
For Review
 O

nly

 

 

 

 

 

 

Potential and limitations of inferring ecosystem 

photosynthetic capacity from leaf functional traits 
 

 

Journal: Ecology and Evolution 

Manuscript ID ECE-2016-03-00280.R1 

Wiley - Manuscript type: Original Research 

Date Submitted by the Author: n/a 

Complete List of Authors: Musavi, Talie; Max-Planck-Institute for Biogeochemistry Jena, 
Biogeochemical Integration 
Migliavacca, Mirco; Max-Planck-Institute for Biogeochemistry Jena, 
Biogeochemical Integration 
van de Weg, Martine Janet; Vrije Universiteit Amsterdam, Amsterdam 
Global Change Institute 
Kattge, Jens; Max-Planck-Institute for Biogeochemistry Jena, 
Biogeochemical Integration; German Centre for Integrative Biodiversity 
Research (iDiv) Halle-Jena-Leipzig 
Wohlfahrt, Georg; University of Innsbruck, Institute of Ecology 
van bodegom, Peter; Leiden University, Institute of Environmental 
Sciences 
Reichstein, Markus; Max-Planck-Institute for Biogeochemistry Jena, 
Biogeochemical Integration; German Centre for Integrative Biodiversity 
Research (iDiv) Halle-Jena-Leipzig 
Bahn, Michael; University of Innsbruck, Institute of Ecology 
Carrara, Arnaud; Mediterranean Center for Environmental Studies 
(Foundation CEAM) 
Domingues, Tomas; Ciências e Letras de Ribeirão Preto, Depto. de 
Biologia, Faculdade de Filosofia 
Gavazzi, Michael; Eastern Forest Environmental Threat Assessment Center, 
USDA Forest Service 
Gianelle, Damiano; Research and Innovation Center, Fondazione Edmund 
Mach, Department of Sustainable Agro-Ecosystems and Bioresources; 
Foxlab Joint CNR-FEM Initiative 
Gimeno, Cristina; Mediterranean Center for Environmental Studies 
(Foundation CEAM) 
Granier, André; INRA, Ecologie et, Ecophysiologie Forestierès 
Gruening, Carsten; European Commission, Joint Research Centre, Institute 
for Environment and Sustainability 
Havránková, Kateřina; Global Change Research Institute CAS, Department 
of Matters and Energy Fluxes 
Herbst, Mathias; Johann Heinrich von Thünen Institute, Federal Research 
Institute for Rural Areas, Forestry and Fisheries 
Hrynkiw, Charmaine; National Hydrology Research Centre (NHRC) 
Kalhori, Aram; San Diego State University, Department of Biology 
Kaminski, Thomas; The Inversion Lab 
Klumpp, Katja; INRA, Grassland Ecosystem Research 

Ecology and Evolution



For Review
 O

nly

Kolari, Pasi; University of Helsinki, Department of Physics 
Longdoz, Bernard; INRA, Ecologie et, Ecophysiologie Forestierès 
Minerbi, Stefano; Provincia Autonoma di Bolzano Servizi Forestali 
Montagnani, Leonardo; Provincia Autonoma di Bolzano Servizi Forestali; 
Libera Universita di Bolzano, Faculty of Science and Technology 
Moors, Eddy; Alterra Green World Research 
Oechel, Walter ; San Diego State University, Department of Biology; The 
Open University Walton Hall, Department of Environment, Earth and 
Ecosystems 
Reich, Peter; University of Minnesota Twin Cities, Department of Forest 
Resources; University of Western Sydney, Hawkesbury Institute for the 
Environment 
Rohatyn, Shani; Weizmann Institute of Science, Department of Earth and 
Planetary Sciences; The Hebrew University of Jerusalem, Soil and Water 
Department 
Rossi, Alessandra; San Diego State University, Department of Biology 
Rotenberg, Eyal; Weizmann Institute of Science, Department of Earth and 
Planetary Sciences 
Varlagin, Andrej; A.N. Severtsov Institute of Ecology and Evolution, 
Russian Academy of Sciences 
Wilkinson, Matthew; Environmental and Human Sciences Division, Forest 
Research 
Wirth, Christian; Max-Planck-Institute for Biogeochemistry Jena, 
Biogeochemical Integration; German Centre for Integrative Biodiversity 
Research (iDiv) Halle-Jena-Leipzig; University of Leipzig, Institute of 
Special Botany and Functional Biodiversity 
Mahecha, Miguel; Max-Planck-Institute for Biogeochemistry Jena, 
Biogeochemical Integration; German Centre for Integrative Biodiversity 
Research (iDiv) Halle-Jena-Leipzig 

Category: Ecosystem Ecology 

Organism: Ecosystem 

Approach: Method Development 

Abstract: 

The aim of this study is to systematically analyze the potential and 
limitations of using plant functional trait observations from global 
databases versus in-situ data to improve our understanding of vegetation 
impacts on ecosystem functional properties (EFPs). Using the ecosystem 
photosynthetic capacity as an example, we first provide an objective 
approach to derive robust EFP estimates from gross primary productivity 
(GPP) obtained from eddy covariance flux measurements; Second we 
investigate the synchrony of EFPs and plant functional traits in time and 
space to evaluate their relationships, and the extent to which we can 
benefit from global plant trait databases to explain the variability of 
ecosystem photosynthetic capacity; Finally we identify a set of plant 
functional traits controlling ecosystem photosynthetic capacity at selected 
sites. Suitable estimates of the EFP for ecosystem photosynthetic capacity 
can be derived from a light response curve of GPP responding to PAR or 
APAR. Despite the fact that the effect of climate is minimized in the 
calculation, the estimates indicate substantial interannual variation, even 
after removing site-years with confounding factors like disturbance. The 
relationships between foliar nitrogen concentration and ecosystem 
photosynthetic capacity are tighter when both of the measurements are 
synchronized in space and time. Considering multiple plant traits 
simultaneously as predictors for ecosystem photosynthetic capacity 
variation, the combination of leaf carbon to nitrogen stoichiometry with leaf 
phosphorus content explains the variance of ecosystem photosynthetic 
capacity best (adjusted R2 = 0.58). Overall, this study provides an 
objective approach to identify links between leaf level traits and canopy 
level processes and highlights the relevance of the dynamic nature of 
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ecosystems. Synchronizing measurements of eddy covariance fluxes and 
plant traits in time and space is shown to be highly relevant to better 
understand the importance of intra- and interspecific trait variation on 
ecosystem functioning. 

