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Abstract. This paper presents a review of the main families of multiscale mod-

els. A first group of models is interested in an accurate modelling of the texture 

induced anisotropy of the material during numerical simulations. The differ-

ences between the proposed models are mainly due to different choices con-

cerning the necessary compromise between the importance of the microscopic 

roots of the model and the maximum admissible computation time. The length 

scale of the investigated process is also an important parameter. The second 

group of micro-macro models is based on an analysis of the dislocation densi-

ties linked to the plastic deformations. A discussion concerning the past evolu-

tion, the recent achievements and the future trends concerning multiscale mod-

els is also provided. 
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1   Introduction 

The microscopic mechanisms involved during plastic deformation of metals are vari-

ous and very complex, depending on the material, the forming process and the ex-

perimental conditions investigated. Nowadays, numerous complex constitutive laws 

are developed in order to improve the accuracy of the finite element (FE) technique. 

Sophisticated macroscopicphenomenological models (dedicated to yield locus ani-

sotropy or/and hardening behaviour) with an increasing number of parameters are 

proposed. This chapter mainly focuses on another approach: the multiscale material 

models which are based on the physics and include more and more refined micro-

scopic mechanisms.  

Macroscopic phenomenological models are efficient for the numerical simulations 

of industrial forming processes (e.g. automotive industry, can forming) due to the low 

computation time required. However, multiscale models are very helpful for the iden-

tification of the material properties. For instance, while experimental tests provide 

some points on the yield locus, micro-macro models are able to compute the shape of 

the yield locus useful for the setting of the phenomenological models.  

Accurate models based on the physics are also required for a deep understanding of 

the material behaviour, which is a crucial point for the development of new materials 

with optimum texture and microstructure and their associated forming processes. For 



instance, the springback modelling after any metal sheet forming process and the ear-

ing prediction during deep drawing are still under progress. 

Even if the multiscale models generally require large computation time, the con-

tinuous improvement of the computer performances permits to account for more and 

more refined microscopic plastic deformation mechanisms.  

Section 2 presents an overview of the multiscale models where the anisotropy of 

the material is deduced from the crystallographic texture. The efficiency of these 

models generally results from a compromise between computation time considera-

tions and the refinement of the microscopic models. 

Section 3 is devoted to models taking into consideration the dislocation densities 

inside the crystals constituting the material. Microscopic models dedicated to small 

length scale modelling as well as macroscopic models with microscopic roots are pre-

sented. 

Discussions, future trends and conclusions end this current review. 

2   Multiscale models based on texture 

2.1   General features 

An important point when dealing with multiscale models is the micro-macro transi-

tion (or homogenization technique), which is necessary to deduce the macroscopic 

material behaviour from microscopic considerations. This step must be achieved with 

care because it determines the accuracy of the multiscale model. 

At this stage, different scales for the analysis of the problem are defined: 

 The scale of the sample: only the macroscopic stress field and strain rate field are 

important at that scale. They are computed by the finite element code on the basis of 

the lower scale analyses. 

 The scale where the macroscopic fields are assumed to be constant in order to be 

able to achieve the micro-macro transition which is the topic of section 2.2. From a 

finite element point of view, this scale is the scale of one integration point of one fi-

nite element. From a physical point of view, this scale should be the smallest repre-

sentative volume of the polycrystal behaviour. A sufficient number of crystals must 

be included in this volume to correctly represent the material texture. 

 The scale of the crystal or the microscopic scale: a microscopic material model 

(based e.g. on dislocation sliding) must be developed at this scale. It is the starting 

point for the micro-macro transition. 

 The dislocation pattern scale: this scale is larger than a single dislocation but 

smaller than the crystal scale. The interaction between dislocations, the presence of 

obstacles or substructures inside one grain are analysed at this scale. The microscopic 

events linked to this length scale are more deeply analyzed in section 3. 

 The atomistic scale: this scale is not considered here even if dislocations dynamic 

simulations have given lots of new insights into the elementary processes of the dislo-

cation motions and their interactions that define the dislocation patterning [1-3]. 



 

The smallest scale considered in this section is the scale of the crystal called the 

microscopic scale. The micro-macro transition results from the averaging of the mi-

croscopic values over the representative volume element (RVE): 
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the integration being done over all the possible orientations of the crystals. 

