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ABSTRACT 

 
This paper develops a differential drag-based sliding mode 
controller for satellite rendez-vous. It is chattering-free and 
avoids bang-bang type control to adjust the relative motion 
more efficiently. In spite of uncertain nonlinear 
perturbations and disturbances, it is shown that the in-plane 
relative motion between two satellites can be effectively 
controlled by regulating the drag difference. An adaptive 
tuning rule is also presented such that the errors are 
suppressed to lie within a desired error box. The proposed 
controller is simple and easy to implement in a small 
satellite, and numerical simulations are carried out to 
demonstrate its effectiveness in a high fidelity environment. 
 

Index Terms— Rendez-vous, Differential drag, 
Adaptive sliding mode control, Chattering 
 

1. INTRODUCTION 
 
Owing to the well-established correlation between 
spacecraft mass and mission’s cost, there is great interest in 
fuel-optimal relative maneuvers between two or more 
satellites. In this context, the exploitation of natural 
perturbations is an attractive means to reduce or even 
remove fuel consumption, and hence, propellantless 
maneuvers using solar sail [1], geomagnetic field [2], 
Coulomb forces [3], and atmospheric drag were proposed. 
Amongst them, the idea to use differential drag as control 
force for relative motion is particularly attractive to enhance 
the maneuverability of small satellites in low-Earth orbit, so 
that ongoing and forthcoming missions envisage this 
technique to achieve propellantless rendez-vous, cluster 
keeping, or constellation deployment, e.g., QARMAN [4], 
SAMSON [5], and Flock [6], respectively. The utilization of 
differential drag to control the relative motion of satellites 
was first proposed by Leonard [7]. Based on the linearized 
Hill-Clohessy-Wiltshire equations [8,9], a rendez-vous 
strategy was proposed in which the relative motion of the 
chaser around the target is decomposed into a mean and a 
harmonic component, which inspired numerous researchers 
thereafter [10-12]. Bevilacqua et al. [13] used a similar 
approach to include the secular effects of the second zonal 

harmonic (J2) perturbation. They further devised an adaptive 
Lyapunov-based controller with bang-bang type to account 
for nonlinear unmodeled dynamics [14]. In [15], a simple 
proportional-integral-derivative controller was derived to 
maintain the along-track distance between the two satellites 
using differential drag. Since bang-bang control cannot 
easily be implemented in practice, Dell’Elce and Kerschen 
[16] developed a non bang-bang optimal controller via 
model predictive control and compared it with an existing 
analytical technique. 

In this paper a new chattering-free sliding mode 
controller is developed to perform an optimal rendez-vous 
of two satellites in low-Earth orbit, exploiting differential 
drag as control force. The proposed controller is designed to 
successfully compensate for uncertainty effects and/or 
unmodeled dynamics associated with air drag and to account 
for practical limitations such as input saturation. Also, 
continuity of the control functions embedded in the 
controller guarantees no chattering, hence, non bang-bang 
type control is obtained. In addition, a simple adaptive law 
to accurately estimate uncertainty bounds and a control gain 
is introduced. The novel sliding mode controller with the 
adaptive law automatically updates the control gain in real 
time to have errors remain within a user-specified small 
region. Numerical simulations assuming a realistic scenario 
are used to validate the robustness and accuracy of the 
chattering-free sliding mode controller. 
 

2. RENDEZ-VOUS USING DIFFERENTIAL DRAG 
 
In the current paper, it is assumed that only in-plane control 
is considered for rendez-vous. It is known that the 
controllability of the differential drag in the out-of-plane 
direction is two orders of magnitude smaller even for highly 
inclined orbits [17], and hence, it is quite limited to control 
the out-of-plane motion solely using differential drag. The 
main purpose of this paper is to develop a computationally 
simple and light controller that is able to execute accurate 
non bang-bang type control for differential drag-based 
rendez-vous with low computational overhead, without 
knowing any information about uncertainties under which 
the satellites may experience. 
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Figure 1 Scheme of attitude motion of chaser and target 

