Multiaxial fatigue damage modelling at Macro scale of Ti6AL4V alloy

A.K. Marmi*, L. Duchene†, A.M. Habraken‡

*University of Liège, Chemin des Chevreuils 1, 4000 Liège, Belgium.

Abstract

Lemaitre and Chaboche fatigue model is investigated in order to predict the fatigue life of tensile samples with and without notch defining different stress concentration fields. Elastoplastic FE simulations based on anisotropic yield locus description were carried out in order to obtain the stress and strain distributions near the notch root. The Lemaitre and Chaboche fatigue model was applied with the point method and the gradient method.

Key Words: fatigue damage, notch, stress gradient, fatigue life

1. Introduction

Mainly two different ways are possible to predict the safety of aeronautical pieces. Either a direct use of SN curves information and stress fields knowledge in the pieces allow verifying the soundness of the piece design (old classical simplified way) or the SN curves allow the identification and the validation of a damage fatigue model that is applied to the actual piece stress state (alternative approach). Of course, if the fatigue model used in this alternative approach is validated, it can also generate new SN curves used in the classical way. In this paper, the finite element (FE) simulations of SN curves for Ti-6Al-4V notched and unnotched specimens are based on the fatigue model of continuum damage mechanics developed by Lemaitre and Chaboche. A first application of this model on the notched or unnotched specimens in tensile state (see section 8.2) demonstrates that if the data set is identical with the unnotched specimen, the model predictions for the notched case are very far from the experiments, too short life times are computed. The model provides too conservative results. An easy solution is to modify the material data and in this case the notched case experimental results can also be simulated with accuracy. However the interest of a model is poor if you must modify its material data for each geometry. Physical sound models assume a unique set of parameters for one material.

The current research introduces the stress gradient effect in the formulation of the Lemaitre and Chaboche damage model.

Once the elastoplastic constitutive law was identified for the studied material (section 3), the next step was the identification of the damage model of Lemaitre and Chaboche from some SN curves of the unnotched specimen (section 5). Other SN curves were computed to validate the predictive capacity of the model. Then using the same material data set, the Lemaitre and Chaboche model was improved by a gradient method used to predict the fatigue life of notched specimens in tensile fatigue tests (section 8).

2. Material

The Ti-6Al-4V alloy produced by Timet company was used in the present fatigue experiments, and in the fatigue tests of the Handbook [1] for V-notch and unnotched samples. The chemical composition and the mechanical properties are pre-
sented in Tables 1 and 2. The heat treatment for
the used Ti-6Al-4V plate consisted of an anneal-
ing process at 760° for 1 hour. Its microstructure
contains both an alpha phase, and a lamellar beta
phase (Figure 1). The lattice of the alpha phase
is an hexagonal closed packed one and the beta
phase is body centered cubic. The alpha content
is approximately 85 %.

<table>
<thead>
<tr>
<th>Fe</th>
<th>V</th>
<th>Al</th>
<th>C</th>
<th>O</th>
<th>N</th>
<th>Y</th>
<th>H</th>
<th>O+2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>4.0</td>
<td>0.26</td>
<td>0.008</td>
<td>0.18</td>
<td>0.004</td>
<td>&lt; 0.0004</td>
<td>58</td>
<td>0.19</td>
</tr>
</tbody>
</table>

**N**

Table 1
Chemical composition of Ti-6Al-4V alloy (in weight percent)

<table>
<thead>
<tr>
<th>Ti-6Al-4V property</th>
<th>annealed</th>
<th>aged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Stress (MPa)</td>
<td>940</td>
<td>1080</td>
</tr>
<tr>
<td>Ultimate Stress (MPa)</td>
<td>1040</td>
<td>1180</td>
</tr>
<tr>
<td>Elastic modulus (GPa)</td>
<td>109.4</td>
<td>109.4</td>
</tr>
</tbody>
</table>

**N**

Table 2
Mechanical properties of annealed Ti-6Al-4V plate: for
the samples of the present work, unnotched Handbook
samples, V-notched Handbook samples and for solution-
treated and aged Ti-6Al-4V for the holed plate

3. Constitutive law

3.1. Elastic behavior and Hill anisotropic yield locus

The elastic behavior is defined by the well
known Hooke's law (Young's modulus is 109.4
MPa and Poisson's ratio is 0.37). The yield func-
tion is described by the anisotropic Hill yield locus.
The Hill anisotropic equivalent stress is com-
puted as a function of the Cauchy stress tensor \( \sigma \)
and the fourth order material tensor \( H \):

\[
\sigma_{eq,Hill} = \sqrt{\sigma : H : \sigma}
\]  