 

Even if the relation between microscopic stress and plastic strain rate is known, the 

corresponding relation at the macroscopic level is not straightforward. The averaging 

over all the crystallographic orientations seems a very simple concept but it must be 

done simultaneously on the stress and the plastic strain rate because of their interac-

tion in the single crystal. A solution to this problem is then very hard to find and is 

discussed in section 2.2.  

2.2   Homogenization techniques 

Several methods have successively been proposed in order to solve the micro-macro 

transition. The main ones are: 

Sachs’ model. Based on [4], one has derived the assumption of a homogeneous 

stress distribution throughout the whole polycrystal. The stress in each crystal is then 

chosen equal to the macroscopic stress. The averaging must then only be achieved on 

the plastic strain rate. This model is not very satisfactory and gives rise, in the general 

case, to a contradiction. Indeed, each crystal having its own orientation, imposing a 

common stress expressed in the sample coordinate system to all the crystals consists 

in imposing a different stress to each crystal in its reference system. The yield locus 

of each crystal being quite anisotropic, the imposed stress cannot fall on the yield lo-

cus for each crystal. One can understand that no compatibility of the strain rate will be 

fulfilled between neighbouring grains with such an approach. This model is generally 

not implemented in FE method. 

The full constraints (FC) Taylor’s model [5]. According to literature, Taylor type 

models are the most widely used for the computation of the constitutive response of 



polycrystal aggregates. Taylor’s model assumes a homogeneous distribution of the 

velocity gradient trough the polycrystal. This assumption is expressed for each crystal 

by: 
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Within a finite element code when elasticity is neglected, the plastic strain rate is 

the symmetric part of the velocity gradient L : 
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where v  is the velocity field and x  is the spatial coordinates. 

Thanks to Taylor’s assumption, the micro-macro transition can easily be imple-

mented into a finite element code. The velocity gradient is given by the finite element 

code at each integration point and the corresponding stress is sought for. The plastic 

strain rate is deduced from equation (6) in a macroscopic point of view; the micro-

scopic one is identical for all the crystals of the RVE associated with one integration 

point (see equation (5)), however it must be rotated to be expressed in each crystal lat-

tice reference system. Each crystal in its own reference system sustains a different 

plastic strain rate. The microscopic stress is computed for each crystal from its yield 

locus. The macroscopic stress of the polycrystal is obtained by a weighted averaging 

of the microscopic ones with the use of the ODF as shown by equation (3). 

This procedure consumes computation time if a large number of crystals is consid-

ered. Anyway, it offers the advantage that each crystal is treated successively and in-

dependently of the other crystals. So, multiprocessor computation can easily be ap-

plied. As the Voigt’s model is an upper bound for the elastic stiffness matrix, the 

Taylor’s model is an upper bound for the yield stress. The stress equilibrium between 

individual grains is generally violated with the Taylor’s model. 

According to literature (see e.g. [6]), in spite of its limitations, this model appears 

to be quite successful in the prediction of the stress-strain response of the polycrystal 

and of the texture during plastic deformations. It is however widely recognized that 

the textures predicted by Taylor type models are much stronger than the actual meas-

urements.  

The relaxed constraints (RC) models [7-9]. Taylor’s assumption of a homogeneous 

plastic strain rate in the RVE is, in some applications, too restrictive. From a physical 

point of view, nothing ensures that the plastic strain rate is constant in a crystal and 

identical in all the neighbouring crystals; it is not even sure that the plastic strain rate 

is close from one crystal to another. According to the considered forming process, it is 

interesting to modify the assumption of a homogeneous plastic strain rate. In the case 

of rolling, the X-axis being the rolling direction, the Y-axis being the transverse direc-

tion and the Z-axis being the normal direction, the lath model relaxes the XZ compo-

nent of the plastic strain rate. The relaxed component is no more identical for all the 

crystals but is free. The pancake model relaxes in addition the YZ component. The 

lath and pancake methods seem to be more satisfactory for the modelling of the roll-



ing process than the FC Taylor’s model (particularly for the prediction of the defor-

mation textures), they take into account the elongated shape of the crystals.  

Note that the compatibility conditions disappearing on the relaxed plastic strain 

rate components must be replaced by equilibrium conditions on the corresponding 

stress components. 

The main disadvantage of these relaxed models is that they are dedicated to a par-

ticular forming process; they cannot be used for an arbitrary strain history. The gener-

alised relaxed constraints method (see [10]) overcomes this drawback by choosing 

automatically the plastic strains that should be relaxed.  

