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Abstract.  In order to model accurately the anisotropic material behavior during finite element simulations, a precise 
description of the material yield locus is required. Beside the shape (linked to the material model used), the size (related 
to the isotropic hardening) and the position (kinematic hardening) of the yield locus, its orientation is of particular 
interest when large rotations of the material are encountered during the simulations. This paper proposes three distinct 
methods for the determination of the material yield locus rotation: a method based on the Constant Symmetric Local 
Velocity Gradient (CSLVG), a corotational method and a method based on the Mandel spin. These methods are 
compared during simple shear tests of an aluminum sheet. 
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INTRODUCTION 

For the finite element (FE) simulations relying on 
elasto-plastic models based on anisotropic yield locus 
description, it is important for the simulation accuracy 
to follow a Cartesian reference frame, where the yield 
locus is expressed. The classical formulations like the 
Hill 1948 model keep a constant shape of the yield 
locus when more sophisticated yield loci, e.g. based on 
texture, regularly update their shape. However in all 
these cases, the rotation of the Cartesian reference 
frame should be known.  

In large strain FE simulations, different reference 
frames can be defined as shown in Figure 1 for the 
case of a shear test. The global frame {X1,X2,X3} 
remains fixed during the whole simulation and is used 
to define the FE mesh. The actual material frame 
{x1’,x2’,x3’} follows the material during the 
deformation. It can be defined as three orthogonal 
lines initially drawn on the material and which become 
curve and non Cartesian as the material deforms. This 
frame is generally unknown in the FEM framework. 
Finally, the local frame {x1,x2,x3} is used during FE 
simulations to describe the material (anisotropic) 
behavior. This frame is expected to propose the best 
orthogonal average position of the material frame. 

This paper mainly deals with three different 
approaches regarding the choice of the local reference 
system used to represent the material’s behavior: a 

method based on the kinematics of the FE formulation, 
a corotational method and the Mandel spin approach. 
An experimental validation is examined in order to 
assess the quality of each approach. As it induces large 
rotations of local axes, a shear test was investigated 
during this study.  

 
FIGURE 1.  Definition of reference frames during shearing 
in (a.) initial state and (b.) deformed state. 
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NUMERICAL MODELS 

The numerical simulations described in the present 
paper were achieved thanks to the self-made FE code 
LAGAMINE [1-2].  

Minty constitutive law 

For the present study, a crystal plasticity law 
adapted to macroscopic simulations was used. This 
law is based on a local yield locus approach able to 
predict texture evolution during FE modeling of 
industrial forming processes. With this model, only a 
small zone of the yield locus is computed. This zone is 
updated when its position is no longer located in the 
part of interest in the yield locus or when the yield 
locus changes due to texture evolution. 

This model is specific in the sense that it does not 
use a yield locus formulation either for plastic criterion 
or in the stress integration scheme. A linear stress-
strain interpolation in the 5-dimensional (5D) stress 
space is used at the macroscopic scale: 
 σ Cuτ=  (1) 

In this equation, σ is a 5D vector containing the 
deviatoric part of the stress; the hydrostatic part being 
computed according to an isotropic elasticity law. The 
5D vector u is the deviatoric plastic strain rate 
direction (it is a unit vector). τ is a scalar describing an 
isotropic work hardening. 

The macroscopic anisotropic interpolation is 
included in the matrix C. Its identification relies on 5 
directions: ui (i=1…5) advisedly chosen in the 
deviatoric strain rate space and their associated 
deviatoric stresses: σi (i=1…5) computed by the 
polycrystal plasticity model. This micro-macro model 
uses Taylor’s assumption of equal macroscopic strain 
rate and microscopic crystal strain rate. It computes 
the average of the response of a set of representative 
crystals evaluated with a microscopic model taking 
into account the plasticity at the level of the slip 
systems. In this paper, a Full Constraints (FC) Taylor’s 
model coupled with a rate insensitive crystal plastic 
model is investigated.  

The texture evolution is computed using Taylor’s 
model on the basis of the strain history for each 
integration point at every FE time step. Further details 
and properties of Minty law can be found in [2]. 