  

Note: The following files were submitted by the author for peer review, but cannot be converted to 
PDF.  You must view these files (e.g. movies) online. 

InSitu_Traits.csv 
CWMtraits_EFPs.csv 
SpeciesComposition.csv 
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Jena, June, 30th, 2016 

 

Dear Dr. Andrew Beckerman, Editor-in-Chief 

Ecology and Evolution Journal, 

 

We are pleased to send you a modified version of the manuscript ID ECE-2016-03-00280, “Potential and 

limitations of inferring ecosystem photosynthetic capacity from leaf functional traits” by Talie Musavi 

and co-authors, which has being revised for possible publication in the journal Ecology and Evolution. 

We are grateful to the reviewers and the Associate Editor for their comments and remarks that helped 

to improve the quality of the manuscript and to clarify some important aspects of the analysis 

overlooked in the first submission. 

We carefully revised the manuscript by addressing all the reviewers’ comments and including most of 

the suggestions. In particular we re-evaluated the manuscript and clarified the concept in the 

introduction and added a more mechanistic view to our discussion. We made a second data check to 

prepare tables for publication. In this regard we realized that for one site the data of the in-situ year was 

reported wrong and we corrected for that. As a result, some of the numbers in the results changed a bit. 

We performed additional analyses based on the ideas of the reviewers in order to confirm the 

robustness of the results and conclusion (e.g. testing for random effects). In addition, we considered 

cross-site variation in climate and included the results in the supplementary with a reference in the text.  

Please find below the point-by-point response to the reviewers’ comments. 

The reviewers’ comments are typed in bold characters, while authors’ replies are in normal characters 

and the new text included in the revised manuscript is in italics. 

We hope to have fully answered all questions and incorporated all the recommendations in the revised 

version, and we hope that the revised manuscript can be accepted for publication in Ecology and 

Evolution. 

Best regards, 

Talie Musavi & co-authors 
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REPLY TO ASSOCIATE EDITOR 

1. More clarity between concepts/ideas presented in the introduction and the goals/objective of 

the study. For example, the relevance of synchronizing measurements in space and time is 

only presented in the methods section. 

2. Consider framing your analysis around mechanistic hypothesis 

3. Provide the PFT of a given site and provide more information on the underlying mechanisms 

of the relationships. 

4. Test the role of cross-site variation in climate and land management (e.g., fertilization) 

We re-evaluated the manuscript and clarified the concept better in the introduction, 

added more mechanistic view to our discussion and clarified methods and concepts 

when it was not clear to the reviewers. For all the figures we provided the PFTs of the 

sites by color coding the sites according to their PFTs. This information has also been 

made available in the tables provided for possible publication. In addition, we 

considered cross-site variation in climate and included the results in the supplementary 

with a reference in the text. Based on the comments of the reviewers we conducted a 

test analyzing the robustness of our results and added that to the text and 

supplementary information. The test was done using random site-years for Lathuile data 

compared to in-situ N% in order to verify whether the improvement of the relationship 

when using time-space matched data was by chance. 

REPLY TO REVIEWER #1 

1. Musavi et al perform an interesting analysis on inferring ecosystem photosynthetic capacity 

from leaf traits. They ask the very relevant question of what are the limitations to using ex-

situ data to predict processes. The response follows the expectation that better estimates 

come from in situ and “in tempo” (=same time) data but, to my knowledge, this is the first 

study quantifying this aspect. In addition, the manuscript also makes an in depth analysis on 

how to characterize maximum photosynthetic capacity in ecosystems. This is an important 

contribution to the field and, essentially, I just have a few doubts on things that were not clear 

to me and that will, hopefully, help the authors improve this very nice manuscript. 

We are grateful for the positive comments and feedback. Please find below the answers 

to the questions and comments, and the modification we introduced in the manuscript 

according to the reviewer’s suggestions. 

2. There’s a lot of different ideas in the manuscript and it is sometimes difficult to follow what 

the authors are saying. For instance, I found that mention of EBVs in the intro was more 

distracting than anything else, as no reference is made to that later on: it’s a good idea to 

think in those terms, but the idea comes too abruptly in the manuscript and it is not 

developed much. This is just an example and, while I have no other specific suggestions, I 
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would encourage the authors to re-read the manuscript and do a bit more of streamlining. 

Also note that, in addition to environmental response (L116), another paper with A. 

Richardson shows that biological rhythms are also important drivers of short-term responses 

(GCB 2012, 18: 1956-1970) 

We carefully revised the manuscript and we streamlined the text, in particular as 

suggested by the reviewer we removed the EBV concept from the introduction. We also 

modified the introduction in a way that the concepts are introduced less abruptly. The 

citation suggested was considered very relevant and therefore added (line 120, page 5). 

“The short-term (half-hourly to daily) variability of carbon fluxes measured with the EC 

technique is controlled by meteorological, environmental conditions (Richardson et al., 

2007) and, plant rhythms (de Dios et al., 2012). “  

3. Something that may need to be clarified is that the authors claim EFPs to be emergent 

properties but then they seek to predict GPP from the underlying components... isn’t the 

definition of an emergent property something that cannot be predicted by looking at the 

underlying components? 