The multiple points models: as it has been explained, due to their assumptions, the 

previous models treat each crystal in turn. Interesting from a computational point of 

view, this choice increases the difficulty to take into account the effect of the interac-

tion between adjacent crystals. That is the reason why multiple points models have 

been investigated. For instance, the Lamel model [11-13] examines the interaction be-

tween 2 grains still assuming rolling simulation. The flattening and the elongation of 

the rolled crystals led to the idea of considering 2 grains having the same size and 

shape and which lie exactly on top of each other. The boundary between these 2 

grains being parallel to the plane of the steel sheet. The FC Taylor’s condition of uni-

form plastic strain rate is here applied to the set of the 2 grains and not to each grain. 

Under such conditions, the crystals have 2 relaxations: the XZ and the YZ compo-

nents of the velocity gradient are relaxed (using the same coordinates as above). Now, 

the relaxation of the top grain must be the opposite of the relaxation of the bottom 

grain, which is different from the RC models. The stress equilibrium between the 2 

grains must be verified. Table 1 of [13] shows that the Lamel model predicts more ac-

curately the deformation texture than the RC or the FC Taylor’s models. A stack of 3 

grains instead of 2 is also proposed by [13]. A more recent Lamel version with, in ad-

dition, the relaxation of the XY component has also been investigated [12].  

Figure 1 schematically compares the FC Taylor’s, the Lamel and the pancake 

models. Opposite shear appears with the Lamel model (computed by minimization of 

the total plastic work rate in the two grains). No shear appears with the FC Taylor’s 

model because it is prescribed in a macroscopic point of view while the pancake 

model violates the compatibility between both grains. 

 

 

 

 

 

Figure 1: Comparison of the FC Taylor’s, the Lamel and the Pancake models 

(adapted from Fig. 1 of [13]) 

 

The GIA (Grain Interaction model) [14] is similar but more general than Lamel 

model. It considers the interaction between 8 grains. The relaxed shear components 

are as in the Lamel model. This model is not limited to the rolling deformation mode; 

but it requires larger computation time. 
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In the Lamel model, the interfaces between two adjacent grains must always be 

parallel to the RD – TD plane. This constraint limits this model to rolling processes. 

In the recent Advanced Lamel (ALAMEL) model [15], the orientations of the inter-

faces are defined either by the user as a function of the material and the process inves-

tigated or they can be randomly chosen with a rule taking into account the grain 

shape. Therefore, the ALAMEL model is suitable for any deformation mode. 

 

The self-consistent model (see [16-17]). It is a generalisation of the multiple points 

models in the sense that all the crystals are treated as if they would act simultane-

ously. The self-consistent model considers each grain in turn as an inclusion embed-

ded in an ideal homogeneous plastic matrix. As this plastic matrix is expected to rep-

resent the polycrystal behaviour, it is obtained by an averaging of the single crystal 

behaviour. An iterative procedure must be used. From a computational point of view, 

Taylor’s model, for instance, is used to obtain a first approximation for the matrix be-

haviour. Each grain is then computed as the inclusion into that matrix. The new ma-

trix behaviour is obtained by averaging on all the grains. The computation is repeated 

until convergence is obtained on the matrix behaviour. With this model, the stress and 

the plastic strain rate are allowed to be different from one grain to another (the as-

sumption of uniform stress and plastic strain rate inside each crystal is however kept). 

This model should conceptually be more accurate than the previous ones but requires 

larger computation time. However, on a local point of view, neither equilibrium nor 

displacement compatibility are fulfilled.  

Note that a first trial of a self-consistent approach was Kröner’s model [18]. On the 

basis of Eshelby’s work, Kröner treats the problem of a spherical plastic inclusion 

representing one crystal embedded in an elastic matrix. The polycrystal behaviour is 

the average on all the crystals. The plastic incompatibility between the crystals is ac-

commodated elastically. As a consequence, this model overestimates the yield stress 

just like Taylor’s model. Moreover, as the matrix is assumed to be purely elastic, it 

cannot correctly represent the polycrystal behaviour. In that sense, Kröner’s model is 

not literally a self-consistent model.  

A visco-plastic self-consistent polycrystalline model [19] implemented in a 3D FE 

code extends previous versions limited to elasto-plasticity towards actual elasto-visco-

plastic behaviour (see also [20]).  