Local axes definitions 

Three different methods for the determination of 
the local reference frame are proposed hereafter. 

The Constant Symmetric Local Velocity Gradient 

The Constant symmetric local velocity gradient 
(CSLVG) method used to determine an adequate local 
reference system was initially developed by Cescotto 
and Munhoven [3-4]. This method is based on the 
kinematics of the FE method.  

At a first stage, all vectors and tensors are 
expressed in the global reference system, where the FE 
mesh is defined. The global reference system remains 
fixed during the deformation of the solid. The 
kinematics in continuum mechanics involve the 
computation of the deformation gradient tensor: 
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where ( , )t=x x X  is the mapping of the initial 
configuration of the solid, having coordinates X, to the 
current configuration at time t. The velocity gradient in 
the current configuration is computed with equation 
(3). 
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The symmetric part and the skew-symmetric part 
of L are respectively the well-known strain rate tensor 
and the spin tensor, related to rigid body rotation. 

The implementation of a non linear constitutive 
law in a large strain FE code implies a step by step 
procedure. The integration of the kinematic equations 
must be achieved carefully due to the incremental 
procedure. 

The configuration at the beginning of one step is 
called A at time tA and the configuration at the end of 
this step is B at time tB. During the computation of one 
FE time step, the velocity field at the beginning of the 
step is known and an estimation of the velocity field at 
the end of the step is assumed. The deformation 
gradient tensors at the beginning and the end of the 
step are computed: 
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The incremental deformation gradient tensor for 
the considered step is: 
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According to this incremental process, the 
configurations at the beginning and the end of the step 
are known but a strain path must be chosen between 
these two configurations. Different assumptions have 
been examined by several authors, see e.g. [5-6].  

The constancy assumption of the velocity gradient 
(one important feature of the model) imposes the strain 
path. According to equation (3), the deformation 



gradient tensor must satisfy the following differential 
equation: 

 ( ) ( ) [ ]1
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with the initial condition: 
 ( )A At =F F  (7) 

The following solution fulfils equations (6) and (7): 
 ( ) ( )( )exp A At t t= −F L F  (8) 

The additional condition ( )B Bt =F F  allows 
finding the constant value of the velocity gradient: 

 ( )1 ln ABt
=
∆

L F  (9) 

where ∆t = tB - tA is the size of the time step. 
The velocity gradient computed with equation (9) 

is constant during the time step but it is generally non-
symmetric as FAB is not necessary symmetric. The 
symmetry of the velocity gradient can however be 
obtained by expressing it in another reference system. 
In other words, the symmetry condition in this method 
fixes the choice of the local reference system.  

 
Let’s now present how to determine the local 

reference system and the velocity gradient according 
to the symmetry condition. All vectors and tensors 
expressed in the local reference system are noted with 
a ′. 

First, the deformation gradient tensor expressed in 
the local reference system is obtained thanks to 
equation (10). 

 0
T′ ′∂ ∂ ∂ ∂′ = = =

′ ′∂ ∂ ∂ ∂
x x x XF R FR
X x X X

 (10) 

where R is the current rotation matrix between the 
local and the global reference systems (the orthogonal 
condition of rotation matrices implies 1 T− =R R ). R0 
is the corresponding rotation matrix at the beginning of 
the process. 

Due to the step by step procedure of the FE code, 
the rotation matrix R has the value RA at the beginning 
of the step and RB at the end of the step. Indeed, while 
the global reference system remains always fixed, the 
local one evolves during the time step. The 
incremental rotation of the local reference system 
during the time step is simply T

B AR R . 
Similarly to equation (5), the incremental 

deformation gradient expressed in the local reference 
system is: 
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The local velocity gradient can then be obtained: 

 ( )1 ln ABt
′ ′=

∆
L F  (12) 

This velocity gradient is constant during the time 
step and it is furthermore assumed to be symmetric. 
Equation (12) then implies that AB′F  is also symmetric. 

