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Abstract—The present paper provides an analysis and a long-
term forecasting scheme of the Oceanic Nifio Index (ONI) using
the continuous wavelet transform. First, it appears that oscillatory
components with main periods of about 17, 31, 43, 61 and 140
months govern most of the variability of the signal, which is
consistent with previous works. Then, this information enables us
to derive a simple algorithm to model and forecast ONIL. The model
is based on the observation that the modes extracted from the signal
are generally phased with positive or negative anomalies of ONI
(El Nifio and La Nifia events). Such a feature is exploited to gen-
erate locally stationary curves that mimic this behavior and which
can be easily extrapolated to form a basic forecast. The wavelet
transform is then used again to smooth out the process and finalize
the predictions. The skills of the technique described in this paper
are assessed through retroactive forecasts of past El Nifio and La
Nifia events and via classic indicators computed as functions of the
lead time. The main asset of the proposed model resides in its long-
lead prediction skills. Consequently, this approach should prove
helpful as a complement to other models for estimating the long-
term trends of ONL

Key words: ONI modeling, ONI forecast, wavelet, time-fre-
quency analysis.

1. Introduction

El Nino Southern Oscillation (ENSO) is an
irregular climate oscillation induced by sea surface
temperature anomalies (SSTA) in the Equatorial
Pacific Ocean. An anomalous warming in this area is
known as El Nifio (EN), while an anomalous cooling
bears the name of La Nifia (LN). ENSO is well rec-
ognized as the dominant mode of interannual
variability in the Pacific Ocean and it affects the
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atmospheric general circulation which transmits the
ENSO signal to other parts of world; these remote
effects are called teleconnections. Variations in the
SSTA between warm and cold episodes induce
changes in the occurrence of severe weather events,
which dramatically affect human activities and
ecosystems worldwide (see e.g. Glantz 2001; Hsiang
et al. 2011). Therefore, ENSO predictions are of first
importance to help governments and industries to
plan actions before the occurrence of these
phenomena.

Over the last two decades, many models have
been proposed for forecasting ENSO by focusing on
sea surface temperatures in the so-called Nifio 3.4
region (5°N-5°S, 170°W-120°W, see e.g. Mason and
Mimmack 2002; Tippett and Barnston 2008; Zheng
et al. 2006; Zhu et al. 2012). At the Climate Predic-
tion Center (CPC), the official ENSO indicator is the
Oceanic Nifio Index (ONI), which is a 3-month run-
ning mean of SSTA in respect to 30-years base
periods in this Nifio 3.4 area and is the principal
measure for monitoring, assessing, and predicting
ENSO (CPC 2011). The EN (resp. LN) events are
defined by the CPC as a 0.5 °C positive (resp. neg-
ative) anomaly (called warm (resp. cold) episodes in
the following) during at least 5 consecutive overlap-
ping months of ONI. As it can be found in the
literature, current predictions of ENSO based on
dynamical or statistical models are most often limited
to twelve months (e.g. Anthony et al. 2002; Mason
and Mimmack 2002; Tippett and Barnston 2008;
Zheng et al. 2006; Zhu et al. 2012) and have mixed
success rates (Anthony et al. 2002). While it has been
argued that accurate ENSO forecasts at longer lead
times are out of reach (Fedorov et al. 2003; Thomp-
son and Battisti 2001), some works provide evidence
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that long-term predictions are actually achievable
(Chen et al. 2004; Jin et al. 1994; Desislava Petrova
et al. 2016).