An original micro-macro model based on a solid volume fraction internal variable 

approach and a self-consistent approximation is presented in [21] to describe the iso-

thermal steady state flow behaviour of semi-solid material (thixoforming) in a large 

range of strain rates. A specific self-consistent model based on the integral equation 

for the translated visco-plastic strain rate field is proposed in [22]. 

 

Pilvin’s model [23]: in order to be able to simulate complex path loading, starting 

from Kröner’s model, Pilvin added accommodation variables ( -law). A 2 stage com-

plex mathematical formulation is used for the micro-macro transition. The physical 

meaning of this model is not clear; nevertheless, it compares favourably to other 

models. 



2.3   Micro-macro models without macroscopic yield locus 

A large class of models assumes that a set of representative crystals is associated to 

each integration point of a macroscopic FE mesh. For each crystal, an elasto-plastic or 

elasto-visco-plastic crystal plasticity model is chosen and the homogenization tech-

nique takes care of both the average process to provide the macroscopic answer and 

the identification of the microscopic quantities [24-25]. 

The crystal plasticity finite element method (CPFEM) [6;26-27]: In this method, 

each finite element represents one grain of the polycrystal. The constitutive law for 

one particular element is then the microscopic law governing the crystal behaviour. In 

order to model the polycrystal behaviour, each finite element corresponds to a particu-

lar crystal orientation so that the ODF of the material is correctly represented by the 

whole finite element mesh. A particular procedure must be used to assign one specific 

orientation to each finite element of the mesh.  

Note that some variants of this model are proposed: one finite element can repre-

sent more than one grain (for instance, each integration point is assigned a different 

lattice orientation; if each element contains 8 integration points, it has 8 different lat-

tice orientations, i.e. each element is assumed to be made of 8 grains). On the other 

hand, each element of the finite element mesh can represent a region smaller than a 

grain; one grain is then modelled by several finite elements. Other variants have also 

been investigated (by e.g. [6]). 

The main advantage of this model is that it simultaneously ensures stress equilib-

rium and deformation compatibility between grains. It is basically the goal of the fi-

nite element technique. This point has been proved to be a significant improvement 

compared to the Taylor’s model. Large deformation heterogeneities between grains 

have indeed been observed with the finite element technique (as shown by Figure 2). 

 

 

 

Figure 2: Deformed finite element mesh from the simulation of plane strain com-

pression on model 3D-400E-400g2 to a 70% reduction level ( =-1.2). From [6]. 

Unfortunately, this method requires larger computation time than the Taylor’s 

model. For the finite element simulation of a complex forming process, this technique 

can hardly be used. Indeed, for this method, one finite element has a length scale of 

the order of the size of one crystal. While the global mesh has the size of the sample. 

A very large number of elements should be used in most cases of actual forming 

processes. 

Nevertheless, a multi-level FEM approach or FEM
2
 method [28-31] would allow to 

avoid (or reduce) the problem of the previous approach. Two distinct finite element 

meshes are used. The first one is a macroscopic mesh (at the scale of the sample) rep-

resenting the forming process. The second finite element mesh is a microscopic one 

and is used to achieve the micro-macro transition. The size of that mesh is of the order 

of the representative volume element, i.e. the number of elements of this second mesh 



must be such that the ODF is correctly represented. Such a microscopic finite element 

mesh is then supposed to be placed at each integration point of the macroscopic mesh. 

One complete computation at the micro level must then be achieved each time an in-

tegration point of the macro level is treated. Anyway, due to the large length scale dif-

ference between the two meshes, the overall number of elements and nodes in the 

FEM
2
 method (on both scales) is expected to be lower than for the CPFEM. 

 

The multisite model [32-34] of Delannay adopts a different strategy. It assumes (i) 

that the deformation of each grain is predominantly influenced by short-range interac-

tion with adjacent grains, (ii) that local strains deviate from their macroscopic average 

according to specific relaxation modes, and (iii) that the macroscopic strain is 

achieved on average by every pair of adjacent grains.  

The model bears some resemblance with the Lamel model. However, as it is a se-

vere limitation of the Lamel model, the relaxation modes in the multisite model do not 

assume that grain boundaries are aligned with the rolling plane. Instead, as in the 

Alamel procedure, the grains interact across a planar interface that is not necessarily 

parallel to the rolling plane. The relaxation modes in the multisite model are defined 

by the user, so that the model can either reduce to the full constraints Taylor’s model, 

the pancake, Lamel or Alamel models. According to the finite element mesh and the 

way to represent the texture of the material, multisite model is able to achieve a 

CPFEM analysis.  