Making use of equation (10) allows developing the 
formulation of the local incremental deformation 
gradient: 
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At this stage, we define  
 *

AB AB A B AB′=F F R R F  (14) 
where the second equality derives from (13). 
Finally, equation (12) yields to: 
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The symmetry condition of AB′F  has been used in 
the above developments, while this last formulation of 
the local velocity gradient is checked to be effectively 
symmetric. 

The implementation of this method in the FE code 
is achieved according to the following algorithm: 

0. All variables at the beginning of the step (state 
A) are known (expressed in the global reference 
system) according to previous step computations. 

1. With the estimation of the velocity field at the 
end of the step, ABF  is computed according to 
equations (4) and (5). 

2. The definition of *
ABF  is exploited (first equality 

of equation (14)). 
3. The constant symmetric local velocity gradient 
′L  is computed according to the last equality of 

equation (15). 
4. The stress tensor at the beginning of the step is 

expressed in the local reference system according to: 
 T

A A A A′ =σ R σ R  (16) 
5. The constitutive law is called to achieve the 

stress integration on the current time step: 



( ), , , internal variablesB A Af tσ σ σ L′ ′ ′ ′= + ∆  (17) 
Conveniently, the incremental objectivity is 

automatically satisfied thanks to the computation in 
the local reference system. As a consequence, no 
Jaumann type corrections must be added to the natural 
derivatives during the stress integration. 

6. The right decomposition of *
ABF  yields to: 

 * * *
AB =F R U  (18) 

Identification of equation (18) and the second 
equality of equation (14) allows determining RB. 
Indeed, bearing in mind that AB′F  is symmetric, we 

have *
B =R R  and incidentally *

AB′ =F U . 
7. Finally, the stress tensor at the end of the step 

can be computed: 
 T

B B B B′=σ R σ R  (19) 

The corotational method 

The second method investigated for the 
determination of the local reference system is the use 
of a corotational reference system. This frame is 
closely linked to the element nodal coordinates. This 
reference system must have its origin at the center of 
the element and its reference axes are aligned (as much 
as possible, depending on the element shape) with 
element edges. This method has mainly geometrical 
bases and is easily implemented in a FE code. 
However, contrarily to the CSLVG method, the 
corotational method does not guaranty the objectivity 
of the stress integration. A separate objectivity method 
(e.g. Jaumann derivatives) must be used. 

The Mandel spin method 

The corotational approach is based on the 
geometric configuration of the finite element, while 
the CSLVG method is based on the kinematics of the 
element. These two methods are independent of the 
constitutive law used to model the material behavior.  

The Mandel spin approach described here is quite 
different in the sense that it is linked to the material 
model and especially to the crystals constituting the 
studied polycrystal. The macroscopic rotation of the 
material is computed from the rotation of each crystal.  

Due to its cubic symmetry, the crystal lattice must 
always remain orthogonal. The crystal rotations during 
plastic straining are therefore defined unquestionably. 
The problem of the non orthogonal axes {x1’,x2’,x3’} 
in Figure 1(b.) is avoided if we focus on crystal 
rotations. 

In order to have a representation of the crystal 
rotations, the Mandel spin approach requires the use of 

a constitutive law based on texture analysis with 
computation of the texture evolution during plastic 
deformations. In LAGAMINE code, the Mandel spin 
approach must be coupled with Minty constitutive law 
(described above). The orientation of each crystal 
lattice of the material’s texture representative set is 
expressed with Euler angles during the whole finite 
element simulation. The rotation of every crystal 
during each finite element time step can then be 
deduced. 

The main difficulty during the computation of the 
Mandel spin is the computation of the macroscopic 
rotation of the polycrystal from the rotations of all 
crystals of the representative set. A mean rotation must 
be computed from crystal rotations. 

In the particular case the rotation axis is identical 
for each crystal, the mean rotation can simply be 
computed as the mean rotation angle around the 
common axis.  

Unfortunately, in the general three-dimensional 
case, the rotation axis is different from one crystal to 
another. Indeed, during numerical shearing 
simulations, only a few crystals rotate around an axis 
close to the expected macroscopic rotation axis. The 
rotation angles are also very different from one crystal 
to another. The rotation axes of the crystals generally 
have a small deviation from the macroscopic rotation 
axis. A typical deviation of around 10° between the 
macroscopic and the crystal rotation axes was 
observed. However, some crystals rotate around axes 
very different from the macroscopic one.  