(1)

Or using a Voigt notation:

\[
\sigma_{eq,Hill} = \sqrt{\bar{\sigma} : \bar{H} : \bar{\sigma}}
\]

\[
\sigma_{eq,Hill} = \sqrt{\sigma_1H_{11}\sigma_1 + \cdots + \sigma_6H_{66}\sigma_6}
\]

where \( \sigma_j \) are the components of the stress
state expressed as a six-component vector
\( [\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}, \sigma_{13}, \sigma_{23}] \). \( H_{ij} \) is the 6x6 aniso-

tropic material matrix obtained from \( H \). It is
assumed constant during the loading. The ma-
terial constants (see Table 3) are determined

d from uniaxial tensile tests along different direc-
tions (RD, TD and \( 45^\circ \) direction), and simple
shear tests along RD. \( H_{ij} \) is written in the form:

\[
H_{ij} = \begin{pmatrix}
G + H & -H & -G & 0 & 0 & 0 \\
-H & H + F & -F & 0 & 0 & 0 \\
-G & -F & F + G & 0 & 0 & 0 \\
0 & 0 & 0 & 2N & 0 & 0 \\
0 & 0 & 0 & 0 & 2L & 0 \\
0 & 0 & 0 & 0 & 0 & 2M
\end{pmatrix}
\]

(2)

3.2. Teodosiu-Hu hardening law

In order to predict the fatigue life of the spec-
cimens subjected to constant cyclic loading, a rep-
resentative behavior law of Ti-6Al-4V is re-
quired to compute the stress field which is an input
of the fatigue model. The Teodosiu and Hu hard-
ening model is an advanced model able to pre-
dict the Bauschinger effect and other transient
hardening phenomena observed during two-stage
Multiaxial fatigue damage modelling at Macro scale of Ti6AL4V alloy

\[ X_{SAT} = X_{SAT0} + (1 - m) |S| \sqrt{q + (1 - q) \beta_S^2} \]  (5)

where \( X_{SAT0}, m, q \) are material parameters (see Table 4). \( \beta_S = \frac{S_D}{|S|} \) measures the change in orientation of the current strain rate tensor with respect to the PPDS. The internal state variable \( S \) is decomposed into two parts: a scalar part \( S_D \) (the dislocation structure associated to the currently active slip system) and a fourth order tensor part \( S_L \) related to the latent part of the persistent dislocation structures. The decomposition equation of \( S \) is:

\[ S = S_D \mathbf{N} \otimes \mathbf{N} + S_L \]  (6)

where \( \mathbf{N} = \frac{d^p}{|d^p|} \) represents the plastic strain rate direction, \( d^p \) is the plastic strain rate tensor. The evolution equations of \( S_D \) and \( S_L \) are given respectively by:

\[ \dot{S}_D = C_{SD} [g(S_{SAT} - S_D) - h(X, \mathbf{N}, n) S_D] \dot{\varepsilon}^{pl} \]  (7)

\[ \dot{S}_L = -C_{SL} \left( \frac{Z}{S_{SAT}} \right)^{n_L} S_L \dot{\varepsilon}^{pl} \]  (8)

with

\[ Z = |S_L| = \sqrt{|S| - S_D^2} \]  (9)

where \( S_{SAT}, C_{SD}, C_{SL} \) and \( n_L \) are material parameters (see Table 4). The functions \( g \) and \( h \) help to capture transient hardening after a strain path change. Their expressions are:

\[ g = \begin{cases} \frac{1 - \frac{C_p}{C_{SD} + C_p}}{1 + P_D} & \frac{S_D}{C_{SD} + C_p} - \mathbf{P} : \mathbf{N} \geq 0 \\ \frac{P_D}{1 + P_D} & \text{otherwise} \end{cases} \]  (10)

where, \( P_D = \mathbf{P} : \mathbf{N} \)

\[ h = \frac{1}{2} \left( 1 - \frac{\mathbf{X} : \mathbf{N}}{X_{SAT} \mathbf{n} : \mathbf{N}} \right) \]  (11)

with \( C_p \) and \( n_p \) material constants.
The evolution law for the polarity tensor is:

$$\dot{P} = C_p (N - P) \dot{\varepsilon}^{pl}$$  \hspace{1cm} (12)

The size of the yield surface is defined by the isotropic hardening variable $Y$. It is a function of the accumulated plastic deformation $\varepsilon^{pl}$ using a simple exponential law:

$$R = R_{SAT} (1 - \exp(-C_R \varepsilon^{pl}))$$  \hspace{1cm} (13)

where $R_{SAT}$ and $C_R$ are material constants (see Table 4). The value of $R_{SAT}$ takes a positive value for a cyclic hardening material, and a negative value for a cyclic softening material (Ti-6Al-4V is a softening material under cyclic loading).

