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ABSTRACT 

We report on our ongoing development of EXOSIMS and mission simulation results for WFIRST. We present the 
interface control and the modular structure of the software, along with corresponding prototypes and class definitions for 
some of the software modules. More specifically, we focus on describing the main steps of our high-fidelity mission 
simulator EXOSIMS, i.e., the completeness, optical system and zodiacal light modules definition, the target list module 
filtering, and the creation of a planet population within our simulated universe module.  For the latter, we introduce the 
integration of a recent mass-radius model from the FORECASTER software. We also provide custom modules dedicated 
to WFIRST using both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) for detection and 
characterization, respectively. In that context, we show and discuss the results of some preliminary WFIRST simulations, 
focusing on comparing different methods of integration time calculation, through ensembles (large numbers) of survey 
simulations.  

Keywords: high contrast imaging, exoplanets, space missions, WFIRST, coronagraphs, end-to-end simulator, 
integration time, zodiacal light  
 

1. INTRODUCTION 
In addition to allowing for new detections of exoplanets and exozodiacal disks, direct imaging also enables astrometry 
and photometry of these objects, and allows for better estimation of exoplanet orbital parameters (e.g., β Pictoris,1 HR 
87992,3). Furthermore, high-resolution spectroscopic analysis can ultimately lead to determining the atmospheric 
structure and chemical composition of exoplanets.4 Direct imaging is therefore highly desirable, but also challenging. It 
requires combining technologies such as coronagraphy, wavefront sensing and control, pointing jitter control, and 
software solutions leading to post-processing gains in terms of contrast. So far, only a few dozen large bright planets 
have been imaged, mostly around young and nearby stars, and on fairly long-period orbits. In order to extend this 
parameter space, astronomers will most likely need to send out their instrumentation on spacecraft, and observe 
exoplanets directly from space. In this context, the WFIRST (Wide-Field Infrared Survey Telescope) NASA mission will 
be equipped with coronagraphs5 to directly image and spectrally characterize exoplanets and exozodiacal disks around 
nearby stars.  

As part of the WFIRST Preparatory Science investigation, we are developing the Exoplanet Open-Source Imaging 
Mission Simulator (EXOSIMS)6 designed to allow for systematic exploration of expected science yields over the course 
of a specific mission. A schematic depiction of the EXOSIMS modular architecture is given in Fig. 1. This modular 
structure allows users to investigate multiple missions or system designs by only modifying individual modules without 
having to redefine the unaffected ones. The instantiation of all modules begins with the construction of a 
MissionSimulation object, after loading the input specification from a single script file (see Fig. 1, green box). All other 
module objects are then instantiated, with the arrows indicating calls to object constructors in the order shown in the flow 
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Figure 1. Flow chart describing the instantiation of an end-to-end simulation. Each software module is represented by a box, 
and corresponds to a simulation step. The input specification (green box) is a single script file loaded by the main module 
MissionSimulation. The code operates by successive interactions between modules, as indicated by the arrows. The 
TargetList and SimulatedUniverse modules (red boxes) are being described in Sect. 2 and Sect. 3, respectively. The 
SurveySimulation and SurveyEnsemble modules (blue boxes) are responsible for running either one or a large number of 
simulations, respectively. 

 

chart. All module references are passed to the top calling module, such that the MissionSimulation object has direct 
access to all other modules as its attributes. The last two constructed modules (see Fig. 1, blue boxes) are responsible for 
performing either one (SurveySimulation) or a large number (SurveyEnsemble) of simulations based on all of the input 
parameters and models. Each simulation returns the mission timeline, i.e., an ordered list of simulated observations of 
various targets on the target list along with their outcomes.  

