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The focus of this study is on the development of a robust controller with a simple gain 
adaptation for satellite formation control. The complete nonlinear dynamics of the motion of 
the follower satellite relative to the leader satellite is considered and the rigorous proof for 
the stability of the controlled formation system is given in the presence of unknown external 
disturbances and unknown mass of the follower satellite. Although the controller design is 
based on the concept of sliding mode control, the proposed control strategy is free from 
chattering and guarantees a finite-time convergence of the controlled system to the target 
area. Furthermore, a simple adaptive law to automatically update the control gain is 
suggested that does not require a priori knowledge of the uncertainties of the system. In 
addition, to guarantee the robustness from the beginning and to improve the transient 
performance, a new sliding surface is also constructed. Numerical simulations are carried 
out to demonstrate the effectiveness of the proposed adaptive controller to maintain a 
desired formation configuration by compensating for the initial offset errors and external 
disturbance effects including gravitational perturbations and atmospheric drag. 

I. Introduction 
ATELLITE formation flying (SFF) is currently in the spotlight because the use of multiple satellites offers 

advantages such as high resolution, improved flexibility, efficiency, and financial benefits compared with a 

single large satellite [1]. However, more advanced technology is required when exploiting SFF mainly due to 

coupled dynamics between the distributed satellites. Specifically, one of the key challenges is to accurately control 

the relative motion of the satellites in the formation under various kinds of uncertain disturbances, i.e., gravitational 

perturbations, aerodynamic drag, solar radiation pressure, and third-body perturbations. 

The SFF problem is usually handled using linearized equations of the real nonlinear dynamics such as Hill-

Clohessy-Wiltshire equations [2,3] for a circular leader satellite orbit or Tschauner-Hempel equations [4] for an 

elliptical leader satellite orbit. Since these linearized equations do not involve perturbations and uncertainties, 

controllers designed based on linearized dynamics must compensate for the uncertain effects of various 

perturbations. Over the last few decades, a number of robust control strategies have been proposed, for example, 

linear quadratic regulator [5], state-dependent Riccati equation [6], adaptive output feedback [7], and H2/H∞ 

approach [8]. Among others sliding mode control (SMC) [9,10] has drawn much attention for its insensitivity to 

parametric uncertainties and external disturbances, low computational load, fast response, and easy implementation. 

The use of discontinuous control and high control gain characterizes conventional SMC to overcome uncertainties 

by exactly placing the system trajectories onto the sliding surface. Yeh et al. [11] proposed discontinuous control 
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laws based on SMC assuming pulse-type thrusters. Since pulse magnitudes are assumed constant, precise and fine 

control implementation is limited. Varma and Kumar [12] developed a fuelless control methodology using 

differential drag between the satellites based on SMC in which an adaptive law to estimate the uncertainties in the 

drag force is embedded. In order to prevent the so-called chattering problem resulting from the use of discontinuous 

control, which is usually pointed out as the main drawback of SMC, the boundary-layer approach [13] was 

introduced. However, as noted in Ref. [14], this approach does not sometimes remove the chattering phenomenon 

completely. Moreover, since the boundary layer approach generally introduces accuracy losses to the system due to 

its continuous approximation, three different approaches for continuous SMC techniques, including SMC 

augmented with a sliding mode disturbance observer, a super-twisting algorithm, and SMC by using integral sliding 

surfaces, were proposed in Ref. [15]. Udwadia et al. [16] used various kinds of continuous functions to effectively 

control relative motion without chattering. Although they do not exactly converge to zero, the errors can be forced to 

be arbitrarily small. However, in Refs. [15] and [16] the upper bound for the uncertainties was assumed to be 

known, which is quite difficult to exactly assess in practice. Another practical limitation is that the control input 

saturation was not considered. Godard and Kumar [17] proposed adaptive fault-tolerant control laws (with thruster 

saturation) in which exact knowledge of the uncertainty bounds is not necessary and two different sliding surfaces 

(conventional SMC and nonsingular terminal SMC) are design and compared. 