The set of 13 material parameters of the Teodosiu and Hu model are obtained by calibration on the Ti-6Al-4V plate. They are presented in Table 4. The number of material parameters for this hardening model is large and some parameters are clearly dedicated only to some events (stagnation of hardening in reverse test, in orthogonal tests...). Details of the identification procedure can be found in [3].

4. Experiments

The High Cycle Fatigue data (HCF) used in this study come either from our tests (Ulg tests), or from the Handbook [1]. The geometry of the unnotched fatigue tests of the present work is represented in Figure 2. Two types of plate notched specimens were tested: the first one is a V-notch (Figure 3a), and the second one is a plate with a central hole (Figure 3b).

![Figure 3](image-url)
Figure 3. Notched Ti-6Al-4V specimen, (a) V-notch, (b) Holed plate (from [1]), all dimensions in mm

The V-notched specimen has a notch depth $h$ of 1.32 mm, the V-notch angle $\beta$ is equal to $60^\circ$, the notch radius $\rho$ is 0.675 mm. The plate thickness $t$ is 1.7 mm for the V-notched specimen of the Handbook [1] and 2.5 mm for the present study. The sample reduced width is equal to 15 mm. This shape of V-notched specimens corresponds to an elastic stress concentration factor $K_t$ of 3.3 according to the graphs of Noda [4]. The holed plate is 1.57 mm in thickness with a 1.56 mm hole diameter. Its $K_t$ value is 2.8.

The HCF tests were conducted at stress ratios $R (= \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}})$ of 0.1, 0.5, -0.5 and -1, where $\sigma_{\text{min}}$ and $\sigma_{\text{max}}$ are respectively the minimum and maximum stress during the load cycle. A sinusoidal loading at the cyclic frequencies of 60-100 Hz was applied. The fatigue tests were conducted to obtain the SN curves. The mainly analyzed domain is ranging from $10^4$ to $10^7$ cycles.

The SN experimental results for unnotched and notched specimens are presented in section 8, together with the simulation results predicted by the fatigue model.
Multiaxial fatigue damage modelling at Macro scale of Ti6Al4V alloy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( C_p )</td>
<td>0.34</td>
<td>—</td>
<td>characterizes the polarization rate of the PPDS</td>
</tr>
<tr>
<td>( n_p )</td>
<td>10.23</td>
<td>—</td>
<td>characterizes the saturation rate of S</td>
</tr>
<tr>
<td>( C_{SD} )</td>
<td>10</td>
<td>—</td>
<td>characterizes the saturation rate of the back stress X</td>
</tr>
<tr>
<td>( C_X )</td>
<td>26.41</td>
<td>—</td>
<td>represents the saturation value of the back stress X</td>
</tr>
<tr>
<td>( X_{SAT0} )</td>
<td>235.00</td>
<td>MPa</td>
<td>represents the saturation value of the PPDS to the isotropic hardening</td>
</tr>
<tr>
<td>( m )</td>
<td>0.3</td>
<td>—</td>
<td>defines the contribution of the PPDS to the isotropic hardening</td>
</tr>
<tr>
<td>( S_{SAT0} )</td>
<td>190.00</td>
<td>MPa</td>
<td>represents the saturation value of S</td>
</tr>
<tr>
<td>( n_L )</td>
<td>0.00</td>
<td>—</td>
<td>characterizes the saturation rate of SL</td>
</tr>
<tr>
<td>( q )</td>
<td>0</td>
<td>—</td>
<td>initial yield stress</td>
</tr>
<tr>
<td>( R_0 )</td>
<td>945</td>
<td>MPa</td>
<td>characterizes the saturation rate of the isotropic hardening stress Y</td>
</tr>
<tr>
<td>( C_R )</td>
<td>15</td>
<td>—</td>
<td>represents the saturation value of the isotropic hardening stress Y</td>
</tr>
<tr>
<td>( R_{SAT} )</td>
<td>-175</td>
<td>MPa</td>
<td></td>
</tr>
<tr>
<td>( C_{SL} )</td>
<td>0.00</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