In this paper, we give an update on our ongoing development of EXOSIMS. More specifically, we focus on our upgrades 
to two core steps of the software (see Fig. 1, red boxes) – the creation of a target list and the simulation of the whole 
universe, i.e., the planets around the target stars. In Sect. 2, we detail some of the main modules involved in constraining 
the mission simulation target list, namely the Completeness module, the OpticalSystem module, and the ZodiacalLight 
module. In Sect. 3, we introduce the integration of a recent probabilistic mass-radius relation, made available through the 
FORECASTER software.7 Finally, in Sect. 4, we show results of ensembles of survey simulations, with a comparison of 
different methods of calculating the integration times, that have been integrated to the OpticalSystem module.8–10 

 

2. TARGET LIST FILTERING 
The TargetList module collects information from eight downstream modules: StarCatalog, OpticalSystem, 
ZodiacalLight, PostProcessing, BackgroundSources, Completeness, PlanetPopulation, and PlanetPhysicalModel. The 
target list can contain pre-determined target stars where planets are known to exist from previous surveys (e.g., radial-



 
 

 
 

velocity surveys, transit surveys). Alternatively, the target list can contain all of the targets from a star catalog where a 
planet with specified parameter ranges could be observed. In that particular case, the TargetList module first copies the 
whole catalog (e.g. SIMBAD) by running the StarCatalog module and removes stars with any NaN attributes, to populate 
the target list with usable attribute values, with units defined as Python Astropy Quantities. Then, TargetList performs a        
population filtering based on selected criteria. For instance, the prototype implementation can do the following: 

- remove binary stars; 

- remove systems not meeting the single-visit completeness threshold; 

- remove systems with planets outside of the coronagraph working angles; 

- remove systems where integration time is longer than maximum integration time. 

The following subsections illustrate the definition of some of the main parameters required to constrain the target list, i.e. 
the completeness value, the optical system throughput, contrast, inner working angle (IWA) and outer working angle 
(OWA), the zodiacal light, and the integration time. 

 

2.1 Completeness module 

We first calculate a joint probability density function (PDF) of the planet population’s apparent separation (s) together 
with the difference in brightness between the star and the planet (Δmag). This photometric restriction on exoplanet 
observability is introduced by the telescope optics.11 Then, we evaluate a completeness level for each target. The 
completeness is the 2D integration of a portion (i.e., the cumulative density function) of a specific PDF such as the one 
shown in Fig. 2. The integrated portion is defined for a specific target star, and a specific imaging instrument, with given 
IWA, OWA, and a Δmag limiting value. The calculated value corresponds to the probability that a particular 
observatory, while observing a star for the first time, will detect a planet belonging to the assumed population. These 
completeness values are then updated throughout the mission, for target stars that were previously observed. An exact 
formulation of the multivariate integral representing such a completeness joint probability density function was recently 
derived in Ref. 12. 

 
Figure 2. Example of joint probability density function. The color is log-scaled (base 10) of the probability density in units 
of AU^-1 mag^-1. The black lines represent minimum and maximum values for which the completeness joint probability 
density function is nonzero. From Ref. 12. 



 
 

 
 

2.2 ZodiacalLight module 

The local zodiacal light surface brightness is usually11,8 given by a uniform brightness of 23 mag arcsec^-2. However, 
zodiacal brightness changes for each observation direction, and at each wavelength. The ZodiacalLight module of 
EXOSIMS integrates a coordinate and wavelength dependence for each target. As in Ref. 8, this dependence is obtained 
by interpolating Tables 17 and 19 of diffuse night sky brightness presented in Ref. 13. This interpolation preliminarily 
requires coordinate transformations. In fact, the tables give zodiacal light in terms of geocentric ecliptic coordinates  
λ–λ☉, β with the zero point of λ in the Sun, as illustrated in Fig. 3. The target coordinates, as copied from the star 
catalog, are defined as right ascension (α) and declination (δ) in the International Celestial Reference System (ICRS), 
with its origin at the barycenter of the Solar System. These ICRS α, δ coordinates must be transformed into observatory-
centered ecliptic coordinates λ, β with respect to the spacecraft: 	𝑂𝑇 = 𝑆𝑇 − 𝑆𝑂.  

Then, Leinert’s ecliptic coordinates λ–λ☉, β can be easily obtained by subtracting the longitude of the Sun with respect to 
the observatory (λ☉). The latter is simply the anti-supplementary angle of the longitude of the observatory with respect to 
the Sun: λ☉ = λobs + 180°. 