The objective of this paper is to develop continuous SMC with a simple adaptive law to precisely control the 

relative motion of SFF in the existence of model uncertainties and external disturbances. Assuming a realistic 

situation that involves uncertain masses of the satellites, the gravitational perturbations up to order and degree 10, 

and NRLMSISE-00 atmospheric model, all of which are assumed to be unknown uncertainties, a continuous SMC 

with a real-time adaptive law is derived. The new controller inherently avoids chattering because only continuous 

functions are involved. In addition, the adaptive tuning law updates the control gain at each time step to obtain an 

optimal value that effectively suppresses the uncertainty effects. The main focus in this paper on the development of 

the adaptive law is to reduce the number of control parameters to be selected. It is shown that only one positive 

number is needed as an input parameter to derive the adaptive law for the gain used in the controller. Next, in the 

presence of initial errors, the concept of global SMC [18] is employed to design a new sliding surface to offer better 

transient response by removing the reaching phase. Finally, numerical simulations for which a follower satellite with 

an uncertain mass is required to maintain the projected circular formation [19] under external disturbances are 

performed to verify the effectiveness and applicability of the proposed approach.  

The main contributions of this research can be summarized as follows: 

 A new continuous SMC is proposed to prevent chattering and to ensure arbitrarily small errors in the 

satisfaction of desired reference trajectories. 

 A simple adaptive law that can be easily implemented in real time is developed. This guarantees that the 

exact modeling of the dynamic system and the information about the upper uncertainty bounds are not 

required. 

 The control gain is automatically tuned not to violate the maximum/minimum limit of the control thrust so 

that input saturation is considered. 
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II. Satellite Formation Flying Model and System Equations of Motion 
The purpose of this section is to propose a mathematical model of the complete nonlinear equations of motion of 

the SFF system to facilitate the design of the adaptive sliding mode control methodology which shall be developed 
in the subsequent sections. The proposed model consists of a leader satellite which is assumed to orbit the Earth in a 
circular planar trajectory and a follower satellite that moves relative to the leader satellite in a desired configuration.  
It is also supposed that the leader satellite is separately controlled to follow a predesignated Keplerian circular orbit 
and here we only focus on controlling the follower satellite to move along the desired relative reference trajectory 
around the leader satellite. In this paper, the relative motion is described in the so-called local-vertical, local-
horizontal (LVLH) frame fixed at the mass center of the leader satellite, where the x-axis is directed radially outward 
along the local vertical, the z-axis is along the orbital angular momentum vector of the leader satellite, and the y-axis 
completes the right-handed triad. In this frame the relative equations of motion for the follower satellite, taking into 
account the control thrust and external disturbance forces, can be written in the following form [20]: 

 
 

3/22 2 2
0 2 .
0

L L L L x x
T T

y y

L z z

x r x r x r x r u d
mm m y m m y m y y u d

x r y zz z z z u d



               
                                                               

RR RRq
   

   
 

 (1) 

Here, m  is the unknown mass of the follower satellite,  Tx y zq  is the position vector (described in the 
LVLH frame) of the follower satellite relative to the leader satellite, Lr  is the distance from the center of the Earth to 
the leader satellite,   is the gravitational parameter of the Earth, and R  is an orthogonal rotation matrix that maps 
the Earth-centered inertial (ECI) frame [21] to the LVLH frame, that is, 

 ,
Lx r X

y Y
z Z

   
      
      

R  (2) 

where  TX Y Z  is the position vector of the follower satellite in the ECI frame. Also,   , ,iu i x y z  indicates 
the components of the control input vector and id  is the unknown disturbance force vector on the follower satellite, 
including gravitational perturbations and atmospheric drag. Since a circular orbit is assumed for the leader satellite, 

Lr  is constant so that 0L Lr r    and the matrix R  and its time derivatives are given by [22]: 

 

                       
                       

         
                       

cos cos sin cos sin sin cos cos cos sin sin sin
cos sin sin cos cos sin sin cos cos cos sin cos ,

sin sin cos sin cos

cos sin sin cos cos sin sin cos cos cos sin cos
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i i i
i i i

i i i

n n i n n i n i
n

    
    