This paper fits into the category of long-term pre-
dictions. Indeed, we use wavelets to analyze and
forecast the ONI signal for lead times ranging from a
few months to three years. Wavelets are now well-
established tools for signal analysis; their range of
applications includes DNA analysis Arneodo et al.
(2002), acoustics Saracco et al. (1990), climatology
Deliege and Nicolay (2016a), Deliege and Nicolay
(2016), Nicolay et al. (2009), Torrence and Compo
(1998) to name just a few. Wavelet transforms are
provided with a rather strong mathematical theoretical
background and with an inverse transform, which is the
backbone of reconstruction procedures (see e.g. Dau-
bechies 1992; Daubechies et al. 2011; Mallat 1999).
General assertions about the continuous wavelet
transform (CWT) and the application to ONI are
developed in Sect. 2. The components extracted for
reconstructing the signal of interest carry valuable
information which is then exploited to derive a simple
predictive scheme for ONI, explained in Sect. 3. The
prediction skills of the proposed model are then
assessed and discussed in Sect. 4. Finally, we draw
some conclusions and envisage possible future works
in Sect. 5. Let us underline that the proposed approach
is independent of any geophysical principles but is
based only on the quasi-periodicity of the ENSO sig-
nal; the reader interested in physical considerations
should consult Desislava Petrova et al. (2016) and the
references therein. The philosophy of this paper is to
provide a glimpse of the practicability of long-term
predictions of ONI and to pave the way for further
investigation in this direction.

2. Wavelet Analysis

This section is devoted to a wavelet analysis of
ONI, which brings valuable information for modeling
and predicting long-term trends of the signal. The
principles involved are inspired from Deliege and
Nicolay (2016), Nicolay (2011), Nicolay et al.
(2009); more details about wavelets and the CWT can
be found in e.g. Daubechies (1992), Mallat (1999),
Yves Meyer (1993), Torrence and Compo (1998).
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The ONI signal used throughout the paper can be
found at CPC (2011) and the last data considered is
the season March—April-May 2016.

2.1. General Statements

First, we recall the basic notions regarding the
CWT and explain a major difference between theory
and practice. Given a wavelet {y (i.e. a smooth
function with some general properties), the wavelet
transform of a function f at time ¢ and at scale a > 0
is defined as

Wit = [rwi(*) s

where V is the complex conjugate of . For time-
frequency analyzes, one usually chooses a wavelet
which is well-located in the frequency domain. In this
case, we use the wavelet iy defined by its Fourier
transform

x/;(v) = sin (%) eﬂ

with Q = ny/2/In2, which is similar to the Morlet
wavelet but with exactly one vanishing moment
(Nicolay 2011). Since ‘&(V) <1073 if v<0, we can
consider that \ is a progressive wavelet (i.e. is zero
for negative arguments). Progressive wavelets have
the convenient property of allowing an easy recovery
of trigonometric functions. Indeed, if y is such a
wavelet and if f(x) = cos(wx), then

1 . =
We(t,a) = Ee””lﬁ(aw).

Consequently, at a given time ¢, if a* denotes the
scale at which the function a— |W;(r,a)| reaches its
maximum, then the identity a*w = Q holds. The
value of w can thus be obtained (if unknown) and the
function fis recovered with the real part of its wavelet
transform:

f(x) = 2R (W (x, o).

For more complicated signals, it is often necessary to
extract several components selected at particular
scales of interest. The CWT then allows an almost
complete reconstruction of the initial signal with
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smooth amplitude modulated—frequency modulated
(AM-FM) components.

As usual, it is not as simple in practice because of
the finite length of the signals. To have an accurate
representation of f at a given time ¢ with the CWT, we
actually need to know the values of f in a neighbor-
hood of #. Therefore, the signal has to be padded at its
edges and the chosen padding irremediably flaws a
certain proportion of the wavelet coefficients located
at the beginning and at the end of the signal. In the
case of the zero-padding of f(x) = cos(wx) (x<0)
and with Morlet-like wavelets, it can be shown that
Wy (1, Q/w) is actually the expected value (as if there
were no border effects) multiplied by a complex
number p()e® such that p(f)<1, t—p(t) is
decreasing, 0(¢) > 0 and n—0(¢) is increasing (which
makes sense since the coefficients “are trying to
converge” to zero as fast as possible). Except for
such trivial cases, it is generally impossible to correct
the border effects for AM—FM signals. Noticeable
improvements can be made in the reconstruction of
the initial signal (even at the borders) by iterating the
process of computing the CWT and extracting the
desired components until almost no energy is drained
from the signal anymore (see Appendix A). Never-
theless, the wavelet coefficients still fall short when it
comes to extrapolations and forecasts. The signal has
to be padded judiciously so that the CWT may
produce components that may be suitable for fore-
casting the signal at longer lead times, as shown in
this paper.

