = Ixx cos a + 21xy sin a cos o *+ Iyysln o,
_ _ - 2. s 2
II7 = (Iyy Ixx)51n a Cos a + Ixy(cos o sin“a), (6.?)
I— = I__ sina - 2I__ sin o cos a + I__ cosZa.
yy xx Xy Yy
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Wherever the origin O is chosen, there exist at least
two orthogonal principal directions for which the product of
inertia I;; vanishes. From the second of (6.9), they are

seen to correspond to angles o defined by

21
_ X
tan 20 = r—-IL
XX yy
or
2 2
I - s/ -1
can o oy D Ty T L) v ALy
ZIxy
If Ixy = 0 then the angles are o =0 and a = %. If also
Ixx = Iyy then all directions are principal and the moments

of inertia are the same with respect to every axis passing
through O.

For an arbitrary scalar A,

2 . 2
fD (e faxdy =L+ 2 Lo+ A" L > 0.

Since this quadratic in X can have no real roots, we find
that the second invariant of the tensor, which is proportional

to the negative of the discriminant, is positive:

I.=1_1_ - 12

2 xx lyy xy > 0. (6.10)

The first invariant, or polar moment of inertia, is obviously

also positive:

2 2
=1 + I = d > 0. 6.11
Iy = Ly * 1y = [ 6 yhax ay > o (6.11)

Now suppose the chosen point O is the centroid and
calculate the moments of inertia with respect to axes parallel
to those of the frame but centered at x = a and y = b. The

matrix of the tensor will be given by
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x-a, -
J { }{x-a y-b} dx dy
D *x-y
and, because of the properties (6.7) of the centroid, we find
the moments to be

2

Lx @0, I +aba, I +b

2q.

From these it is easy to see that the first and second invari-
ants of the tensor of the moments of inertia are least when

the axes issue from the centroid.

6.4, The Semi-Inverse Method of Saint-Venant

In accord with the use of the coordinates (x,y,z), we

write the stress and strain tensors as follows:

€x ny/z Yxz/2 9% Txy Txz
ny/z ey sz/z and Tyx Oy Tya|
Yox/2 Yzy/2 €2 Tax Tzy %2 )

The semi-inverse method of Saint-Venant consists in setting

Oy =0, oy =0, Txy =0, (6.12)

and seeking the exact general solution for the equations of
elasticity for an isotropic beam under these conditions. In
this chapter we develop a solution corfesponding to a certain
idea of the transmission of stress among fibers parallel to
the generators; namely, that they affect each other only tan-
gentially, while they remain oriented parallel to the genera-

tors.
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4 2y
////;lgx
l/r/f/' Tyz —_—
. -
i < Txz 2
Figure 6.3

In view of the hypotheses (6.12), neglecting the body

forces reduces the equilibrium equations to
BTZx/az =0, arzy/az =0, (6.13)
arzx/ax + arzy/ay + aoz/az = 0. (6.14)

Assuming the exterior surface and the cavities free of

all traction corresponds to the conditions

+ T + n T =0

Ne9% ny yx Z zX ’
T +no_+n-T =0
nx Xy Yy Y ANA4 ’
n_t + n. T +no_=0.

Since every normal to the cylindrical surfaces is orthogonal
to the axis 0z, n, = 0 and the first two conditions are

met trivially by the hypotheses (6.12). The third reduces to

nT., ot nyTyz = cos esz + sin 8 Tyz = 0 on Cso (6.15)

or by using (6.1),

Tez dy/ds - Tyz 9x/9s = 0. (6.16)
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This form does not require specification of the direction of

passage because it is homogeneous and 23y/3s and 5x/ds

change signs simultaneously when the direction is rqversed.
The assumption of isotropy leads finally to the consti-

tutive relations, which when simplified by (6.12) become
Eex = E du/3x = -vo,_, Eey = E 3v/3y = -Vvo_, (6.17)
Eez = B aw/3z = g, (6.18)

Gny = 0= 3u/sy + av/ox = 0, (6.19)

Gsz = G(u/dz + w/ox) =1 .

xz? Gsz = G(3v/d3z + dw/dy) =1

(6.20)
Elimination of the displacements from these equations, followed
by a simplification from the equilibrium equations, yields

the Beltrami-Michell equations

azoz/ax2 - Bzcz/axay = azoz/ay2 - azoz/az2 =0, (6.21)
2. _ .2 2. _ .2
(1 + V)V Tz = 9 cz/axaz, (1 + V)V Tyz = -3 Uz/ay%é.ZZ)

with the notation V2 = 32/3x2 + Bz/ayz for Laplace's opera-

tor in two dimensions.

6.5. Resultants of Stresses on a Cross Section

Equations (6.21) show that the normal stress 9, in
the fibers is distributed according to a linear law of the
type

o, = E(e + xKx + yKy) (6.23)

in which the coefficients ¢, Kx and Ky are at most linear
functions of z. These coefficients may be expressed as func-

tions of the resultant axial force T, and the two resultant
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moments Mx’ My (bending moments) acting in a cross section
z = constant. We assume that the axis 0z passes through the

centroid of each cross section and refer to it as the centroi-

Figure 6.4

dal fiber. By using the properties (6.7) we then obtain

Tz = J o, dx dy = EQe,
D
Mx = ID xo, dx dy = E(Ixxl(x + IxyKy)’ (6.24)
M = = E(I_K + I K).
y ID yo, dx dy = B(Lo K + Ik

When the axes are oriented so that the product of iner-
tia vanishes, the equations are uncoupled and their solution
is

e =T,/BQ, K_=M/EI (6.25)

K =M
x’ y y/EIy

v
In practice, the principal orientations may be used effectiv-
ely only if they are known in advance, as for example when the

cross section is bilaterally symmetric. If the orientations

are not principal, we use the more general formulas

- 1M -1
K = IZVMX Xy Y K = xny * Ixle (6 26)
X par.1_-12) Y g1 -12)° ’
XX yy Xy . XX yy Xy
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Substitution of such formulas into (6.23) expresses the normal
stress as a function of the axial force and the bending mo-
ﬁents-

A formal calculation of the strength of variation of
the resultants (6.24) with position along the axis may be
started from equation (6.14) for longitudinal equilibrium.

For example,

dTZ 3o, 3T, 9T .
i ID 77 dxdy 'ID(T + 52 dxdy
n
) Jc.(nxsz + ot )ds.
i

0
In the integration we have used the continuity of the shear
stresses on the bridges connecting the directrices. In view

of the boundary conditions (6.15) this becomes
de/dz = 0. (6.27)
In the same way one reaches the equations
de/dz = Tx’ dMy/dz = Ty’ (6.28)
where the right hand sides are the sh;ar forces
T, = ID Tyz dxdy, T = ID Tyz dxdy. (6.29)

y

For the first of these, for example,

dM 30 9T 9T
X - 2z = - xz , Yz
O ID X 57 dxdy JD x( - 3y )dx dy
n
= -g Ic x(nt , + nytyz)ds + JD Ty, dxdy

i
and the result follows by use of the boundary conditions.

It is obVious from (6.13) that the shear forces, like
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the shear stresses themselves, are independent of the coordi-

nate z:
de/dz =0, dTy/dz = 0. (6.30)

Like Kx and Ky’ then, the bending moments are linear func-

tions of z.

The derivatives of K, and Ky are two essential para-

meters in the development of the theory:

. de . EYYTX - IXYTY b= dK . -IxyTx + Iy T
dz° g1 - 12) 2 g1 -
xx'yy xy XX yy XY (6.31)

Evidently, the derivatives a and b are linear functions of

the shear forces.

Figure 6.5

The last resultant in the cross section is the

twisting moment

MZ = ID (xryz - ytxz)dx dy. (6.32)

It is also independent of 1z, i.e.,
sz/dz = 0. (6.33)

Equations (6.28) and the constancy of the shear forces,
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the axial force, and the twisting moment are also the expres-
sion of the global equilibrium equations for a segment of the

beam of length dz.

6.6. Calculation of the Transverse Displacéments

Equations (6.17) and (6.19) show that the transverse

displacements obey the Cauchy-Riemann equations
du/d9x = dv/dy, du/dy = -93v/9x, (6.34)

which imply that the complex form u + iv is an analytic func-

tion of the complex variable x + iy. 'By setting
. : . . . .82
u+iv =u o+ iv o+ (p+1w°)(x+1y) + (u2+1vz)(x+1y) ,
where the coefficients are at most functions of 2z, we obtain
du/o9x = 3v/3dy = p + Zuzx - 2v2y.

When this result is substituted into (6.17) and o, is re-

placed by its expression (6.23), comparison yields

v v
p = -ve, u, = - > K Vv, = 3 K_.

x? y

Thus we find

u, (2)-yuy (2) - viex + FPyDK _(2) + xyK, ()},

e
[}

(6.35)

<
"

vo(2)exuy(2) - vley + xy K (2) - FGC-yhK ().

By setting x = 0 and y = 0, we see that uo(z) and vo(z)
represent the transverse displacements of the centroidal fiber.

The material rotation of a fiber about its axis is

w, =3 (3! - %%) = wo(z) - viy Kx(z) - X Ky(z)}. (6.36)
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From this formula it follows that wo(z) is the rotation of
the centroidal fiber. The other terms in (6.35) are Poisson
effects resulting from transverse contractions or expansions
of the fibers caused by their state of longitudinal tension
or compression.

Differentiating equations (6.20) with respect to z

and using (6.13) and (6.18) yields

32u = - 32W = - l 302 = -X (
PO 3 12 E ox x(2)>
(6.37)
32V = - ﬁ_ = - l ao_z = -K (z)
322 d9yodz E 9y y ’

which allow Kx and Ky to be interpreted as the linearized

curvatures of the fibers, and in particular those of the cen-

troidal fiber:
2 2 _ 2 2 _
d uo/dz = -K.» d vo/dz = Ky‘ (6.37)"

By differentiating these formulas again we find a kinematic
interpretation of the parameters a and b as derivatives of

curvatures:
a®u /dz’ = -a, &Sv_/az® = -b. (6.38)

Now differentiate formulas (6.35) twice with respect
to z. Poisson's effects disappear, being only linear in z,

and comparison of the result with (6.37) yields
v /az? = 0.
The constant parameter

6 = dwo/dz, (6.39)

or twist of the centroidal fiber, plays,along with a and b,
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an essential part in the calculation of the shear stresses.
The kinematic variables a and b are related in a simple

way to the shear forces by the stiffness relations

Tx = EIxxa + EIxyb’ Ty = EIxya + EIyyb, .(6.40)

obtained by inverting (6.31).. On the other hand, the relation
between 6 and the resultants of the shear stresses is more
involved and its development is postponed until Section 6.13.

We observe finally that the twist of a general fiber
awz/az =9 + y(bx - ay), (6.41)

unlike that of the centroidal fiber, exhibits a Poisson effect
caused by the linearly varying shear forces.

In order to facilitate the evaluation of the integrals
related to the transverse displacements, it will help to put

the latter into the form

u = u (z) - 3¢/3x - 3Y/3y, v = v (z) - 3¢/3y + 3y/dx,
' (6.42)
with
2.2 3 3
- X7+ X Yy
PR T R, (6.43)

2.2
b v, 3 2 3 2
Y = _z_y__ mo(z) - E(y +3yx )KX + %’-(x +3xy )Ky.

The derivatives of these relations with respect to 2z may

similarly be written as

dv
ou . Mo s %o a2
9z dz ~ %x 3y’ 3z dz y " x (6.42)"
with

-9 v 3 3

Az 22 e gax® « by,

_ oy _ xPy? Vo3, 2 Vo3, . 2 ,
WEas = -—71— 6 - g(y +3yx“)a + E(x +3xy“)b. (6.43)
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6.7. Equations Governing the Shear Stresses

Saint-Venant's assumptions lead to very simple results
for the longitudinal stress in the fibers and their transverse
displacement. On the other hand, determination of shear
stresses and the longitudinal displacement requires the solu-
tion of problems involving Laplace's operator in two dimen-
sions.

It is advantageous to regard the pair (t ) as

xz? 'yz
the components of a vector 7 to be defined at each point of
the region D of a cross section. From (6.13) we know al-
ready that this vector is independent of the choice of cross
section. We may express the divergence and the z-component

of the curl of this vector field in terms of the parameters

(a,b,0):

divr = Brxz/ax + aryz/ay = -?oz/az = -E(ax+by),
(6.44)
rotzr = 3ryz/ax -arxz/ay,
and by (6.20) and (6.41)
tr=cia"-i‘l=zcaw—z=zc{e+(b-)} (6.45)
rot, 3z ‘9x  dy 3z vibx-ay)s. :

The field is uniquely determined by these equations together

with the boundary condition (6.16)

k>4 = =0 on c,

- T i = )
Txz Ts yz 9s i’ 1 0,1, n

and the circuital conditions

I T-ds = ZGQi{ew(bii - a?i)}, i=1,2...n, (6.46)
€4
where each directrix o is traversed in the mathematically

positive sense. Conditions (6.46) arise from an interpreta-
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tion of the global compatibility conditions necessary for the
univalence of the longitudinal displacement, and will be
derived in the following section. The corresponding local
compatibility conditions are guaranteed by satisfying the
equilibrium equations and the Beltrami-Michell equations. Now,
equations (6.21) have been used for the construction of the
field o, and, as one verifies easily, equations (6.22) are
satisfied by (6.44) and (6.45). One may thus consider that
all the integrability conditions for the remaining displace-
ment w are satisfied.

We finally reduce the determination of the shear
stresses to Poisson problems, with boundary conditions of

Dirichlet or Neumann type, by writing

.3_‘!” T =Eﬂ-Ga\y

3 vz > = (6.47)

1]
sz E 9X + 6

Equations (6.44), (6.45), (6.16), and (6.46) thus become

9

©

=0 on c.,
n i

<
o
"

i=20,1,...,n;
(6.48)

-(ax + by) with

(234

&
"

-28 - 2v(bx - ay) with d¥ = 0 on ;s

¥ _ & L0 s

Ic n ds = ZQie + Zvni(bxi ayi), i 0,1,...,n. (6.49)
i

Since the addition of a constant to V¥ alters neither the

stress field nor the equations to be satisfied it is permis-

sible to put

¥ =0 on Co? y = Wi on c;, i=1,2,...,n, (6.49)"

and the n constant values taken by the function on the di-
rectrices of the cavity are to be determined precisely by the

n circuital conditions.
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6.8. Calculation of the Longitudinal Displacement

We may integrate (6.37)' in the form

z z .
R N SOLA R I J WOE N

where p and q are the slopes of the centroidal fiber at
the reference section 1z = 0.

Equations (6.18) and (6.23) yield
aw/dz = oz/E =g+ X Kx(z) +y Ky(z). (6.51)

The integral of (6.51) may be written
2z z

w =gz + XIO Kx(;)dc + YIO Ky(c)dc+wo+py-qx+g(x,y). (6.52)
The first three terms form a particular integral, vanishing
at the reference section z = 0. From the general integral
of the equation with vanishing right hand side, which is an
arbitrary function of (x,y), we have explicitly extracted a
linear form in such a way that the parameters (p,q) now ap-
pear as small rotations of the beam about the axes Ox and
Oy. With these and the parameter LA which is a longitudinal
translation, we have exhibited three of the six degrees of
freedom as a rigid body which always arise when strains are
integrated to give displacements. The three others come from
the constants of integration of equations (6.39) (rotation
about 0z) and (6.50) (lateral translations).

It remains to determine the function g(x,y), called
the warping of the cross section because, apart from certain
special cases, it is not linear in the variables x and Yy
as are the other terms in w, and hence does not preserve the

flatness of the section. We shall see that g(x,y) 1is defined



6.8. Calculation of the Longitudinal Displacement 153

only up to an additive constant, which will be L if omne

makes g(x,y) unique by the supplementary condition
I g dx dy = 0. (6.53)
D

The longitudinal displacement in the reference section is

w(x,y,0) = py - qx + w, + g(x,y), (6.54)

and if desired one could adjust the parameters of the linear
form in such a way that w(x,y,0) would become a true warp-

ing, enjoying the properties

I w(x,y,0)dxdy = I w(x,y,0)xdxdy = f w(x,y,0)ydxdy = 0.
D D D (6.55)

In fact, by virtue of (6.7) and (6.8), (6.53)-(6.55) imply

Wy = 0, Iqu - Ixyp = ID gx dxdy,

I.q-1I1 p-= dxdy. 6.56
xyd ~ IyyP ID gy dxdy (6.56)

We notice that the latter two of (6.56) do not require that g
necessarily satisfy (6.53).

Equation (6.54) shows that if Saint-Venant's hypotheses
are not to be violated, the longitudinal displacement
w(x,y,0) at the reference section may not be specified ar-
bitrarily. For example, if this section were a perfectly
clamped end, one would wish to have w(x,y,0) = 0, but in
general this would be impossible in the éontext of Saint-
Venant's theory. However, as noted by Weinstein, the clamping
can be approximated by requiring w(x,y,0) to be a true
warping. The approximation is in the sense of least squares,
i.e., the integral fD wz(x,y,O)dxdy is minimized if equa-

tions (6.56) are -satisfied.
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Another way of deriving (6.56) as approximate condi-
tions for clamping is to suppose that a corrective solution,

with stresses

o, = £,(py - ax + w + g)
proportional to (6.54), could negate the displacement of
(6.54). Since these additional stresses should be statically

equivalent to zero, they satisfy the conditions

I 3dedy = [ Gz x dxdy = I 32 y dxdy = 0
D D D

which are again equivalent to the equations (6.56).
We now calculate the shear strains from equations

(6.35) and (6.42)' with (6.50) and (6.52), getting

Yxz = 7 %% ) %% * %%’ Yyz = ° %% ¥ %% * %% : (6.57)
Because the derivatives of the_functions A and u vanish
for x =0 and y = 0, one sees that in the absence of warp-
ing the shear strains vanish at the level of the centroidal
fiber, the sections thus remaining locally plane and ortho-
gonal to this fiber.

We have seen that all the Zocal conditions for compati-

bility were satisfied for the integration of w and then of
g. In fact, elimination of g among equations (6.57) recovers
(6.45). According to the general theory, the global compati-

bility conditions

S G 3 -
fdg-}mﬁcdx'fb-;l,dy-o,
or conditions for the univalence of g, only need to be satis-

fied for one member of each of the equivalence classes of ir-

reducible circuits. For these we choose the directrices of
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the cavities, so we have

| TP 1T,
I Yyz dx + sz dy + I Iy dx X dy 0
C. [
i i
because
A A _
I de'l'-a?dy-f dx =0
¢y <

With the constitutive equations (6.20), this becomes

%J 7°ds = 0 I xdy - ydx - %? I (xz-yz)dx + 2xy dy
< ¢ ¢

- %? I 2xydx - (xz-yz)dy.
C.
i

One may therefore use in the right-hand side the formulas
(6.5)' and (6.6)' for each circuit being traversed in the di-
rect sense. Thus one reaches the justification for the pro-
posed circuital conditions (6.46).

Another expression for the shear strains results from

formulas (6.47):

Y, = 2(1+v)%§ + %ﬁ, Y.

99 3
= 2(1+v)s= - . 6.58
Y (v - 34 (6.58)

X2z ax

yz
On comparing this with (6.57) one verifies that the Cauchy-

Riemann relations

3H/3x = 3Z/dy, oH/3y = -3Z/dx (6.59)

are satisfied by the functions

H

g - 2(1+v)¢ - A (6.60)

and

=Y+ y. (6.61)

The harmonic function Z is subject to the boundary condi-

tions of Dirichlet type dZ = dy on ;s i=20,1,...,n, or
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Z =yu on Co?
. ’ (6.62)

Z =y + wi on c,, i=1,2,...,n.
In addition, since the Cauchy-Riemann structure gives on the

boundaries the relations ©8H/3n = 3Z/3s, dH/ds = -3Z/dn, the

circuital conditions are homogeneous for Z:

[ _grzl ds = _f 31: ds = 0, i=1,2,...,n. (6.62)\/,'
C. C. 3
i
In the same way, Neumann's data for the conjugate har-

monic function H are supplied directly by the derivatives of

Dirichlet's data for Z:

9H/3n = du/d9s on ;o

i=20,1,...,n. (6.63)
One sees in particular from (6.60) that the warping solves the

Poisson problem with Neumann's data

Vzg = -2(ax+by), 29g/dn = 3A/3n + du/ds on c.,

N (6.64)
i=20,1,...,n,
and is determined only up to an additive constant. If this
problem is solved the shear stresses may be derived from it by
multiplying equations (6.57) by G.