In the manuscript we report the definition of EFP discussed in Reichstein et al., 2014 

(PNAS). EFPs are defined as properties of ecosystems related to physical and 

ecohydrological parameters relevant for land surface–atmosphere interactions. The 

EFPs – at canopy to ecosystem level- are analogous to ecophysiological characteristics at 

leaf level, like carboxylation capacity (Vcmax) or the maximum photosynthetic CO2 

uptake at light saturation (i.e. AMAX derived from the light response curve). The word 

“emergent” in this context was used to identify patterns that emerge from the data 

measured at ecosystem scales with the eddy fluxes. However, we fully understand the 

confusion this caused. Therefore, we removed the use of “emergent” in the manuscript 

as following (line 129:131, page 5): 

“The EFPs are ecosystem properties related to physical and ecohydrological parameters 

relevant for land surface–atmosphere interactions (Reichstein et al., 2014), and are 

assumed to be affected by vegetation characteristics.” 

4. Please explain briefly in the methods how GPP was calculated in La Thuile. Is PAR used to 

estimate GPP? If not, then please ignore my comment. If yes, then is there any potential 

circularity in using PAR to estimate GPP and then also in eq. 1? 

PAR is not used for the estimation of GPP. In this study we used Reichstein et al 2005 as 

method for partitioning NEE into Reco and GPP. The algorithm computes GPP by 

extrapolating nighttime NEE data (nighttime Reco) using a respiration model based on 

air temperature data. Moreover, the GPP data used in this analysis are the ones for half 

hours with high quality measurements of NEE, and therefore not gap-filled. We are 

confident that there is not spurious correlation between GPP and PAR in the dataset 
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used. We added the explanation to the partitioning method and the reference in the 

manuscript (lines 197:200, Page 8). 

“The GPP values were computed using the commonly used algorithm for flux 

partitioning, which is based on the extrapolation of nighttime net ecosystem exchange 

measurements, using an ecosystem respiration model based on air temperature 

(Reichstein et al., 2005).” 

5. I did not understand how CV was calculated (L298): Along these lines, please explain how IAV 

was calculated from CV (which indicates intra-annual variability) 

IAV is mostly estimated using standard deviation (SD) or coefficient of variation (CV) – in 

our study the year to year variation of the ecosystem property (i.e of the 90
th

 percentile 

of GPPsat). Here we chose CV to consider the site differences and have the SD 

normalized by the mean. For each site-year we estimated the EFP (e.g. GPPsat). CV is 

calculated by dividing the standard deviation of annual EFP estimates (GPPsat) by the 

mean of the annual EFP estimates at the sites. For example if the GPPsat of AT-Neu is 

39.43, 33.08, 36.64, 40.45 and 38.99 µmolCO2m
-2

s
-1 

in 2002, 2003, 2004, 2005, and 2006 

respectively, then the CV is 0.08 (2.94/37.72). We added a description and example in 

the revised manuscript. (line 314:318, page 14) 

“For example, at each site we computed the annual value for GPPsat (i.e. 90th percentile 

of GPPsat daily time series). The CV was subsequently computed as the standard 

deviation of annual GPPsat of all years available, divided by the mean annual GPPsat for 

all years available at the respective site (CV GPPsat).” 

6. Why use annual, instead of growing season, values? Except in the tropics and relatively 

aseasonal environments, GPP will always go to 0 at a time or another in the year. Therefore, if 

site A has Amax=20 and site B has Amax= 5, because they will both have Amin=0 in the winter, 

then CVs will be higher site A, simply because it has a higher Amax. I realize there’s something 

fundamental I’m missing, as the graph says CV of 0.6 and 0.9 quantile, yet I did not quite 

understand how the calculation had been made. 

We agree with the consideration of the reviewer. Indeed, in the analysis we used days 

of the year with a good fit of the light response curve and omitted all days with R
2
 of the 

model fitting < 0.6. By using this method it was not necessary to filter out the data for 

growing season because the fit of the model (and the uncertainty of the parameters) 

was usually only good within the growing season. Below we plotted the data of the 

GPPsat time series. The respective R
2
 > 0.6 of the light response curve for two different 

ecosystem types is indicated with red stars. As can be seen from the graphs the days 

with a good model fit (R
2
 > 0.6) are in the growing season, which are shown for GPPsat 

by darker green color. By using this methodology we basically restricted the analysis to 

the growing season as suggested by the reviewer. 
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We tried to clarify this aspect in the revised manuscript (line 307:310, page 13, 

supplementary figure 1). 

“In this way we first retain parameters estimated when the performance of the fitting is 

good, and second we retain data only in the active growing season as the R2 of the 

model fit of the model was higher than 0.6 only within the growing season (Fig. S1).” 

 

 

7. In Fig. 4: is a linear model of application here?  

Indeed relationship in Fig. 4 seems to be non-linear, but we only have 20 sites in our 

study and none of the previous studies (with more sites) show a non-linear relationship 

between N% and photosynthesis capacity (Ollinger et al., 2008, Kergoat et al., 2008 and 

on leaf basis Givnish 1986). Therefore, while keeping the linear model in the Fig. 4 we 

Page 7 of 79 Ecology and Evolution



For Review
 O

nly

added the distance correlation (which considers also no-linearity) estimate to Table 2 

next to the estimates of the linear model. In addition, we show the same Fig. 4 

considering a non-linear model in the supplementary information (Fig. S6 - line 397:399, 

page 17). 

“The fit is even better when a non-linear fit is used for Fig. 4a and Fig. 4b (distance 

correlation increases from 0.56 to 0.73 for GPPsat and from 0.47 to 0.63 for 

GPPsat.structure, See also Fig. S6).” 

Givnish TJ (1986) On the economy of plant form and function, University of Cambridge  

Kergoat L, Lafont S, Arneth A, Le Dantec V, Saugier B (2008) Nitrogen controls plant 

canopy light-use efficiency in temperate and boreal ecosystems. Journal of Geophysical 

Research-Biogeosciences, 113. 