**TAB. 4**
Material parameters of Toodosiu-Hu hardening law

5. Continuum fatigue damage model

5.1. Uniaxial non-linear cumulative fatigue damage model

It is possible to predict the fatigue life of the specimen or mechanical component by using a fatigue damage approach. A useful fatigue damage model is the one proposed by Lemaitre and Chaboche [5], where the evolution of the damage is nonlinear versus time (which is confirmed by experimental observations), and the increment of damage depends on loading parameters (mean stress, stress amplitude...). Assuming an isotropic damage evolution for the material, the damage tensor \( D \) is reduced to a scalar variable: \( D = D_I \), where \( I \) is the second order identity tensor. In 1D cyclic loading, the fatigue cumulative damage model describing the deterioration of the material microstructure under cyclic plasticity is formulated by:

\[
\frac{dD}{dN} = \left[ 1 - (1 - D)^{\theta} \right] \alpha(\sigma_{max}, \bar{\sigma}) \\
\left[ M(\bar{\sigma})(1 - D)^{\beta} \right]^\delta
\]

(14)

\( D \) is the damage scalar variable and \( N \) the number of cycles. \( \sigma_{max}, \bar{\sigma} \) are respectively the maximum and mean stress. The function \( \alpha(\sigma_{max}, \bar{\sigma}) \) links the damage to the cyclic loading:

\[
\alpha(\sigma_{max}, \bar{\sigma}) = 1 - a \left( \frac{\sigma_{max} - \sigma_1(\bar{\sigma})}{\sigma_u - \sigma_{max}} \right)
\]

(15)

The fatigue limit \( \sigma_1(\bar{\sigma}) \) depends on the mean stress by the following relation:

\[
\sigma_1(\bar{\sigma}) = \sigma_0 + \bar{\sigma}(1 - b_1\sigma_0)
\]

(16)

\( \sigma_0 \) and \( \sigma_u \) are respectively the fatigue limit at zero mean stress and the ultimate tensile stress. The brackets \( \langle u \rangle \) are defined as \( \langle u \rangle = 0 \) if \( u \leq 0 \) and \( \langle u \rangle = u \) if \( u > 0 \).

The function \( M(\bar{\sigma}) \) quantifies the mean stress effect through Low Cycle Fatigue (LCF) loading range:

\[
M(\bar{\sigma}) = M_0 (1 - b_2\bar{\sigma})
\]

(17)

In Equations (14) to (18), \( \beta, M_0, b_1, b_2 \) and \( a \) are material parameters determined from fatigue tests. The number of cycles to failure \( N_R \) under a constant loading amplitude is obtained by integrating Equation (14) from \( D=0 \) (initial undamaged state) to \( D=1 \) (macrocrack initiation):

\[
N_R = \frac{1}{1 + \beta a M_0^{-\beta}} \left\{ \frac{\sigma_u - \sigma_{max}}{\sigma_u - \sigma_1(\bar{\sigma})} \right\}^\delta \cdot \left( \frac{\sigma_u - \sigma_{max}}{1 - b_2\bar{\sigma}} \right)^{-\beta}
\]

(18)
where $\sigma_a$ is the stress amplitude during the cycle loading.

For this study, the influence of the damage on the deformation is assumed to be weak. Therefore, the mechanical behavior law and the damage accumulation analysis are decoupled. This assumption allows considerable computation simplifications because, in fatigue life prediction, the amplitude of the stresses is used to determine the loading cycle.

5.2. Multiaxial cumulative fatigue damage model

The applied stress and strain tensors are often multiaxial and present a complex path during a loading cycle. In the case of multiaxial loading fatigue, cumulative damage models are very few in the literature and lack of experimental verification. The Lemaitre and Chaboche model has been extended to 3D loading by Chauconnetet [6]. The evolution of damage in the case of multiaxial applied stress is represented by the following equation:

$$
\frac{dD}{dN} = \left[1 - (1 - D)^{\beta+1}\right]^{\alpha(\cdot)} \left[\frac{A_{II}}{M_0(1 - 3b_2\sigma_{H,mean})(1 - D)}\right]^{\beta} \tag{19}
$$

where $A_{II}$ is the amplitude of octahedral shear stress and $\sigma_{H,mean}$ is the mean hydrostatic stress defined by $\sigma_{H,mean} = \frac{1}{2}[\text{max}(\text{tr}(\sigma)) + \text{min}(\text{tr}(\sigma))]$ with $\text{tr}(\sigma) = \sigma_{11} + \sigma_{22} + \sigma_{33}$. The exponent $\alpha(\cdot)$ is now defined by Equation (20), where $\sigma_{eq,\text{Hull},\text{max}}$ is the maximum Hill equivalent stress during the loading cycle.