Four techniques were investigated for the 
computation of the macroscopic mean rotation during 
one finite element time step. Two techniques use 
quaternions to represent the crystal rotations and two 
techniques use skew-symmetric spin tensors. Besides, 
two averaging techniques were developed. The authors 
refer to [7] for a detailed description of each technique. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2.  Experimental test and sample for texture 
measurement. 
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FIGURE 3.  Initial texture of AL6016 material in terms of 110 and 100 pole figures.  

      
 

FIGURE 4.  110 and 100 pole figures of the measured texture on the deformed material (shear strain = 0.47). 

      
 

FIGURE 5.  Predicted 110 and 100 pole figures after shearing simulation using Minty law. 
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ALUMINUM SHEET SHEAR TEST 

In order to assess the quality of the three different 
local axes rotation methods proposed above, a simple 
shear test of aluminum AL6016 sheet was 
investigated. The sketch of the shear test is presented 
in Figure 2. The shearing zone of the material was 
3mm thick, 30mm long and the thickness of the sheet 
was 0.94mm. The remaining parts of the sheet were 
used for clamping. The shearing was conducted up to a 
shear strain γ of 0.47, which was chosen to be just 
below the material fracture. Further details about the 
experimental procedure can be found in [7].  

In order to validate the texture predicted by Minty 
law, a texture measurement on the deformed sample 
was performed. The zone used for texture 
measurement was extracted from the sheared zone as 
shown in Figure 2. 

The initial texture of AL6016 is shown in Figure 3. 
The measured texture on the deformed sample is 
presented in Figure 4 while the predicted texture 
appears in Figure 5. A good (quantitative) agreement 
between experimental and numerical textures is 
noticeable. In Figures 4 and 5, the new pseudo-
orthotropy axes, corresponding to the main symmetry 
axes of the pole figures are plotted. The orientations of 
these axes with respect to the initial orthotropy axes 
are reported in Table 1. As can be seen, even if the two 
textures are very similar, their symmetry axes are very 
different. The decision of using these symmetry axes 
as being adequate local axes is, in this case, quite 
questionable. 

Table 2 presents the rotation angles computed at 
the end of the shear test for the three investigated 
methods (the four techniques used for the Mandel spin 
approach gave very similar results). The three methods 
are in rather good agreement. 

CONCLUSION 

This paper presents three different methods for the 
computation of the rotation of the local reference 
frame during FE simulations. For the aluminum sheet 
shear test, the three methods gave similar results. 
Contrarily, the analysis of the orthotropy axes of the 
deformed texture is not (in this case) a good measure 
of the rotation of the material frame. 

The main characteristics of the three rotation 
methods are: 
• The Mandel spin has a physical meaning in term 

of crystal analysis; hence, it is accurate even for 
very large strains [7]. On the other hand, it must 
be linked to a crystal plasticity constitutive law 
with computation of the texture evolution. As a 
consequence, it involves large computation time.  

TABLE 1. Rotation of the orthotropy axes. 
Texture analyzed Rotation angle around 

X3 axis 
Measured final texture +35° 
Predicted final texture -20° 

 
TABLE 2. Rotation of the local reference frame. 

Method used Rotation angle around 
X3 axis 

CSLVG -13.44° 
Corotational -12.56° 
Mandel spin -12.07° 

 
• The corotational method is conceptually very 

simple and its implementation in a FE code is 
also straightforward. Nevertheless, its results are 
quite satisfactory. The main drawback of this 
method is that it does not ensure the objectivity 
during the FE computation. 

• The CSLVG method derives from the kinematics 
of the FE code. The theoretical developments are 
not straightforward but its implementation in a 
FE code is uncomplicated and it is computation 
time efficient. A major advantage of this method 
is that it ensures objectivity by making use of a 
symmetric velocity gradient. However, it 
generally overestimates the rotation of the local 
frame especially for very large strains.  
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