Ollinger SV, Richardson AD, Martin ME et al. (2008) Canopy nitrogen, carbon 

assimilation, and albedo in temperate and boreal forests: Functional relations and 

potential climate feedbacks. Proceedings of the National Academy of Sciences of the 

United States of America, 105, 19336-19341. 

8. How about phylogenetic differences between species?  

I am not completely sure to grasp the request from the reviewer. If I correctly 

understand the reviewer is asking to account for phylogenetic differences between 

species in each site. However, we consider that in this study and with this dataset 

phylogenetic effects are not relevant as we work with site averages and thus community 

weighted means across several species. 

9. Are there no random effects to be considered? 

Also for this question we are not exactly sure what was meant by the reviewer, but we 

decided to take the comment as following: In order to test whether the relationship in 

Fig. 4c is just by chance better than Fig. 4b, we performed a bootstrapping test. For the 

relationship in Fig. 4b, prior to estimating the mean GPPsat of the sites, we resampled 

randomly (with replacement) for each site the GPPsat (also GPPsat.structure) and then 

estimated the mean over the years. This was done 100 times and at each step the R
2
 

and significance (p) of the linear regression of the model was computed. In none of the 

cases using randomly resampled GPPsat the fit was better than the one in Fig. 4c (time 

and space matched data). Using GPPsat.structure only 1% of the random site-year 

combination had an R
2 

higher than the one in Fg.4c (0.37) with a p-value < 0.05 and a 

positive slope. Below are the summary of the results from the 100 random fit of Fig. 4b. 

Thus we think the improvement of the fit when using time and spaced matched data 

was not random.  
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This is also included in the text and supplementary material (line 405:410, page 18, 

supplementary table 2). 

“We also tested whether the improvement of this relationship was due to random. To do 

this we randomly resampled the annual photosynthetic capacity (specifically GPPsat and 

GPPsat,structure) to test if the use of corresponding years statistically improves the 

relationship or not. The results confirm that the best fit is obtained when the N% and the 

photosynthetic capacity estimate match in time and space (Table S2).” 

 R
2
 p EFP estimate 

Min. 0.2683 0.002288 
G

P
P

sa
t  

1
st

 Qu. 0.2845 0.004134 

Median 0.3315 0.007891 

Mean 0.3309 0.009602 

3
rd

 Qu. 0.3745 0.015435 

Max. 0.4118 0.019314 

Min. 0.2799 0.002061 G
P

P
sa

t.stru
ctu

re  

1
st

 Qu. 0.2967 0.007480 

Median 0.3345 0.009494 

Mean 0.3320 0.011045 

3
rd

 Qu. 0.3514 0.015927 

Max. 0.4369 0.019853 

 

10. Overall I was surprised on how well TRY traits worked to predict fluxes (R2=0.27 is still 

biologically significant). If the authors think it could add some value, I would be interested in 

seeing what would have happened if Fig. 4 would also compare against a null model? For 

instance, randomly re-assign N values of one species to another? I realize this may take some 

extra work, and this is certainly not crucial to the goals of the manuscript (just my personal 

curiosity), so the authors don’t really need to take this suggestion on board unless they feel it 

can add something. 

We performed the suggested analysis for the in-situ N% and GPPsat of the in-situ year, 

meaning that prior to estimating the community weighted mean of N% for each site the 

values of the N% for the species were randomly mixed. We repeated this 100 times. The 

result indicates non-significant linear fits for the 100 tries and as it is seen in the first 

plot the fit can be in any direction. (Figures show the linear fit, frequency of the p-value 

(minimum 0.02) and R
2
 of the fit, respectively. 

Page 9 of 79 Ecology and Evolution



For Review
 O

nly
 

 

 

 

REPLY TO REVIEWER #2 

1. Overall, I liked this paper. I like papers that try to link whole-ecosystem eddy covariance data 

to the underlying properties of the vegetation present, such as the leaf traits. There is not 

enough of this kind of work in the literature, so this is a valuable addition. However, I do have 

a few suggestions that I think would help to improve the quality of the paper.  

We are grateful for the positive comments and feedback. Please find below the answers 

to the questions and comments, and the modification we introduced in the manuscript 

according to the reviewer’s suggestions. 

2. Number 1 suggestion of course is to publish the data! Please make the data available in as 

comprehensive a form as possible. I appreciate that the authors sent me the values so readily, 

and that they said they would publish them. I’d like to suggest that they be made available in 

a slightly more comprehensive form: in particular, please give the traits broken down by 

species (along with species information). It is also very useful to see within-species variation. 

If it were me, I would be publishing the original data, ie all the individual values, not just 

species averages.  
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The data is now available for possible publication. We included the EFP estimates of the 

fluxnet sites, species composition information from the sites and the averaged traits for 

each species including also the standard deviation estimate.   

3. I was unsure why GPP-cum was included as a potential measure of ecosystem capacity. It is 

not defined very clearly and it is not explained what information it would offer that is more 

useful than GPPsat. There was relatively little comment on it during the results or discussion. 

Does it really need to be considered, or could you simplify by removing it as an option? 

The cumulative of GPP was used as additional EFP because we wanted to explore 

different definitions of EFP. Please note that the use of different formulations of EFP 

was also considered as strength from the other reviewer. However GPP cum turned out 

to be not the best metric to meet the definition of EFP. We clarified this in the text. 

4. I would really like to see the sites classified by PFT. One reason I asked for the trait data was 

so that I could assess the extent to which the %N-GPPsat relationship is driven by PFT 

differences in leaf %N. I believe a lot of the relationship is driven by the fact that conifers tend 

to have lower leaf %N and lower GPP, than deciduous broadleaf species. It’s unclear to me 

whether that means leaf %N is really implicated as a driving factor (especially given the big 

differences in SLA) or whether both %N and GPP are being driven by a third factor. I think it is 

important to classify by PFT here. 