2.2. Application to ONI

The CWT is applied to ONI and the associated
wavelet spectrum (WS) is computed as

a—NA(a) = E|Ws(t,a)|

where E; denotes the mean over time (see Fig. 1). It can
be observed that A displays a significant amount of
energy at periods of ~ 17,31,43,61,140 and 340
months, which is globally consistent with previous
studies (see Desislava Petrova et al. 2016 and refer-
ences therein). The associated components extracted
from the CWT (with iterations) and named cy7, . . ., c340
are plotted in Fig. 2 along with the high-frequency
seasonal and annual modes cg and c5. It is important to
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Figure 1
Wavelet spectrum of the ONI signal based on data from 1955 to
2016. The main periods governing the signal can be easily
identified and range from near-annual to decadal modes of
variability

note that the CWT allows a “flexible” representation
of the signal, i.e. these components are actually AM—
FM signals. The components c;7, ¢31, c43, C1 are near-
annual, quasi-biannual and two quasi-quadriennal
modes of variability of ENSO and are largely discussed
in Desislava Petrovaet al. (2016) whereas c149 and c349
are likely linked with the tropical decadal and inter-
decadal Pacific variability (see e.g. Okumura 2013).

The contribution of a given component c in the
signal can be assessed through several indicators.
First, the relative energy of ¢ with respect to ONI
(denoted s) is computed as

€rel —
sl

where ||.|| denotes the energy of a signal from the
signal analysis point of view, i.e. as the square of the
L? norm. To ensure that ¢ contains pertinent infor-
mation, we also compute the relative accretion of
energy that can be attributed to c as

[ell
N

sl = lls = e
Il

Finally, we compute the Pearson correlation coeffi-
cient (PCC) between ¢ and s. These indicators can be
found in Table 1 and confirm that c7, c¢31, €43, Co1
and cy49 contain most of the information about the
variability of ONI. We also calculated these indica-
tors for the reconstructed signal srecg (sum of the 8

Arel =
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<«Figure 2
The initial ONI signal (top) and the components extracted with the
CWT and plotted from 1975 to 2016. The last one is displayed
since 1950 for better vizualisation

components extracted) and for
srecy = c31 + c43 + ce1 + C140. The first ones indicate
that the reconstruction is almost perfect; we can add
that the root mean square error (RMSE) is 0.04.
Those related to srecs show that the low-frequency
components capture a significant part of the vari-
ability of ONI (with RMSE =0.349). This
observation is actually the one suggesting that long-
term forecasts of ONI should be achievable.

The CWT brings other valuable information that
turn out useful for conceiving a model for long-lead
forecasts of ONI. Indeed, if we look at Fig. 2, it
appears that c31, c43, c61 and ci40 regulating the long-
term variations of ONI are relatively stationary and
should thus be easily modeled. Regrettably, since the
high-frequency components cg, c1» and cj7 are quite
volatile and unpredictable and as the nature of c34 is
uncertain, these will not be taken into account.
Neglecting the high-frequency components can be
seen as a “lesser of two evils” choice. On the one
hand, trying to model and use them for long-term
forecasting is overly hard; our attempts resulted in
predictions that were globally worse than without
using them because of their variability. On the other
hand, omitting them inevitably leads to a loss of
accuracy in the timing and intensity of EN and LN
events. Besides leaving room for improvements, this

Table 1

second option turned out to be the most appropriate in
the context of long-term forecasting of ONI. In
consequence, we are led to build initial guesses on
future values of the signal based on oscillating
components with periods of 31, 43, 61 and 140
months. Their amplitude will be estimated through
the wavelet spectrum and considered constant
throughout the signal, whereas their phases will be
evaluated for each prediction. When the first guess is
made, the CWT will be applied to recover amplitude
and frequency modulations and to provide a forecast
in a natural way. This is detailed in the next section.