In an equivalent way, one may set
g =k + A
and solve the problem

v2k = -2(1+v) (ax+by), 0k/dn = du/ds on c,, i = 0,1,...,n,

the stresses being then given by

Tz = G(ak/ax- du/3y), Tyz = G(3ak/3y + du/ax).
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Consider now the conditions under which the cross sec-
tion can remain plane. In view of (6.52) this would require
g(x,y) = ax + By. The Laplacian of this function being zero,
one concludes immediately that a =0 and b = 0; i.e., the
presence of a shear force necessarily destroys the planeness
of a cross section. The possibility 6 # 0 remains, but its
viability rests on verification of the boundary conditions

X Y gy g3 . = 208 (x2,,2
% 5n + B an % 3s B 9s 8s(ay Bx) 35{2 (x7+y™) }.

To comply, a directrix must have an equation of the form

1 2
79()( +y

2) = ay - Bx + Yo i=20,1,...,n.

The directrices are thus concentric circles, implying that
there can be no more than one cavity. In order that the axes
have their origin at the centroid, moreover, it is necessary
to take o =0 and B = 0, and then g = 0. For a single
circle we have the case of the circular bar in torsion; for

two concentric circles, the case of the circular tube.

6.9. Separation of Solutions

We have formulated the general solution of the problem
of prismatic beams in the context of Saint-Venant's hypotheses.
Because of linearity, the solution may be regarded as a super-
position of several partial solutions. The simplest ones are
those for which there are no shear stresses, i.e., those cor-
responding to vanishing parameters 6, a, and b.

(i) Extension. All the fibers are subjected to the
same normal stress o, = TZ/Q and suffer the same specific

elongation €. The beam is a state of uniaxial stress and the

global stiffness relation is Tz = EQe. Due to Poisson's
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effect there is a transverse contraction given by u = -vex,
Vv = -vey.

(ii) Pure bending. Since the shear forces vanish, the
beam is subjected to constant bending moments and the normal
stress in the fibers is distributed linearly according to the

z

relation o_ = xKx + yKy, where the constant curvatures are

connected with the bending moments by the stiffness equations

Mx = EIxxKx + EIxyKy’ My = EIxny + EInyy.

The absence of shear stresses implies the relations

du/dz = -3w/9dx, ov/dz = -3w/3y,

showing that all fibers remain orthogonal to the cross sec-
tions. As in the case of extension, however, they suffer a

distortion in their plane by Poisson's effect:

1.2 2
u -v 7(x -y )Kx - v xyKy,

Vo= -v xyK + v %(XZ - Yz)Ky~

Although the sections remain plane, this distortion does not
permit consideration of a perfectly clamped end without intro-
ducing a correction to Saint-Venant's solution.

The partial solutions for extension and pure bending
are characterized by the independence of the longitudinal
fibers, in the sense that they exert no force on each other.
On the other hand, tangential interaction among fibers plays

a fundamental role in torsion and in bending accompanied by

shear forces. We will eventually try to separate the contri-

bution of the pure torsion from that of the bending.
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6.10. Pure Torsion:

Pure torsion may be defined unambiguously as the part-
ial solution for which o, = 0, which implies the absence of
bending moments and shear forces.

Therefore, from the kinematic point of view,

Here we replace 6 by & since another contribution to 6
will arise, as we will see, from bending without torsion.
The shear stresses here satisfy the simplified equa-

tions

"
o

(6.44)"
2G8. (6.45)"

div 7

To T
tZ

The resultant of 7 on a cross section will be the twisting
moment C. On the directrices the field obeys the homogene-

ous conditions (6.16) and the simplified circuital conditions

[ 7+ ds = 266Q.,, i =1,2,...,n. (6.46)"
c _

Condition (6.44)', analogous to the incompressibility
condition of two dimensional hydrodynamics, is satisfied by
introducing Prandtl's stress function ©O(x,y), analogous to a

stream function, such that

=Aﬁ =-Aag '
Tz T 68 5 Ty, 7 68 g3 (6.47)

This amounts to setting & = 0 and VY = §o(x,y) in the gen-
eral theory. It follows that the stress function is a solu-

tion of the problem

vlo = -2

(6.49)"

de = 0 on ¢ i=20,1,...,n.

i’
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Because the addition of a constant to © does not alter the

stresses, we may set ©'= 0 on <, and determine the value

o, of © on each interior directrix by the circuital condi-

%9 ds = 20
n

i

tions
J i=1,2,...,n. (6.49)"
c

In order to calculate the twisting moment C, one may
use formula (6.32) to find the moment with respect to the
axis Oz (the resultant force will vanish), obtaining the
stiffness formula

C = GJ® (6.65)
where J is the torsional stiffness constant

J = - I (x 3; ty 3 )dx dy, (6.66)

With the directrices of the cavities traversed in the retro-
grade sense, Green's transformation with ¢ = 0 and ¢ =
32+ yh) yields

n
I (20 + x 3% +y )dxdy = g J o (x 3 x4 y 5X)ds
C;
i

n n
= % aifc.x dy - y dx = -2% 8.,
Equation (6.66) then becomes
n
J=2 JD 0 dxdy + 2 § o0, (6.66)"

This formula suggests the definition of a stress function 8
with values extended to the interiors of the cavities by the

convention

=0 in D, 6= o; in @;, i=1,2,...,n.

Using this convention, we may rewrite (6.66)' as
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J=2 f & dx dy. (6.66)"
. QO
The displacements of pure torsion reduce to

u = u (2)-0,(2)y, v =v (2)+u (2)X, W = pyy-qgx+gy(x,y)
where

uo(z) = qez+u°(0), vo(z) = -pez+vo(0), wo(z) = 9z+re.

We define a point (xF,yF) of the cross section by the rela-
tions

% = 8 yps pg = B xp
The transverse displacements then take the forms
u = uo(O)-yre-ﬁz(y-yF), v = v0(0)+xre+§z(x-xF).

The first two terms on the right hand sides are small rigid
body displacements; the third ones are torsional displacements
by which each section rotates about the point (xF,yF) with-
out deformation in its plane. This point thus becomes a center
of torsion. The pésition of the center of torsion therefore
depends on the values of the rotation parameters (pe,qe) de-
fined by the kinematic support of the beam.

The warping displacement being clearly proportional to
the twist, we introduce the normalized warping function

He(x,y) by the relation

8o (x,y) = BHg(x,y). (6.67)

The notation is consistent, because in equation (6.60) the
functions ¢ and A vanish with a and b. The normalized

warping function thus satisfies the equations
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2
voH, = 0,

(6.68)
il I R NC I} i=0,1

YO 2'35 y on Ci, slyeee, N,

If this Neumann's problem is solved one can also calculate the

stresses from the equations

Tez = GOCHg/3x - y), T = GB(OHy/3y + x). (6.69)

Finally, consider the harmonic conjugate of He

2
zg = 0 + 30 + yh, (6.70)

6

which satisfies boundary conditions of Dirichlet type

z + yz) on ¢

° (6.70)"'
+ yz) +o0; on c., i=1,2,...,n,

VA =

) (x

2

N= N

Z

) (x

and the auxiliary relations

BZe
I gﬁ—d5=0, i=1,2,...,n.
€i
The stresses follow from formulas (6. 69 with the help of the
Cauchy-Riemann equations

aHe/ax = 8Ze/3y, aHe/By = -aze/ax.

By comparing (6.47)' with (6.69) one concludes that

X = -BHe/ay - 30/9x, y = BHe/Qx - 30/9y.

We now calculate the polar moment inertia of the sec-

tion, getting

9H oH
= 2, 2 - 82 82
1, = [ ooty - [ (D" + G haxey

90,2 90,2
+ [D{(gi) + (57) }dxdy  (6.71)

because, by Stokes' transformation,
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oH 9H n
§ 00 _ e 230 v o= - -
ID(s;— Ix  9x ay)dXdY % [c Hg dé = 0.

i

On the other hand, by Green's first formula applied to

© grad ©,
2 2 30
I grad 0 + grad O dxdy = f ov°e dxdy + 2[ 0 3o ds
D D 0 ¢
n
= 2[ 0 dxdy + 2 ) a;; = J. (6.72)
D 1

Substitution of this result in (6.71) yields
BHe 2 BHe 2
Je1, - ID{(’«R‘) v D) axdy, (6.73)

displaying the contribution of warping to the torsional rigid-
ity. It is always negative and therefore the torsion constant
J in Saint-Venant's theory is always less than the polar
moment of inertia. It is equal to it for a circular bar or

tube, wherein the warping vanishes.

6.11. The Center of Torsion for a Fully Constrained Section

By using Weinstein's approximate condition for full

constraint against warping
2 sl
w (x,y,0)dxdy minimum
D

we find here, as a particular case of equations (6.56) with

the interpretation (6.67),

J Hex dxdy
D
(6.74)

—
<
o5 ]
—
1

xy = ID Hey dxdy.

This definition of the center of torsion had already been pro-

posed by Kappus prior to Weinstein.
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6.12. Bending without Torsion

We are concerned here with bending in the presence of
shear forces. At the outset the definition of bending without
torsion seems inevitably bound to involve a convention. In-
deed, from a kinematic viewpoint equation (6.41) shows that
as a consequence of Poisson's effect it would be impossible to
annul the twist in all the fibers. The convention 6 = 0
annuls the twist of the centroidal fiber or, as is more sign-
ificant, the average over the section of the twist of all the

fibers:
amz
ID I dx dy = 0.

Such a definition of bending without torsion was proposed by
Timoshenko and followed by several other authors including
Sokolnikoff, Mindlin, and Salvadori. Its major defect is the
failure to separate the strain energy into parts associated
with bending and pure torsion.

Another way to adopt a convention is to choose as the
center of bending the point in a cross section through which
pass the lines of action of the resultant shear forces.
Saint-Venant himself had chosen to study the case in which
the resultants pass through the centroid (here the origin of
the axes). More logically, however, one could choose the case
in which the center coincides with the center of torsion in the
sense of Kappus and Weinstein. It happens that the last def-
inition of bending without torsion coincides with the defini-
tion proposed by Trefftz, based on the condition that the
strain energy in pure torsion and in bending without torsion
should be uncoupled. There follow certain simplifications

with respect to Timoshenko's definition; the now common center
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of bending and torsion has coordinates independent of Poisson's
ratio and the shear stresses induced by Poisson's effect bé-
comes statically equivalent to zero. Finally, this defini-
tion can be reconciled with the kinematic viewpoint; it annuls
a weighted mean of the twist of the fibers, the weighting func-
tion being none other than Prandtl's stress function.

Since the twist of the fibers here is due only to a

Poisson's effect, we set 6 = vc in (6.41), obtaining

awz/az = v(bx - ay + c) (6.75)

and try later to determine the parameter c so as to uncouple
the strain energies as just discussed.

The equations governing the shear stresses here are
div 7 = -E(ax + by), rot 7 = 2vG(bx - ay + c).

We now introduce a solution of the type (6.47) as proposed by
Weber, but to distinguish from the case of pure torsion,we

replace Y by K. We thus arrive at problem (6.48), i.e.,
v2s = -(ax + by) with 9%/3n = 0 on i i=20,1,...,n,

and the special case of (6.49)

v2K = -2v(bx-ay+c) with dK =0 on c;, i = 0,1,...,n.

By reasoning as before, the boundary conditions become

K =0 on Cos K = Bi on c., i=1,2,...,n. (6.76)

The constants B; are to be determined by the circuital con-
ditions

a—K- = A - A 1
[C T ds Zvni(bxi ay; + c). (6.76)
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The field generated by the potential ¢ will be called
the principal field; that generated by the function K, which
takes account of Poisson's effects, will be the secondary
field. In order to define the secondary field it is neces$s-
ary to determine the parameter c. To this end we calculate
the strain energy density, which according to Clapeyron's in-

terior theorem is given by

Ty ),

Yzx xy 'xy

[N

W= (excx + eyoy + e,0, % Tyzsz T

and which is already reduced by the hypotheses of the semi-

inverse method to

W= %(ezo sz).

2z’ Tyzsz * Tax
By using the constitutive laws (6.18) and (6.20) for an iso-
tropic medium, we obtain for W an expression depending only

on the stresses:

_ 1 2 1 2 2
W=>z0 +3¢ (sz + Tyz). (6.77)
Since o_ = 0 in pure torsion, the first term does not

give rise to any coupling. On the other hand, the shear

stresses are

_p 28, g K, gp 20
T = E gyt Gyt 685
_p 28 g 2K | o520
Tyz ° E 3y G 3x - 69 3

and we obtain the following terms for the energetic coupling

between bending without torsion and pure torsion:

9% 30 9% 90

wr = b (2228 . 3299 ) + & (X 29

9K 36
3x 3% © ).

3y 3y

Stokes' formula
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shows that the contribution of the first term is zero when it
is integrated over the cross section. Except for a factor

G6 the contribution of the second may be written

n
I grad K - grad 6 dxdy = -J Kv20 dxdy + ) f k 22 gs.
D 0 . n

D
i

[of

In view of equations (6.49)', (6.49)", and (6.76) this vanishes
if

n
f K dxdy + § B.Q. = 0. (6.78)
D 1 t?

This is the condition found by Trefftz; it neither determines
the parameter c¢ nor defines bending without torsion except
implicitly.

On the other hand, if one writes (6.78) in the form

n
I grad K + grad © dxdy = -I GVZK dxdy + 2 I 0 %5 ds
D D 0 ’c, °M

i
and uses (6.76) and (6.76)', it becomes (after division by

2v) the equivalent decoupling condition

n
ID 0 (bx - ay + c)dxdy + g a;Q; (bR, - af; + c)

f 9 (bx - ay + c)dxdy = 0. (6.79)
Q

This supplies an explicit value of c¢ from its rearranged
form

cJ = 2a I o y dxdy - 2b ! é x dxdy, (6.80)
Q Q
o o

and also a kinematic interpretation of bending without torsion.
Indeed, it states that the weighted average of the twist of

the fibers as given by (6.75) is annulled:
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W
f in 6 dx dy = 0. (6.81)
Q
o]

Since the weight function is the extended stress functibn, the
average includes the twist of the virtual fibers located in
the cavities. In Timoshenko's definition, on the other hand,
we deal with the ordinary medium and only real fibers. Apart
from its most important property, which is to render additive
the energies of bending and torsion, the definition by Trefftz
of bending without torsion has the following two characteris-
tics which are interesting because of their simplicity:

i) The static equivalence to zero of the secondary

field. Whatever the value of the parameter <c, the shear
forces of the secondary field are zero, because by Stokes'

formula

3K
G [ 3y dxdy = 6 ) I x dK = 0,
D 0 ‘c

3K t
-G I dxdy = G §
D ax 0

By contrast, the twisting moment of the secondary field does

depend on the parameter:

2.2
-G ID(X %% +y %%)dxdy = GJD KVZ(E_%X_)dxdy
n

n
-GJ f K (xdy-ydx) = ZG{I K dxdy + § B.9.}.
0 ’c, D 1!

However when Trefftz' condition (6.78) is satisfied, the ex-

pression on the right-hand side vanishes.

ii) The identity of the center of bending and the

center of torsion. The center of bending (xF,yF) is the

point of the cross section through which pass the lines of

action of the shear forces so as to form a system statically
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equivalent to the shear stress field. Because of the preced-
ing result it is enough to examine the equivalence with the

principal field. The identity of the moments with respect to

the centroid is expressed by

20 3% _
E ID(X 3y " y §§)dXdy = yFTx + XFTy'

By transforming the left hand side by Stokes' formula, using
(6.40) in the other side, and dropping the factor E, we
obtain
n
-g fc.é(xdx + ydy) = a(-yFIxx + XFIxy) + b(-yFIxy + xFIyy)‘
i
It is therefore reasonable to decompose & into its parts

with the parameters a and b

b = a@a + b@b

controlled, according to (6.48), by the equations

vee = -x, 3®a/an 0 on ;s i=20,1,...,n, (6.82)

vie, = -y, 3®b/an 0 on Cyo i=o0,1,...,n. (6.83)

Identification of the coefficients of a and b yields the

following equations for determining the center of bending

n
Yelex - xFIxy = g Ic-éa(x dx + y dy)

n 1 , (6.84)
Yelxy - xFIyy = (2) Ic.%(x dx + y dy).

In showing that the right hand sides are equivalent to
those of equations (6.74) one proves the identity of the cen-
ter of bending and the center of torsion of Weinstein-Kappus.
To this end we multiply the first of equations (6.82) by the

torsional warping function He to obtain
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2 —V-
HeV Qa = xHe

and integrate using Green's second formula to obtain

n
- 2 ) T
JD Hgx dxdy = ID QaV Hy dxdy + g [C.(Qa EHHG Hy T @a)ds.

Finally, in view of (6.67) and the second of equations (6.82)
this becomes
n
I Hox dxdy = ] I o, (x dx + y dy).
D 0 ‘c.
In a similar way one establishes the equivalence of the other
two right hand sides of (6.74) and (6.84).
The equivalencies in question were discovered by Cicala.
Using Timoshenko's definition, he considers our (xF,yF) as
only the principal values of the coordinates of the center of
bending; a secondary part depends on Poisson's ratio.
This is another advantage of Trefftz's definition, which makes
the center of bending and torsion independent of Poisson's ef-
fects.
The determination of the warping due to bending may be
envisaged in several ways. If the potential of the principal

shear stress field has been determined one has

g = 2(1+v)® + H + 2,

and it is enough to recover the harmonic function H with

Neumann's data

2,2 '
oH 9 + 3 2 b,.3 2
W=V 3s X c - %(y +3yx°) + E(X +3xy“)} on Cyo

i=20,1,...,n,
which contributes a supplementary Poisson's effect.

If a sufficiently simple formal solution exists one may
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prefer the transition to the conjugate harmonic function 2
with Dirichlet's data.
One may also seek at once the total warping by its

Poisson's equation with Neumann's boundary data (6.64).

6.13. The Stiffness Relation for the Twist

We have seen that the parameters (a,b) had a kine-
matic interpretation as derivatives of curvatures (6.38) and
an interpretation in terms of shear forces connected by the
stiffness relations (6.40).

We are now in a position'to extend this point of view
to the parameter 6, already defined from a kinematic point
of view by (6.39) as the twist (per unit length) of the cent-
roidal fiber. Superposing the pure torsion and the bending
without torsion gives 6 = 6 + vc, where for (6.65) the part
8 due to pure torsion is connected with the resultant couple
MF of the shear stresses about the center of bending-torsion
(xF,yF) as follows:

(y-yg) Ty, 1dxdy. (6.85)

GJ§ = Mg = ID[(x-xF)tyz,-

The parameter c depends on a and b according to (6.80),

which we rewrite in the form

c=ay, - bxo, (6.86)

defining the point (x4,¥,) by the formulas
Jy, = zf By ax dy, Jx, = zf 8x dx dy. (6.87)
Q Q
We may now rewrite the twist as

awz/az =8 + v(bx - ay + ¢)
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and, with reference to equation (6.79) for bending without

torsion, redefine 6 by the weighted average

J8

n sz .
ZJ 0 55— dx dy. . (6.87)"'
Q Z
o
We thus complete the stiffness relations by

MF/GJ =6 + v(bxo - ayo), (6.88)

which finally allows the interpretation of the three para-
meters in terms of the resultants of the shear stresses about

the center of bending-torsion (xF,yF).