The point raised by the reviewer is indeed very relevant. We followed the suggestions of 

the reviewer by color coding the plots using a different color for each PFTs. We agree 

with the concern of the reviewer that the positive relationship could be attributed to 

mean differences in N between PFTs. Unfortunately it was not possible to statistically 

test the effects of PFTs because of data scarcity.   

For this reason we also conducted a literature review: 

In a previous work using AMERIFLUX, Kergoat et al 2008 also found that the relationship 

between light use efficiency and N is linear within deciduous and evergreen forests. We 

added this consideration in the manuscript. 

In Givnish 1986 (on the economy of plant form and function), plants of different 

vegetation types are compared for leaf nitrogen and photosynthetic capacity and 

mentions that “photosynthetic capacity is strongly regulated by leaf nitrogen, without 

large effects due to habitat, growth form, or interspecies differences” (page 31-32). 

Givnish TJ (1986) On the economy of plant form and function, University of Cambridge  

Kergoat L, Lafont S, Arneth A, Le Dantec V, Saugier B (2008) Nitrogen controls plant 

canopy light-use efficiency in temperate and boreal ecosystems. Journal of Geophysical 

Research-Biogeosciences, 113. 
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5. I also can see that one of the big differences between TRY and site-specific leaf N values is for 

the crop site, which has average %N in TRY and very high %N in the site-specific data, 

suggesting a potential effect of fertilization. The discussion of why site-specific values for 

traits are better than TRY values centers on community dynamics. I find that discussion to be 

highly speculative. It would be better if they looked closely at the data that they have and 

thought carefully about why the values at sites might differ from the values in TRY – such as 

the possibility that fertilizer has been applied! 

Definitely the fertilization can be an issue, which we missed to mention. We clarified 

that the potential difference in crops can be imputed to different management between 

the site included in TRY and the FLUXNET site. (line 506:508, page 22) 

“This includes also the effect of fertilization on few sites, which could be one of the 

reasons why the in-situ N% from the cropland and grasslands are very different from the 

mean N% from TRY.” 

6. The key take-home seems to be “The predictive power of traits for ecosystem photosynthetic 

capacity substantially improved when intraspecific variability and interannual variability was 

accounted for, respectively”. However, this conclusion has not actually been tested 

statistically. The authors just note that there is an increase in the R2. But R2 must either go up 

or down: so there is a 50% chance that it would go up, even if there is no real difference. The 

authors need to test whether the use of corresponding years statistically improves the 

relationship or not. Otherwise their conclusion is unsubstantiated.  

Also for this question we are not exactly sure what was meant by the reviewer, but we 

decided to take the comment as following: In order to test whether the relationship in 
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Fig. 4c is just by chance better that Fig. 4b) we performed a bootstrapping test. For the 

relationship in Fig. 4b, prior to estimating the mean GPPsat of the sites, we resampled 

randomly (with replacement) for each site the GPPsat (also GPPsat.structure) and then 

estimated the mean over the years. This was done 100 times and at each step the R
2
 

and significance (p) of the linear regression of the model was computed. In none of the 

cases using randomly resampled GPPsat the fit was better than the one in Fig. 4c (time 

and space matched data). Using GPPsat.structure only 1% of the random site-year 

combination had an R
2 

higher than the one in Fg.4c (0.37) with a p-value < 0.05 and a 

positive slope. Below are the summary of the results from the 100 random fit of Fig. 4b.  

Thus we think the improvement of the fit when using time and spaced matched data 

was not random. 

 R
2
 p EFP estimate 

Min. 0.2683 0.002288 

G
P

P
sa

t  

1
st

 Qu. 0.2845 0.004134 

Median 0.3315 0.007891 

Mean 0.3309 0.009602 

3
rd

 Qu. 0.3745 0.015435 

Max. 0.4118 0.019314 

Min. 0.2799 0.002061 G
P

P
sa

t.stru
ctu

re  

1
st

 Qu. 0.2967 0.007480 

Median 0.3345 0.009494 

Mean 0.3320 0.011045 

3
rd

 Qu. 0.3514 0.015927 

Max. 0.4369 0.019853 

 

This is also included in the text and supplementary material (line 405:410, page 18, 

supplementary table 2). 

“We also tested whether the improvement of this relationship was due to random. To do 

this we randomly resampled the annual photosynthetic capacity (specifically GPPsat and 

GPPsat,structure) to test if the use of corresponding years statistically improves the 

relationship or not. The results confirm that the best fit is obtained when the N% and the 

photosynthetic capacity estimate match in time and space (Table S2).” 

 

7. The authors seem to ignore the role of cross-site variation in climate. They suggest that their 

analysis “accounts for the effects of meteorological variables” but I am not really sure what 

they mean by that. Certainly the value for different sites will be affected by the different 

climates across sites – values in Finland will correspond to lower temperature than values in 

Italy, for example – but this effect is not considered in the analysis. 
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While many studies show that instant GPP is very strongly correlated to climate 

variables, the extraction of GPPsat considers the optimal conditions and is thereby less 

correlated to climate variables. The fact that GPPsat is the potential GPP at light 

saturation overcomes the direct effects of climate as well. The two figures below 

indicate that the difference between sites for GPPsat is not related to the mean 

precipitation and only slightly related to air temperature of the sites. Both climate 

variables were estimated during the growing season. In a and b the link between the 

annual average air temperature and cumulative precipitation is shown with annual 

GPPsat. In c and d the link between mean annual temperature (MAT) and mean annual 

precipitation (MAP) with the site averaged GPPsat is shown.  

 

This has also been added to the supplementary material with a reference in the 

manuscript. (Line 384:385, page 17, and line 429:432, page 19, Supplementary figure 8) 

“In addition, the estimated parameters e.g. GPPsat are not strongly linked to climate 

variables (Fig. S8).” 
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“We postulated that the IAV of ecosystem photosynthetic capacity at optimal growth 

conditions (e.g. at optimal light, temperature and water availability) derived with the 

proposed methodology and in the absence of disturbances should be low, and we 

demonstrated that it is not strongly related to climate drivers (Fig. S8).” 