3. Forecasting Method

In this study, we focus on forecasting the last two
decades of ONI, i.e. from January 1995 to April 2016.
Data prior to 1995 is used as training set to calibrate
the method. As mentioned, the idea is to construct
components y; (i € I = {31,43,61, 140}) of the form

yi(t) = A;cos(2nt /i + (1))

that can then be extrapolated effortlessly. The
amplitudes (A;),.,; can be estimated easily with data
until 1995. The calculation of the phases (¢;),., is
more challenging and needs to be done as accurately
as possible to have efficient forecasts. The main ideas
of the algorithm proposed for the whole procedure are
described below and Appendix B shows a more
detailed prototype of the code used to construct y.3.
In addition, those auxiliary components y; and a

Relative energy, relative accretion of energy and correlation associated with the components with respect to ONI

Signal Rel. energy Rel. accretion of energy Correlation
ce 0.013 0.017 0.131
ci2 0.026 0.073 0.306
c17 0.095 0.190 0.462
€31 0.147 0.326 0.617
c43 0.108 0.321 0.653
Co1 0.159 0.284 0.555
C140 0.086 0.101 0.319
€340 0.021 0.028 0.168
srecg 0.996 0.997 0.999
srecy 0.731 0.801 0.896

These indicators are also given for srecg which stands for the reconstructed signal as the sum of the 8 components and srec4 defined as the sum

of ¢31,¢43, ¢o1, Cl4a0
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detailed example of a forecast (through the forecasts
of the individual components) are provided with a
comparison with the “expected” components as
supplementary material.

The values of the initial discrete ONI signal are
noted s(¢) for t = 1,..., T, where s(7T) is the last data
available for the considered forecast. The forecasting
scheme is the following.

1. First, we model the decadal oscillation. The ampli-
tude A4 is estimated with the WS of s (always
until 1995 for the amplitudes) as 0.35 and we set

y140(l) = Aj40 COS(27‘CI/14O + 202)

The value 2.02 is chosen so that y4¢ is phased with
C140 in April 1974 (i.e. both reach a minimum).1

2. We now work with s; = s — y490. The WS of s,
gives Ag; = 0.435. The idea is to phase yg with
the strongest warm events of s;, which occur
approximately every 5 years, and anti-phase yg;
with the weaker warm events occurring in
between. More precisely, for each time t <7, we
find the position p of the last local maximum of s,
such that s;(p) > 0.5. If 5;(p) > 0.9 then we set

yel(l‘) = A61 COS(ZTE(I —p)/61);
else
Yol (I) = —A61 COS(2T£(I —p)/él)

3. We now work with s, =51 — y6;. The WS of s,
gives A3 = 0.42. Now, the idea is to phase ys3;
with the cold events of s, which occur approx-
imately every 2.5 years. More precisely, for each
time t <7, we find the position p of the last local
minimum of s, such that s;(p) < — 0.5 and we set

y31(t) = —Asz; cos(2n(t — p)/31).

4. We now work with s3 = s, — y31. The WS of s3
gives Ayz = 0.485. We set that y43 has to explain
the remaining warm and cold events of s3 and we
proceed as follows. For each time # < T, we find
the position p of the last local maximum of s3 such
that s3(p) > 0.5 and we set

"It is actually phased with the 140-months component
extracted from ONI restricted to 1950-1995 but this one corre-
sponds to cy49 around 1974 since border effects are negligible there.

Pure Appl. Geophys.

y}B(t) = Agz cos(2n(t — p)/43).