The large flexibility of the multisite model allows generating different micro-

macro models; on the other hand, large computation time is generally required during 

FE simulations. 

 

The method proposed by Dawson and Kumar [35-38] is based on two coupled 

FEM analyses. A classical mechanical analysis is applied at the scale of the forming 

process. The texture computation relies on a second FEM analysis in the crystal orien-

tation space. The ODF is described by a FE mesh in order to compute the texture evo-

lution by solving the ODF conservation equation [39].  

2.4   Micro-macro models with macroscopic yield locus 

The computation time for the models presented in previous section is generally 

very large when industrial forming processes are investigated. Therefore, micro-

macro models with a macroscopic yield locus were developed. The macroscopic yield 

locus is employed during the FE computation in order to reduce computation time. 

This yield locus is determined from the micro-macro model either in a pre-processor 

or during the FE computation. 

To define the macroscopic yield locus, Van Houtte and Van Bael [40-41] proposed 

to use the rate of plastic work per unit volume as plastic potential in the strain rate 

space. The yield stress (expressed as a vector in 5D space) is the first derivative of the 

potential: 

 S
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 . (7) 



A 6
th

 order series expansion is used to approximate the plastic potential: 
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where D is the norm of the strain rate D defined in 5D space;  characterizes the 

hardening and M  is the average Taylor factor. The computation of the 210 series 

expansion coefficients pqrstu
F  is achieved by a least square fitting based on average 

Taylor factor or, more efficiently, using a linear method based on texture C-

coefficients with pre-calculated libraries.  

As the convexity of the 6
th

 order formulation of (8) is not guaranteed, according to 

the modelled material, so called fish-tails, particularly inconvenient during FE simula-

tions, are sometimes encountered. Therefore, a new version of the 6th order potential 

was proposed [42]: 
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The calculation of the 210 series expansion coefficients pqrstu  is achieved by a 

three step iterative procedure that ensures strict convexity. 

Similarly, Arminjon and co-workers [43] used a 4
th

 order series expansion to de-

fine a macroscopic yield locus. This formulation was implemented in a finite element 

code [44-45] to simulate deep drawing of steel and aluminium.  

Darrieulat and Montheillet [46] proposed a methodology to derive a quadratic yield 

function for orthotropic aggregates of cubic crystal from the associated texture com-

ponents. The parameters of Hill’s quadratic yield locus are determined by averaging 

the functions corresponding to the individual texture components of the investigated 

material’s texture. 

Maudlin and co-workers [47] have investigated such an approach with a yield lo-

cus approximated by a set of hyperplanes (plane in 5 dimensional deviatoric stress 

space). They called the fitting procedure ―tessellation‖, highlighting the fact that the 

continuity between the hyperplanes must be fulfilled, i.e. the yield locus must be a 

continuous surface. The tessellation is achieved on 647 stress points that are calcu-

lated on the basis of the texture of the material using a visco-plastic self-consistent 

model [19] assuming a combination of prismatic and pyramidal slip systems [48]. 

1226 linear functions defining the hyperplanes are then obtained. The yield locus is 

described with a continuous mathematical formulation with sufficient detail to be in-

tegrated in a finite element code. 

The Minty model developed by Duchêne and Habraken [49] is a crystal plasticity 

law adapted to macroscopic forming processes simulations. This law is based on a lo-

cal yield locus approach able to predict texture evolution during FE modelling of in-

dustrial forming processes. With this model, only a small zone of the yield locus is 



computed. This zone is updated when its position is no longer located in the part of 

interest in the yield locus or when the yield locus changes due to texture evolution. 

This model is specific in the sense that it does not use a yield locus formulation ei-

ther for plastic criterion or in the stress integration scheme. A linear stress-strain in-

terpolation in the 5-dimensional (5D) stress space is used at the macroscopic scale: 

 .C u  . (10) 

In this equation,  is a 5D vector containing the deviatoric part of the stress; the 

hydrostatic part being computed according to an isotropic elasticity law. The 5D vec-

tor u is the deviatoric plastic strain rate direction (it is a unit vector).  is a scalar de-

scribing an isotropic work hardening. 