Let us consider the rendez-vous problem illustrated in 
Figure 1. The target is assumed to have a stable attitude, 
while the chaser is controlled in real time by rotating about 
its orbital plane. The control output is dS , the cross-
sectional area of the chaser exposed to the atmosphere, and 
it is assumed that the drag of the chaser is proportional to 

dS  which is bounded by  min max,dS S S . A set of the input 
to the controller comprises  

1) estimates for the drag force and its uncertainty 
bounds obtained by the module ‘drag estimator’   and  
2) a reference trajectory computed by the module 
‘optimal maneuver planner’, 

and both 1) and 2) are evaluated once at the beginning of the 
maneuver. In this paper, 1) and 2) obtained in [16] are 
employed to design a sliding mode controller which shall be 
developed in Section 3.  

The ‘drag estimator’ module undertakes the estimation 
of the drag force on the target and the chaser. The estimation 
is performed so that it minimizes the mean square errors 
between the observed and simulated semi-major axes of the 
satellites. Then, the differential drag is represented by [16] 
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where dS  is the cross-sectional area of the chaser illustrated  
in Figure 1, cm  is the mass of the chaser, ,

est
d tF  is the 

estimated time history of the drag of the target, ,
est
d cC  is the 

estimated drag of the chaser, ,
est
b tC  is the estimated ballistic 

coefficient of the target, hc  is the altitude correction factor, 
and x  is the altitude gap between the target and the chaser. 
The output ( ,

est
b tC , ,

est
d cC , ,

est
d tF , hc ) of this module serves as 

the input to the ‘optimal maneuver planner’ and the sliding 
mode controller. 

Next, the module ‘optimal maneuver planner’ computes 
the reference control output ( ,d rS ) and the reference 
trajectory ( , , ,r r r rx y x y  ) which are solved with an hp-
adaptive Radau pseudospectral transcription [18] using the 
software GPOPS. To best balance between accuracy and 
computational efficiency, two dominant perturbations are 
included in this module: secular J2 effects and short period / 
altitude-dependent variations of the drag. 

It is noted that the coordinate system considered in this 
paper is the decomposed curvilinear system  ,x y , which 
considerably improves the accuracy of the solution for 
middle and long range maneuvers. More specifically, x and 
y denote the radial and along-track position of the chaser 
with respect to the target, respectively, each of which 
comprises a mean  ,m mx y  and an oscillatory component 

 ,o ox y  so that m ox x x   and m oy y y  . Schweighart 
and Sedwick [19] decomposed into these two components to 
account for the secular variations of the J2 perturbations. 
More specifically, the two components satisfy the relations 
[16]: 
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where   is the orbital frequency of the target,  
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coefficient, while J2 is the second zonal harmonic 
coefficient, eR  is the equatorial radius of the Earth, tr  is the 
distance from the center of the Earth to the target, and ti  is 
the inclination of the reference orbit of the target. The 
output ( , , , , ,d r r r r rS x y x y  ) of this module then serves as an 
input to the controller. 
 

3. CONTROLLER DESIGN 
 
First, consider the ideal (reference) system on which the 
optimal reference control output ( ,d rS ) and the reference 
trajectory ( , , ,r r r rx y x y  ) are derived by the module ‘optimal 
maneuver planner’. Since secular J2 effects and short period 



/ altitude-dependent variations of the drag are included, the 
following linearized equation of relative motion [19] holds: 
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where ,d rF  is obtained by (1) and further rewritten using a 
normalized control ru  by 
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where the normalized control ru  is bounded by  0,1ru  . 
Next, we consider the real system that is assumed to be 

expressed in the form of 
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where  , , , ,x xg g t x y x y    and  , , , ,y yg g t x y x y    are 
unknown perturbations and disturbances that compensate for 
any differences between the left hand sides and the right 
hand sides in (5). In addition, dF  is given in (1) and 
further rewritten in the form: 
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where   and   are uncertain additional terms, and 

 0,1u .  
Then, the error dynamics is described by 
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where x re x x  , y re y y  , ru u u   , and the terms 

xg  and  yu g       are uncertain. The aim is to 
develop a control law u  so that, upon applying it, the 
errors xe  and ye  converge to zero while suppressing the 
effects of the uncertainties. It should be noted that the 
control output u  for the real system is given by ru u u   . 