 
Figure 3. Diagram illustrating the target coordinates definition, S being the position of the sun, O the observatory, and T the 
target. ♈ represents the direction of the vernal equinox. The brightness of the local zodiacal light, as seen from the 
observatory, is given by Leinert’s table,13 for the ecliptic longitudes and latitudes (λ–λ☉, β) with the zero point of longitude 
in the direction of the Sun. The longitude of the Sun with respect to the observatory (λ☉) and the longitude of the 
observatory with respect to the Sun (λobs) are anti-supplementary angles. 

 

2.3 OpticalSystem module 

The Optical System module contains all of the necessary information to describe the effects of the telescope and starlight 
suppression system on the target star and planet wavefronts. For instance, the user can specify angular separation and 
wavelength dependent contrast and throughput definitions, together with Point Spread Functions (PSF) for on- and off-
axis sources.14,15 Because these parameters are wavelength dependent, they are defined as callable functions. As an 
example, Fig. 4 (left) shows the performance curves of a coronagraph at the specific wavelength value of 550 nm. Both 
the contrast and throughput input data are angular separation-dependent arrays, where the array first column contains the 
separations in arcsec. These curves allow for the extraction of specific parameters including the instrument IWA and 
OWA defined as the min and max angular separations at 50% normalized throughput, as well as the average and 
maximum contrast and throughput over the IWA-OWA range. Fig. 4 (right) shows the on- and off-axis normalized PSFs 
for the same coronagraph. Both horizontal sequences of PSFs correspond to the same data, but with two different 
colorbar scales: the upper sequence is logarithmic, whereas the lower sequence is linear. Each PSF is observed at a 
specific off-axis separation, in units of λ/D, λ being the instrument central wavelength and D the telescope primary 
mirror diameter. The white circles on the upper sequence correspond to the core of the PSFs, with a FWHM circle 



 
 

 
 

diameter. Based on this PSF sequence, one can easily derive the original contrast and throughput curves by performing 
simple aperture photometry. As a visual example, the normalized throughput at a separation of ~3 λ/D (~0.14 arcsec) is 
about 50%, which matches the value of the IWA defined by the throughput curve.  

 
Figure 4. Example of a starlight suppression system performance, given as input to EXOSIMS. Left: the throughput and the 
contrast curves, as functions of the angular separation, for a specific wavelength value. The instrument IWA and OWA are 
calculated at 50% throughput. Right: an off-axis PSF sequence represented both on a logarithmic and a linear scale, for 
comparison. Aperture photometry is performed by integrating the FWHM white circles, to reproduce the throughput and 
contrast curves.  

 

2.4 Integration time calculation 

As previously stated, the TargetList module filters out systems with integration times larger than an integration cutoff 
value set by the user. By doing so, the software ensures that no observation will start with an unacceptably long 
integration time, reducing severely the remaining life time of the mission. The OpticalSystem prototype module 
calculates the electron count rates for the planet signal 𝐶( 𝜆 	 and the background noise 𝐶* 𝜆  as functions of the 
wavelength 𝜆, based on the spectral flux density electron count rate 𝐶ℱ, 𝜆  

 𝐶ℱ, 𝜆 	= 	𝜖	𝐴	Δ𝜆	𝑇 𝜆 	ℱ, 𝜆  (1) 

where 𝜖 is the quantum efficiency, 𝐴 is the pupil area, Δ𝜆 is the bandwidth, 𝑇 𝜆  is the total optical system throughput, 
and ℱ, 𝜆  is the spectral flux density function. The latter is obtained by using the following empirical expression16,17 

 ℱ, 𝜆 = 10 2.,4567889::9 		 (2) 

which returns ~104 photon s^-1 cm^-2 nm^-1 at the specific wavelength value of 550 nm. The planet signal electron 
count is then given by  

 𝐶( 𝜆 		= 	𝐶ℱ, 𝜆 	105,.2	 ;mag?@mag  (3) 

and the background noise electron count is given by10 

 𝐶* 𝜆 		= 	 ENFD	(𝐶FG 𝜆 + 𝐶IJ 𝜆 + 𝐶KL + 𝐶LL) + 𝐶GN (4) 

with the following definitions: 

- excess noise factor ENF = 2	 EM-CCD 	or	1	 CCD ; 

- suppressed starlight residuals 𝐶FG 𝜆 = 𝐶ℱ, 𝜆 	105,.2	;mag	𝑄 𝜆 			with	𝑄 𝜆 = coron.	contrast; 

- zodiacal light (local + exozodi) 𝐶IJ 𝜆 ; 

- dark current 𝐶KL; 

- clock-induced-charge 𝐶LL; 

- readout noise 𝐶GN. 