Then we find the position p of the last local mini-
mum of s3 such that s3(p) < — 0.8 and we set

v (1) = —Au3 cos(2n(t — p)/43).
Finally, we define

ya3 = (Vs +¥33)/2.

5. We extend the signals (yi),; up to T+ N for N
large enough (at least the number of data to be

predicted). Then
y=2_

iel
stands for a first reconstruction (for #<7) and

forecast (for t > T of s.

6. We set s(t) = y(t) for t > T, perform the CWT of
s and extract the components ¢; at scales j
corresponding to 6, 12, 17, 31, 43, 61 and 140
months. These are considered as our final AM—-FM
components and ¢ = Zj ¢; both reconstructs (for
t<T) and forecasts (for ¢t > T) the initial ONI
signal in a smooth and natural way.

4. Predictive skills

The predictive skills of the proposed model for
the period 1995-2016 are tested in two ways. First,
we show that El Nifio and La Nifia events that
occurred during this period could have been antici-
pated years in advance. Then, we show that the PCC
and RMSE of the retrospective forecasts as functions
of the lead time are encouraging regarding long-term
forecasts.

The predictions of EN and LN events 6, 12, 18,
24, 30 and 36 before the peak of the episode are
displayed in Figs. 3 and 4. It can clearly be seen that
the trend of the ONI curve can be predicted in
advance and thus major EN and LN events can be
forecasted long before they happen. One of the most
interesting results is about the famous strong event of
1997/98, which is foreseen up to 3 years in advance
with a lag of only 3 months. A similar observation
can be made regarding the 2009/10 EN for which El
Nifio conditions are anticipated 2—3 years in advance
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Figure 3
Forecasts of El Nifio events 6 (green), 12 (red), 18 (blue), 24 (orange), 30 (cyan), 36 (magenta) months before the peak of the event. The black

curve is the ONI signal. The arrows indicate the moment at which the El Nifio condition (SSTA > 0.5°C) is reached

with a lag of 3 to 6 months. Our model also suggests
that the recent strong EN event of 2015/2016 might
have been forecasted at least 18 months in advance
and even classified as “strong EN” in mid 2014.
However, it can be seen that the intensity of the most
extreme EN events, e.g. 1997/1998 and 2015/2016, is
underestimated. Nevertheless, since the occurrence of

strong EN events seems to depend mainly on the
local maxima of cg, predicting that this component is
about to reach a peak could be sufficient to warn of an
upcoming strong event. Comparable observations can
be made regarding the predictions of LN events,
though the lags are generally delays of 3—6 months in
this case.



A. Deliege, S. Nicolay

Pure Appl. Geophys.

3 T T T U
I I I |
| I
24 I I | VY
> > | | |
© © | |
€ € 1] | |
] o | | |
c c \ I I
®© ®© I I | |
o 2 of ! \\
S =] | \ I
E 5 | I I N\
o T —1{\A L
Q Q I I I I N
€ € I I I I S
) [5) I I I I
— = -2 I I I |
: L T
\ I I |
-3 : : ‘ : Y — b
1993 1994 1995 1996 1996 1997 1998 1999
3 T T T T
I I I \
I l I I \ l
| il I | I
24 | \ | | |
> > l b
[o] @ I I | I
IS g 1/ [ [ [ \
9] <] | I |
c c SN I
®© ®© I | I
o O AN
2 2 ! !
@ © | | | |
(0] O -14
g - I
€ € I I I I
) [5) I I I I
= = -24 | | | |
| L :T
\ I I I
-3 : f . } . .
2005 2006 2007 2008
3 T T T T
I I I \
| I I I
2 I I I I
> > | b
o] ] I I | I
IS g 1 [ \ [ \
S S I I I I
c c \ | I I
®© I ®© I | I I
o | ° of o
2 I 2 \ |
E | E |
o | g -17 | |
Q I = I I I
€ I € I I | I
[5) I [5) I I I I
= | = -24 | | | |
| | :T .
I I I I I
-3 : . L : -3 — — L .
2008 2009 2010 2011 2009 2010 2011 2012
Figure 4