Now, define the 2-vector sliding surface 
T
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where   is a positive small constant. In order to guarantee 
the asymptotic stability, the real part of the eigenvalues of 
S  should be negative, which is equivalent to the condition 

0  . When 0s  , (8) yields 
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From (2), the errors on the mean components of the 
trajectory satisfy 
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and if we substitute (10) into (11), we find that the mean 
component errors become  
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Hence, if we choose a sufficiently small value for  , the 
mean component errors are identically zero in the x 
direction and very small in the y direction. Furthermore, 
(10) is analogous to the dynamics of the errors on the 
oscillatory components given by (2), and hence, the 
oscillatory component errors also progressively reduce to 
zero during the sliding phase 0s  .  

Next, the following Lyapunov function is defined as a 
prelude to controller design: 
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where P  is a constant positive definite matrix of the form: 
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Since P  is positive definite, its elements must satisfy 

 11 11 22 12 210,  ,P P P P P    

and 22 0P   is further assumed in this paper. The derivative 
of (13) yields 
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It is noted that *L  is measurable while L  is uncertain but 
bounded by ML L   with ML  being a positive constant. 
When 12 22x yP s P s  is zero,   is not defined and 

  *
11 21x yV P s P s L   holds from (16), meaning that there is 

no control authority. This uncontrollability is instantaneous 
so at this instant we simply maintain u  with its previous 
value (instead of using the control law which shall be given 
by (18)). Hence, in the development that follows it is 
assumed that  12 22x yP s P s  is not zero and   is well defined. 

Next, let us consider the following form of the control 
law: 
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where the gain   is a positive constant. Substituting (18) 
into (16) yields 
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Now, consider the region where 12
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where   is a small positive constant. Then, (19) further 
satisfies 
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In order to guarantee the asymptotical stability of the system, 
V  should be negative so that the gain   can be chosen as 
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In brief, it is shown that the control law given by (18) forces 
the trajectory of the error dynamics (7) to move from initial 

conditions to the region 12

22
x y
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P

   in a finite time and 

remain in the region.  
The only concern is now how to determine the gain   

because it requires the prior knowledge about the 
uncertainty bound ML . In practice, it is very difficult to 
accurately estimate the bound value. Hence, an adaptive law 
that automatically tunes the uncertain parameter   is 
proposed.  

First, we know that if the gain  given by (21) is 
applied, the system is eventually bounded by 
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obtained because from (21) increasing   twice is 
mathematically equivalent to decreasing the value of   by 
half. In general, if the estimated gain ̂  is applied, the 
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where ̂  is the tried estimate for the gain, and ̂  and   are 

the observed and the desired upper bound for 12

22
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 , 

respectively. Now, we have the following adaptive law for 
the gain  : 

Adaptive Law: Let 0  be the initial estimate. Then, the real-
time adaptive law for the gain   is given by the following 
rules: 
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where the superscript (k) denotes a quantity at the 
kth scan time. 
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In order to prevent a sudden rise of the gain, (24) is 
relaxed by imposing a rate limiter  : 
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where   is a positive constant. (25) limits the 
increasing rate of the gain by  . 
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current gain   is not enough to suppress 12
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than  . By exploiting the adaptive law given by (25), the 
gain   gradually increases until the condition 
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Finally, the final normalized control is obtained by 
ru u u   , where ru  is given in (4). Then, the actual 

control output dS  is retrieved using (6) and saturated to 
satisfy  min max,dS S S . Since only continuous functions are 
included in u , dS  is also continuous and chattering free. 
 

4. NUMERICAL SIMULATION 
 
The new continuous controller with the adaptive law 
proposed in this paper is applied to a realistic scenario for 
rendez-vous. The chaser is QARMAN, a triple-unit CubeSat 
developed by the Von Karman Institute in Belgium. The 
University of Liège is in charge of developing a payload 
onboard QARMAN for the in-orbit validation of differential 
drag-based maneuvers. The target is another QB50 
spacecraft flying with the long axis aligned to the orbital 
velocity. 