 
 

 
 

The total noise budget is illustrated in Fig. 5. Four virtual planet PSFs are being imaged at various angular separations 
from their host star, ranging from 2 to 7 λ/D. The sequence of images shows that the background noise consists primarily 
of the residual diffracted starlight speckles, due to wavefront errors. Without any image post-processing, the scattered 
light dominates the background variance and the planet signals cannot be retrieved. A 10-time post-processing gain 
already reduces significantly the speckle noise, and allows the detection of two or three of the candidates.  

 

 
Figure 5. Sequence of simulated images of a target with four virtual companion planets. Image a is the target normalized 
PSF, with a logarithmic colorbar scale. Image b assumes a perfect star cancellation, and reveals clearly the four planet PSFs 
at various angular separations, with the addition of the diffuse source of total zodiacal light in image c. Images d and e 
include the detector noise (dark current, clock-induced charge, readout) and the diffracted starlight residual speckles. Images 
f and g are two examples of post-processing gain, allowing to retrieve two or three of the planets that were previously hidden 
by speckle noise.  

 

3. MASS-RADIUS RELATION USING FORECASTER 
After populating the target list and filtering based on selected criteria, the SimulatedUniverse module creates a synthetic 
universe by populating planetary systems about some or all of the stars in the target list. Each planetary system is 
generated based on the statistics encoded in the PlanetPopulation module, so that the overall planet occurrence and 
multiplicity rates are consistent with the provided distribution functions. The PlanetPopulation module encodes the 
density functions of all required planetary parameters, including semi-major axis, eccentricity, orbital orientation, radius, 
mass, and geometric albedo. Certain parameter models may be empirically derived while others may come from analyses 
of observational surveys, and calculated via the PlanetPhysicalModel module. Most planet indirect detections (radial 
velocity, microlensing or transit) can measure either the planet mass or its radius, but not both. Future missions will need 
to forecast the missing quantity (M or R) by means of an MR relation, in order to predict detectability. At the first level, 
detectability of exo-atmosphere is proportional to 𝑅D/𝑀. Planets with known radius and mass will be easier to 
characterize with follow-up observations such as JWST,18 which will not have time for both measures given the limited 
supply of cryogen onboard. 



 
 

 
 

In practice, transit missions (e.g. TESS19) need the forecast of the mass based upon the radius, while radial-velocity (RV) 
missions need the radius based upon the mass. Fig. 6 illustrates the whole known RV planets universe generated by the 
PlanetPopulation module. For a large majority of these planets, only the mass is available and the radius needs to be 
calculated. To do so, we use a recent probabilistic MR relation model called FORECASTER,7 that we integrated to 
EXOSIMS in a dedicated PlanetPhysicalModel module. In addition to forecasting, the inference of the MR relation 
enables classification, which has significant impact in some cases, e.g., the occurrence rate of exo-Earths 𝜂⨁ increases by 
72% when altering their definition from 𝑅 < 1.5𝑅⨁ to 𝑅 < 2.0𝑅⨁.20 The classification of FORECASTER leads to four 
categories of worlds (Terran, Neptunian, Jovian, Stellar) and three transitions. The Neptunian-Jovian transition is not as 
physically intuitive as the other two. A plausible physical interpretation is that a Neptunian radius grows rapidly as more 
mass is added, whereas a Jovian mass is sufficient for gravitational self-compression to start reversing the growth.7  

 

 
Figure 6. Radius and mass values for the whole planet population, generated from known radial-velocity planets. Only a 
few of these planets (red dots) have both their mass and radius measured. The large majority (blue dots) have their radius 
value provided by the MR relation from FORECASTER. Note the classification in four worlds: Terran worlds (including 
dwarf planets), Neptunian worlds, Jovian worlds (including brown dwarfs), and Stellar worlds (K, M, and late-type G dwarf 
stars). Figure based on Ref. 7. 