    

       
          
    

       
 

R

R                        

                       
                       

2 2 2 2 2

2 2 2 2 2

s cos sin cos sin sin cos cos cos sin sin sin ,
0 0 0

cos cos sin cos sin sin cos cos cos sin sin sin
cos sin sin cos cos sin sin cos cos cos sin cos

0 0 0
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n n i n n i n i
n n i n n i n i

    

    
    

 
         
  

        
       R ,


 
 
 
 

 (3) 

where   is the longitude of the ascending node of the leader satellite, i  is the inclination of the leader satellite,   
is the true argument of latitude (sum of the argument of perigee and true anomaly) of the leader satellite, and n  is 

the angular velocity of the leader satellite which is equal to 3/ Lr . It is noted that since the leader satellite is in 
an unperturbed circular orbit,  , i , are n  are all constant and   is a linear function of time whose slope is equal to 
n .  
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In the present investigation, the projected circular formation [19] is considered where the follower satellite’s 
orbit lies on a circle with constant radius 0  when projected onto the y-z plane of the LVLH frame with the leader 
satellite located at the center of the circle. This type of formation has applications for ground observing missions 
(synthetic aperture radar) [19] and the formation requirement is expressed as: 

      0
0 0sin ,  cos ,  sin ,

2d d dx nt y nt z nt


           (4) 

where the subscript d denotes the desired quantities and   is the in-plane phase angle between the leader and the 
follower satellites.  

Finally, the objective is to obtain the control thrust iu  that drives the follower satellite to the desired formation 
trajectory in the presence of unknown mass m  and external disturbances id  that can disperse the formation unless it 
is adequately controlled. 

III. Design of Global Adaptive Sliding Mode Control Laws 
The main purpose of this section is to propose a robust control strategy that can force the follower satellite to 

follow a desired reference trajectory under uncertain external disturbances and uncertain mass. Since the control 
performance is highly related to the design of a sliding surface, we first develop a new global sliding variable to 
guarantee robustness from the initial errors and to improve transient responses. Next, a continuous controller based 
on the concept of sliding mode control is developed that does not require exact knowledge of the uncertainties, so 
that the gain embedded in the controller is automatically updated in real time. 

A. Design of Sliding Surface 
The performance measure is represented by the 3 by 1 tracking error vector  te  defined by 

      : ,dt t t e q q  (5) 

where    Tt x y zq  is the measured position vector of the follower satellite and    Td d d dt x y zq  is the 
desired position function for the projected circular formation, which is given in Eq. (4). Then, for the SFF system 
described by Eq. (1), the next sliding surface is defined: 

                    20 exp exp 1 0 exp , , ,i i i i i i i i i i is t e t e t k e t e t e t i x y z                       (6) 

where         T

x y zt s t s t s t   s  and         T

x y zt e t e t e t   e . In Eq. (6), i , i , and ik  are positive 

constants, and i  and i  are constants satisfying the condition 0i i   . The physical meaning behind Eq. (6) is 

the following. The term    2exp 1i i i ik e t     can be viewed as the inverse of the time constant and in the 

presence of the initial errors, the initial time constant is    2
0 1/ exp 0 1i i i ik e         and the final time 

constant is    21/ exp 1 1/f i i i i ik e           , which is smaller than the initial time constant 0 . Hence, 

the time constant is gradually decreasing as time progresses and the slower transient response in the initial phase 
guarantees less overshoot and smaller settling time. It must be noted that in the initial time,   0is t   holds so that 
the reaching phase is removed and the sliding phase starts from the beginning regardless of the initial errors. Also, it 
is straightforward to show that during the sliding mode   0is t  , the error  ie t  in each axis asymptotically 
approaches zero. 