 

8. The attempt to find which traits best predict photosynthetic capacity is, in my view, very 

unsatisfactory. GPPsat is regressed against a bunch of traits, with several transformations 

possible for each trait. At least one of those traits is likely to turn up significant – but that 

certainly does not make it a good predictor for GPPsat. This kind of “try everything out and 

assign meaning to the one thing that comes out significant” approach is not statistically valid. 

By all means explore the correlation structure among variables but do not attempt to pick 

which variable is the best predictor! 

 

Here we considered plant traits relevant for ecosystem photosynthesis, specifically leaf 

C/N/P traits. It is not clear how they control photosynthetic capacity (if linearly/with or 

without interaction), therefore one way to test this is a purely data driven approach 

with all possible variable combinations and mining for possible explanatory ideas. This is 

a very simple form of data mining, which explores the full search space and is certainly 

valid - even if not following classical hypothesis driven research. This debate is general 

very important today in many branches of science. See the links below and we tend to 

favor Golub 2010.: 

Point: Hypotheses first (Weinberg R (2010) Point: Hypotheses first. Nature, 464, 678-

678.) 

Counterpoint: Data first (Golub T (2010) Counterpoint: Data first. Nature, 464, 679-679.) 

 

We tried to clarify this issue and added the reasoning that led us to the application of 

this methodology (line 353:355, page 15 and line 531:533 page 23). 

 

“Because the functional relationship between plant traits, their interactions and 

photosynthetic capacity is not yet completely defined (Sardans & Penuelas 2012), a 

purely data driven approach was used (Golub et al., 2010).” 

 

“We considered leaf traits relevant for photosynthesis and used a data-driven 

exploratory approach with all combinations of the selected leaf traits, mining for 

possible functional relationship between photosynthetic capacity and foliar traits (Golub 

2010).” 

 

9. It would have been good to hear more about the mechanisms. A lot of the trait literature 

suffers from the “correlate everything with everything else and go with the highest R value” 
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philosophy and this work also verges on that error. It would be good to see some more 

mechanistic hypotheses framing the work. 

Thanks for the comment. We have added more material on the mechanism of the 

finding, throughout the discussion. A paragraph at the end of the section “Linking plant 

functional traits and EFP estimates”, in some lines in the section “Robustness of 

ecosystem photosynthetic capacity –plant trait relationship to relaxed time-space 

synchrony of measurements” and a paragraph in the section “Identifying plant traits 

determining ecosystem photosynthetic capacity”, which are all highlighted. 

10. Although, I must say, I’m still kind of surprised by the correlation between N% and GPP. GPP 

ought to be related to N on an area basis, not on a mass basis, so why is this relationship being 

observed, I wonder? Ollinger and Kergoat show the same thing, so it is quite consistent, which 

would be worth pointing out, and then considering what is underlying this relationship. 

 

Given that Narea (as partly driven by SLA) tends to vary more strongly within the canopy 

than Nmass (and given that we use canopy-averaged values), this uncertainty leads to 

extra noise. In addition, the transformation from weight based to area based leaf 

nitrogen tends to compress the total range of variation in Nmass. Together this caused 

lower correlations of Narea when plotted against GPPsat.  

 

11. I’m also started by the relationship with tissue C content. What on earth is driving that? I was 

not aware that tissue C content had a lot of functional meaning – it is generally assumed 

constant. How can it explain 40% of cross-site variation? 

The carbon content is related to the dry mass of the leaves and follows the leaf spectrum of 

fast growing species (shorter leaf longevity) with thin leaves (Low C and higher N) and slow 

growing species (higher leaf longevity) with thicker leaves (high C low N). This can be seen 

when looking at the values of leaf C content of PFTs with needle leaves and broadleaved 

evergreen species having the highest C while grasses and cropland species with lowest C. 

Leaf C content thus relates to the investment of nutrients into photosynthesis vs storage 

capacity and is through this mechanism directly related to photosynthesis capacity (as well 

as indirectly, through the correlation with leaf nutrients). Usually the C content of a given 

species is less variable (not constant) during growing season in comparison to leaf nutrients 

such as N and P (e.g. Jayasekera and Schleser 1991, Journal of plant physiology). 

Jayasekera R, Schleser GH (1991) Seasonal-Changes in Organic-Carbon Content of Leaves of 

Deciduous Trees. Journal of Plant Physiology, 138, 507-510. 

12. Picky notes: Please look closely at your symbols and try to come up with a consistent naming 

system using subscripts and abbreviations as necessary. GPP yes, AMAX no –should be Amax. 

Parea no – should be Parea. GPPsat,structure is just unwieldy – can you come up with a better 

name? 
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We have changed some of the suggested abbreviations. AMAX to Amax. Parea to Parea. 

Narea to Narea. Pmass to Pmass. 

13. In Figure 4c, I think two circles may have been cropped off the top of the graph? Can they be 

put back in? Same for Figure S3.  

Thanks for the remark. We edited the figures accordingly. 

 

14. I suggest Figure 4 should show values coloured by PFT, as could Figure S2.  

We edited the figures accordingly. 

15. y-axis label in Supp Fig 1 should not have 1000 in it?  