 

4. SURVEY ENSEMBLE RESULTS 
After the execution of the TargetList and the SimulatedUniverse modules, two additional modules are called 
(TimeKeeping and the Observatory) to predict which target stars are observable at a specific time during the mission 
simulation and which are unobservable due to bright objects within the field of view, such as the sun, moon, and solar 



 
 

 
 

system planets. The MissionSimulation is then ready to start an observing survey of the selected targets and their planet 
companions. For each observation, an integration time is calculated. The integration time of a specific planet, with a 
specific science instrument, involves the wavelength-dependent expressions (3) and (4) introduced in Sect. 2.4. These 
equations are used to obtain both the planet signal and the background noise electron counts, 𝐶( 𝜆  and 𝐶* 𝜆 . Different 
methods exist to determine the integration times. Here, we focus on a comparison study of two methods, described in the 
following papers: 

- Kasdin&Braems 20069: The authors define a false alarm probability 𝑃FA = 3×105j and a missed detection 
probability 𝑃MD = 105k. The integration time is given by 

 𝑡(𝜆) = mn(o)
mp(o)q∆s

1 − 𝑃FA − 1 − 𝑃MD 1 +
𝐶( PSFijk

𝐶* PSFijD

D

		 (5) 

where ∆𝛼 is the dimensionless pixel size, and PSF is the normalized PSF. 

- Nemati 201410: The author defines a signal-to-noise ratio level (e.g. SNR = 5). The integration time is then 
given by 

 𝑡 𝜆 = mn o 	SNRq

mp o q5 SNR	yPP	mz{ o
q (6) 

where 𝑓PP is the expected gain due to post-processing.  

 

The results of our comparison study are illustrated in Fig. 7 and are obtained with data produced from a small but 
sufficient ensemble (N~500) of survey simulations. Larger ensembles (~5000) will be used for final mission yield 
evaluations. The baseline implementation of the SurveyEnsemble module is a simple looping function that executes the 
desired number of simulations sequentially, and can be run in a limited number of separate IPython terminals for parallel 
computing. A specific module is also being developed, implementing a locally parallelized looping based on IPython 
Parallel.21 The results shown in Fig. 7 indicate a similar yield of unique detections with both methods, and a slightly 
increased yield of total detections with the Kasdin&Braems method (𝑃FA = 3×105j and 𝑃MD = 105k) compared to the 
Nemati method (SNR = 5). The former appears to be somewhat more optimistic, producing shorter integration times.  

 
Figure 7. Probability density function of unique planet detections (left-hand) and total planet detections (right-hand). The 
plotted curves correspond to the Kasdin&Braems method (Eq. 5, blue curves) and Nemati method (Eq. 6, red curves). 

 



 
 

 
 

5. CONCLUSIONS 
We provide an update on the ongoing development of EXOSIMS. We give a detailed description of the TargetList 
module filtering, based on selected criteria introduced by the user, including completeness threshold, optical system 
working angles, and integration time cutoff. The completeness joint probability recently derived by our team is presented 
briefly. We also show results of wavelength dependent contrast and throughput curves obtained from a sequence of on- 
and off-axis source PSFs, using aperture photometry on the PSF core region delimited by the FWHM. The working angle 
range (IWA-OWA) is then determined by the OpticalSystem module based on the calculated throughput curve. The 
prototype OpticalSystem module is now also responsible for the planet signal and background noise electron count. In 
that context, we study different existing methods for calculating the integration time, and we provide specific 
OpticalSystem modules for each method. In addition, we explore new planet property models, and we integrate the MR 
relation model from the FORCASTER software, to predict the missing property (mass or radius) of previously detected 
planets (transits, radial velocities).  Finally, we analyze simulation ensembles data, focusing on the comparison between 
the newly implemented integration time calculation methods. Our preliminary results show consistent unique detection 
yields, with slightly different mean integration times. Further analysis is ongoing. EXOSIMS will continue to be further 
developed through the final release in May of 2017, and will be used to continuously refine the modeling of the WFIRST 
coronagraph science. 
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