6.14., Total Energy as a Function of the Deformations of the

Fibers
The strain energy density as a function of the strains
is

_ 1 2
W-fEez"'—G(Y
where from (6.51) the specific elongation is

€ =g + xKx(z) + yKy(z)
and, by superposition of torsion and bending without torsion,

the shear strains are

] 20, 0K, 500 20 X
Yz = 2V * 3y 8 Y 2(1+V)ay ax

99
ax’

- 8
By integration over the cross section, it has already been

verified that the contribution of © was uncoupled from that
of & and could be from that of X by a judicious choice of

the parameter c. The contributions of ¢ and K are in

fact themselves uncoupled as Stokes' formula shows:

n
J(B_Qg-r;a&)dxdpgf 8 dK = 0.
D a.
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The energy per unit length thus becomes

. 1l o2 2 2
L = [DW dxdy = ZE(QE + IxxKx + ZIxnyKy + Inyy)

+ 2G(1+v)zf gradd.grad® dxdy + %GI gradK-gradK dxdy
D D

+

N =

G@z f grad © - grad © dxdy.
D

The interpretation of this formula in terms of deformations
of the fibers appeals to the decomposition of ¢ into its
parts controlled by equations (6.82) and (6.83) and the analog-

ous decomposition K = aKa + be with

VZKa =Y Yqr VZKb = -X+x in D;
dKa =0, de =0, onc,, i-= 0,1, ,N;
oK, R 3K, .
JC o 95 = 95 057y5), Jc an 95 = 93 (X *X5),
i i

i=1,2,...,n. (6.89)

All the stress functions have thus received definitions of a
purely geometric nature.

With reference to the result (6.72) and the new defini-

tions

sxx = 4(1+v)ZIDgradéa-graandxdy + IDgrad Ka°grad Ka dxdy,
Sxy = 4(1+v)ZIDgradGa-gradedxdy + IDgrad Ka'grad Ky dxdy,
Syy . 4(1+v)ZIDgrade'gradedXdY + IDgrad Ky -grad Ky dxdy,

(6.90)
several variants of which are accessible by Green's transforma-

tions, the energy per unit length becomes

L=ZSfae? « 1 @)% + 21

. o 32
XX 0 xyuovo * Iyycvo) ]

2425 GW. + S (V)2 + 3877, (6.91)

G o
78k (o) Xy oo yy - o
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The first term is the energy of extension with € as the
specific elongation of the centoidal fiber; the following
three represent an energy of bending generated by the curva-
tures of this fiber; we find next a group of threé terms due
to the variations of these curvatures and, finally, the term

of the energy of torsion.

6.15. Total Energy as a Function of Generalized Forces

It is sometimes useful to replace deformations by gen-
eralized forces, such as the axial force, shear force, bending
moment, and twisting moment, with the help of formulas such
as (6.25) or (6.26) and (6.31)

For the twisting moment we use (6.85) with MF as the
twisting moment with respect to the axis of bending-torsion.
To keep>the result simple we take the case in which the axes
have been directed so as to annul the product of inertia I

xy”
Then we have the complementary form for the energy per unit

length
_1 2 1 2 1 2
Mo o o Mtz Yy
Yy (6.92)
T T, T T
1 X 2 X y 2 1,2
*glSx (77 + 28, T— + S (TL) + 3 Mg].
2G " xx Ixx xy Iy Iyy Yy vy J F

6.16. The Generalized Constitutive Equations for Bending and

Torsion of Beams

A development of the energy leading to a more funda-
mental interpretation starts from Clapeyron's theorem with
the strains replaced by their expressions as derivatives of

displacements; in the present case this yields

_1 oW du oW oV ow
L=z fD[Gz TS I L Tyz(FE * 37)]dxdy.
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Always keeping Ixy = 0 to simplify the exposition, we ex-

press the stresses as functions of the generalized forces:

Tz Mx M
oz=v+1__x+TLy, (6.93)
XX yy

. ~ Tx [3@ 1 aKa . T. faQb . 1 BKb ?E 30
Xz Ixx X 2(1+v) 3y iyy 2(1+v) 3y J 3y’

T = Ty 2% 1 aKa] . T fBQb b] R Mp 30

yz <x L2 2(1+v) 3x Tyy i1+vi F] T i’
(6.94)

and perform the integrations. A certain number of terms dis-

appear by virtue of Stokes' formulas such as

30 3w _ 30 3w n _
J (,r 5% - 5% ay)dxd [2) L wde =0,

i
and similar ones with Ka or Kb instead of ©. The non-
vanishing terms give rise to the definitions of generalized -

displacements. For example, the development of the term in

9, %% suggests the definitions

QW(z) = J w dxdy (6.95)
D
for a mean longitudinal displacement W(z), and
I a(z) = I wx dxdy, 1 B(z) = I wy dxdy (6.96)
X D Yy D

for the mean rotations a(z) and B(z) of the cross sections.
These definitions reduce to identities when the section re-
mains plane:

=W+ xa + yB.

By using the equations (6.82) and (6.83) one obtains

the equivalent definitions for the mean rotations
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2

Qa dxdy I grad w * grad e, dxdy

Ixxa(z) = -JD wv .

(6.96)"

-J wVZQb dxdy
D

IyyB(z) IDgrad w - grad @b dxdy.

The mean rotations occur here as weighted averages of the
local rotation vector grad w, and are precisely those which

allow the development of the terms Tyz aw/3x and Ty2 ow/ady.

Finally, the development of the terms in Txz du/dz

and Tyz av/3z suggests the introduction of the weighted

means U(z) and V(z) of the transverse displacements:

BQa 1 BKa 3@3 1 aKa
I,Uz) = ID[(gi— + ATl gy—Ju + (57— T Ty 5;—)v]dxdy,
8¢b 1 8Kb 3¢b 1 BKb
Iny(Z) = ID[(FX— + m 'ay_)u + (V - m W)v]dxdy.
(6.97)
The properties
3o ad 9o
a a b
— dxdy = I__, I ~—= dxdy = I — dxdy = I__,
ID ax XY XX p oY Y D ax XY Xy
8¢b
fD 3y dxdy = I, (6.98)

result naturally from the application of Green's first formula
to the pairs of functions (x,@a), (y,@a), (x,@b), and (y,éb).

Similarly, the properties

3Ka BKa aKb
ID % dxdy =0, ID -a—y— dxdy =0, ID YFa dxdy =0,
BKb
I 3y dxdy = 0, (6.98)"
D

result from Stokes' formula applied to the analogous pairs
(x,Ka), (y,Ka), (x,Kb), and (y,Kb), and are also contained

implicitly in the equivalence to zero of the secondary shear
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stress field. As a result the definitions (6.97) reduce to
identities if u and Vv are independent of x and vy.
It remains to interpret the generalized displacement

w(z) associated with the twisting moment MF:

90 90 v Ju
= 951 - LEdxdy = | o(EY - Yy4gxd
Ju(z) fncayu =v)dxdy fD (5% = 5y)dxdy

n
3 3
+ g I 0 (u 5% - v 3§)ds

C.
1

n o

= zf ow, dxdy - ) a.f udx + v dy = zf Ow, dxdy. (6.98)
D 11! ¢y 2,

This displacement uses the same weighting for the rotation of
the fibers as that already used to weight their twist. Once

again this definition reduces to an identity if w, is inde-
pendent of x and vy.

The energy per unit length now takes the form

1. aw da ds du av dw
L=zl m*MNa My Izt Tl )t Ty(8+ ) Mp )

(6.99)
This is a canonicai form involving a sum of products of conju-
gate variables. We may compare it with the complementary
form (6.92). The latter being quadratic and homogeneous in
the generalized forces, by Euler's theorem it can assume the
form

B0,y 3,y A, 3 g
aMx

Q

1 A aA
A= 3IT, oT, X y aM X y 3T * Moo 1.

y x y F
By identification with (6.99), this yields the generalized

Q
L

constitutive equations of Saint-Venant's theory

dw _ sA  _
& "o T (6.100)
do oA 1 dg _ dA 1 '
= 9 = M =932 = _—-_ M (6.100)
dz aMx EIxx x’ dz BMy EIyy Yy’
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s..T. 8
du _ 34 _ “xx “x X
L A i i i e
xx 84
S T ST
dv _ 834 _ "xy x
B+ I = a7 _GZ;2_+_EZ;2Z'_,_ (6.100)"
Y xx Yy
dw _ A _ 1
do 2 . Ly (6.100)"

The left-hand sides are the generalized deformations
conjugate to the corresponding generalized forces. In parti-
cular, a + dU/dz and B + dV/dz are the generalized deforma-
tions due to the shear forces; by construction, they are

weighted means of shear strains:

RO T [ (AP S
XX dz D oX Z(1+) 3y ' Vxz

BQa 1 BKa
v Gyt 7y ax ) Yy JdxdY
9o 3K (6.101)
dav, _ b 1 b
Iy *+ 3 = I[(W Y Ty 3y D Vxe

D
aob 1 aKb
v Gy T 7y wx ) Yy J XY
It is interesing to verify that the integrals in
(6.101) vanish when the shear strains are produced only by a
state of pure torsion; by using equations (6.89) one can re-

duce them to expressions proportional to

[ 8oyaxay  ana [ Beexgaxey
2, o e o

which clearly vanish by virtue of (6.87).

6.17. One-Dimensional Formulation of Bending and Torsion of Beams

In terms of the mean displacements U(z), V(z), W(z)
and the mean rotations a(z), B(z), w(z), the constitutive

equations and the equilibrium equations take the form of
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ordinary differential equations in the variable z. This pre-
sentation of Saint-Venant's theory should not obscure the
fact that it is not an exact solution of the equations of
elasticity unless the shear forces and the twisting moment are
constant. ‘Moreover, the stresses in the terminal sections
should vary as prescribed by equation (6.23) for the axial
stress and by the solutions of the problems governing the dis-
tribution of the shear stresses. Also, each section should be

free to warp and to contract in its own plane.

These limitations are severe for those technical appli-
cations which entail non-vanishing tractions on the lateral
surfaces and kinematic constraints or less restrictive statics
at the terminal sections. It is possible to give Saint-Venant's
theory the extensions necessary to allow variable shear forces
and twisting moment while maintaining an exact solution. As
Michell has shown, such an extension brings into play a con-
nection between the problems of the harmonic functions of tor-
sion and bending, as encountered in this chapter, and the
problems of the biharmonic functions of states of plane stress.
It should therefore preferably be started after a study of
the latter. In spite of its complexity, this more general
theory still does not allow a relaxation of the terminal con-
straints. It is customary here to appeal to Saint-Venant's
principle, according to which every perturbation of the trac-
tion distribution on a terminal sectibn, being necessarily
realized by the addition of a distribution statically equival-
ent to zero, tends to disappear at a distance from the sec-
tion of the same order of magnitude as the transverse dimen-

sions.
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An approximate theory results by combining the gen-
eralized constitutive equations (6.100) with the more general

equations of equilibrium

de/dz = Tx’ dMy/dz = Ty’ de/dz =0,

de/dz *p, = 0, dTy/dz + py =0, dMF/dz +m=0

which contain the distributed loads px(z), py(z), and the
distributed twisting moment m(z). The justification of the
theory relies on applications of the variational principles
of the theory of elasticity and accordingly will not be dis-
cussed at this time. Such a one-dimensional formulation has
the advantage of simple boundary conditions. A clamped end
at z = 0, for example, is represented by the boundary condi-

tions

u(o) = 0, v(0) = 0, W(0) = 0, a(0) = 0, B(0) = 0, w(0) = O.

The strain energy per unit length has already been presented
in its complementary form (6.92) and in Clapeyron's form
(6.99). It also clearly has a form directly expressed in

terms of the generalized deformations

_1 dw, 2 1 do, 2 1 dB.2 1 dw, 2

G 2 du,2 . .2 av, 2

M r— [Ixxsyy(a+ ) Inyxx(B + 12
2(S..S.. -S8%)
xx“yy °xy

-l erlys v e 1. (6.101)

XX yy® Xy
In certain conditions, which we will analyze, the strain
energy can be simplified further by suppressing the part re-
lating to deformations caused by shear forces. Let us study

the case of a beam which is clamped at the section z = 0
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and subjected by a shear force Tx at the other end z = 2.
By integration of the first of the equilibrium equations
(6.28) we find

Mx = Tx(z - 2)

and then, by integration of the deformations,

3
T T % S..T. %
1 .2 X XX X
a(z) = gp— (5 27 - 22) UR) = + .
E XX 2 ’ 3EIxx GI)Z(x

The beam will be called Zong if the second term in
U(%) 1is small compared with the first, that is to say, if the
transverse displacement is due mainly to the curvature of the
fibers and not to the deformation caused by shear forces.

This will hold if in turn

6Sxx(1+v) 6Sxx(1+v) 1/2
__nz___<<1 or 2>>_1—_

XX XX

When a beam is long with respect to transverse dimensions we
may thus neglect the deformations caused by the shear forces
and write a = -dU/dz, B = -dV/dz, which amounts to express-
ing an average orthogonality of the cross sections with res-
pect to the fibers. The simplified energy is then a function

of the mean curvatures:

2 2
_1.odWy2 , 1. d%us2 1 d*v.2 | 1, dw, 2
L= 2B+ 2B )+ 2B, O+ a8 (610

6.18. Applications

As we have already seen, practical determination of the
stress functions for torsion and bending involves the solu-
tion of elliptic problems of Poisson or Laplace type with
boundary data of Dirichlet or Neumann type. The current pre-

ference is more and more for a purely numerical solution,
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starting with either a finite difference scheme or a collec-
tion of finite elements. The variational principles control-
ling the functions being sought are therefore very important
and may be presented as special cases of the general varia-
tional principles of linear elasticity.

It is still necessary to mention the existence of numer-
ous analogies with other physical phenomena which may be under-
stood experimentally, such as the deflection of a membrane or
of a free or pressurized fluid interface, or the electric
potential field in a dielectric enclosure. On this subject
it is helpful to consult the chapter on analogies by Mindlin
and Salvadori in the book by Heteny<i.

In the following examples, the method used will be

strictly inverse: one starts with simple analytic solutions

of Laplace's equation and studies the geometric forms which

allow them to solve the proposed problem.

A. Stress function for torsion of the elliptic bar. Here

we start with the fact that the warping function He(x,y) is
the harmonic conjugate of Ze(x,y) = 0(x,y) + %(x2+y2);
Simple solutions are then furnished by polynomials in the com-

plex variable x + iy, of which a typical term will be

Hg + iZq = (p, + iqp)(x + iy)"

with
-1 -2.2 ' -
Hy = Pm(xm - EL%T_l XT y©oee) - qm(mxm ly toeer)
lg = Pm(mxm-ly L I qm(xm - Ei%fll xm~2y2"')'

Collecting for example the contributions of q, and a5 the

stress function

) .
0 =49y *+ q(x" - ) -.%-(x2 +yh)
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takes the value zero on the ellipse xz/a2 + yz/b2 =1 pro-

vided we choose

2.2 2 .2
q. = a’b 2q, = a“-b

22’ —T—Z‘o
° a“+b z a“+b

By its construction, the function

2,2 2 2
p=2ab a - x* _y )
az+b2 ;7 ;7

is regular in the interior of the ellipse, vanishes on its
boundary, and automatically satisfies (6.49)'; it is therefore
Prandtl's stress function for the torsion of a bar with ellip-
tic section. The associated warping function is, up to a

constant,
H, = - ié—l—h; Xy
o a“ + b
The shear stresses follow by partial differentiation of either

® or H,:

0
T oH 2
X2 30 ] 2a
D — = —y=-
G6 oy X az+b2 ’
I T R
G o Y a“+b '

With a > b the stress with greatest absolute value is Tz
at y = tb.

The torsional stiffness constant requires the eval-
uation of the double integral of Prandtl's function over the

section. By putting

pa cos 8, y = pb sin 6, g(§ e) = abp,
’

b
n

we find

2 1 3.3 4 3.3

2a"b 2 ma“b

J = ZI def © abp dp = 7—2-21TJ (1-p7)pdp = -7 -
0 a“+b 0 a“+b
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By symmetry, the center of torsion is located at the
origin.

The warping function is single-valued and regular in
the entire interior of the ellipse. 1In order to transform the
elliptic bar into an elliptic tube, therefore, it suffices to
take away the material contained in the curve with equation
© = o, a positive constant to be chosen. This curve is an-
other ellipse xz/m2 + yz/nZ =1 with

2.2

m_n 2,a’b
—===1qu < 1 o = (l-u )7_2. .
a b ’ a“+b

The extended Prandtl's function 8 is accordingly one with

the value
azb2

2
(1 - 07)
a“+b

in the region u < p <1, and u in the cavity. For the tor-

sional stiffness of the elliptic tube we easily find

3.3

A b 4

J=2[0dxdy=—m“a 1 - uh.
Q a“+b

This result shows clearly that a significant portion of the
central region may be removed without appreciably decreasing
the torsional stiffness.

B. Stress functions for torsion of the circular bar and

tube. It is enough to set b = a in the preceding results.
The level curves of resultant shear stress are circles cen-
tered at the origin. The most notable occurrence is the dis-
appearance of warping. As shown earlier, the circular bar and
tube are the only prismatic objects with a state of torsion
compatible with rigid terminal constraint.

C. Stress functions with poles. In the expression for

He + iZe it is possible to have negative powers of (x+iy)
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or, more generally,'of (x-xo) + i(y-yo), provided that the
pole at x = Xg» ¥ =Y, falls outside the elastic region.
The pole may be located outside the directrix c, or inside
a cavity. The typical contribution of a simple pole at the

origin is

P, *+ iq_ (p_,+iq_,) (x-iy)
Hy + iZ4 = %x+1 . e
% xley

Consider for example the case of a stress function carrying

the contribution of a simple pole at x = a, y = 0 and an-

other at x = b, y = 0:

o = p(x-3a) . _q(x-b)
(x-a)2+yz (x-b)2+y

7 - % (x2+y2) + hx + k.

We normalize the disposable parameters a,b,p,q,h and k by

requiring that © vanish on a circle x2+y2 = rz. With y2
replaced by rz-xz, the function
p(x-a) , _9q(x-b) _ % 2+ hx + k

r2+a -2ax r2+b2-2bx
should vanish idenfically. This implies notably the condi-
tion abh = 0, resulting from the annihilation of the term in
x3 in the numerator after reducing to a common denominator.
There is no real distinction between the possibilities a = 0
or b =0 (since either would place one pole at the origin)
but the alternative h = 0 must separately be taken under
consideration. ’

If b = 0, one infers from the vanishing of coeffici-

ents of the xz, X, and constant terms, that
p = a(2k-t%), q = -hr?, (2k-r?)(a-r?) = 0.

Suppose first that k = r2/2, which implies that p =

0.



186 6. EXTENSION, BENDING AND TORSION OF PRISMATIC BEAMS

Then there is only the pole at the origin. The stress func-

tion
2
0 = -hr7x _ %(xz-t-yz) + hx + % 'r2
x“+y ‘
vanishes not only on the circle x2+y2 = rz, but also on the

circle (x-h)2 + yz = hz, and represents that of a shaft of

radius h carrying a circular indentation of radius r cen-
tered on its circumference. (The cross section is similar to
that of a shaft with key.) Up to a constant, the warping

function is

rl
H = (1 = 2_2-)}1)’.

Figure 6.6
Second, suppose that a = r. The stress function be-

comes
o - r(2k-t?) (x-1) _ hrix
(x-r)2 + yz x2+>'

v %(xzfyz) + hx + k

2 1,.2,..2
k-r°+xr- 7(x +y9) . hx }
2 x2+y2

2,22

This vanishes not only on x2+y2=rz, but also on the curve

with equation
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2
k-r°/2 hx _
7t 72 720

. % + .
(x-1)°“+y x“+y

For h = 0 one loses the pole at the origin, and the latter

curve becomes

2 2

(x-r)2 + y® =2k - r°,

which is a circle centered at the remaining pole. It forms
a key notch in a shaft of radius r centered at the origin
and the solution is thus not essentially new.
On the other hand, by choosing
k = r2 - % hr

one loses no pole and the function again vanishes on the two

circles x2+yz - 2rx = 0 (centered at the pole x = r and

passing through the pole at the origin), and (x-h)2 + yz =
h(h-r) (centered at x = h).
As regions excluding the poles one may find a circle

with key notch centered at an interior point,

Figure 6.7
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a curvilinear triangle,

|

| |
| |
|

Figure 6.8

or a portion of an eccentric annulus.
y

|
(SR

Figure 6.9
Now instead of b = 0 we study now the situation when

h = 0. The remaining conditions that the function

0 = —p(x-a) . _ q(x-b)
(x-a)2ey? by Py

1 2
2'7(X+y2)+k

should vanish on the circle x2+y2 = rz reduce to a system
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of homogeneous linear equations in the unknowns p, q, and
A=k - r?/2:

-2bp - 2aq + 4abx = 0,

(r2+b2+2ab)p + (r’+al+2ab)q - [2b(rl+a®)+2a(r’+b®)]A = 0,

- a(r?+bd)p - b(rl+a®)q + (rP+a®) (r2+b)2 = 0.
Evaluation of the determinant yields
A = 2(a-b) (a%-1%) (b%-12) (r2-ab).