The parameters used in the simulation are listed in 
Table 1. It is supposed that the real system associated with 
(5) includes gravitational perturbations up to order and 
degree 10, solar radiation pressure, luni-solar perturbations, 
and perturbations of the polar axis. The atmospheric model 
is NRLMSISE-00, and a 30% bias and short period 
stochastic variations, based on [20], are also included. 
Figure 2 illustrates real and estimated drag of the target. 

The control parameters are selected as 


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Table 1 Simulation parameters 

Mean elements of 
the target 

Semi-major axis 6728∙103 m 
Eccentricity 0 
Inclination 98 deg 
RAAN 90 deg 
Argument of perigee 0 deg 
True anomaly 0 deg 

Initial gap of the 
chaser 

Along-track 50∙103 m 
Radial 100 m 

Target properties Ballistic coefficient 0.014 m2kg-1 

Chaser properties 
Mass 4 kg 
Dimensions 0.3×0.1×0.1 m3 
Drag coefficient 2.8 

It is observed that if the initial gain is too large, the control 
output dS  is easily saturated and the errors start to oscillate 
with large amplitudes from the beginning of the maneuver. 
Hence, it is safe to try a small value for the initial guess of 
the gain. Then, it will be automatically tuned to gradually 
increase according to the adaptive law.  

Figure 3 exhibits the planned and controlled trajectories 
in the y-x plane (left) and the final phase (right). The red 
solid lines represent the reference trajectories obtained by 
the module ‘optimal maneuver planner’ and the black dotted 
curves are associated with the controlled ones. 

In Figure 4 the cross-sectional area of the chaser dS  is 
depicted. The red solid line represents the reference input 

obtained by the ‘optimal maneuver planner’ and the black 
dotted curve is the control output. From the figure, one can 
observe that the control output dS  generally follows the 
reference ,d rS  while the tiny difference between them fights 
for reducing the uncertain effects. As a result, the controlled 
trajectory tracks the reference one quite well with bounded 
errors in both x- and y- axes. To see this boundedness more 
clearly, one can consider Figure 5, which depicts the time 
history of the errors in x and y directions. It is evident from 
the figure that the errors in both directions do not diverge 
but are bounded by 20 (m)xe   and 100 (m)ye   during 
the whole maneuver.  

To see how the adaptive law works, refer to Figure 6. In 

the upper figure, the quantity 12

22
x y

P s s
P

  is plotted while the 

time history of the gain   is depicted in the lower figure. 
The two red horizontal lines are drawn in the upper figure to 

display   and to stress that the quantity 12

22
x y

P s s
P

  

eventually should lie between the two red horizontal lines. 

In the first half of the maneuver,  12

22
x y

P s s
P

  sometimes 

deviates from the bounded region  ,    and the gain 
increases on all such occasions by following the adaptive 
law. As a result, in the second half of the maneuver, 

12

22
x y

P s s
P

  is bounded by the region and remains there. A 

further look at the figure reveals the fact that 12

22
x y

P s s
P

  is 

finally bounded by 0.0013 that is less than 0.005  , which 
means that the updated final gain value 0.056   is larger 

than the real gain value that exactly enforces 12

22
x y

P s s
P

 

. The reason for the excessive gain is resulted from slow 

Figure 2 Real (red) and estimated (blue) drag of target 

Figure 3 Global trajectories in y-x plane (left) and the final phase (right) 



response of the differential drag-based controlled system. 
Hence, even if the gain value is enough, it takes time for the 
system to become bounded within the desired region and 
during the time interval, the adaptive law continuously 
increases the gain value. Our future work will account for 
this issue. 
 

5. CONCLUSIONS 
 
A new chattering-free sliding mode controller is proposed 
for rendez-vous of the two satellites only using differential 
drag. Unlike most of the literature that exploits the bang-
bang control, it is continuous and enables fine control. 
Furthermore, the controller developed in this paper is 
computationally simple and light to be implemented 
onboard a real small CubeSat. In order to counteract the 
effects of unknown perturbations and disturbances, the 

adaptive law is presented that tunes the control gain in real 
time by which the gain gradually increases until the sliding 
variables or the errors are confined within a desired region. 
Numerical simulations with the realistic scenario validate 
the efficacy of the new adaptive sliding mode controller.  
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