B. Controller Design with Gain Adaptation 
To ease the controller design process, we rewrite Eq. (1) in the following form: 
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 

3/22 2 2

1 12 ,
L L x x

T T
y y

L z z

x x x r x r u d
y y y y u d

m mx r y zz z z z u d



            
                                                     

RR RR
 

  
 

 (7) 

or 

    1, , ,t
m

  q f q q u d   (8) 

where  ,tf q  is the first three terms in the right hand side of Eq. (7). It is noted that the mass m  and the 
disturbance vector d  are unknown. Also, it is assumed that the control input in each axis is saturated by 

 ,  , , ,iu U i x y z   (9) 

where U  is a positive constant. Then, from Eq. (5), we have 

 1 1 .

d

dm m

 

     
 

e q q

f d q u

  


 (10) 

Also, the time derivative of  is t  in Eq. (6) is obtained by 

 
                 

         

2

2

0 exp exp 1 0 exp

2 exp 0 exp .

i i i i i i i i i i i i i

i i i i i i i i i

s t e t e t k e t e t e t

k e e k e t e t e t

     

 

                

   

   


 (11) 

Substitution of Eq. (10) into (11) yields 

 
             

         

2
,

2

1 1 0 exp exp 1 0 exp

2 exp 0 exp ,

i i i d i i i i i i i i i i i i i

i i i i i i i i i

s f d q u e t k e t e t e t
m m

k e e k e t e t e t

     

 

               

   

   


 (12) 

or more succinctly, 

 1 ,i i is g u
m

   (13) 

where ig  contains every term in the right hand side of Eq. (12) except  1/ im u . It is assumed that the terms ig  and 
m  are unknown but bounded by 

 ,im g    (14) 

where   is an unknown positive constant. 
Next, let us consider the following Lyapunov function candidate taking the following form: 

 2 ,
2 2

T
i i

m mV s V   s s  (15) 
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where 2

2i i
mV s . Taking the time derivative of Eq. (15) along its trajectory leads to 

  .i i i i i iV ms s s mg u     (16) 

Keeping Eq. (14) in mind, the following inequality is satisfied: 

 ,i i ims g s   (17) 

so that 

   .i i i i i i iV s mg u s s u      (18) 

Hence, if we take the control law as 

 ,i iu s



   (19) 

where   is a (small) positive number and then Eq. (18) becomes 

 2 1/221 1 ,
2

i i
i i i i i i i

s s mV s s s s V
m


  

   
               

   
  (20) 

where 2 1i
i

s
m




 
   

 
 is a positive parameter in the region where is   holds. Hence, the state trajectories of 

the original dynamic system Eq. (8) controlled by Eq. (19) converge into the region is   in a finite time and 
remain in the region thereafter. 

In the use of the control law Eq. (19), however, a priori knowledge of the unknown bound   is mandatory. In 
practice, an accurate estimation of this bound is pretty difficult especially when controlling a satellite under an 
unknown environment in space, so it is highly desirable to have an adaptive law that automatically tunes the bound 
in real time so that the finite-time convergence of the controlled trajectories is still guaranteed without any 
information about the bound. 

First, we rewrite the control law Eq. (19) as 

       ,i i

K t
u t s t


   (21) 

then the task is to find an adaptive law that automatically updates the gain  K t  so that it is always greater than or 

equal to the unknown upper bound   so that the gain  K t  can suppress the effect of the uncertainties. The 

boundedness condition is   gives us some hints to find the adaptive law. From Eq. (21), we have 

 
 
 

 
,i iu t s t

K t 
  (22) 

and to satisfy the condition is  , the gain  K t  should be greater than the magnitude of the control input  iu t . 
This investigation yields the following adaptive law: 
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  ( 1) ( )max ,k k
i mK u K    (23) 

where the superscript ( )k  denotes a quantity at the k th scan time,    ( ) ( ) ( ) ( )max max , ,k k k k
i x y zu u u u  is defined, 

and mK  is a positive constant as a margin. Recalling Eq. (9), the gain  K t  has the following lower and upper 
bounds: 

   .m mK K t U K    (24) 

C. Stability Analysis 
In this subsection, we prove the stability of the closed-loop control system so that the control law Eq. (21) with 

the adaptive rule Eq. (23) can successfully force the follower satellite to asymptotically converge into the vicinity of 
the desired manifold in a finite time.  