In order to avoid the preceding cases and to find poles not
located on the base circle, we make the equations compatible

by choosing rZ = ab. Then one finds

p = ai, q = ba, k = % re o+ A,

It remains to be seen on which other loci the function

a(x-a) + b (x-b) ]+ 1 2 2

2
0 = A[1 + F(r® - x" - y9)
x-a)ley?t xeb) By 2

vanishes or takes a constant value, say a. This amounts to

studying the equation

2. 2
2,02 2.f A(x"+y“)+ab-(a+b)x) _ 1] _
(x“+y“-r7) St = a.
{[(x-a)2+y21[(x-b)2+y21 7)

One would expect, for example, that this equation would hold
approximately on a small circle (x-a)2 +'y2 = ez excluding
the pole so as to obtain the stress function for a shaft
pierced by a small, off-center hole. Substituting for y2

yields the expressions
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xz + yz - r2 = €2 - a2 - r2 + 2ax,

x2 + yz + ab - (a+b)x = ez - a2 + 2ax + ab - (a+b)x,

(x-b)2 + yz = ez - a2 + 2ax + b2 - 2bx.

If € is small compared with (b-a) one may neglect the
terms in ez and the above respectively reduce to
-a(a+b-2x), (b-a)(a-x), (b-a) (a+b-2x).

It is thus necessary to satisfy the equation

A(a-x) 11 _ _ ar,, . a - _
-a(a+b-2x) [m - -] = ?(a x) + 5(a+b-2x) = a

which implies that A = € and o = a(b-a)/a.

Figure 6.10

At the point x = a + €, y = 0 the shear stress, neglecting
terms in ez, is

ryz = GO(2a + ¢€).

By comparison, without the hole, the value there is
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Tyz = Go(a + €).

D. Torsion of a triangular bar.

Figure 6.11

Let

rcos ¢ =71 cos(e-ei) = X cos ei + y sin ei = a

be the equation of the ith

side of a triangle, situated at a
distance a from the origin with its normal making an angle
ei with the x-axis. If the origin is chosen to be equidis-
tant from the three sides, then the function

3 .

A @I (x cos 6. + y sin 6. - a)

R i i

i=1
vanishes on the boundary; we study under what conditions it
could become the torsion function of that bar. Without loss

of generality 91 = 0 and the expanded product is

3 2. . 2 . .
Alx cosezcose3 + X y51n(02+93) + xy“sinb,sinb,
- axz(cosez+coses+cosezcoses) - ayzsinezsine3

- axy(sin92+sin6 +sin(02+93)) + azy(sin92+sin93)

3

+ azx(1+cosez+coses) - al

1.
In order to be a stress function this expression should be of
the form Ze(x,y) - (x2+y2)/2, where Ze(x,y) is harmonic.

It is thus necessary to recover the harmonic combinations
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x3 - 3xy2 and y3 - 3x2y, which require, respectively,
sin ezsin 93 = -3 cos ezcos 63 or tan eztan 93 = -3,
sin(e1 + ez) =0,

and impose the angles 92 = 120° and 93 = 240°. The section

must therefore be an equilateral triangle. Then we have

% A(x3 - Sxyz) + % Aa(x2 + yz) - Aas.

The desired form also requires A = -2/3a.

Definitively, then, the stress function is

1.3 2 1,.2 2 2 .2
0 = - EZ(X - 3xy®) - 7(x +y7) + za.
Since
(x+iy)3 = x3 - 3xy2 + i(3XY2 - YS)

the normalized warping function is, up to a constant,

H = 206xy% - y%)

The torsional stiffness constant is J = 9 %g a4.

E. Torsion of a rectangular bar. In this case the bound-

aries of the section are chosen as x = *a and y = #tb. In
order to treat this problem by development in a series of
characteristic functions we endeavor to formulate it in such
a way that the partial differential equation is homogeneous

with separable variables and a pair of boundary conditions
’ 2 2

is homogeneous. For example, if © = M + a“ - x“ then the
function M should satisfy Laplace's equation VZM =0

and should vanish for x = a. On the other hand, it should
assume the values M = xz - a2 at y =t b,

By separation of variables, the solution of type

M = f(x)g(y) of Laplace's equation reduces to that of the
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differential equations

2

2
1d°f _14d % 2
- [ J—— =a
£ dx g dy
where o is a constant. The problem being invariant under

the interchanges of x and -x and of y and -y, the solu-
tion should have the same properties; therefore the solutions
of the differential equations to be kept are respectively
cos aox and cosh ay.

The choice of the sign of the separation constant az
is now justified by the fact that it allows meeting the bound-

ary conditions at x = *a by choosing «a = nv/2, n = 1,3,

S5,... . The solution of the problem thus takes the form
= or nm
M= ) g A, cos 7= x cosh 7= y.
’ 3.

The coefficients An are to be determined by the boundary

conditions for y = tb:

2 2 _ nrb nmx
x“ - a“ = 1‘§ (An cosh 7;—) cos = .
,3...

The cosine functions being orthogonal in the interval
(-wv/2, m/2), the coefficients may be found by Fourier's method
of multiplying by cos(mmx/2a) and integrating from -a to
a. The result is
n+l
7 32a%

An cosh %EE = (-1) ’
(nm)

whence the torsion function becomes

n+l nw
—_— 2 cosh =— y
0 =a%-x%+ I (-1 z 322 7 izb cos %% X.
1,3... (nm)~ cosh 22

By interchanging in this formula the roles of x and vy, and
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a and b, one obtains a similar expansion.
By adding %(x2+y2) to this formula, we obtain the
harmonic conjugate of the warping function. The warping func-

tion itself then reads

ol ,.2 sinn Xy
H, = xy + ) (-1) 32a Za sin AT x,
b 1,3 (nw)srcosh nmb 2a
90 e 7a

The shear stress is greatest at the midpoint of a long side.

Thus, if b > a, with x = a and y = 0,

T
16a 1

(_E) = 2a - z .

G6 “max 1,3... (mr)2 cosh EEE

The torsional stiffness constant is

3 1024 ) 1 ¢ann 07b
5 a '

8
J = = ba
3 ™ 1,3... n5 z

F. Bending of a circular bar. By symmetry, a

T 10000
100

300
30
3

PRINCIPAL FIELD STATE OF DOUBLE TORSION
OF THE SECONDARY FIELD

Figure 6.12
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circular bar has Ixy'= 0 and c = 0 whatever the orienta-
tion of the axes issuing from the origin of the circle of
radius R. It is thus sufficient to consider the case of a
shear force along Oy, when a =0 and b = Ty/Iyy’ The

bending function of the principal field solves the problem

V2® = -by with 99/9r = 0 for r = R.

With ¢ = -by3/6 + M we have

2 _ con OM _ 1.2 . _1.°2 .3 .
V' = 0 with 5T 3 by“sin 86 = 7 bR"sin"6 for r = R.
Since 4 sinse = 3 sin 6 - sin 30, we have an indication of

the powers of x + iy = re1e to be chosen for the harmonic

function M. With p and q real, we use

M= Im(prele + qr3 e31e) = pr sin 6 + qrssin 30,

Q

—% = p sin 6 + Sqrzsin 30.

By comparison at the limit r =R, p = 3bR2/8 and q = -b/24.
After reduction the bending function of the principal field

is thus

]

§ b3R%-r?)r sin 0 = 3 b(3RE-x-yh)y.

The trajectories of the stresses, the curves everywhere
tangent to the stresses of the principal field, satisfy the

differential equation

L a0 _
de-wdx—o

which here becomes

2 -’Syz)dx = 0.

4

2xy dy + (3R2 - X

With an integrating factor of x ° we find as trajectories
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the curves
xz + yz - R2 + kx¥ =0

where k is a constant. The curves all pass through the
points x = 0, y = %R, where they have horizontal tangents.
For the bending function V¥ of the secondary field, we

use relations between the harmonic function

Z=VY+pus=yYH+ %vb(x3 + Sxyz),

and its conjugate H, which at r = R must satisfy
1 2 . .
3 Cr38 -7 vbR"(-sin 6 + sin 36).

For H we therefore choose a harmonic function of the same

type as M. After the identifying calculations we have

H = ;L-vb(-3R2r sin 6 + rssin 39)

12
and, therefore,
Z = %5 vb(SRzr cos 6 - rscos 38),
Y = %vb(Rz - rz)r cos § = %\)b(R2 - x? - yz)x.

The stress trajectories VY = const. show a state of double
torsion with the limit points y = 0, x = #R/V/3. The problem

of warping is thus solved with

2

g = H+ 2010v)e + 2wby® = I (3R% - <% - yHy + Tub RYy.

G. Bending of a circular tube. The boundary conditions

for the function M are now

%g = % szsinse for r = R, the exterior circle,
%% = % bpzsinse for 1T = p, the interior circle.
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Since the origin is not part of the region D, a pole there is

permissible. We set

M = Im(pre19+qr3e310 + mrlet8 nr-se_31e)

with p, q, m, and n real, or

3

M = pr sin 6 + qrssin 36 - mr-lsin 8 - nr “sin 36.

The boundary conditions determine the parameters:

3b 2 2
3R+ 0%, q=- 7%. m= - pR, n=0.

The principal bending function then becomes

252

¢ = %%[9(R2+02)rsin 6 - rssin 30 + 9 p,f’ sin 8 - 4r

3

sin>0]
2.2
2
+ 3 &z_R_Q-]y.

2 2
= 2rsRPeo?) - <% -y
x“+y
An analogous procedure for H yields

H=—4 ['(R2+p2)rsin 0 + %rzsinSG - RZOZ sig e]

RZpZ

X +y

2 2
B LRI % y - Iy

and, for the conjugate function,

which vanishes on each of the boundary circles.

The warping is

2.2
b
g = 30T v 3% - xP -yt Ry e 2wt otk By
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H. Bending of a rectangular bar. The conditions of

symmetry are the same as for the circular bar. The bending
function for the principal field is simply

o = b(-y3 + 3h2y)

o=

which satisfies the conditions

2p = -by, 3 . 0 for x = ta, CL 0 for y = th.

v 9x y

Indeed 293%/3x 0 and for the principal field we have

_ _1 2 .2
Tz =0 Ty, T 7BV -y

).

For the secondary field, for example, we must find the

harmonic function H such that

oH _ 3

3 —% = vb xy for x = :a,
3H _ _ 8w _ _ 1 2 2 B

W = % 3 vb(x™ + y ) for Yy th.

Let us try to render one of the two boundary conditions homo-
geneous and the other well-conditioned from the viewpoint of
development in a series of characteristic functions, by add-

ing to H a particular harmonic function. With

1

H=-g vb(y3 - 3yx2 + 6a2y) + M

the harmonic function M should meet the conditions

3M= = *
X 0 for x = #a,

2

oM 2
3y vb(a® - x

) for y = th.
The solution of this problem is similar to that for

Prandtl's stress function. M should be even in x and odd in

y; a solution with variables separated is thus of the type
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cos ax sinh ay. The first boundary condition requires

sin oa = 0, whence o =m m/a, m = 0,1,2,..

sider the series
s T
— = A +2A coshm_ycosm_
m a a

The second boundary condition requires

+ 7 A cosh Eﬂhcos %g X = vb(a?

., and we con-

X.

2
x");

by comparison with the expansion of vb(az-xz) we obtain

2 2 mrh
A = zvba®; A cosh — = 4vba
o 3 m a (mm)

By integrating the series with respect to

the first boundary condition we obtain, up

2 (-n™1

m=1,2,... .

y and again using

to a constant,

o . .. m+l sinh LS y
M= % vbazy + 4\)ba3 ) 1) 3 ;;h cos %} X,
1 (mm) cosh 2
m+l sinh —/ Y
H = - 2vb(y>-3yx’+2a’y) + 4vba® 3 (1) m;; cos BT .
1 (mw) cosh — a
One may proceed in the same way for the function Z.
Write

Z = %vb(Zazx - x3 + 3xy2) +

so that the function N remains harmonic.
the rectangle Z must equal yu, because

Thus one finds that

N

On the sides of

¥ +vanishes there.

N=0 on x = ta, N-= % va(xz-az) on y = th.

Now N is odd in x and even in 1y, whence

mm

N = A cosh ——y sin 2 X

=3 8



200 6. EXTENSION, BENDING AND TORSION OF PRISMATIC BEAMS

For y = *h this should correspond to the Fourier series for

% va(xz-az). After calculating the coefficients we find

. mm
siln — X.
a

® mr
7 (-1)™ cosh 2 7

mmh

Z = %vb(Zazx - x5 3xy2) + 4vba3 3
1 (mm)~ cosh -

It is easy to verify that these functions H and Z satisfy
the Cauchy-Riemann equations.

The secondary bending function is

3 .M
R sin ?F X.
cosh -

(-1™ cosh %} y
(

¥ =2 - u=tubx(alx?) + avba -

=~ 8

mm)

It always gives the stress trajectorires a configuration of
double torsion, symmetric with respect to the plane x = 0,

on which it also vanishes.



Chapter 7 _
Plane Stress and Plane Strain

The plane problems to be discussed in this chapter
occur as exact or approximate solutions of certain three-
dimensional problems in the theory of elasticity. For iso-
tropic materials these solutions may be expressed in terms of
biharmonic functions of two variables. The use of functions
of the corresponding complex variable is clearly indicated,
because of the ease with which the solutions can thereby be

formed and manipulated.

7.1. Lemmas for the Integration of Partial Differential

Equations in Complex Form

Let

i (7.1)

_ 9
8= % ay

be a complex partial differential operator, and

P N
3 = x * i 3y (7.2)

the conjugate complex operator. Then for Laplace's operator

we have

R e R LR LY (7.3)

201
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Now let
£(2) = f(x+iy) = p(x,y) + iq(x,y)

be an analytic function of the complex variable . We know
that its real part p(x,y) and imaginary part q(x,y) are

harmonic and satisfy the Cauchy-Riemann equations

op/9x = 9q/9y, op/dy = -9q/3x. (7.4)
We shall also wish to consider the conjugate analytic func-
tion
£(2) = plx,y) - ia(x,y).
By virtue of the Cauchy-Riemann equations the deriva-
tive of the analytic function may take one or another of the

following forms:

%Ef'(;)=%¥+iﬂ=aﬁ+iajs=al-i?£=ai—i_82.

It follows that
£'(z) = 9p = iaq,

and consequently that

of
of

2£' (g, (7.5)
0. (7.6)

3(p*iq)

a(p-iq)
More generally, if f and g are two analytic functions,
A(gf) = 2gf'. : (7.7)

Now consider the inverse problem: to find the general
integral of

dh = 2gf!' (7.8)

where the right hand side is given. We find



7.1. Complex Partial Differential Equations 203

h=3gf +% (7.9)

where k 1is an arbitrary analytic function; indeed; the first
term is a particular solution because of (7.7), and by (7.6)
the second is the general solution with vanishing right-hand

side. If h = a + ib then
dh = 3(a+ib) = (%a/3x + 3b/3y) + i(3db/3x - 3a/dy),

and we see that the problem (7.8) consisted in finding a two-
dimensional vector field with specified divergence and curl.

If both vanish, then

ab/3x = da/dy, 39b/dy = -da/dx

and the Cauchy-Riemann equations show that b + ia 1is an
analytic function of r. Thus b and a will be conjugate
harmonic functions and a+ib = i(b-ia) the conjugate of an
analytic function. When the data for the divergence and the
curl do not vanish, if only they are analytic they may be ex-
panded into Taylor'svseries which converge (perhaps in a re-

stricted region), and the substitution

x=20+T), y=-20¢-7)
puts them into the form of a sum of terms of the type appear-
ing in the right-hand side of (7.8).
Now suppose the unknown h 1is required to be real.
In this case the stated problem requires the determination of
h from the data of its two partial derivatives 98h/dx and
dh/dy. Because 0ddh = J(2gf') = v’h must be real, no choice

of the function Xk will cause h to be real unless the

data satisfy at the outset the integrability condition”

*
Editor's note: In the notation ¥', the derivative is to be
taken before the complex conjugate.
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Im 5(2gf') = -Im 3(2gf') = -4 Im(g'F') = 0.

This requires g' = af' where o 1is a real constant, so
that, up to a constant, the particular integral is ff and

is real.

7.2. The Structure of a Biharmonic Function

Let h be a real biharmonic function of x and vy,
i.e.,

v2v%h = 3 37 oh = 0. (7.10)

We may integrate this equation by the preceding method. First

3 3 oh = 4T,

where the numerical factor and the second derivative of the
arbitrary analytic function are only to facilitate later inte-
grations, and do not affect the generality of the result. By
taking the conjugate we find
3 3 3h = 4f",
which implies that
3 3h = v?h = 26" + 2T

because the result must be real. Then

h=f+¢¢f +g' or ©oh=7F+T7Tf + g
and finally

h = 2(cF + TE) + 7(g + B) = RelTf + gl. (7.11)

A general biharmonic function may thus be constructed

from two analytic functions. In real terms,

h = xp(x,y) + yq(x,y) + r(x,y) (7.11)"
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where p and q are harmonic conjugates and r is harmonic.
By taking +Re[(x+iy)(p+iq)]- for r, one sees that xp(x,y)
and yq(x,y) are biharmonic functions. With f = ¢k, we ob-
tain from (7.11) another general representation

h= %+ yHpx,y) + r(x,y) (7.11)"

which involves two independent harmonic functions.

7.3. Structure of the Solution of the Problems of Plane Strain

The problems of plane strain are strictly two-dimen-
sional from the point of view of the displacements. They

correspond to a situation in which

\ 0, u-=ulx,y), v =v(x,y). (7.12)

Because €, = aw/3z = 0, Yez = du/dz + dw/d3x = 0, and Yyz =
du/dy + 9v/3dx = 0, the strains reduce to a two-dimensional

tensor with components

€ = au/ax, ey = 9v/3y, = Ju/dy + 3v/ax

ny

independent of the z-coordinate.

For an isotropic medium one result is

Tez = 0, Tyz =0, (7.13)
The non-vanishing stress components Oy oy, Txy, and o,
are independent of 2z and are connected with the strains

by the constitutive equations

9
E 3% =0, " v(oy+oz), E—=o0_ - v(cx+o ), (7.14)

GGy *+ 59 -

X (7.15)

and, because €, =0,
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o, = v(cx + cy). (7.16)

With this last relation used to eliminate O, equations
(7.14) take the form
~ _ -,\ Aa_v-_- -,\
E =0, voy, E 3y cy ‘ Vo, (7.17)

|

with the effective Young's modulus and Poisson's ratio defined
by
£ = , 9= = . (7.18)

Under these conditions one finds that the shear modulus is un-

changed:

g —E - _E .g

2(1+9) 2(1+v) )

When equations (7.17) are solved for the stresses they

Aa AA /\a AA
o = 2G(§§ + ve), o, = zcc§¥ + 98) (7.19)

A 1 ,3u Vv 1
E=—((=+<) =% (o, +o0). (7.20)
1-9 90X qy E

This definition needs clarification in the case of an incom-
pressible medium, characterized by v = 0.5 and consequently
9 = 1. The first expression for € becomes indeterminate
because div u = 3u/3x + 3v/3dy = 0. On the other hand, the
second expression remains determinate. One could write

€ = -2p/E where p = -(o

bl
not depend on a constitutive law (unless the latter is viewed

+ oy)/z is a pressure which does

as a passage to the limit) but constitutes a reaction against
the geometric condition of incompressibility.
By substituting (7.19) and (7.15) into the equilibrium

equations with vanishing body forces, here reduced to
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aox/ax + thy/ay =0, Brxy/ax + Boy/ay =0, (7.21)

one finds Navier's equations for the problem. They can be

presented in the form of Cauchy-Riemann equations

3€/9x = dw/dy, 03€/dy = -dw/dx, (7.22)
where
_1.3v _ 3u
w = 5(3x 37) (7.23)

denotes the material rotation of the fibers parallel to Oz.