The macroscopic anisotropic interpolation is included in matrix C. Its identification 

relies on 5 directions: ui (i=1…5) advisedly chosen in the deviatoric strain rate space 

and their associated deviatoric stresses: i (i=1…5) computed by the polycrystal plas-

ticity model. This micro-macro model uses Taylor’s assumption of equal macroscopic 

strain and microscopic crystal strain. It computes the average of the response of a set 

of representative crystals evaluated with a microscopic model taking into account the 

plasticity at the level of the slip systems. Two versions of this Full Constraints (FC) 

Taylor’s model are investigated: one coupled with a rate insensitive crystal plastic 

model and one coupled with a visco-plastic crystal model in [50].  

Texture evolution is computed using Taylor’s model on the basis of the strain his-

tory for each integration point every 10 FE time steps. This law is very modular and 

the principle of this approach can be coupled with any microscopic model and ho-

mogenization technique. Further details and properties of Minty law can be found in 

[49]. 

Minty and the 6
th

 order yield locus (fitted on Taylor and Lamel models) are com-

pared during deep drawing simulations in [51]. 

3   Multiscale models based on dislocation densities 

3.1   Description and main features 

Multiscale models based on dislocation densities can have a strong macroscopic char-

acter: the FE mesh has macroscopic scale and the constitutive law relies on balance 

equation of different mechanisms of generation and annihilation of dislocations, see 

for instance the models of Pietrzyk [52-53] or Kopp [54]. Microstructure evolution 

can also be followed by such an approach, when the link between dislocation densi-

ties and phase transformation [55-56] or recrystallization [57] is clearly identified.  

Another type of dislocation models looks at a smaller scale. The assumption of uni-

form stress and strain distribution inside each crystal can yield to inaccurate results 

depending on the material and the process investigated. In particular, when the di-

mensions of the sample are of the same order than the length scale of the microstruc-

ture (the grains size), the new generation of strain-gradient crystal plasticity models 

are of great interest [58].  



Hereafter only a few examples are provided. 

3.2   Microscopic models 

The internal variable model of Pietrzyk [52-53] is based on the computation of the 

stress during plastic deformation as a function of the evolution of dislocation popula-

tions controlled by competition between storage and annihilation of dislocations. 

Various models for the description of the dislocation density evolution were pro-

posed. In this respect, a simplified analytical solution of differential equation is pro-

posed in [59]. Models with only one internal variable: the average dislocation density 

[60] or with two internal variables: the densities of mobile and trapped dislocations 

[61] were investigated. Finally, a complex model based on the distribution of disloca-

tion density function was developed [53]. This full model accounting for the distribu-

tion of dislocation density provides accurate predictions during hot forming of metals 

[57] but requires larger computation time during FE simulations. 

 

Geers and co-workers proposed a crystal plasticity model [62] on the polycrystal 

scale which considers each grain as a single crystal core surrounded by flat bi-crystals 

representing the grain boundaries. When the polycrystal plastically deforms, due to 

the bi-crystal interface conditions (stress equilibrium and deformation compatibility), 

the bi-crystals and the crystal core will behave differently. This heterogeneous behav-

iour gives rise to the generation of geometrically necessary dislocations (GND) in or-

der to fulfill crystallographic lattice compatibility. These GND’s act as obstacles to 

the motion of the statistically stored dislocations (SSD), which carry the plastic de-

formation.  

In order to improve the model, the heterogeneities within each grain were after-

wards considered at the single crystal level [63-64]. Therefore, each grain had to be 

modelled with a sufficient number of finite elements (around 20 in [64]). GND’s and 

SSD’s are still accounted for, while grain boundary dislocations (GBD) densities are 

added in order to consider the initial lattice mismatch between adjacent grains. Appli-

cation of this model to constrained simple shear [63] and plane stress tension [64] are 

presented. 

3.3   Macroscopic models with microscopic physical roots 

The Teodosiu and Hu's hardening model [65-66] is a physically-based microstructural 

model. Basically, it is able to describe both kinematic and isotropic hardening taking 

into account the influence of the dislocation structures and their evolutions, at a mac-

roscopic scale. It allows to describe complex hardening behaviours induced by strain-

path changes. 