$$
\alpha(A_{II}, \sigma_{H,mean}, \sigma_{eq,\text{Hull},\text{max}}) = 1 - a\left(\frac{A_{II} - A_{II}^*}{\sigma_u - \sigma_{eq,\text{Hull},\text{max}}}\right) \tag{20}
$$

The Sines [6] fatigue limit criterion is formulated by the following equation:

$$
A_{II} = \sigma_{10}(1 - b_1\sigma_{H,mean}) \tag{21}
$$

In the case of multiaxial fatigue loading, an infinite fatigue life is obtained if the stress amplitude $A_{II}$ respects:

$$
A_{II} \leq A_{II}^* = \sigma_{10}(1 - b_1\sigma_{H,mean}) \tag{22}
$$

The term describing the static fracture in 1D loading ($\sigma_u - \sigma_{max}$) in Equation (15) is replaced by ($\sigma_u - \sigma_{eq,\text{Hull},\text{max}}$) in 3D loading case (Equation (20)).

For the proportional loading, the stress amplitude $A_{II}$ is defined by:

$$
A_{II} = \frac{1}{2} \sqrt{\frac{2}{3}(S_{ijmax} - S_{ijmin})(S_{ijmax} - S_{ijmin})} \tag{23}
$$

where $S_{ijmax}$ and $S_{ijmin}$ are the maximum and the minimum values of the deviatoric stress tensor during the loading cycle.

$\sigma_{eq,\text{Hull},\text{max}}$ has the following expression (maximum value for one cycle):

$$
\sigma_{eq,\text{Hull},\text{max}} = \text{max}[(\sigma_{11} - \sigma_{22})^2 + G(\sigma_{11} - \sigma_{33})^2] + F(\sigma_{22} - \sigma_{33})^2 + 2N\sigma_{13}^2 + 2M\sigma_{23}^2 \tag{24}
$$

By integration of Equation (19), the number of cycles to failure $N_R$ for multiaxial loading is:

$$
N_R = \frac{1}{1 + \beta} \cdot \frac{1}{aM_0} \cdot \frac{1}{\sigma_u - \sigma_{eq,\text{Hull},\text{max}}} \cdot \frac{A_{II}}{[1 - b_2\sigma_{H,mean}]^{-\beta}} \tag{25}
$$

The material parameters : $\beta, aM_0^{-\beta}$ of the Lemaitre and Chaboche model are determined by using fatigue tests of smooth specimens ($K_t = 1$), and SN curve with zero mean stress. The other coefficients $b_1$ and $b_2$ are determined from other SN curves with non zero mean stresses (see Table 5). $\sigma_{10}$ and $\sigma_u$ are respectively equal to 358 MPa, and 1040 MPa for the annealed Ti-6Al-4V, while $\sigma_u$ is 1180 MPa for the Ti-6Al-4V aged plate.
Multiaxial fatigue damage modelling at Macro scale of Ti6AL4V alloy

<table>
<thead>
<tr>
<th>$\beta$</th>
<th>$aM_0^{-\beta}$</th>
<th>$b_1$</th>
<th>$b_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.79</td>
<td>$1.79 \times 10^{-11}$</td>
<td>0.0013</td>
<td>0.00055</td>
</tr>
</tbody>
</table>

**Tab. 5**
Material parameters of Lemaître and Chaboche fatigue damage model

6. Simulations

6.1. Mesh and plate thickness effect on $K_t$

The home-made finite element code Lagamine [8] was used. The first step in the numerical computations was the determination of the mesh density required at the notch root to get a converged solution independent of the mesh size. This analysis was performed in elasticity with two element layers through the thickness. The final mesh consisted of 2200 BWD3D [9] finite elements for the V-notched specimen (Figure 5) and 2240 elements for the holed plate specimen (Figure 6). BWD3D is a mixed type hexahedral brick finite element, with one integration point. The FE simulations were used to calculate the stress distribution near the notch root.

The stress concentration factor is defined by: $\sigma_{xx,max}/\sigma_{net}$, where $\sigma_{xx,max}$ is the opening stress at the notch tip (at the present analysis, $K_t$ takes at the first Gauss point ahead of the notch root), $\sigma_{net}$ is the mean stress of the net section on the ligament ($W - 2 \cdot h$).

Figure 4. Illustration of the problem in the x-y plane for V-notch

Figure 5. Finite element mesh for the V-notched specimen (only one eighth is modelled due to symmetry)

Figure 6. Finite element mesh for the holed specimen (only one eighth is modelled)

Figure 7 shows the stress concentration factor $K_t$ variation versus the distance from the mid-thickness plane. $K_t$ values were obtained from linear elastic FE analysis with four element layers (the plate thickness is 1.7mm). $K_t$ value decreases from the mid-thickness to the surface of the specimen, the minimum $K_t$ value is located at the specimen surface.