We may then write

€ + iw = 2F'(7)/8 (7.24)

where F(Z) 1is an analytic function of a complex variable

z = x + iy, and we conclude that

ou ov Ay2 1-9 =
x 3y (1-v)e = z (F + F'),
v _ du _ - 2 -

> 5y 29 = = (F' E').

iG

These two equations may be rewritten in the complex form
d(u+iv) = (1-9)E + 2iw = {(3-V)F' - (1+9)F'}/6.
Application of the result on integration then yields

u + iv = {(3-V)F - (1+v)¢F' + H'}/26, (7.25)

and the displacement field is expressed in. terms of two analy-
tic functions F(Z) and H(Z).

The stress field follows without difficulty. From
(7.24) and (7.20) we deduce

ot ifw = 4(1+v)E'. (7.26)

Then, by combining (7.19) and (7.15), we find
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O ~ oy - thxy = 2G3(u-iv)

which becomes, after using (7.25),

Op Oy - znxy = -2(1+9)TE" + 2H". (7.27)

Finally, o, follows directly from (7.16).

7.4. Structure of the Solution of the Problem of Plane Stress

We consider here a plate with middle surface at z = 0

and traction-free bounding faces at 2z = th. Since O, Tyxr

zX
and sz then vanish on the faces, one may seek a solution
corresponding to a state of plane stress, that is, one for
which
o, =0, Tz = 0, Tyz = 0. (7.28)

The equilibrium equations with vanishing body forces

are identical with (7.21) governing a state of plane strain,

and three of the constitutive relations are similar, viz.,

(7.15) and
ou _ _ v _ _
E % - 9% voy, E 3y oy VO, (7.17)"

which require only suitable adjustments of Young's modulus and
Poisson's ratio. Aside from this last difference, there is a
more fundamental one: if one wishes an exact solution in the
context of three-dimensional elasticity, it is necessary to
admit displacements and stresses which vary with z. This re-

quires us to consider also the relations

sz/G = 3u/3z + dw/ax = 0, Tyz/G = 3v/3z + dw/3y = 0, (7.29)

(which were seen to be satisfied identically in the preceed-
ing section), along with

ew= -
E 3z \J(ox + oy). (7.30)
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Subtracting this last equation from each of the equations

(7.17)' yields

_ du _ 3w - v _ w
o, = ZG(ax Bz)’ 2G(§; 5;), (7.31)

o
y
which compare with (7.19). With this result and (7.15) sub-
stituted into the equilibrium equations (7.21), Navier's equa-
tions again take a Cauchy-Riemann form

9e/9x = dw/dy, 9e/dy = -dw/9x,

where now € 1is defined by

€ = du/d9x + 3v/3dy - 3dw/3z. (7.32)

The analytic function e + iw of the variable
T = x + iy now contains the z-coordinate as parameter.

Eliminating w from equations (7.29) yields

dw/dz = 0. (7.33)
If the imaginary part w is thus independent of 1z, the real
part must be the sum of a function of 2z alone and a harmonic
function independent of z. Consequently, one writes
e + iw = 2{a(z) + F'(¢)}/6G (7.34)

where a(z) 1is a real function of z.

By adding equations (7.17)' there follows
E(du/9x + 3v/3y) = (l-v)(ox+cy).

Subtraction of (7.30) from this yields

Ee = o_ + o0_. (7.35)
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and therefore
3(utiv) = (1-v)e + 2iw = 2{(1-V)a + LU(R'+F")+F'-F'}/G,

of which the general integral will be

u+tiv = {2(1-v)ag + (3-v)F - (1+v)CF' + X(z;z)}/26G.

The nature of the 2z dependence is found by studying
the integrability conditions of the displacement w. Equa-
tion (7.33) is one, and it is already satisfied. The other
two result from the elimination of w among equations
(7.29) and

ow/9z = -ve, (7.36)

the latter being a consequence of (7.30) and (7.35). The
result may be put into the complex form

2

@ -

(u - iv) = voe,

&

z
After inserting the solutions found for u, v, and €, the

condition becomes

2 2
201-v)7 L2+ LK = yop
dz 9z
which separates into
dza/dzZ =0, 82K/3z2 = 4vF",

We choose integrals which satisfy the symmetry conditions
u(x,y,-z) = u(x,y,*+z), v(x,y,-z) = v(x,y,*z).

These characterize an extension of the plate, and deliberately
avoid a solution representing bending of the plate by bending
moments.

For K, for example, we have
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K = 2v(z% - hZ/3)F" + WY

where H 1is an analytic function of ¢ only. The real
function a(z), which should be even, can only be a constant,

and there is no loss in assuming it absorbed into H'. Then
utiv = {(3-)F - (1+)CF' + 2v(z%- h¥)F + H'}/26. (7.37)

Now we find the transverse displacement by putting

equations (7.29) into their complex form

N EP _ . 2v
ow = az(u iv) = T zF",
The integral satisfying (7.36) is
- _ vz Ty = . 2vz ' ‘
w C (F' + F ) < Re F'. (7.38)
For the stresses we have
o¥ + 0, + iFw = E(e+iw) = 4(1+V)F', (7.39)

0y-0, - Zit,, = 263(u-iv) = -2(1+v)TE" + av(z%- 1 nByporeann,
(7.40)

7.5. Generalized Plane Stress

In Love's terminology, the problem treated in the pre-
ceding section is that of plane stress. There we sought the
form of an exact solution of three-dimensional elasticity,
with the properties (7.28) reducing the stress tensor to a
two-dimensional structure which still depehds partially on
the third coordinate. The generalized state of plane stress
is not usually an exact solution of three-dimensional elasti-
city. It corresponds to the plane state obtained by substi-
tuting for the quantities (u,v) and (o_,Tt__,0_ ) their

x’ ' xy’y
averages over the thickness of the plate. Since
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it is enough to suppress the terms in (z2

- % hz) in the re-
sults of Section 7.4. The solution for generalized plane

stress thus takes the form

u + iv = {(3-v)F - (1+v)cF' + H'}/2G, (7.41)
o * oyt iBw = 4(1+Vv)F!', (7.42)
O - cy - Zirxy = -2(1+v)CF" + 2H". (7.43)

The analogy with the case of plane strain is now clear.
It is enough to compare equations (7.41)-(7.43) with (7.25)-
(7.27) to see that the results can be deduced from each
other by the correspondences E ++ E and v «» $. It should
be remembered, however, that while o, = 0 in the state of
plane stress, with €, # 0, this situation is reversed in the
state of plane strain. The results (7.37) to (7.40) generalize
those obtained by Kolosov and Mushkelishvili; the terms they

L hz/3) are proportional to Poisson's ratio

contain in (z
and can have important effects in regions of high gradients
of F' for the displacements or F'" for the stresses.

The determination of the functions F and H is ob-
viously connected with the boundary conditions of the problem.
One usually distinguishes the case in which the surface trac-
tions are specified on the boundaries, called the first funda-
mental problem, from the case in which the displacements are
specified, called the second fundamental problem.*

When the region extends to infinity it will be nec-
essary to specify the behavior of the stresses there, as well

as the material rotation and the resultant of the applied

®
Editor's note: This is the reverse of most writers' usage.
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exterior forces.

7.6. Airy's Stress Function

Let O be the origin and P(x,y) be an arbitrary
point of the middle surface of a plate. A path = drawn from
O to P in the middle surface defines a cylindrical strip with
generators parallel to the axis 0z, which we shall regard as
an exterior face with outer normal situated, for example, to
the right with respect to the direction of traversal.

|
7 P(x,y)

€2

> g

/'T xy

€1 |'yx _

Figure 7.1

The resultant of the surface tractions on this face of the
strip includes the components of a force per unit thickness
X = I o dy - t__dx Y = J dy - o d 7.44
Cl e X Yy yx* cl c TX}’ Yy y X, ( )
and a moment with respect to the 0z axis
MC1 = I (x-rxy - yox)dy - (xcry - yryx)dx. (7.45)
€1 .

If the slab is simply connected, every other path <,
drawn from O to P in the medium is reconcilable with the
first (cf. Section 5.2) or, in other words, the pair of paths
forms a reducible closed circuit. In the absence of body
forces and surface tractions on the faces =z = th, the equi-

librium of the porfion of the slab inside the closed circuit
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is expressed by

Xcl - *CZ =0, Ycl - YCz =0, Mc1 - Mcz =0,
because the exterior normal undergoes a change in orientation
with respect to the direction of passage from O to P when
one goes from one path to the other. Thes; relations say that
the quantities (7.44) and (7.45) are independent of the path

traversed from O to P(x,y). The integrands are thus exact

differentials of univalent functions. Thus for (7.44) we have
oxdy - tyxdx = dX, rxydy - oydx = dy, (7.46)

which imply the relations

o, = Ty’ Tyx X’ Txy 3y oy 3 - (7.47)

Similarly, from (7.45)

(xrxy - yax)dy - (xoy - yTyx)dx = dM

and, if we substitute formulas (7.47),
Y Y 39X X _
X(W dy + X dx) - }’(a—y— dy + 3X dx) = xdY - ydX = dM.

By setting
¢ = M- xY + yX (7.48)

this may be written
dp = d(M - xY + yX) = X dy - Y dx (7.49)
and is equivalent to the relations
X = 3¢/3y, Y = -3¢/3x. ' (7.50)

These transform formulas (7.47) into

2 2 "2
) - = - ¢ =99
Oy ;;7 , Txy Tyx 3%5y oy - . (7.51)
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The function _¢(x,y) is known as Airy's stress func-
tion. It is constructed so as to satisfy the equilibrium

equations with vanishing body forces
30, /3x + Bryxlay =0, arxy/ax + ch/ay =0, (7.52)

as may be verified at once.

This derivation immediately furnishes a physical inter-
pretation of ¢ and its partial derivatives. By integrating
the formulas (7.46) from O to P we first find the result-

ant force components of the surface tractions to be

X, = X(x,y) - X(0,0) = 2 . (&

P dy 3y o
, (7.53)
= - = —3—¢ a—¢

Xp = Y(x,y) - ¥(0,0) = - 3¢+ 3% .

Then the integration of (7.49) gives the moment with respect

to the origin Mo as

¢(x,y) - ¢(0,0) = M_ - xY(x,y) + yX(x,y)
or

My = 40y) - 4(0,0) - x 2 -y 32, (7.54)

and the moment with respect to the point P as

Mp = My - xYp ¢ yXp = 0(x,y) - ¢00,0-x(§D) - yGh . (.58

Equatiops (7.51) show that the stress field is unchanged
when one adds to ¢ an arbitrary linear form a + Bx + yy.
The coefficients may be chosen so as to give ¢. and its
partial derivatives arbitrarily chosen values at an arbit-
rarily chosen point. It is thus permissible to take ¢ and
its partial derivatives to vanish at the origin, in which

case (7.53) and (7.54) simplify to
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=3 = . 3 -
Xp = 59> Yp o My = 6. (7.55)

We will sometimes call a, B, and vy, or their equivalents in
polar coordinates, the unproductive parameters of Airy's
function.

When the plate has cavities, so that it represents a
multiply connected region, Airy's function and its first part-

ial derivatives may be multivalued functions.

f
Figure 7.2

The equilibrium of a portion of the plate bounded by an irred-

ucible closed circuit requires
jﬂdx+f(=o de+*?=o fdM+f4°=o

where the integrals represent the resultant of the surface
tractions acting along the closed circuit; and (i,?,ﬁ) that
of the tractions applied along the edges of the surrounded
cavities. Then (7.50) yields the change in the partial deri-
vatives of Airy's stress function upon traversing the closed

circuit once:

¢ 3 . 3 3 . % _ ¢
A 52 fd X, A }d {. (7.56)

Formula (7.49) allows the same calculation for Airy's

function itself, yielding

Ap = f d¢ = f dM + { d(yX - xY) = -ﬁo + A(yX - xY),
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which leads to
a6 = M, - y& + x¥ = -N(x,y) (7.57)

where (x,y) 1is an arbitrarily chosen point of the path and
ﬁ(x,y) the moment of the cavity forces with respect to that
point. Thus ¢ and its first derivatives remain univalent
if the cavities are not loaded or, more generally, if for
each cavity the applied tractions are statically equivalent

to zero.

7.7. Complex Representation of Airy's Function

Airy's function has the dimensions of a moment of force
per unit thickness. When the medium is isotropic it can be
expressed equally well by using the functions F(z) and

H(z). By comparing (7.51) with (7.42) and (7.43) we obtain

o  * o, = v2p = 336 = 2(1+v) (E' + F1) (7.58)
2 2 2
. - 24 =99 _237¢ ; 379
Ux ag ZlTxy ayz axz + 21 5;3;

: (7.59)
= -33¢ = -2(1+Vv)TE" + 2H",

Integration of the last equation yields
3¢ = (1+v)TF' - H' + K
where K(z) is a new unknown analytic function. Pass to the
complex conjugate relation
96 = (1+v)¢F' - H' + K
and apply to it the operator 3 to obtain
33¢ = 2(1+v)F' + 2K'.

By comparing with (7.58) one sees that K' = (1+v)F' and

consequently
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3¢ = (1+Vv)TE' + (1+v)F - H'. (7.60)
A final integration yields

6= 52 @F P - 0+ ), - (7.61)

This expression depends in fact only on the two analy-
tic functions (1+v)F(t) and H(Z). For the case of plane
stress, the same integration process gives a supplementary

term of three-dimensional effect:

$ = 12T + o) - vk - phHE s T - Tw e B, (7.62)

For plane strain, the integration leads to (7.61) with 0
instead of wv.

By referring to (7.11) we see that Airy's stress func-
tion is always biharmonic. This is also a direct consequence
of the Beltrami-Michell equations. Indeed, they require that
the first invariant o, * oy + o, be a harmonic function of
(x,y,2z). In the plane strain problem, from (7.16) and the

fact that the stresses are independent of 2z ~one obtains

2 a2

) = v?2 = =
G2 P Cx T o) T T et o) =T = .

In the case of generalized plane stress the same conclusion
follows from the facts that o, =0 and that

az(oxwy)/az2 = 0.

7.8. Polar Coordinates

The complex representation ailows an easy passage from
Cartesian coordinates (x,y) to polar coordinates (r,8).
Before making this change, a preliminary formulation seems
useful, drawing upon basic principles to obtain the fundamen-

tal kinematic, static, and constitutive equations.
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-
Y
N

Figure 7.3

Let us calculate the virtual work performed by the
stresses on an element with coordinates between r and
r +dr, 68 and 6 + d6, and z and z + dz. In accordance
with the principle of geometric linearization, we may work in
the reference configuration, and we find for the virtual work

the expression

9
T {r de dz(or fu, + 1 Sug + L Sw) }dr

rd

9 .
* 55 {ar dz (g, 8u, + o, Gue * Ty, sw) }de

)
t 537 {r dedr(rzr Gur * T, Gue + o, Swldz.

This three-dimensional calculation, using in fact a system
of cylindrical coordinates, reduces to a calculation in polar
coordinates in the case of plane strain of an isotropic medium

where, according to (7.12) and (7.13),

T =cos 6 1T + sin 6 1 =0
Tz Xz yz ’

(=]

=

m

o
-

Tg, = ~Sin ] Txz + cos 6 Tyz = 0.

The same holds true in the state of plane stress, when (7.28)

applies. In each case the only surviving terms are
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[ (ro, Su_ + rT_g 8ug) + gty Su_ + 0, ug)ldr do dz

= Re[g% {r(o, - it g)8(u, + iug)}
* ;% {(tgp- ioe)s(ur + iue)}]dr de dz.

Dividing this expression by the element of volume r d6 dr dz
and adding the virtual work of the body forces yields the

virtual work per unit initial volume:

S B ) . 1 3 . .
SW = Re[? §F{r(°r'lrre)6(ur+lue)} + 3 35{(Ter'1°e)6(ur+1ue)}

+ o, (g, - igg)du, + dug)]. (7.63)

As in the general case, the equilibrium equations
arise by expressing the vanishing of the virtual work in a
change of configuration compatible with a rigid element. A
translation of the element, for example, is expressed in the
form

S(u + dug) = e 1% su + iv)

where &8u and 6v are two arbitrary constants. In these
conditions annulling the virtual work amounts to annulling

the real part of

g_-1T 3

-ie ; r " rh : i .
o T(uriv) [+ gploy - ityg) - 3ltgy - dog)
s L2 - i0) + oo (g, - ig)l.  (7.64)
r 36 Ter o) T Po'By T 18g): :

However, since the factor preceding the bracket is an arbit-
rary complex quantity, the real and imaginary parts inside the
bracket should vanish separately. This furnishes the transla-

tional equilibrium equations
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30 g.-0
T

r "6 1 or _
T T T YTt Pt T 0
) (7.65)
T T + T 90
T 0 To or 1 0 _
T T * T35t P8 = 0.

Several terms in (7.63) now disappear because of the vanishing

of the bracket of (7.64); we are left with

IR . e N0 .
SW = Re[r(ter 109)6(ur+1ue)+(or 1Tre)ar(6ur + 16ue)

. 1 93 .
+ (ter-loe) T 35(0u, * 16ue)]. (7.66)

Consider now an infinitesimal virtual rigid rotation

of the element characterized by

Su_ =0, 6ue = réa.

Since the virtual work is again zero, the coefficient of the

arbitrary constant 6&a must vanish, leading to

“Top * Tpg = 0 (7.67)

which is the equation of rotational equilibrium.

With (7.66) now in the canonical form

W = o Ger * Tlg Gyre + 0y Gee, (7.68)

by identifying the coefficients of Ors Trgo and Og We

obtain the kinematic relations

du u 1 u
€ =_r_ € =_r+_ e
T or 0 T T 00
u Ju du (7.69)
= - 9. 6,1 r
Yre r or r 30 °

If the strain energy density W is known as a function
of the strains (er, Yrg° ee), then expression (7.68) is

equivalent to the general constitutive equations
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o = BW/aer, T = 3W/d3y o

, = 9W/3eg. (7.70)

ré o’ 6

For a state of plane strain, we find

1 2 2,2 2 1.2,
W=z K(er+€e) * G{fcer * € - Er8) * 3 Yre}'
This follows from the general form (5.67) by calculating the

invariants I1 and -Fz, using the fact that the strain ten-

sor takes the form

er' Y e/2 0
‘Yre/Z €g 0
0 0 0

in the locally orthogonal system of axes es €y €. With

Lamé's parameters one obtains the simple formulas

o, = A(er + ee) + Zuer, Og = A(er + ee) + zuee,

Tro = Wy -

We see that the relation

9z ° v(cr * or9)
cannot be obtained by considerations of virtual work, this

0.

stress not performing any virtual work as long as w

For problems of plane stress, we find

2
ro

_ 1 2 2
W—fﬁ(er+.e .

1
o * Zveree) t 3 Gy

This is obtained most easily by specializing Hooke's law ac-

cording to the hypotheses (7.28):

Ee_ = o_ - vo Ee, = o

T T 9° 9 o =~ Yoy

GYre = Tree

When these equations are solved for the stresses and substi-

R . -
tuted into Clapeyron's formula W (orer+oeee+treyre)/2 the
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stated expression results. The additional relation

€, = -\J(er + ee)
cannot be obtained by considerations of virtual work, but is a

direct consequence of Hooke's law

Eez = -v(or + °e)'

As in the case of Cartesian coordinates, the equilib-
rium equations with vanishing body forces (7.65) can be satis-
fied by using an Airy's stress function. Let us calculate the
virtual work of tractions on the surface of unit thickness de-

fined by a closed contour:

Figure 7.4

§ (ordur + tresue)rde - (Ter6ur + aeaue)dr
= Re f rde(or - itre)G(ur + iue) - dr(rer-ioe)s(ur+iue).

In the absence of body forces, with the contour surrounding
no loaded cavities this virtual work must vanish when the dis-
placements represent a rigid body translation of the element.
Thus for
. _ _-ie R
Gur + 16ue = e (6u + iév)

we have
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§ e'ie{(cr-itre)rde - (14,-i0g)dr} = 0.

The integrand must be the exact differential of a univalent

function. Let us set

e 00 (o_-it_g)rde - (1q -iog)dr} = ale P (ariB)}.