Theorem 1: For the SFF model described in Eq. (7) or (8), if the sliding surface is selected as Eq. (6), the control 
law is defined as Eq. (21), and the gain adaptation law is designed as Eq. (23), then the system tracking error  ie t  

in each axis will converge to the region  is t   in a finite time and remain there thereafter. 
Proof: Let us define the following Lyapunov candidate function: 

  22 *3 ,
2 2i i
mV s K K V


      (25) 

where   is a positive constant, *K  is another positive constant satisfying *K   and *
mK U K K   , and  

  22 *1 .
2 2i i
mV s K K


    (26) 

The time derivative of Eq. (26) yields 

 
       

 

* * *

*

1 1 1

1 ,

i i i i i i i i i

i i

KV ms s K K K s mg u K K K s mg s K K K

Ks s K K K

   

 

            
 

      
 

   


 (27) 

where Eq. (14) is used. 
First, the case when is   is considered. Then, Eq. (27) satisfies 

 
       * * * *

*

1 1

1 ,

i i i i i

s i i

V s K K K K s K K K K s K s K

s K K s K

 




         

 
      

 

  


 (28) 

where * 0s K     is defined and * *K K K K     is used. Now, we introduce a parameter 0K   in Eq. 
(28) as 

 
* * *

*

1

,

i s i i K K

s i K

V s K K s K K K K K

s K K

  


  

 
          

 

    

 
 (29) 
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where  * /i KK K s K        is defined. Finally, Eq. (29) leads to 

 

* *

1/2

2 22 min , 2
2 22 2

,

i s i K s K i

i

K K K Km mV s s
m m

V

       
 

 

                   
   


 (30) 

where  2 min / , 0s Km     . 

It is noted that it is always possible to make 0   by a proper selection of   that is not included in a design 
parameter of control. The condition 0   yields 

 1 0  .i K
i K

Ks K
s

 
 

     


  (31) 

The derivative of the gain K  is approximately represented by Eq. (23): 

 

 max
1

,

i
m

s
K K

K
t



 
   

 


   (32) 

where t  is the step size, and Eq. (31) becomes 

 

 

 

max
1

.

i
m

i K

s
K K

t s





 
   

 
 

 (33) 

Now, with the condition is  ,   can be selected so that it is smaller than the minimum of the right hand side of 
Eq. (33), or 

 
 max

,m

K

K
t


 


 

 (34) 

where maxt  is the maximum step size. 
Finally, from Eq. (30), we have 1/2 1/2

i i iV V V         , and hence, finite-time convergence into the region 

is   is guaranteed from the time when is  starts to exceed  . 

Next, let us consider the case when is   holds. In this case,   may be negative so that V  is sign-indefinite 

and is  may exceed  . However, as soon as it goes beyond  , 1/2
i iV V    holds and is  will be again bounded 

by is   in a finite time, as shown earlier. 
In brief, the control law Eq. (21) with the gain adaptation law Eq. (23) ensures that the sliding variable will be 

bounded within the desired region is   in each axis in a finite time, which completes the proof.                           □ 

IV. Simulation Results 
The new adaptive control scheme proposed in this paper is applied to numerical simulations to validate its 

effectiveness. The simulations are carried out in the Matlab/Simulink environment, using the ode4 Runge-Kutta 
integrator. The desired relative configuration is given by Eq. (4) for projected circular formation, with a 1 km 
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formation radius, i.e., 0 1.0 km  . The in-plane phase angle is assumed to be 0 degree ( 0 (deg)  ). The SFF 
system parameters and the orbital parameters of the leader satellite used for the numerical simulation are listed in 
Table 1, where DC  and refS  are the drag coefficient and the cross sectional area of the follower satellite, 
respectively. 