The elastic stress distribution at notch roots was noticeably studied using FE analysis and analytical formula like Chen formula (Equation 26) and USAMI formula (Equation 27). The results
are plotted in Figure 8. The USAMI formula is very close to the FE stress distribution for a small distance from the notch tip and they diverge near the specimen center. Chen formula gives a bad stress distribution.

\[
\sigma_{xx}(y) = \sigma_{xx,\text{max}} \sqrt{\frac{\rho}{\rho + 8y}} \quad (26)
\]

\[
\sigma_{xx}(y) = \frac{\sigma_{xx,\text{max}}}{3} \left[ 1 + \frac{1}{2} \left( \frac{1 + \frac{y}{\rho}}{1 + \frac{y}{\rho} - 2} \right)^{-2} \right] \quad (27)
\]

In Equations (26) and (27), \( \sigma_{xx,\text{max}} \) is the maximum stress value at the notch tip, \( y \) is the distance from the notch tip and \( \rho \) is the notch radius.

Finite element simulations of the behaviour at notch root using the Teodosiu hardening+Hill yield locus were used to model cyclic plasticity. Figure 9 shows the four stress-strain cycles at notch root for a nominal stress ratio of 0.1. It can be noted that there is an elastic stabilization (elastic shakedown) witch takes place after the first yielding (the first cycle). The first load cycle gives rise to compressive residual stresses at and near the notch tip. The elastic shakedown occurs quickly and the majority of the fatigue life will be generated in the elastic range. In fact, the local plasticity at notch root causes a fatigue damage zone near the notch root (failure zone).

Figure 10 defines the evolution of the load...
7. Fatigue life prediction for notched samples

This section describes the fatigue life prediction of notched specimens using the fatigue damage model and stress gradient effect. In this study, the estimation of fatigue life is based on crack initiation.

7.1. Local method

The local method takes in account only the time history of the stress tensor computed at a point (at the notch tip). The application of the damage model is local. The mentioned method gives a conservative result in the case of non homogeneous stress distribution (stress gradient). It doesn’t take the coupled effect of sound and damaged zone influence near the notch root.

7.2. Gradient methods (non local method)

The sustainable maximum local stress in the specimen is not the same in a uniformly stressed specimen as in a notched one. The specimen with a stress concentration will tolerate a higher maximum stress.

Using the maximum equivalent stresses at the notch root gives conservative results. In order to solve this problem, the equivalent stresses can be averaged over a line, over an area (in 2D case) or over a volume (3D).

Papadopoulos [10] used the relative gradient of the maximum hydrostatic tension during a load cycle to modify the Crossland criterion. Nadot and Billaut [11] proposed a multiaxial fatigue criterion for surface defective materials. This criterion is based on Crossland formulation and also uses the stress gradient around defect to describe the influence of the stress gradient on fatigue limit.

YaoWeixing [12] introduced the stress intensity to quantify the damaged zone by the following equation:

\[
\sigma_{FI} = \frac{1}{V} \int_\Omega f(\sigma_{ij})\varphi(r)dv
\]  

where \( \Omega \) is the fatigue failure region, \( V \) is the volume of \( \Omega \), \( \varphi(r) \) is the weight function. \( f(\sigma_{ij}) \) is the equivalent stress function.

Qylafk et al [13] proposed another approach to compute the damage damage zone using the effective stress \( \sigma_{eff} \) :
\[
\sigma_{\text{eff}} = \frac{1}{X_{\text{eff}}} \int_0^{X_{\text{eff}}} \sigma(y) \cdot \phi(y, \chi) dy
\]  

(29)

where \(X_{\text{eff}}\) is an effective distance (limit of the damage zone), \(\phi(y, \chi)\) is the weight function.