Forecasts of La Nifia events 6 (green), 12 (red), 18 (blue), 24 (orange), 30 (cyan), 36 (magenta) months before the peak of the event. The

black curve is the ONI signal. The arrows indicate the moment at which the La Nifia condition (SSTA <—0.5 °C) is reached. Note that the LN

event of 2000 is a remnant of the one that occurred in 1999 (temperature anomalies do not even reach 0 °C in between) and thus begins at the
same moment (same black arrow); this observation also holds for the LN events of 2011 and 2012

It is important to recall that seasonality is not taken
into account, which contributes to explain the delays
and the underestimation of the intensities to some
extent. The fact that we use constant amplitudes in the
model plays a role as well since the real ONI com-
ponents are actually AM-FM. This calls for further
investigation in the modulations of the amplitudes and
their potential phase-locking with their associated

component. In addition, it can be asked whether the
reference period (1950-1995) used to calibrate the
method influences the results. Indeed, an intuitive idea
would be to use data up to 2015 to produce a 12
months lead time forecast of the EN event of 2016.
Nevertheless, only the amplitudes of the components
yi depend on the training data. Since they are com-
puted as mean amplitudes over 45 years of ONI, they
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Retrospective forecasts of ONI at 6 (blue) and 12 (red) (then 18 and 24, 30 and 36) months lead time. On the first panel, the green curve is our
forecast of ONI (issued in April 2016)

barely change with a slightly larger or smaller ref-
erence period. For the record, the amplitudes
obtained for the period 1950-2015 differ of at most
0.03 units from those used so far. As a consequence,
at the end of the process, the forecast issued with this
adaptation is almost identical to the prediction pre-
sented here (absolute difference <0.01). Hence, it
appears that the influence of the reference period is
limited and that improving the results in a significant
way would require a different approach. Even though
there is an exciting challenge ahead in trying to
incorporate high-frequency components in the model
and to modulate the amplitudes, the long-term trends
are recovered and our predictions are satisfying,
especially given the long-lead times considered and
the simplicity of the model.

In a more “global” approach, we can now focus on
the prediction skills of our model as functions of the
lead time. For that purpose, the retrospective forecasts
at 6, 12, 18, 24, 30 and 36 months lead times are
plotted in Fig. 5. As a matter of information, they are
computed and displayed from 1975 to show that the
model also explains ONI variability prior to 1995 if
the values of the amplitudes got in Sect. 3 had been
obtained in the mid-70’s (as mentioned the rest of the
algorithm does not depend on the training data). As
already observed, most EN and LN events can be
foreseen from 1 to 3 years in advance. The overall

trend of the curve is almost always in agreement with
observations, confirming that long-term predictions are
possible. Using data until April 2016, we issued a
forecast of ONI (plotted in Fig. 5), which predicts a
relatively strong LN event during 2017. Finally, the
prediction skills of the model are measured with the
PCC and RMSE between the forecasted values and the
initial signal as functions of the lead time; these
indicators are plotted in Fig. 6. It appears that the skills
of the model remain relatively stable and decrease
slowly rather than abruptly as some other methods
(Anthony et al. 2002). Although the performances are
not remarkable at short lead times in comparison with
Anthony et al. (2002), Desislava Petrova et al. (2016),
the most interesting fact is that they are excellent at
long lead times (>12 months). This is so because it is
designed to capture and predict the long-term vari-
ability of the signal. Let us also note that, since ONI
has almost zero mean (=0.03), its standard deviation
(=0.84) can be viewed as the RMSE-skill of a model
for which all the predictions are set to zero. As seen in
Fig. 6, our model remains below this threshold while
Fig. 6 in Anthony et al. (2002) suggests that it would
not necessarily be the case for other models (this
should be more carefully investigated since forecasts
in Anthony et al. (2002) were actually operational, not
retrospective). Consequently, it is necessary to under-
line that the proposed model should be used in
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RMSE and correlation between the forecasted values and the signal as functions of the lead time. The results for the period 1995-2015 are in

blue. The green curve represents the results for the period 1975-2015 for the curious minds wondering what would be the skills if the model

was applied as it is for a longer period of time. The black line in the first panel is the standard deviation of ONI. Since it has zero mean, this
line can be viewed as the skill of a model where all the forecasted values are set to zero

complement with other methods because it brings
helpful benefits regarding the long-term predictability
of ONL