Then

_ A _ . 3B _ oA _ 3B
TO, =355 * B, TTg = - 35+ A Tgy 3t % - 3t °

The equilibrium equations (7.67) then require

QL

S+ z=-=z=0 or —(rA)=—B

(-3

and this equation is satisfied by choosing

TA = 3¢/96, B = 3¢/3r.

The final result is

_ 1 3% , 1 9¢ _ 979
g, = — + = 0, = —
rTZ. 2 . % 70
(7.71)
- = - 2.1 3¢
Tre = Tor = " 3r(r 360"

In the locally orthogonal frame e.> egs €, the stress

tensor takes the form

Ur Tre 0
Tor 9 0
0 0 o}

for all cases discussed, with o, Vahishing in generalized
plane stress or plane stress, and in the latter case the
other stresses varying with z.

In the passage from Cartesian to polar (cylindrical)

coordinates the tensor transformation
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2 2

0, = cos 0 Oy + sin®o Gy + 2 sin 6 cos © Txy,
.2 2 .
0y = sin ] Oy + cos' 9 Uy 2 sin 6 cos © Txy’ (7.72)
- 2 .2 ) .
Trg = (cos®8 - sin e)'rxy + (oy ox)51n 6 cos 6,
is equivalent with the relations
Op + 0y =0 ¢ cy (7.73)
o_ - o, - 2iT = eZie(o -0_-2it_) (7.74)
T 6 Th Xy xy””* ‘
Also, for the displacements,
. _ _-is .
u, + iug = e (u + iv). (7.75)

These relations allow the immediate transformation of
the solutions of plane problems from their Cartesian to their

polar structure. For the problem of plane strain,

-ie A ~ — —
u_ + iu, = & — {(3-V)F - (1+v)zF' + H'},
r 9
26
0. * o * ifw = 4(1+9)F',
(7.76)
o - 0. - 2it_, = €210l (1+%)TR + 20"}
T 0 rd ’
o, = v(or + oe),

with Airy's function still given by the expression (7.61) with
v replaced by V. For the problem of plane stress,

-i0
u, + dug = S {(3-V)F - (1+v)F' 4 Zy(zz- FhZFr + H'}

0. + 0g * iEw = 4(1+Vv)F'
) (7.77)
o, - 0 - 2ity = 20 2rn)TE vl T Dy P+ ey
-__2\’_2' '
w = G Re F

with Airy's function still given by (7.62). In these solutions
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the complex variable itself should be in its polar form
. i
T =x + iy = re . (7.78)

7.9. Applications in Cartesian Coordinates

The close relationship between the various plane states
allows us to consider, without loss of generality, only the
case of generalized plane stress. We begin with a study of
the contributions to stresses and displacements by polynomial
functions of the variable x + iy. Consider first the poly-
nomial solutions generated by the function F,

M
(1+v)F = ] (a

+ ib ) (x + iy)™,
m=0

m

As the general result (7.39) indicates, these solutions call

into play a field of areal dilations

au v _ 1l-v
Xty - (0 *9y)
and a field w of material rotations of particles, the collec-
tion being combined with shear strains so as to guarantee the

existence of a displacement field. We find

M
Zal + Zazx - 6b2y + Re Zs[m(am + ibm){(S-m)x2

o =
x ne
2 . .o ym-3
- (1+m)y” + 4ixyl}(x+iy) ]
M » 2
o, = Zal + 6a,x - Zbe + Remzs[m(am + 1bm){(1+m)x
2 . ..o ym-3
+ (m-3)y° + 4ixy}(x+iy) ]
1. = -2a,y + 2b.x + Im % [m(m-1) (a_+ib ) (x?+y?) (x+iy)™ 3]
xy 2 2 m=3 m - m y Y

M 2. .2 n-1

¢ =ax+by+Re] [(a + ib )(x“ + y°) (x+iy) 1
o ) pe1 oM m

(7.78)
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26(u+iv) = 33(a +ib )+2 Tiva, (x+iy) + pecb, (-y + ix)

M
+ ) [3(ag+iby) Gerin)™ - meap-iby) ey (x-1y)™ 2.
z (7.78)

The coefficients a, and bo involve only a rigid body
translation and also contribute to the unproductive terms of
Airy's stress function. The coefficient b1 is connected
with the infinitesimal rigid body rotation.

A. The state of hydrostatic stress is represented by

the terms associated with the coefficient a. All direc-
tions in the plane are principal for the states of strain and
stress. This situation is approximated in a thin-walled,
internally pressurized, spherical reservoir with a radius of
curvature approaching infinity (Figure 7.5a).

B. Uniform gradient of areal dilation. The gradient

in the direction Ox 1is associated with the terms in a,;
that in the direction Oy, with the terms in bz. The dis-
placement field already becomes relatively complex (Figures 7.5b,c).

The solutions generated by the function H are simple.
They are characterized by the vanishing of the rotation w
and the first invariant of the stress tensor o * cy, and in-
clude only mechanisms of distortion by shearing. For

M

_ . |
H' = mzo(pm +dqp) (x + iy)

one finds

M
o, - it = ] m(p, + iq ) (x + iy)m'l, o_ = -0
m=1
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7.9. Applications in Cartesian Coordinates 229

. M p +iq +

M
2G(u+iv) = Zo(pm-iqm)(x-iy)m-
m=

The solutions due to a coefficient q, are closely
related to those of a coefficient P, If ECX’Y)’ X(X’Y)’
gx(x,y), and Exy(x,y) denote the fields associated with a
coefficient Pne then those associated with the coefficient

q, are displayed in the following table:

u v Ox TX}’
m=0,4,8... v(y,-x) -u(y,-x) 9 (¥5-%) Txy (V27 X)
m=1,5,9... [-u(y,-x) VLX) | T, 0ex) -y (y,ox)
m=2,6,10... [-v(y,-x) uly,-x) | =g (y,ox) | Ty (y,oX)
m=3,7,11... | u(y,-x) VO,x) | Ty, (v,-x) g, (ys-x)

The terms associated with P, and q, are simple
translations; those with p., enter the unproductive part

of Airy's function.

C. Pure uniform shear. The solution associated with

P; is a pure uniform shear with Ox and Oy as the princi-
pal axes of stress and strain. That associated with a
presents the same situation in a frame analogous, for the
plane case, to the octahedral frame, i.e., one rotated 45°

with respect to the first (Figures 7.6a,b).

D. Linear variation of a normal stress. The cases

connected with P, and a, show the interaction between a
varying shear stress on one hand, and one linearly varying

component of normal stress on the other (Figure 7.6c).
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Figure 7.6
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solutions are found by combining solutions due
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E. Simple Extension

o = 4a
X

1° °y =0, Txy =0, Eu-= 4alx, Ev =-4va1y.

F. Pure Bending

- - 2
oy = -8b2y, oy =0, Txy = 0, Eu-= -8b2xy, Ev=2(1-v)b2(x -yz).
G. Shear Lag
ok = Bazx, Txy = -Bazy, oy =0,
_ 2 L2
Eu = 4a2[x‘-(2+v)y 1, EBv = -Bvazxy.

This solution
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H. Bending by shear forces. If we combine the terms

in qg and b3 by the relation q; = 12 bshz, then the
shear stress vanishes for y = th. The stresses become
o, = -24 b.x T =12 bo(y>-h?), o,z 0
b's 3)” xy Sy ’ y— ’

and the associated displacements,

Eu

4 b3y[(2+v)y2 - 3h%) - 12 bsxzy,

Ev

4 byxx? - 307 + 3uy?l.

We again note the warping of the sections x = constant.
This solution clearly coincides with that of the principal
bending field of the bar with rectangular section discussed

in Section 6.18 H.

I. Saint-Venant's bending of a rectangular beam with

flanges. The linear distribution of the normal stress in
bending shows that the predominant contribution to the bend-
ing moment is from the extreme fibers. An efficient beam may
therefore be formed by two concentrations of extreme fibers,
the flanges, kept at a distance by a relatively thin core,
which also has the very important function of transmitting the
shear forces. A first approximate analysis of this type of
beam amounts to considering it as a sheet (the web) in a state
of plane stress subject to particular boundary conditions at

y = th. We assume that a flange, of cross-sectional area A,
is in a state of uniform uniaxial tension or compression. If
N is the total force in the flange, positive in the case of

tension, then

% = Ee_=0_- vo_ = 2—% -V d s y = h.
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The second equality expresses the equality betweeﬂ the elonga-
tion of the flange and that of the edge of the web to which
it is attached; it is a kind of compatibility condition.

There is also a condition for longitudinal equilibrium

of the flange:

2
dN _ oo, 3%
dx thy t 3X0y

where t is the thickness of the web.

Spa— J—vean

- - -

T
Xy
—_— - —— - ——

1w ]

~ !

Figure 7.7

Elimination of the normal stress supplies the boundary

condition for Airy's stress function:

2 2 2
dr, 80 . 3% 3% _ -
a—x[A(——%ay v ol )] + t %0y 0, y = h.

This condition can be integrated once with respect to x and

becomes
2% _ 8% , . 20
A7 - Vv +t5 =0, y=h,
oy ax Y

which fixes the term in yy of the indeterminate part of
Airy's function. For the bending of a symmetric beam, Airy's
function is odd in y and the same follows for the term in
A of the boundary condition. We note that for the equilib-
rium of the lower flange (y = -h) the second term should now
be subtracted, assuring also the odd character of the second
term.

As suggested by the case without flanges, we seek an
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Airy function of the form
y2
¢ = yle() + Iz £0ol.

This function should be biharmonic to guarantee the compati-
bility of displacements:

4 4 4

- 3 .
9 9 9 iv |y~ v 12
( t 22—t __T)¢ = yg~ o+ 7 o+ yf" = 0.
E;I 9y " 9x y EZ ;Z
d

In terms of the operator D = h Ix Ve have the two conditions

p*e=0 (a), Dpg+120%c-0 (b).

From the boundary condition at y = h,

AGRE - vhg" - VhE™) + tg + 3tf = 0,

and by introducing the web-flange parameter m = th/A we
obtain

3(2+m)f - szf + mg - vDZg = 0. (c)

Applying the operator D2 and using the preceding conditions
(a) and (b) yields

3(2+n+4v)D%£ + mD%g = 0. (d)

Another application of D2 then yields successively D4g =0
because of (a), sz = 0 because of (b), and ng = 0 be-
cause of (d). Thus f and g are both linear functions, so

(c) implies

3(2+m)f = -mg | (e).

and the linearity implies that
2
g = 3 =0,
y ox

the latter corresponding to one of Saint-Venant's assumptions

in the three-dimensional problem.
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The linear function f(x) is connected with the bend-

ing moment; from

2
¢ 6 6A
o = =—%f N=AGOo = = f
X ay? n? Xlyep B

we find the bending moment
h
M = 2Nh + tf oxydy = 4A(3+m)f.
-h

The distribution of the shear stress is

2 2 2
= - 3—¢ = -g! - Y ' = é .2_ 4
Txy X0y g 3 ;7 £ h[m *1 EZ]Df’

and the shear force is

T = tIh t_dy = 8th(l + )£ = 4A(3+m)£' = M
h XY Y m dx -

J. Transverse loading of a beam with flanges. In

order to obtain a solution when the beam carries a linearly
varying transverse distributed load, it is enough to add to
the stress function a term in ys. Calculations are carried

out as before, but with

2 4
¢ = ylgx) + %z £(x) + i; p(x)].

The conditiors that ¢ .be biharmonic are

4

120p + 120%f + D%g = 0, (a)
a0p%p + D' =0, (b)
. .

D'p =0, (c)

whence we obtain the temporary conclusions D6f =0, D'g = 0.

The boundary condition caused by the flange is

3(2+m)f + 5(4+m)p + mg - v(D%g + D’f + D%p) = 0.  (d)
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By applying the operator D6, we find D6g = 0. Then by using

2

D2 on (a), 10D"p + D4f = 0, and by (b) this gives sz =0,

D4f = 0. Then, applying D4 to (d), D4g = 0. Equations (b)

and (c) are trivially satisfied and (a) reduces to

10p + D%¢ = 0. (e)

By use of DZ, (d) becomes

3(2+m) D%f + mD?g = 0. ' (£)

Replacement in (d) of p and ng in favor of sz allows
the final expression of g as a function of f and its

second derivative, f being a general cubic polynomial:

g=-3G+ 0+ 3+ HEN . Sl (2)

Calculation of the stresses yields in particular

o = ﬁf’ - 2 ol YLnke - (2 - 3 +n vl

Y oax h Y hy m W
and the transverse load applied to the upper flange (y = h)
is

P, =t oy) = - f+ Y
y=h

The same load is obviously applied to the lower flange
(y = -h). This load may vary linearly with x, and its
determination defines the coefficients of the polynomial sz

of the first degree. For example, if this load were zero, we

would return to the case in the previous section. In genéral,

2
97 ¢ 6 20 .3 6 2 3.2
o, =—%=—yf+yp=—5vyf-FyD¥
X ey h h h? h

and the distributed load induces a distribution of normal
stress which is no longer proportional to the distance from

the neutral fiber. With
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- . = 2A - - 3)3p?
N = A(o, voy)|y=h 5 [3f - {1 - v(1+ ﬁ)}D f]

it is possible to express the bending moment as
h 12 3,102
M = 2Nh + tI oxydy = 4ht(f - 5D £) + 4A[3£-{1-(1+ ﬁ)}D f]
-h

4A(3+m)E - 4A[1+ D - v(1s ]%)]sz.

Thus, if sz is known from the applied load, knowledge of
the bending moment determines the function f completely.

For the shear stress and shear force we have

a
dx °

2 2 4
=99 . v _3Y _c Y
Txy axay g' 3 ;2- f' 5 hj'- p'

3.2y 1., 4(1-v)  12v _ y* 3
= gla *1 - IDE - gl S - = - S0

h m h
R 4t +1)Df - 4tk + L - Y+ 3pig-

-h Xy Y m 5 m m m

Finally,
dr _ 4t

= =43+ noke - -2p,..
This calculation is a control intended to verify the
exactness of the equations of global equilibrium of the beam,
which are a necessary consequence of the particular equilib-
rium of each element. The case in which the transverse load
is applied to a single flange may be handled by superposing
on the preceding solution a solution involving opposing loads

and depending on an Airy's function developed in even powers

of vy.
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7.10. Applications in Polar Coordinates

There is an extensive field of applications for the
general solution of the plane state for a region containing
a circular ring centered at the origin. We require that the
stresses be univalent there, which implies that the func-
tions H'", F", and Re[F'] are univalent in the ring. Laurent's
theorem then assures us of the existence of expansions for

H" and F", converging in the ring, of the form

v . m
I (o, + iap)c.

m:-oo

After a double integration, we write
H = (y+i8)z(fng-1) + (a+iB)fn T + X(am+ism);m,
-

(1+V)F = nz(ang-1) + (A+iw)n ¢ + § (A +in )",
- 00 m m

If the stresses are to be univalent, so must Re[F'], and this
requires that n be real.

With the substitutions
i6 .
T =re , 2n T = An T + i6

we obtain the expansiops in polar coordinates of the dis-

placements and the stresses:

- . 3-v . _ 3-v
ZGur = -Bcos6(8 + i p)+6sing(-y + T )

- - 1-

+ nr(2 %;% nr - %;%) + 2 TT% AT 1

+ cosBla,-A+y2n T - it R S P N 3-V(a +agn1)]

SOLay =AY i I+v "2 I+v "o

+ sin6[-B,-u-8&nr - | B kA r2 3 (p_+panr)]

17¥ rZ T+v "2 +v HoTH
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i 2-m-v(2+m),  m+l m-1. 2+m-v(2-m) *1-m _ %- ]

*mZZCOS“‘e[ T+v mel® MORT T TR 1 'm;thi'

m=2 1+v

(7.78")

4 B

TryM) +esine (s+ 1+v“) T+ Y17 ° 7

4
2Gue = T;vner+ecose( Y+

5+v 2

(9]

1
B -V
+cose[-81+u-61nr + —7—

Try W27 * 1y (uo+u2nr)]

. .1 | S+v 2

+51ne[-a1-A-yan - =t YTV Azr - 1+v(1 +A4nr)]
T

T 4+m+vm m+1 m-1, 3-v Y1-m -m
"'mZZCOSlTle [—W—um+1r -mer + 1V rTl- + m rm_'.'l-]

© A a

. 4+m+vm m+1 m-1 3-v "1-m
+m2251nm9 [—h—v1m+1r -mamr - 1+\) '—1- - m -ﬁ']
(7.78")

¢ = BO + BcosO(S-u)r + Bsinb(A+y)T

+ nrz(znr-l) +_7\1r2 - ofnr - o

)
3 9.1
+ cosO[Ar&nr + Aor + lzr - yr(&nr-1) - =< alr]
+ sin@[urinr + T - r3 + 8r(enr-1) - E;l + B,r]
sinvtlu HoT 7 H2 T T 1
A o
+2 m 1-m -m
+ X cosme[A_, - T+ = - ——]
m=2 m ™ ™
+ § sinme[- ™2 My f-m -’Elﬂ ] (7.79)
Unel m m-2 m :

m=2 T by

-m- u B.
+ 7 sinmel- 2 m+3(2+m2um+1rm+l-m8 P-1, 24m-v(2- m! 1 “Mmoyn mT

]
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= - .o
oy = n(2%nr-1) + Zkl i
20

+ cos# (3)"*Y + 22,1 + _3_1_)
T
_ 2B

+ sing (Su s . Zuzr + ——31)

A
+ 7 cosme[- (n- 2) me1)A, T Mem(n-1)a 1" 2- (n-1) (m+2) L0
m=2 T

o
D) S
T

+ 2 sinm@ [ (m- 2)(m+1)u -m(m-l)erm'2
m=2 .
B m
_ B _ 6’"_]1 ~ -1 . A-vy 0’-1
Tre = ?- + cose(Zuzr T 2 :3—)"'51]'10(2)\21'* - +2 3'—)
p m B-m Y1-m m-2
+ 3 cosme[m(m+1)(um+1r - ‘ﬁIZ)+m(m'1)("ﬁ“ -8, T )]
m=2 T T
m-2 Al-m
+ 2 51nme[m(m+1)(lm+1r + ———7) -m(m-1) (o ™ o —)1]
m=2 T
(7.81)
- o
oy = n(2&nr+l) + le + ;7
v coso(6h,re 22X - 2 B1) 4 sing(o6y re K28 g 21
cosB(BAprs T - 2 —3) * sinb(tbuprt T o2

(-]
+ 3 cosme[(m+1)(m+2)km+1rm-m(m-1)amrm'2
m=2

a-l‘l‘l
-m(m+1) —]
T

@ _ u _
+ § sinme[- (m+1) (me2)u_,  *™m(n-1)8 1" 24 (m-1) (m-2) 52

m=2

B
-m(m+1) ——“T 1. (7.82)
: T
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The first line of the expressions for the displace-
ments gives the multivalent terms. The difference between

the values for 6 + 27 and 6 are

- . 3-v . _ 3-v
2GAu, = -2Zmcos 6 (8 + i~ u) + 2msin 6 (-y + S,

_ 8m _ 3-v : 3-v
ZGAue = T3y NT* 2mcos 6 (-y + i~ A) o+ Zws;n 6 (& + TT3U)'

In Volterra's theory of dislocations, if the origin is
to be a center of reduction, i.e., the edge of a half-plane
suffering constant displacement and rotation discontinuity,

then we must have

Au = Ap - yAw, Av = Aq + xlw,

where (Ap, Aq, Aw) are the constant values of discontinuity

in (u, v, w). In polar coordinates this becomes

bu, = Ap cos 6 + Aq sin 6

Aug = -Ap sin 6 + Aq cos 8 + rAw.