Qyañku proposed to introduce the fatigue damage zone (used for the evaluation of the effective distance), via the computation of the relative stress gradient \(\chi(y)\) (x and y coordinates are defined in Figure 11):

\[
\chi(y) = \frac{1}{\sigma_{xx}(y)} \frac{\partial \sigma_{xx}(y)}{\partial y}
\]  

(30)

For the current study, the generalized Papadopoulos formula (relative stress gradient) is applied to the equivalent stresses used in Lemaitre and Chaboche fatigue model. The amplitude of stress \(A_{II}\) and the Hill equivalent stress \(\sigma_{eq,Hill,\text{max}}\) adjusted by the gradient value are:

\[
A_{II}^G = A_{II}^{loc} \cdot [1 - \alpha^*(\frac{G_{II}}{A_{II}^{loc}})]
\]  

(31)

\[
\sigma_{eq,Hill,\text{max}}^G = \sigma_{eq,Hill,\text{max}}^{loc} \cdot [1 - \alpha^*(\frac{G_{Hill}}{\sigma_{eq,Hill,\text{max}}^{loc}})]
\]  

(32)

where \(A_{II}^{loc}\) is the value of \(A_{II}\) at notch tip, \(\sigma_{eq,Hill,\text{max}}^{loc}\) is the value of \(\sigma_{eq,Hill,\text{max}}\) at notch tip. \(\alpha^*\) is a parameter used to control how strong the effect of the gradient adjustment is. It has a direct length scale interpretation. It is equal to 0.28 mm for all FE simulations with stress gradient (for V-notch and holed plate).

The purpose here is to calculate the gradient of the \(A_{II}\) \(G_{a}\) and \(\sigma_{eq,Hill,\text{max}}(G_{Hill})\) by a definition similar to gradient formula given by Papadopoulos:

\[
G_{a} = \left(\frac{\partial A_{II}}{\partial x}\right)^2 + \left(\frac{\partial A_{II}}{\partial y}\right)^2 + \left(\frac{\partial A_{II}}{\partial y}\right)^2\right)^{1/2}
\]  

(33)

\[
G_{Hill} = \left[\left(\frac{\partial \sigma_{eq,Hill,\text{max}}}{\partial x}\right)^2 + \left(\frac{\partial \sigma_{eq,Hill,\text{max}}}{\partial y}\right)^2 + \left(\frac{\partial \sigma_{eq,Hill,\text{max}}}{\partial z}\right)^2\right]^{1/2}
\]  

(34)

\[
\Pi \text{ is the middle thickness plane (highest loaded plane)}
\]

\[
y \text{ is the distance from notch tip (highest loaded line)}
\]

Figure 11. Details of the stress gradient plotted line

We propose to reduce the study of the stress distribution around notch tip to the plotted line 'y' from notch tip (Figure 11). The stress gradient is negligible in x and z directions.

The calculation of the stress gradient of \(A_{II}\) and \(\sigma_{eq,Hill,\text{max}}\) is between notch tip, \(A_{II}^{loc}\) and the critical distance \(L_c\), by the following equations:

\[
G_{a} = \frac{\Delta A_{II}}{\Delta y} = \frac{A_{II}^{loc} - A_{II}(L_c)}{L_c}
\]  

(35)

\[
G_{Hill} = \frac{\Delta \sigma_{eq,Hill,\text{max}}}{\Delta y} = \frac{\sigma_{eq,Hill,\text{max}}^{loc} - \sigma_{eq,Hill,\text{max}}(L_c)}{L_c}
\]  

(36)

where \(L_c\) is the critical distance related to the distribution of the triaxiality factor. Its value is introduced in the next section. By increasing the applied load, the \(A_{II}\) gradient increases (see Figure 12) and the fatigue life decreases.

The usual triaxiality factor is adapted to the used anisotropic yield locus:

\[
TR = \frac{\sigma_{\text{mean}}}{\sigma_{eq,Hill}}
\]  

(37)

where, \(\sigma_{\text{mean}}\) is the hydrostatic stress defined by:

\[
\sigma_{\text{mean}} = \frac{1}{3} \left(\sigma_{xx} + \sigma_{yy} + \sigma_{zz}\right)
\]
Figure 12. Evolution of $A_{11}$ versus distance from the notch tip, for $R=0.5$

$$\sigma_{\text{mean}} = \frac{1}{3} tr(\sigma)$$

(38)

In many models of continuum damage mechanics, the term of triaxiality factor is present, like Lemaitre model [14], Bonora model [15]. As the fatigue life, the damage value is sensitive to its value. This gives an argument to show that the stress triaxiality around the notch tip is an important parameter.

The triaxiality changes with time for cyclic loading. A mean triaxiality factor ($TR_{\text{mean}}$) is defined for loading cycle by:

$$TR_{\text{mean}} = \frac{TR_{\text{max}} + TR_{\text{min}}}{2}$$

(39)

where $TR_{\text{max}}$ and $TR_{\text{min}}$ are the maximum and minimum values of the triaxiality factor during the loading cycle respectively.

The mean triaxiality factor is established to distinguish between fatigue life under multiaxial tension and compression.