The model is described by 13 material parameters and depends on four state vari-

ables: P ,S , X , R . The variable P  is a second order-tensor that depicts the polarity 

of the persistent dislocation structures (PDS) and S  is a fourth-order tensor that de-

scribes the directional strength of the PDS’s. The scalar R  represents the isotropic 



hardening due to the randomly distributed dislocations and the second-order tensor 

X  is the back stress. These state variables evolve with respect to the equivalent plas-

tic strain rate p  with the form Y f Y p  . A precise description of these evolution 

equations can be found in [67]. The yield condition is given by 

 
y 0

Y R f |S|  , (11) 

where  is the equivalent stress, function of X , 
y

 is the current elastic 

limit, 
0

Y  is the initial size of the yield locus and R f | S |  represents the isotropic 

hardening. The expression of  depends on the definition of the associated yield lo-

cus.  

For instance, a validation of the Teodosiu and Hu’s hardening model coupled with 

the Minty constitutive law during deep drawing simulations is presented in [68]. 

 

Levkovitch and co-workers [69] proposed a similar phenomenological model 

based on microstructural material behaviour. The evolution of the polarized disloca-

tion structure on the grain level, representing the main cause of the induced flow ani-

sotropy at the macroscopic level is taken into account. Besides the isotropic and ki-

nematic hardening, the model also accounts for the change of the yield locus shape 

(distortional hardening). The model is validated thanks to metal forming simulations 

inducing complex strain path changes. 

 

The 3IVM model [54;70] considers three internal variables for the description of 

the microstructure. These variables are three dislocation type densities: the mobile 

dislocations, the immobile dislocations in cell walls and the immobile dislocations in 

cell interiors. This flow stress model is linked to a Taylor-type model in a finite ele-

ment code to simulate forming processes: stretch forging of an austenitic steel and hot 

rolling of aluminium alloys are reported in [54]. 

4   Discussion and future trends 

Thanks to the evolution of the computer capabilities, strong progresses have been no-

ticed concerning the multiscale models. Concerning the modelling of the materials 

anisotropy, three periods can be distinguished. 

Before 1900, only a few research teams are involved in this field but clear tenden-

cies are already initiated: the use of Taylor’s model with (parallel) computation of the 

average behaviour of a set of representative crystals or the use of a fitted yield locus 

formulation based on the initial texture of the material. 

Due to a rapid increase of the number of research teams in the polycrystal domain, 

the period 1990-2000 is characterized by a strong development of sophisticated ho-

mogenization techniques in order to supersede the Taylor’s model. The first FEM
2
 



models are proposed so as to take into account texture evolution and adjacent grains 

interaction. Crystal plasticity finite element method is still rarely developed.  

Since 2000, FEM
2
 and CPFEM techniques are more and more investigated. Con-

currently, the robustness of the texture based yield loci was improved. 

 

Concerning the microstructure modelling, the progress origins are different: 

- A better knowledge of the microscopic mechanisms linked to the phase transforma-

tions and the recrystallizations yielded to more and more realistic physical models. 

- The increasing computation power allows better analyzing dislocation densities as-

sociated to different mechanisms, it allows for instance to study the induced micro-

structure during not only monotonic strain path but also two-stage strain paths[71]. 

 

The current evolution of multiscale models concerns the modelling of multiple 

phase materials (while single phase models were initially developed). Body centred 

cubic (bcc) and face centred cubic (fcc) material were first investigated because of 

their rather continuous behaviour. Several models are now devoted to hexagonal 

closed packed (hcp) lattice material [72,73]. The main complications come from the 

lower number and the particular orientations of the slip systems (compared to fcc and 

bcc materials). 

The number and the variety of the polycrystalline models rapidly increase. These 

new models are very helpful for the identification of more simple models. For in-

stance CPFEM models can be used for the validation of micro-macro models. 

5   Conclusion 

Even without analyzing the atomistic scale, a lot of research work is still required to 

improve the accuracy of the numerical results compared to the experiment. Several 

studies concerning forming processes have already been achieved. A lower effort was 

devoted to the structure toughness and consequently to the fatigue analysis. 

The rapidly increasing number of micro-macro research teams prefigures future 

improvements of the numerical models concerning both their accuracy and their ra-

pidity. 

Anyway, the complexity of the numerical model must always be adapted to the 

material and the process investigated. For instance, if a simple constitutive law (e.g. 

Von Mises yield locus with isotropic hardening) provides accurate results for the 

studied process, multiscale models should be avoided. It is important to correctly ana-

lyze the complexity of the involved deformation mechanisms in order to choose the 

most adequate model (multiscale or phenomenological model). Macroscopic phe-

nomenological models based on and identified from micro-macro models should still 

be taken into consideration as an interesting intermediate solution. 
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