5. Conclusion and Future Work

We carried out a wavelet analysis of the Oceanic
Nifio Index to detect the main periods governing the
signal and to extract the components underlying its
variability. The periods and modes in question are
globally in agreement with previous studies and bring
valuable information for the elaboration of a model
predicting the long-term trends of the signal. The
proposed model fits in the growing body of evidence
suggesting that long-term predictions of ONI are
much more possible than previously thought and
shows that early signs of major EN and LN events
can be detected years in advance. This model could
improve our understanding and forecasting skills of
EN and LN. More importantly, the proposed tech-
nique or, at least, the essence of the algorithm (i.e.
phasing appropriate components with warm or cold
events), could be combined with other models which
are more accurate for short-term predictions. This
complementarity could give rise to models able to
predict ONI at a large range of lead times.

Future work will consist in incorporating the
seasonal (near-annual and annual) variability to
improve short-term predictions and the timing and

intensity of EN and LN events in long-term forecasts,
which remains the main strength of the model.
Moreover, we will continue to work on the devel-
opment of the prediction of the peaks of the
components extracted from the CWT, which are the
cornerstones of the model and dictate its forecasting
skills. The time variations in the periods, phases and
amplitudes will also be studied in more detail to
improve the predictions. Due to the effects that EN
and LN events induce worldwide, predictions 1-2
years ahead could be intelligently used to better
prepare for the consequences.
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Appendix A: Iterations of the CWT

When it comes to extracting components from a
signal s as accurately as possible, the CWT can be
used several times to sharpen the desired modes.
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More precisely, if the components of interest are
located at scales (a;),, (for some set of indices /),
then at the first iteration one can extract (c}),; as

cl(f) = 2R(W, (L, ay)).

Then repeat the process, i.e. the CWT and extraction
at the same scales (g;),., but with

§1=95— Z cil,
icl
get the modes (ciz)l.g, repeat with s, =51 — ., ciz,
and so on. Stop the process when the components
extracted are not significant anymore, i.e. at iteration
Jif
max{”c{”,i € I} <o max{”c}”,i € I}

where ||.|| denotes the energy (square of L? norm) of a
signal and o is a threshold typically chosen as 0.01.
The final components (c;),., are then obtained as

J
Ci = :E:: C{.
j=1

Appendix B: Details for y),

For simplification, let us write s instead of s3 and
y instead of y}B. If y is already known up to time
t — 1, here are the steps describing how to obtain y(7).
We note p(t — 1) the position of the peak used to
generate
y(t—1) =Agzcos(2n(t — 1 — p(r — 1)) /43). We use
a variable called lock to prevent abrupt changes from
p(t — 1) to p(r). To obtain p(f), proceed as follows.

if lock=1 then
if s(t)>s(t-1) and s(t-1)>0 then p(t)=p(t-1)+1
else p(t)=p(t-1); if s(t-1)>0 and s(t)<0 then lock=0
else
a=abscissa of the last local max of s
if s(a)>0.5 then
if p(t-1)+floor(period/2) > a then p(t)=p(t-1)
else p(t)=a; lock=1

else p(t)=p(t-1)

Then y(¢) = Az cos(2n(t — p(¢))/43). Special men-
tion for yg; in order to better synchronize the
forecasts with EN events: if it comes that yg; reaches
a peak before 5|, impose that yg; stays at Ag;.
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