Thanks for the remark. We have corrected this figure. 
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 63 

ABSTRACT: The aim of this study is to systematically analyze the potential and limitations of 64 

using plant functional trait observations from global databases versus in-situ data to improve our 65 

understanding of vegetation impacts on ecosystem functional properties (EFPs). Using 66 

ecosystem photosynthetic capacity as an example, we first provide an objective approach to 67 

derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy 68 

covariance flux measurements. Second we investigate the impact of synchronizing EFPs and 69 

plant functional traits in time and space to evaluate their relationships, and the extent to which 70 

we can benefit from global plant trait databases to explain the variability of ecosystem 71 
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photosynthetic capacity. Finally we identify a set of plant functional traits controlling ecosystem 72 

photosynthetic capacity at selected sites.  73 

Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response 74 

curve of GPP responding to radiation (PAR or APAR). Although the effect of climate is 75 

minimized in the calculations, the estimates indicate substantial interannual variation of the 76 

photosynthetic capacity, even after removing site-years with confounding factors like 77 

disturbance such as fire events. The relationships between foliar nitrogen concentration and 78 

ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized 79 

in space and time. When using multiple plant traits simultaneously as predictors for ecosystem 80 

photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf 81 

phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 82 

= 0.55). Overall, this study provides an objective approach to identify links between leaf level 83 

traits and canopy level processes, and highlights the relevance of the dynamic nature of 84 

ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and 85 

space is shown to be highly relevant to better understand the importance of intra- and 86 

interspecific trait variation on ecosystem functioning. 87 

Keywords: ecosystem functional property, plant traits, TRY database, Eddy covariance, 88 

FLUXNET, spatio-temporal variability, interannual variability, photosynthetic capacity 89 

INTRODUCTION 90 

Accurate predictions of land-atmosphere feedbacks under climate change require an in-depth 91 

understanding of how climatic and other environmental controls on ecosystem functioning 92 

are mediated by vegetation characteristics, diversity, and structure (Bonan 2008). Eddy 93 
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covariance (EC) measurements of carbon dioxide (CO2), water, and energy fluxes are widely 94 

employed to monitor ecosystem processes and functions (Baldocchi et al., 2001). The 95 

increase number of EC flux sites contributing to the FLUXNET network allows for 96 

monitoring ecosystem processes and responses to environmental conditions for different 97 

ecosystems and time scales (Baldocchi 2008). In many applications, both in terrestrial 98 

biosphere models and in experimental analyses, the characteristics and structure of the 99 

vegetation are given by plant functional types (PFTs), which represent a grouping of 100 

functionally similar plant types (Lavorel et al., 1997). However, plant traits and model 101 

parameters derived from eddy covariance (EC) data can be highly variable within PFTs and 102 

species (Kattge et al., 2011, Alton 2011, Groenendijk et al., 2011, Reichstein et al., 2014). 103 

Vegetation characteristics and the variation therein are assumed to be determined by the 104 

abundance and traits of the respective plant species (Garnier et al., 2004, Lavorel & Garnier 105 

2002). Therefore, both modeling (Van Bodegom et al., 2012, Verheijen et al., 2015, Pappas 106 

et al., 2016) and observational efforts (Meng et al., 2015) increasingly aim to account for the 107 

variation of traits within and between PFTs, in order to better understand the relationship 108 

between vegetation characteristics and ecosystem functioning. Most efforts so far have 109 

focused on specific regions (e.g. Ollinger et al., 2008), and have not systematically analyzed 110 

the importance of spatio-temporal variation in traits and ecosystem function variables for 111 

their relationship. Plant traits contribute to different ecosystem processes where our 112 

knowledge is often limited. Furthermore, efforts have mostly focused on leaf nitrogen as a 113 

functional trait (in relation to ecosystem productivity, e.g. Kattge et al., 2009), whereas other 114 

plant traits could also be suitable candidates. Foliar phosphorus for example, improves the 115 
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model prediction of carbon fluxes as reported by Mercado et al., (2011), Goll et al., (2012) 116 

and Yang et al., (2014). 117 

The short-term (half-hourly to daily) variability of carbon fluxes measured with the EC 118 

technique is controlled by meteorological, environmental conditions (Richardson et al., 119 

2007) and, plant rhythms (de Dios et al., 2012). In contrast, biotic responses (e.g. temporal 120 

variability in plant abundance and traits) seem to be more important than environmental 121 

variation for long-term (e.g. annual and more) variation of fluxes (Richardson et al., 2007, 122 

Stoy et al., 2009). Evaluating the relationship between plant traits and fluxes is not straight 123 

forward because the former is usually measured only a couple of times per year (mostly 124 

during the growing season), whereas the latter is measured at half hourly time scale. It is 125 

possible to derive so called Ecosystem Functional Properties (EFP) from EC measurements, 126 

a concept recently introduced to characterize the long-term patterns underlying carbon, water 127 

and energy fluxes (Musavi et al., 2015, Reichstein et al., 2014). 128 

The EFPs are ecosystem properties related to physical and ecohydrological parameters 129 

relevant for land surface–atmosphere interactions (Reichstein et al., 2014), and are assumed 130 

to be affected by vegetation characteristics. Analogous to leaf level ecophysiological 131 

characteristics, like carboxylation capacity (Vcmax), EFPs are less variable in time than the 132 

fluxes themselves, which makes them a suitable quantity to be linked to plant functional 133 

traits (Musavi et al., 2015, Reichstein et al., 2014). Therefore, EFPs can be used to 134 

characterize long-term variation in key process characteristics, like ecosystem photosynthetic 135 

capacity and respiration rates under standardized environmental conditions, or they can 136 

represent the sensitivity of processes to temperature and light availability (for a more detailed 137 

collection; see Table 1, Musavi et al., 2015). Deriving EFP estimates from EC fluxes is not 138 
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trivial, because they should represent intrinsic ecophysiological properties of the ecosystem; 139 

effects of short-term meteorological conditions on functional responses should be factored 140 

out. 141 

Another constraint for systematically testing the links between plant traits and EFPs is that so 142 

far, measurements of plant functional traits have not yet been carried out systematically at 143 

FLUXNET sites. Consequently, the number of studies linking plant traits and EFPs using a 144 

wide range of ecosystems are few (e.g. Kergoat et al., 2008). Although plant trait data from 145 

FLUXNET sites are currently limited, the global database of plant traits - TRY (Kattge et al., 146 