The disturbance force  td  acting on the follower satellite includes gravitational perturbations up to order and 
degree 10 and atmospheric drag. The atmospheric model is NRLMSISE-00. The selected date and time are January 
1st, 2016 and 00:00:00 UTC. The parameters needed for the adaptive sliding mode controller are given by: 

  41 1,  ,  0.03,  0.026,  0.1,  0.05,  0.5 ,  5 10 ,
0.01 0.01i i i i i mk U K U

P P
               (35) 

where P  is the orbital period of the leader satellite which is equal to 32 / 94.6135 (min)LP r   . 
The initial states for the numerical simulation are determined by substituting 0t   into Eq. (4) with a 1 km 

position offset on each axis. The initial velocity components are obtained by taking the time derivative of Eq. (4) 
and substituting 0t  . Accordingly, the initial conditions for the relative state are given by: 

        0 1000 2000 1000  (m),   0 0.5534 0 1.1068  (m/s).T T q q  (36) 

Figure 1 shows relative position errors and control thrust histories for formation keeping. The control thrusts are 
saturated at 3/ 5 10  N/kgU m   . Although there is a 1 km initial position offset on all three axes and the maximum 
magnitude of the control input is limited, it is observed that the position errors are rapidly decreased to the vicinity 
of zero. More specifically, it is obtained that the final errors in each axis are 5.127 (mm)xe  , 0.03472 (mm)ye  , 

and 0.03545 (mm)ze  . Obviously, these final errors can get smaller by reducing the value of  . The stabilization 
can be also viewed in the LVLH frame, plotted in Fig. 2. In the left, the controlled and reference trajectories are 
plotted in the y-z plane and the same trajectories are plotted in the x-z plane in the right. As expected from Eq. (4), 
the reference trajectory is a circle in the y-z plane and a straight line in the x-z plane. Despite the initial misalignment, 
the controlled trajectory is gradually merged into the desired reference trajectory. 

Figure 3 shows the time histories of the sliding variables in each axis. From the definition of Eq. (6),  0 0is   
holds, so that the reaching phase is removed and the robustness is guaranteed from the beginning. Immediately, 
 is t  steeply rises because the control input is saturated at its maximum. However, it starts to decrease in a finite 

time and becomes bounded by the desired region is   from around 0.15 (period)t   at which the control input is 
relaxed from saturation (See Fig. 1). 

The adaptive gain  K t  updated by Eq. (23) is depicted in Fig. 4. According to Eq. (24), it has its minimum 

0.25mK   and its maximum 0.75mU K  .  K t  maintains its maximum while the control input is saturated. 

When saturation is released, the gain  K t  is computed as the sum of  max , ,x y zu u u  and the margin mK . 

 
Table 1 Orbital and system parameters 

Parameters Values 
,  kgm  10 

3 2,  km /s   53.986 10   
,  kmLr   6878   

e   0 
,  ,  ,  ,  radi M   0 
DC   1.0 

2
ref ,  mS   0.01 
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Fig. 1 Relative position errors and control thrust histories 

 

 
Fig. 2 Controlled and desired trajectories in the y-z plane (left) and x-z plane (right) of the LVLH frame 

 

 
Fig. 3 Time histories of the sliding variables 

 

D
ow

nl
oa

de
d 

by
 A

U
B

U
R

N
 U

N
IV

E
R

SI
T

Y
 o

n 
Se

pt
em

be
r 

15
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
56

62
 



 

 
American Institute of Aeronautics and Astronautics 

 
 

11

 
Fig. 4 Time history of the gain  K t  

 

V. Conclusions 
In this paper, an adaptive robust control scheme based on the concept of global SMC is proposed to precisely 

control a multiple SFF system. The proposed controller effectively avoids chattering and successfully overcomes the 
effects of the uncertainties in the mass of the follower satellite and the external disturbances to which the satellite 
may be subjected. The adaptive gain update law, which only uses the measurement of the control input in the 
previous time step, eliminates the necessity of exact estimations of the uncertain bounds. Compared with existing 
adaptive SMC approaches, the proposed one is much simpler in that it requires only one positive number ( mK ) as an 
input parameter in the adaptive law. Numerical simulations that take into account an uncertain mass of the follower 
satellite and uncertain space environment caused by gravitational perturbations and atmospheric drag are carried out 
to demonstrate the strength of the proposed control scheme and the gain update law, which shows that a finite-time 
convergence to the desired target area with allowed error bounds is attained despite initial offset errors and along 
with the severe uncertainties. 
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