Figure 13 shows the distribution of the mean stress triaxiality from the notched tip, its peak value is located at the critical distance ($L_c$) from the notch tip. The peak value is influenced by the applied load and the stress ratio.

The definition of the critical distance ($L_c$) for the stress gradient computation is given at the distance located at the maximum value of the mean triaxiality factor ($TR_{\text{mean}}$)(the peak value, see Figure 13) :

$$L_c = L \left( \frac{\partial TR(y)}{dy} = 0 \right)$$

The mean hydrostatic stress is averaged over the load plotted line $y$ with the following equation :

$$\sigma_{H,\text{mean}} = \frac{1}{L_c} \int_{0}^{L_c} \sigma_{H,\text{mean}}(y)dy$$

(40)

Note that using the generalized Papadopoulos gradient formula for the mean hydrostatic stress did not give better results. The results given by Equation 40 are better. For a good prediction of fatigue life, its value is averaged over a line. For integration of equation (40), a polynomial stress distribution of $\sigma_{H,\text{mean}}(y)$ is adopted for a good fit of the stress value at integrations points :

$$\sigma_{H,\text{mean}}(y) = \sum_{i=0}^{n} a_i y^i$$

(41)

where, $a_i$ are polynomial coefficients.

The figure 14 shows the distribution of maximum triaxiality factor, its maximum value is at specific distance from notch tip. Figure 15 shows the distribution of Hill equivalent stress around the notch tip.

8. Results and discussion

8.1. Results of the uniaxial case

The curves of Figures 16, 17 and 18 compare the experimental data for unnotched plate specimens ($K_t = 1$) with $R=-0.5$, $R=0.1$ and $R=0.5$, under constant-amplitude loading. The fatigue damage model gives a correct prediction of fatigue
Figure 13. Evolution of mean triaxiality factor with distance from notch tip, for $R=0.5$, FE computation

Figure 15. Distribution of the maximum Hill equivalent stress, for maximum stress=294 MPa, $R=0.5$, for V-notched sample

Figure 14. Distribution of the maximum triaxiality factor, for maximum stress=294 MPa, $R=0.5$, for V-notched sample

Figure 16. SN curve FE simulation, for $R=-0.5$, unnotched specimen, 1D loading

8.2. Results of multiaxial case

The simulated results by fatigue damage model of different stress ratio for V-notched samples were compared with experimental tests as shown...
in Figures (19), (20) and (21). It was observed that simulation of SN curves were in good agreement with experimental tests when the model is corrected by the stress gradient effect for the stress ratios $R=0.1$ and $R=0.5$ (tensile fatigue tests). The same remark is observed for the holed plate with $R=0.54$ (figure 23).

When the fatigue model is used locally (at the notch tip), the fatigue life predicted is lower than the fatigue life obtained by the fatigue test for the experiments with positive stress ratios ($R > 0$).

The model gives satisfactory results for the
negative stress ratios $R=-0.5$ (for V-notch, figure 19), $R=-1$ (for holed plate, figure 22), the mean triaxiality factor is zero for negative stress ratios (no evolution of the damage under compressive part of the cycle load), the gradient computation for negative stress ratio is not necessary (in this case $R=-1$ and $R=-0.5$).

If the stress ratio increases, the difference between the experiments and simulation increases. In fact the local computation (at the notch tip) of the fatigue model gives a conservative results and the stress gradient in fatigue tensile case ($R=0.1$, $R=0.5$) is a key factor for the correct life prediction.

9. Conclusion

Fatigue model formulated using a continuum damage mechanics represent an important alternative to traditional approaches to fatigue, like Lemaître Chaboche model. The results may be summarized in the following points :

- Teodosiu hardening law is a representative behavior law for Ti-6Al-4V. Note that for most simulated stress levels, there was an elastic stabilization after the first yielding (for tensile fatigue test, for fatigue life between $10^4$ to $10^7$).
- Lemaître and Chaboche fatigue damage model gives a correct fatigue life prediction when the stress is homogenous in the sample ($K_t = 1$) or for no homogenous case, when the stress ratio is negative.
- Lemaître and Chaboche fatigue damage mo-
del gives a conservative results in the case of notched specimens (for tensile fatigue tests with \( R > 0 \)). The modified model was obtained by the introduction of the stress gradient in the fatigue life equation.

Acknowledgements

The authors acknowledge the Interuniversity Attraction Poles Programme- Belgian State- Belgian Scientific Policy(Contract P6/24). A.M.H and L.D. also acknowledge the Belgian Fund for Scientific Research FRS-FNRS for its support.

REFERENCES