*
By comparison, we have

tw=8Tn, ap= - Ar)s(3-vIul,

pa = F0- )y (3021,
The rigid body displacement modes are represented by
the coefficients (al, 81, ul). As we have seen, the multi-

valency of Airy's function is connected with the resultant

of the stresses applied to the interior of the cavity. If it

®
Editor's note: There are useful examples where one or more

of the constants (n,8,u,8,A) does not vanish but the dis-
placements are univalent in the range of interest. For
example, when the region subtends less than a full circular
arc, the solution outside the interval, say, -m+e < 8 < T-€
is of no concern. See, for example, section 7.10C.
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vanishes, B = 0, § = u, and ¥y = -A. The unproductive terms
of Airy's function are those connected with the coefficients

(ao) Ao’ uo)°
The foregoing method, based essentially on the complex

representation of Muskhelishvili-Kolosov, has the advantage of
yielding the displacements along with the stresses. If only
the latter are desired, their Fourier expansion can be found

by the following more direct approach. Let a. and a, de-

]
note, respectively, the radial and tangential components of

the gradient of Airy's function:

.a_¢ ae=

-3
-©-

ar T 3

=
|
@

Then the Laplacian of Airy's function will be

da
V2¢ = div grad ¢ = e]

3
[3r(ra,) *+ 55

=

or, for Laplace's operator in polar coordinates,

2
v -

QQ

(7.83)

==

9 ) 1
e T2

e

A harmonic function of the form f(r) cos mé or
f(r) sin m6 thus has its radial function £(r) controlled

by the differential equation

2
1ieH -5 e-0.
T

The change of variable r = e transforms this to
2
d°f 2
— - m f =0.
dt

For the general solution when m # 0 we thus get

£ = Ae™ + Be™™ = A/™ 4 BT, (7.84)

We also know, from section 7.2, that the product of a
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harmonic function and r2 = x2 + yz yields a biharmonic func-
tion. Accordingly, if
g(r) = Ar™ + Br'™ + r2(ce™ + Dr’™) (7.85)

then g(r) cos m6 and g(r) sin m6® are biharmonic. Because
for m > 2 the function g(r) contains four independent con-

stants, we have the general solution except for the cases

m=0 and m 1.

For m 0 the general solution in the harmonic case
is

f=A+Bt=A+3B2nr, (7.86)
and a biharmonic function depending only on 1r thus has the

general expression

g(r) =A+Bnr+1rC+Dsnr. (7.87)

For m = 1 the harmonic solution (7.84) is general. Now re-
call from section (7.2) that a biharmonic function results
upon multiplying a harmonic function by x = r cos 6 or

y = r sin 6. Thus wé can find the general expression of a bi-
harmonic function of the type g(r) cos 6 or g(r) sin 8 by
adding to (7.85) the product of r itself with a harmonic
function of r alone, such as (7.86). For m = 1, the term
in D in (7.85) has the same form as the term in A in

(7.86), and will therefore be replaced by a term in r 2n r:

g(r) = Ar + Br'l + Cr> + Dr tn r. (7.88)

These results confirm the structure obtained in (7.79)
for the univalent part of Airy's function. We now consider

several examples.
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A. Circular aperture with traction-free circumference

in a plate in plane stress. Let r = a be the boundary of the

aperture on which the stresses o and T should vanish.

o)
This property may be expressed rather simply by using Airy's
function. 1Indeed, we know that it is always possible to annul
this function and its first derivatives at an arbitrary point
by a judicious choice of the unproductive parameters. If we

choose a point on the circle r = a, Airy's function and its

first derivatives remain zero because of the properties (7.55),

since we have XP = Yp = Mp = 0 everywhere in the absence of

surface tractions on the boundary of the aperture. We may

therefore replace the conditions

by the equivalent conditions
¢ =0, 3¢/9r = 0 at r = a.

These lead to the relations B = 0, u = §, A = -y, which make

¢ wunivalent as was anticipated, and to the relations

2
20 = -a“n+(1-2%na)a, 2z, = :“Z + (1-2gna)n,
2 2
a; = 2a A2+AO-2ylna, aq = a’y - kza4,
- 2 _ 2 4
Bl = -u°+2a u2-26£na, B-l = -a“§ + u,a’,
_ 2m+2 _ 2m_ )
@, = ma Am+1 + (m-1)a o
= Zm 2m-2
Al-m = -(m+l)a Am+1 + ma o
> m> 2
Z o 2m+2 e 2m -
Bop =ma™ Tu ,-(m-1) a"7g ,
_ 2m _ 2m-2
Mi.p = (m+1l)a Moel ma Bm' )
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With the notation p .= r/a this yields for Airy's function

the formula
2 2
2 - -
¢ = naz(p Lnp + _];_zp_) - o(np + 179_)

2 2
+ (p- % - 2pnp) (Ycos6-8sinb)a+ Lgifll—(xzcose-uzsine)as

b m+2 2-m -m . m+2
+ mZZ[D -(m+1)p” 4mp V] (A, jcosme-y i sinme)a
. m 2-m -m . m
+ 3 [p -mp® "+(m-1)p ] (amcosm9-8m51nme)a . (7.89)
m=2

Now suppose that the plate extends to infinity in all
directions. We must then suppress in Airy's function the terms
contributing stresses which tend to infinity with p. Only

the coefficients (a,Y,S§, oy, 82) remain, and the stresses

become
2 % 1 1.1
a“oy = ;—7 = a(l+ —7) - 2(3 + —3)(ycose-651ne)
p P P
- 2(1+ ﬁ%)az(GZCOSZG-stinZG),
2 9 .1 9 1 1 .
L 32) = 2(;3 - 2) (ysinB+8cose)
- 2(1 + 2. EL)az(a sin26+B8,cos 26),
p2 p4 2 2
2
2. _ 1 376 13¢ 1 1 1 .
a’c =5 —+ =z =0a(l - =) - 2(% - —g)(ycose-651n0)
T pz 392 p 9p pz ) 0
+ 201 - 24+ 332200, cos20-8,5in26).
pz p4 2 2

The terms in Yy and & do not contribute to the state of
stress prevailing at a great distance, but they decrease

rather slowly, namely, as p-l. These terms are connected with
multivalent displacements and therefore represent regular

states of self-stress which may arise from the closing of
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dislocations of the Weingarten-Volterra type. (The self-stress
arising from the closing of a dislocation in Aw corresponds
to jthe terms in n; these have been dropped because o
and % behave at great distance as fn p.) ‘

The stresses due to the remaining terms have signifi-
cant interpretations at great distance in polar or Cartesian

coordinates. For this purpose one uses the relations

= = 2272
Og *+ 0. =0, ¢ cy 2a "o,

-2i6

o - oy - 211x

x = (or-oe-21rre)e

y 4(a2+182).
In the hydrostatic case, where a, = 82 = 0, the stresses at

-2

great distance are o, = Oy = 9y = 0g =02’ =0, while
at finite distance
G, = 0_(1 + p'z) o =o0_(1 - p'z) T, =0
8 ® > r ® > 're T 7

The perturbation of the state of hydrostatic stress decreases

toward infinity as p-z. The maximum principal stress occurs

at the edge of the aperture where Oy = 20.

In the case of pure shear, where o = a, = 0, the
stresses at great distance are Txy = -ZB2 = Tgs Oy = oy =0,
while at finite distance

= -t (1 + 3p %sin 20 =t (1- 4024+ 30" Hsin 2
Og = ~Tg p sin s Oy T, p p )sin 26,
-2 - .
Teg = T (1 + 2p - 3p 4) cos 29.

The perturbation of O decreases more rapidly than the
others but it is responsible for a local maximum oy = 4t
of one principal stress at the edge of the aperture.

For the case of pure tension, we require, at great
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Txy = 0; accordingly we choose

B, =0 and o, = 4a, = 2a"%0. The stresses at finite dis-

istance, 0_ = O .
dis » Oy ws Oy

tance are
0_9-l(1+i)-11+—3-)co 260
5. "2 7 - 7l ) 08 29,
© P p
Tro 1 2 3
0—=-7(1+—2'—4-)Sin29,
® P P
c_r_l(1;1)+l(1-_‘!.+i)c0520
o, 2 Py 02 b )

The maximum local principal stress is Og = 30, occurring
at 0 = z7m/2.

The question arises of recognizing the level at which
the presence of the aperture may involve a danger of exceed-
ing the elastic limit. Using Tresca's criterion, one is led
to compare the local maximum shear stress with that prevailing
at a great distance. Their ratio is the stress concentration
factor. It should be observed that, in the direction perpen-
dicular to the slab, o, =0 is one of the principal stresses.
In the hydrostatic cése, the maximum shear stress at great
distance is o0_/2, whereas locally at p = 1, it is o_. The
stress concentration factor is 2.

In the case of pure shear, at great distance the maxi-
mum shear stress is «t_; locally, 2t_. The stress concentra-
tion factor is 2.

In the case of pure tension, at great distance we have
o,/2; locally, Scw/z. Here the stress concentration factor
is 3.

Slightly different results follow from the criterion
of Hiiber-Hencky-von Mises. According to (5.58) the criterion

may be written
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2 2 N2 2 2 2
(ox oy) +(cy oz) +(cz-ox) +6(‘rxy + Tyz + sz) < 20

2
e*

In the plane state of stress, this reduces to

. 2 2 2
o * oy cxcy + 3Txy < 0o

In the form

2

3 . . 1 2
T(Ux oy thxy)(cx oy+211xy) + Z(ox+oy) < O

this result yields immediately the expression in polar co-
ordinates

2 2 2 2
Ur + Oy - oroe + 3Tr9 < oe

which is another confirmation of the fact that the left hand
side is a Cartesian invariant. One may therefore calculate
its local maximum analytically. The square root of its ratio
with its value at infinity will be the stress concentration
factor. The local maxima are found to occur at the same posi-
tions as in the previous discussion.

For hydrostatic stress, at great distance we have 03 +

2 2 2 2

o, - 0, = 0_; locally 4o_; the stress concentration factor

is 2. For pure shear, at great distance 312; locally

16 TZ'

%4

the factor is 4/v/3 = 2.3094. For pure tension, at

2

great distance o’ locally 90_; the factor is 3.

.
o ?

B. Volterra's dislocation of the circular ring. Con-

sider a circular ring of thickness t bounded by the circles
r=a and r =b and free of applied loads. We may begin
with Airy's function in the form (7.89), which already guar-
antees the vanishing of o and Tre when r = a. To ob-
tain the same vanishing when r = b, add the unproductive

form m + p(n cos 6 + p sin 6) so as to allow ¢ and its
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first derivatives to vanish instead at r =b or p = b/a = B.
With ¢ given by (7.89), the conditions
¢ +m+ p(n cos & + p sin 6) = 0,

3¢

3p * M cos 6+ psin6 =0 at p =8

furnish new relations among the remaining coefficients. The
annihilation of the term independent of © in the first
equation merely determines the unproductive coefficient m

and is of no interest. In the second, however, it yields

2na%g? in 8 = a(1 - 8%).
For the terms in sin 6 and cos & we eliminate the

unproductive coefficients n and p between the two new con-

ditions, getting
y = (1+82)a2A2, s = (1+8%)aly,.

For m > 2 the coefficients of sin mé and cos mé .
vanish because they satisfy linear homogeneous equations with
nonsingular determinant. Omitting the unproductive terms,
which served merely as auxiliary in the calculations, Airy's

function (7.89) becomes

6 = -na’P(p) - a(y cos 6 - & sin 8)F(p) (7.90)
where
2 1,2 28%n B p2-1
P(p) = -p" fn p + 5(p"-1) + —2—-1— (= - n p), (7.91)
B -
2 .2
F(p) = % - p+ 20 20 p --—%—--£87§ll— ) (7.92)
BT +1

From (7.71), the stresses are
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2 2 2,2
b a b 61 2 2a“b
o = 2nll+tn £ - ——(1+ Een AT - 2 - 22 -
b a pl,2 T & a%hp r (a“+b“)r

*(y cos 8 - § sin @),

Tog = Z(r -a )(r 'b;l (y sin 6 + & cos 9),
T (a+b?)r3

Z(r -a )(4, -b )(Y 0-6 6
(;Z+b )r3 cos sing),

- T b a” b.
O, = 2n[2n a + bj':z’(-;z- 1)4n a] +

and from (7.78'), (7.78"), and (7.23), the displacements and

rotation are

2 2
2(1- 1 b
ZGur = —%Tszln[rln § +r(7 a En )] n[1+vr+(—7——7£n )—]

bZ
2 2.2
: 1-3v r 2(1-v) a‘p 1
+(ycosf-6sin6) [1+ - £n = - ]
T+ (7,2 1+v bleal £2
4 . .
T T (ysin 6 + 8cos 6)9 + @ cos 6 - B;sin o,
26u, = — r0+(ysinB+6cos0) [1+ 2(1-v),, T . a’ 1 +
o~ T+t Tev M a T [ 7,.7 .2

S5+v r ]

I+ 2 Z
- A (ycos6-85in6)6 + —+ - in 6 + B 0
Ty (ycos sin T M7 (a151n 1605 ),

Ew = 4n8 + 4(%+ —%r—bz)(v sin & + § cos 8).
a +

The terms in (al,Bl,ul) represent only rigid modes.
The parameters (A,y,8), with which on the other hand the
stresses and strains vary, may be connected with the disloca-
tions in an arbitrarily chosen section 6 = const. Between

6 =0 and 6 = 2m, for example,

EAw = 8mn, EAur = -8n6, EAue = -8my + EAwr.
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One may also.connect them with the resultant of the

stresses in the section. Direct integration yields

b
Ne =t I % dr = -8yS
a
b
Nr =t I Tro dr = -86S
a
b
U=t f Og T dr = 4Bn
a
where
2 2
t b b“-a
s=Lan2- ), (7.93)
4 a b2+az
2 2 2,2
_t:b"-a 2a“b b,2
Begl=—0— " Z7— On 3. (7.94)

(a) 8w < 0, u <O, (b) Aur >0, Nr > 0. (c) Aue <0, N9<0.
Figure 7.8
Figure 7.8 shows the three elementary dislocations. Their

respective stiffness relations are

w=EB gy, N =B, N =E 4y

2m T m T ] m 6° (7.95)

C. Bending of beams with constant curvature. The re-

sults just derived pertain directly to the bending of a beam
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of rectangular section tx(b-a), of constant curvature, subtend-
ing a full circular arc. But they also apply to the problem
of the strain in curved beams with opening angles less than
2%; any two radial sections may be regarded as terminal. The
solution will be exact for those cases where the tractions or
displacements at the terminal sections are specified as
anticipated by the solution. We thus have a theory, analogous
to Saint-Venant's, for extension and bending with shear forces
but no transverse distributed loads. The main new feature is
the occurrence of radial stress between fibers, necessary for
their equilibrium.

With an eye toward establishing a one-dimensional
formulation, we shall now derive relations between the stresses
and the resultant force and moment in any cross section.

Airy's function is given by (7.90) in terms of the functions

P(p) and F(p). With Q(p) defined by

2
= !‘. ' = " l [ 487 4nB - 2-
one has
(eQ")' = 0. (7.97)
By construction, also,
pP(1) =0, P'(1) =0, P'(B) =0. (7.98)
Similarly, with G(p) defined by
1 F F 4 8
G(p) = =(pF') - =5 =F" + (=)' = = - P, (7.99)
3 0% P P Bz+1
one has
(pG")" - % G =0, (7.100)

and because (F/p)' vanishes for p =1 and p = B,
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F(1) = 0, FE'(1) =0, F(8) = BE'(8).  (7.101)

Ve
/s
N Nr 7 0
ev ;:
M

Figure 7.9

From

T

- . Ysin 6 + &cos B(EJ,
o a p

we calculate the shear force

N_ = at ’ T, dp = -t(ysin 6 + é8cos B)ELEl (7.102)
T 1 T8 L g '

From

o ycos 6 - 8sin 6 "

9 = -np" -

a
we calculate the normal force
B
Ne = at I % dp = -t(ycos 8 - 8sin 6)F'(R) (7.103)
1 .

and the moment about the origin

B B B
T azt [ oepdp = -aztn(pP'-P) -at(ycosf-8sing) (pF'-F)
1 1 1

= a%tnp(p). (7.104)
From our earlier results, we find
8%-1 _ 8
F'(B) = 2%n B - 2 = =385
pZa1 ¢
2
- 28 2 4
P(B)=—2—B 1-—2—-(2n B)° = — B
B”-1 azt

The stresses in terms cf the resultants are
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- _.r F I 'O 8
Tro - 8as B 9 = - 35" *gag I
N (7.105)
g = - LP', 8 (E)v
T 4B o 8aS ‘p

Now we calculate the strain energy of the beam per unit

angle. For an isotropic material, it is

b
t
8 2 I (c €g* OpEr * TrgYrg)Tdr

2 B 2 B
a‘t 2 (1+v)a“t 2
T Jl(cevl-qr) pdp + —F Il (Tre o ge)pdp
In the first term of the latter form, the harmonic solution

u N
0g *+ 0. = - 75 Up) *+ gz G(p)

introduces the integrals

B, 8 B (B
[ 0Q2dp = f (bQP"+QP')dp = pQP' + QP| - [ [6Q'P'+(PQ) '] dp
1 1 1 N
B (B
= pQP' - pQ'P| + J P(pQ")' dp
1 h
= -BQ'(B)P(B) = 4P(8),
B 8 B (B
I 0G2dp = f oG[F"+(Ey11dp = pGF'+GF' - f (F+ Eyp06) 1 ap
1 1 P 1 1 P

= pGF' + GF - F(pG)'

B B G
1 + Il F[(pG')"' - E]dp

BIG(B)F'(B) - F(B)G'(R)] = 8F'(B),

where we have used (7.97) and (7.98) for the first calculation,

and (7.100) and (7.101) for the secohd. Also,

B
I pGQdp = 16H
1

where
1y, LBl . g 26%en 8
18 8 2.1 B+1 . 3(BZ+1)(B+1)
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an expression which does not seem reducible to a form as
simple as the others. In the second integral in the latter

form of Ly, the term in rge brings in

B 2 2
_ F F 28 B°-1
J = J oSy Eyran = amnp 11+ 28 -6 BoL
1 PP (8%+1)* Bé+1

In the product 0.% the term in Ng involves an integral
also having the value J, because
B

B B
EyitoE)r-pride = <[ o(E)riecE)1de = - LioByn?| -
[1(;) [p(5) ' -PF"1dp [1 P [P 110 = - Fe( 17| = 0.

The term in uz of the same product gives no contribution,

because
8 8
f P'P'dp = %(p')z’ = 0.
1 1

What remains for the second integral is the contribution of

the product uNe:

8 8

| teernynge = [T rerEy - B
1 e 1 e
8 (B
=prr - B4 f prEyra = 32¢
p 1 p
where
85-1 _ Bn g

K =

o(sfv1) S(BHD)

Thus the strain energy per unit angle becomes

L. = i - atUNe[H-z(l.,. JK] + Ng + (1+v!tJ(N2 . NZ)
6 - ZEB = ZEBS v ZES T e’

64ES
This structure of the energy suggésts the establish-
ment‘of a one-dimensional model of a curved‘beam baséd on the
concept of a neutral fiber. If the fiber is at r = R, there
will be a relation u =M + RNe between the bending moment
M, calculated at the level of the neutral fiber, and v, cal-

culated at the level of the center of curvature. The radius



256 ) . 7. PLANE STRESS AND PLANE STRAIN
of the neutral fiber may thus be determined by requiring that
the energy be a simple sum of energies due respectively to
the bending moment, the shear force, and the normal force.

Disappearance of the term in MNe requires that

R_ t o _ 4f L
E'KQ'W’ H=H - 2(1+v)X, (7.106)

thereby giving the energy per unit arc of the neutral fiber

the form 2 2

palyp oM N N (7.107)

R “o © ZET * 7B, * 70s; .
where 5
t R
I =3BR = ET 3 P(8), (7.108)
J

éa_t= S R (7.109)

T 4HF' (B)

at _ , 1. _2 R at

5 - 20z - pray 2) - 2(w) £ (7.110)

The numerical values displayed in the following table
show that the neutral fiber has a radius slightly less than
the arithmetic mean of the extreme radii, that the section re-
sisting the normal stresses is practically.equal to the real
transversal section, and that the section resisting shear

amounts to about 5/6 of it. The calculations were made with

v = 0.3.
3 3
B R/a at/Se at/Sr a“t/1 12/(B-1)
1.1 1.04892 10.0145 12.0056 |12 016.0 12 000
1.3 1.14090 3.35783 3.99777 449,123 444,444
1.5 1.22719 2.01065 2.40766 98.3154 96.000

As shown by the comparison values in the last column, the

moment of inertia is very nearly that of a straight beam with
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the same section.

We must still ascertain which displacements and gen-
eralized strains are associated with the resultants. For
this purpose we return to Clapeyron's interior theorem with

the strains expressed by formulas (7.69):

b u u u ou du
- r, 1l "o _ 0 8 , 1% r
Ly = tfa["e(T YEa) t e F YT
au

T
+ 0. F?—]rdr.
Since the boundaries r =a and r = b are not loaded, this

expression can be reduced to
a b
ZLe =t I5 Ia (Ueue + treue)dr,
which has a direct physical interpretation and results from
the preceding by integrations by parts. Substitution from
(7.105) thus leads to
= d 8 _ M " Ne " Nr F
ZLe = at dejl[ 18 P Ue + mF ue + m(a) 'ur]dp. (7.111)
This expression will now be compared with one furnished by a
one-dimensional theory for a fiber of radius R, with radial
and tangential displacements denoted respectively by Ur and
Ug.- The virtual work of the forces applied to the extremities

of a segment R d6 of fiber will be
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M+dM
/
//
/ (ADRY
/ -
S&de _ "N,
. />R No
L=
’/

Figure 7.10

é% (Méa + N,6U, + N_6U_) de (7.112)

where o is the rotation of the cross section.

The expres-

sion to compare with (7.111) is therefore

+ N U)

d
de (Mo + NoUg TT

with u =M+ RN, . The comparison furnishes definitions of

the displacements of the neutral fiber and of the sectional
rotation in terms of weighted means of the exact displace-
ments:
b 2 2
r__b a b
Ia[lﬂln a2 b—z?(l"' ;z-)ll'l ;]Uedr
I Plugde = 77 7 .2 ,
1 b®-a® _a” b (2n E)Z
bz-a2 a
b Lzz_az)irz_bz) . 4
B 1P %P

T

One may verify that these

when we take respectively

We now develop the

definitions reduce to identities

ug = ra, u, = U, u, =U

T T 6 6°
consequences of (7.112). The vir-

tual work should vanish for the translations
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GUr = 8Ucos® + 8Vsiné, GUe = -8Usin6 + &VcosH, oo = 0

with &U and &V constant. This confirms the equilibrium

equations in terms of the resultants
dN_/d® - Ng =0, dNg/de + N_ =0, (7.113)

which may be found from equations (7.102) and (7.103).
The virtual work should also vanish for the small rigid

rotation

§U_ =0, &U, = ReQ, Sa = 6

with 69 constant, and this yields the third equilibrium
equation

M+ RNg) = g—"j =0, (7.114)

confirmed by the earlier result (7.104). When simplified by

the equilibrium equation, the virtual work

d y )

da d
MG(HE) + NGG(Ur + o Ue) + Nl_G(-Ue + Ro + 1 Yy

de

displays the generalized deformations doa/d6 conjugate to the
bending moment M, Ur + dUe/de conjugate to the normal stress
Ng» and Ra - Uy + dUr/dO conjugate to the shear force Ny.
Thus Clapeyron's interior theorem for the one-dimensional

model may be written

_ do d : d
2Le = Md—e+ Ne(Ur + d_eUe) + Nr('Ue + Ro + HEUr)

and leads, by comparison with (7.107), to generalized consti-

tutive equations for the theory of curved beams

du _ RM U+dUe=RNe
de  EI r  d6 ES"G ’
U RN (7.115)
'_ T
Ra - Uy * 3= = g5_ -
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As with straight beams, one may study the relative im-
portance of deformations caused by shear and normal force. We
study a curved beam perfectly clamped at the section 6 = 0

and loaded at the section 6 = y (Figure 7.11).
. N ‘lQF/A
/
/

AN

Z—Y 16

Figure 7.11
Since
2 2 _
d Nr/de + N, = 0,
the shear force in an arbitrary section is of the form N, =

Acos® + Bsin6® where Ng = dNr/de = -Asin® + Bcos6. Adjusting

the constants for the terminal loads yields

Nr = Tcos(6-y) + Nsin(e-y), Ne = -Tsin(6-y) + Ncos(6-9).

Therefore, since M + RNe = F + RN, the bending moment is
M =F + RN[1 - cos(6-¢)] + RTsin(8-vy).

Integration of the rotation of the section with the

boundary condition a(0) = 0 yields
Ela = FRO + R2N[6 - siny - sin(0-¢)] + R*T[cosy - cos(8-¥)].
By taking
Uy = Pcosé + Qsiné, Ur = PsinB® - Qcos®6

we can obtain the displacements by the method of variation of
constants. With P and Q constant this is the general

solution of the last two of equations (7.115), rendered




7.10. Applications in Polar Coordinates 261

homogeneous by taking Ne =0, Nr = 0, and o = 0. Consider-
ing P and Q now as functions of 0, we satisfy the in-
homogeneous equations by integrating the relations
RN RN RN
dPp _ 8 . dQ _ e . T o
I Eg; cos6 + (‘g‘ Ra)siné, 3% Eg-gsme (EE; Ra)cosé,
with the boundary conditions P(0) = 0 and Q(0) = 0. The

result may be written in the form

0 . . ¢} .
s . _R i(w-96) _ iR i(w-9)
Ue 1Ur Eg; IONe(m)e dw Eg;JONr(w)e dw

0 ,
" ino a(w)el(@®gq,,

By substituting the expressions found for Ne, Nr’ and o,

and integrating, we obtain

2 3
- RO(F+RN) (4.4 R - Nsi ]
Ue BT (6-sin6) + 13-I-(Tcosq) Nsiny) (1-cos8)

- R(R I S | ; ;
Z(ET + GSr ESe)(Tsmw + Ncosy)sin 6
+ B-(RZ + 1+ 1y [Tesin(y-8) + Necos(y-6)]
2(ET * ©s; * ES, »
u_ = RE(F+RN (cosd - 1)
r E

2
RR° 1 1 - Ned ;
7(ET — o+ 1=‘-§;)(Tcosw Nsiny)sin 6

Sy
. (Rz Lo+ L) [Tecos(y-6) - Nesin(y-6)].
ET '3; ESgy
These expressions suggest that if
1 1
—_— F = <<
Sr ESe ET

or, in practice,
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we may neglect the deformations caused by the shear and nor-

mal force, thereby simplifying the constitutive equations to
du du

RM 8 _ - T _

T Ur A ol 0, Ra Ue * 15 0.

Q-IQ-
|

Thi; leads to the differential equation

2
d_[;_r. +‘ U = - RZM .
a6 T ET

A curved beam meeting the above restriction will be
called "thin". For such a beam the displacements and the ro-

tation of the extremity 6 = ¢y reduce to
2 2
_ s R RS s R )
o = F -E—I w + N E-T(\U 51n111) + T E‘I‘(COSw 1)’

2 3 . 3
Uy= F %T(w-sinw) + N %T(%g -Zsinw+§l%22) + T %T(-%+cosw- 52%31 ,

U=F %;(cosw-l) + N %;(-% +cosy- EQ%ZE) + T %;(% - Ei%-2-12)-
The corresponding influence functions are shown in the
Figure 7.12 as functions of the angle ¢. Except for the
complete, split ring, for which ¢ = 2w, they never vanish if
Y > 0. The same situation would prevail for influence func-
tions which take account of deformations caused by normal and
shear forces, and this fact helps to justify the use of the

simplified forms.
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“1..

3 s sin2y
A A
EIUe

—— =V - sin ¢
R™F

4)

5)

6)

Influence functions for the

BIUr - Y-sinycosy
ROT 2
EIU EIU
0 _ r _ 3 cos2y
= = - Z+CcOSY- —r—t
ROT  RON 4 4
EIU
T Ela
——— = —3- = cos y - 1
R°F R°T

thin circular beam.
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The one-dimensional theory admits only simplified bound-
ary conditions, such as the approximation to perfect clamping
whigh we used in the preceding problem; such conditions serve
to extend the range of application of the exact solution.

The theory also admits an approximate analysis of the deforma-
tion when the loads are of a more general type. Although the
general formulas of Section 7.10 permit the development of
exact solutions for curved beams or rings loaded along the
boundaries r = a and r = b, the mean displacements a, Ur’
and Ue, and in certain cases the distribution of the stresses
0g, can be found with adequate accuracy by using only equival-
ent loads distributed along the neutral fiber. The radial

and tangential distributed loads and the distributed couple

may vary with 6, and are given respectively by

b
p, = tgo.(b) -t % o (a),
=t2c ) -t2c _(a)
Py R Tro R Tre'd)
b2 a2
c + Rpe =t T tre(b) -t x Tre(a).

The static equivalence of these with the real loads results
from equating the virtual work of the latter, acting through
rigid virtual displacements of a segment d6 of the beam, with
that of the distributed loads, acting through rigid virtual
displacements of the neutral fiber.

To incorporate the effect of the distributed loads, one

need only add to the virtual work (7.112) the expression

(p,8U_ + pgsUy + céa) Ré6.
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There follow the generalized equilibrium equations

dN_/d® - Ng + p.R =0, dNe/de + N, *py=0, (7.113)"

é% (M + RNg) + c + Rpg = 0. (7.114)"

As with the straight beams, the approximate solutions based on
these more general equations of equilibrium and on the consti-
tutive equations (7.115) admit variational justification.

When the beam is thin, all loadings leading to the
same distribution of the bending moment become equivalent, and
this circumstance may be helpful in certain mechanical prob-
lems. A segment of a piston, for example, may be regarded
as a split rectangular ring and should take a circular form
with diameter equal to that of the cylinder when it is sub-

jected to a uniform radial pressure or(b) (Figure 7.13).

Figure 7.13
Let p = P, be the radial load of the neutral fiber. The
bending moment then has the distribution
M= pRz(l - cos 60),

which is equivalent to that generated by a pair of normal
forces N = pR applied to the opposing faces. In practice,

the two ends are held by an articulated joint exerting the
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reactions N in question. The separation between the ter-
minal sections in the unstressed configuration is connected

with the applied pressure by the relation

r?
AUe = 3m E-T—p.
The dynamometric ring is another example of an applica-

tion of the one-dimensional theory of curved beams (Figure 7.14),

p p -

7 U
F

Figure 7.14

The ring is complete, and is éubjected to two concentrated
and diametrically opposed radial forces P. By symmetry,
this is equivalent to the problem of a half-ring with one end
perfectly clamped and the other subjected to a shear force
P/2 and a bending moment F. The latter is to be adjusted
so that the rotation of the terminal section vanishes.
With the notation of the preceding problem we may write

Yy =m, N=0, T ="P/2. Since

EIa = RF6 + RZP % (cos 8 - 1),

the vanishing of the rotation for 6 = 7 yields
F s PR/m = yu.

The distribution of the bending moment then becomes

M = F - RT sin(n-6) = PR(z - 2109
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while the shear and normal forces have the expressions

N_ = - % cos 8, N, =

r 6 sin ©.

[Ny

The stresses are completely determined by these with (7.91),
(7.92), and (7.105).

The radial displacement of the end is

3
PR m 2. mPR 1 1
U@ W T (st

which is the stiffness relation for the ring.

If we measure the transverse contraction of the ring

instead of its extension, the theory predicts the value

PR 2 1 PR 1 1
Gt 7 GE oy

Because /4 - 2/m = 0.14878 while 2/m - 1/2 = 0.13662,

the latter measure is slightly less sensitive than the former.

D. The annular ring loaded by shear tractions.

Figure 7.15

This pdrticular case of the ring loaded along its bor-
ders r =a and r =b is remarkable because while the
state of stress depends only on r, Airy's function varies
with 6 and may even be multivalent, because the resultant
of the stresses in the cavity is not zero but a couple with

intensity which will be denoted by C. The solution is
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supplied by the first term of (7.79), ¢ = B6, which yields
0, = 0g =0, T = Br 2, u. =0, 2Guy = -er’l. It follows

2m 2
C = tJ T_,r"°de = 2mBt.

Since the radial displacement vanishes identically, one
may always add a rotation of the whole in order to annul the

tangential displacement, either at r = b, corresponding to

the ring loaded in torsion on the inside-and perfectly
clamped on the outside, or at r = a, if it is loaded on the
outside and clamped on the inside.

The relative rotation between the fibers r = b and

ug(b) upla) ¢ 2 . 42
b a G 4Wt32b2

which is the stiffness relation for this type of loading.
If on the other hand we apply the generalized one-
dimensional theory, we find for the equivalent loads on

neutral fiber
- - b-a -
P, =0, PpgR=-tB Jp=, C + pR=0,

and for solutions of the equilibrium equations (7.113)' and

(7.114) ' and the constitutive equations (7.115)

- - = b-a
Ne =0, M=0, Nr = tB ab
u_ =20 U, = - R N_ + Ra o = o
T ’ ] GSr o’ o]

The results o4 = 0 and o, = 0 which follow for the stress
field are correct, but the distribution of the shear stresses
is completely different. This is not at all surprising, be-

cause the boundary conditions Trg = 0 for r=a and r = b,
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intrinsic to the one-dimensional theory, are essentially

different from the real conditions.

E. The thick tube under pressure.

Figure 7.16

We begin study of this problem with the case of plane
strain, i.e., e, = 0. Although the cavity is loaded, the in-
ternal resultant vanishes and Airy's function is univalent;
indeed, it depends only on r and thus is of the form (7.87).

Formulas (7.71) yield

_ . _ -2
Tro = 0, o, = Br + 2C + D(1+2¢2n 1),
2

0g = -Br “ + 2C + D(3+2%n 1).

With reference to the general solution (7.79) for Airy's func-

tion in a ring, we have the correspondence

A=-0, B=-a, C=2Xi, - A, D=A.

1

As we have seen, the tangential displacemeént associated with

A is multivalent. We therefore conclude that A =D = 0.
This result can alternatively be obtained by observing

that the central symmetry of the problem demands uy = 0.

Then €. = dur/dr, €g = ur/r, and therefore

€. = é% (ree).
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Now, by (7.17), ﬁer =0, - Goe -and Eee =04 - Gor, which

allow the preceding relation to be expressed in the form

= 4 -3
0. -~ VOg = 37 (roe vrcr).

When we substitute the preceding solution into this equation,
the terms in B and C vanish, and we may satisfy it only
by taking D = 0.

The boundary conditions

B B
-p. = + 2C, -p, = = + 2C
a ;7 b 2
supply the values of the constants B and C. For the

stresses we find

2 2 2,2
s = 2Pa” b7p,  ahT(p,opy) g
r b2 - az b2 - aZ ;7
2 2 2,2
s < 2P " b7py,  2"bT(pyopy) .
b b2 - a2 b2 - a2 ;7

For the radial displacement, we have directly
Eur = rEt-:e = r(ae - vor)

or, after substituting the stresses and using (7.18),

2 2 2
- (1.2 2Pa” bpy a bz(pa-pb)
2Gur = (1-2v) bz vi T o+ 3 5

1
- a b® - a r

Along the axis of the tube, the stress o, takes the constant

value
2 2
o, = v(o o = 2v .
-2 2z
z r 6 b% - a

This circumstance allows discussing the same problem for the
case of plane stress, when the tube is free to elongate or

contract and o, = 0. The field of radial and tangential
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stresses is unchanged, but the constitutive equations which

now apply,

Ee_ = o_ - vo
T

r 9° Ee, = Og - VO,

0 T

lead to an adjusted radial displacement

2 2,2
a“p_-b"p , a"b"(p,-py)
Bu, = r(04-v0 ) = (1-v) a br 4 (1%v) ————7—37—9- 1
T b°-a b°-a T

The tube undergoes a uniform axial elongation

2 2
a P, - b Py,
Ee_ = -v(or+oe) = -2v —_— -
z b - a

F. Concentric cylindrical tubes and rings. We assume

p “‘ "Ill““|iiiii||" ‘llll““lllllll"

Figure 7.17

the tubes free to contract or elongate. According to the re-
sults of the preceding section, when subjected to an exterior

pressure p the interior tube undergoes an exterior radial

displacement
By, = (v, - ot Al
itUrli i 7T 2P

Subjected to internal pressure p, the exterior tube under-

goes an interior radial displacement

B u) = (v o+ kot hlyy
e'Urle Ve kZ _ h2 pa-

Let the pressure p be such that the interior tube

fits snugly into the exterior tube. Then
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b + (1.11,)i = h + (ur)e = c.

The first equality supplies the relation between the inter-
face pressure and the radial interference b-h, or the dif-

ference in radii in the unloaded state:

2,2 2,12
b b +a h k“+h

b-h = p{z— (-v. + ) + —(v_+ )}.
By -1 pTT  Eoe 2

When the materials are the same, this simplifies to

2.2 2 2
b-h = B{v(h-b) + h Eziﬁz + b 37137}.
- b -a

Since h-b is negligible compared with b, the final result
is the simple formula
2 2
b-h = ¥ KB
(k*-h")(b"-a”)

This problem illustrates another possibility of the
existence of internal stresses which cannot be relaxed by a
change of configuration. They may exist even when the re-
gion is simply connected (a = 0). They differ fundamentally
from those due to the closing of Volterra's dislocations, be-
cause they violate the conditions of regularity: on the inter
face the discontinuity of 0y causes a discontinuity in the

values of € and €g-

G. Force concentrated at the origin in an infinite

plate. From the general solution presented in Section 7.10,
we keep the terms which generate stresses inversely propor-

tional to r. They are

H = (y+i6)z(#nZ-1), (1+v)F = (A+iu)n z.

In order that the displacement field remain univalent, it is
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necessary to choose

. 3- .
Y+15=-1+—:(>\‘111)

and up to a factor, as we shall see, the coefficients A and
u are the components of the vectorial sum of the forces Px
and Py acting, per unit thickness, on a cavity containing
the origin.

By using (7.41) we obtain the univalent displacement

field

26(utiv) = 2 %i% (A+iw)2n r - (A-ip)e2i®

while the formulas (7.77) in the case of generalized plane

stress yield

o+ 0g *+ iBw = 4(X + in) e;?e
0_-0g-2iT_ ¢ = 2(A+in) e;}e + 2 %i% (A-in) S;i
or
o, = T%3(3+v) Acose-; usine, T " T%G(l'v) Hcos® ; Asine’
o = - lfv{l'v) ACOSH ; using

For any circular cavity about the origin we have

2m 2m
-P_ = [0 (orcose-rr651ne)rde, -Py = [0 (crsine+1recose)rde

or, after substituting the known values and performing the

integrations,
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and we may consider the field as that of a concentrated
force situated at the origin.
Another way to reach this result is to study the cor-

responding Airy's function

¢ = Re{(1+v)TF-H} = Re[(A+ip)T{&ns - i—x (#nZ-1)}]
= 2liEenc- 3228 T(nz-1)] + At - 23 coen-1].

When one traverses a closed circuit surrounding the origin
starting from a point P with label ¢, the increment in
¢ is

3-v

8¢ = Re[O+1w)T2mi(1 + 329)] = FoOy-ux).

At the same time, by using the operator 9 of Section 7.1,

3 = "“Tl“ [z% ]+ )"21" [24nT - 2 %% en ¢].

If we traverse the closed circuit this gives

A3¢ = -2mi (A-ip) (1 + iT:
or
3¢ _ . 8m_ 3¢ _ 8m
A X I+v A oy 1+v A

These results confirm those above when one applies to the
closed circuit the interpretation of Airy's function and its
partial derivatives set forth in Section 7.6.

As to the problem of the displacement caused by this
loading, we observe that replacing r by r/ro as argument
of the logarithm merely introduces a translation, making the
contribution of this term zero on the circle of chosen radius

r,. By adding the field due to the term

(L+0)F = (A, + iuy)g’
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we can annihilate on the same circle the term in e219 by

the choice
3-v _2 . _ .
v To (At lur) = A+ du,
and by adding a new translation we can annihilate u and v

completely at r = L The final result is

i 2 : 2
26(uiv) = 2 FROvinn & + i) (G -2 20010 G,
o o

By thus adjusting the boundary conditions we have annulled
the displacements on a circle with a radius as large as we
please, and have introduced a correction to the stress field
without changing the resultant of the forces acting in the

cavity. For a single force P

x?
Or = 4—?;[3—;\—’ + _(1‘"_\)) _Z.]COS 0,
0
T‘re = ﬁ[—;— - (1+\)) —Z]S].n 6,
_ _ 3(1+v r
% =zl —T_-v) _zicos @
o

The reactions induced at the locked ring r = T, decrease in
inverse proportio