2011) - facilitates the identification of many different traits for most of the plant species 147 

present at FLUXNET sites, which could potentially help testing such relationships. However, 148 

the use of trait values derived from such broad-scale databases may suffer from inaccuracies, 149 

when trait values for a particular site deviate from those reported in databases, which may 150 

hamper deducing the patterns of plant traits influences on EFPs. Hence, it is important to test 151 

the potentials and limitations of using plant functional traits derived from a global database 152 

(e.g. TRY) versus in-situ measurements obtained from the sites to infer the impact of plant 153 

traits on ecosystem processes derived from EC flux data. We still do not know how temporal 154 

and spatial variations in both EFPs and plant functional traits affect their link. Likewise the 155 

uncertainties of the relationship between EFPs to plant functional traits related to the 156 

temporal dynamics of both ecosystem functioning and traits have not been evaluated before. 157 

This is the first time to our knowledge that the relationship between an EFP (here ecosystem 158 

photosynthetic capacity) derived from EC CO2 fluxes and plant traits and the associated 159 

uncertainties have been systematically investigated for spatio-temporal variation and the 160 
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relevance of synchronized observations. Using ecosystem photosynthetic capacity as an 161 

example for an EFP derived from selected FLUXNET sites, the goals of this study were: 162 

1) Providing an objective approach to characterize ecosystem photosynthetic capacity from 163 

different estimates of gross primary productivity (GP) derived from EC measurements. 164 

2) Assessing how relaxing the time-space synchronization of ecosystem photosynthetic 165 

capacity estimates and plant functional trait measurements introduces uncertainty to the 166 

relationships between ecosystem photosynthetic capacity and relevant plant traits (with a 167 

particular focus on leaf nitrogen content per leaf mass). 168 

3) Identifying (a set of) plant traits that control the spatial variability of ecosystem 169 

photosynthetic capacity. 170 

MATERIAL & METHODS 171 

The overall methodological approach consisted of comparing different ways to estimate 172 

ecosystem photosynthetic capacity at each FLUXNET site. Ecosystem photosynthetic 173 

capacity is an EFP related to the photosynthetic processes at ecosystem scale. It is 174 

computable from estimates of GPP from EC, incoming shortwave radiation and the fraction 175 

of absorbed photosynthetically active radiation (FAPAR) retrieved from remote sensing. 176 

Given the attempt to characterize properties related to long-term variation of ecosystem 177 

function that are not affected by short –term meteorological variability, the ecosystem 178 

photosynthetic capacity estimates with the least inter annual variation (IAV) were assumed as 179 

the most appropriate to characterize the EFP. The most appropriate estimates of ecosystem 180 

photosynthetic capacity were then correlated to leaf nitrogen content per leaf mass (N) 181 

measured in-situ or derived from the TRY database to identify the relevance of time and 182 
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space synchronizing measurements of EC data and plant traits. Finally, ecosystem 183 

photosynthetic capacity was correlated to a suite of other photosynthesis-related plant traits 184 

to identify those that control its spatial (i.e. across site) variability. 185 

Eddy covariance flux measurements 186 

The analysis used data from the FLUXNET La Thuile database (Baldocchi 2008), referred 187 

hereafter as ‘La Thuile’. Very dry sites and forest site-years with disturbances (i.e. forest 188 

thinning, harvesting and planting, etc.) were removed opting for optimal conditions to avoid 189 

confounding factors. For the remaining dataset, 20 sites responded to a request for providing 190 

leaf traits sampled in 2011/2012 (for some sites trait measurements from the years before was 191 

used) and the flux data from the year of sampling. Depending on the site, different years of 192 

flux data were available in the LaThuile database in addition to the fluxes from the sampling 193 

year 2011/2012. 194 

To characterize ecosystem photosynthetic capacity, we used half-hourly values of GPP 195 

(µmol CO2 m
-2 s-1) and the corresponding photosynthetically active radiation (PAR, µmol m-

196 

2 s-1). The GPP values were computed using the commonly used algorithm for flux 197 

partitioning, which is based on the extrapolation of nighttime net ecosystem exchange 198 

measurements, using an ecosystem respiration model based on air temperature (Reichstein et 199 

al., 2005). Since PAR was not always available at the selected sites, we derived PAR by 200 

multiplying global incoming shortwave radiation (Rg, W m-2) by 2.11 (Britton & Dodd 201 

1976).  202 

Only GPP data derived from measured net ecosystem exchange were used for the analysis 203 

and gap-filled values were omitted. In addition, only day-time GPP data were used (Rg > 10 204 

Page 25 of 79 Ecology and Evolution



For Review
 O

nly

9 

 

Wm-2). For each site-year we estimated the number of days with more than 80% gaps in half-205 

hourly net ecosystem exchange measurements during the period from April to September. 206 

Site-years with more than 25% of such days were excluded. 207 

MODIS TIP- FAPAR and Leaf Area Index (LAI) - vegetation quantity/structure 208 

For the selected sites, estimates of FAPAR and LAI (see Pinty et al., 2011a,b) derived at 1 209 

km spatial resolution by the JRC-TIP (Pinty et al., 2007) from the MODIS broadband visible 210 

and near‐infrared surface albedo products (Schaaf 2002) were used to quantify the phenology 211 

of vegetation and changes in the structure of the ecosystem (Musavi et al., 2015, Fig. 1). The 212 

FAPAR product covers a sequence of 16 days periods with 1 km spatial resolution. We used 213 

the FAPAR time series of the pixels where the towers of FLUXNET sites were located. To 214 

fill gaps in FAPAR and LAI, we performed a distance correlation between the time series of 215 

all pixels around the central pixel for each flux site (Szekely et al., 2007). We subsequently 216 

chose pixels with a correlation of r > 0.75 with the central pixel. Afterwards, we used the 217 

data of those pixels to fill the gaps in the central pixel, prioritizing the pixels with highest 218 

correlation. In case where gaps remained after this procedure, we used a spatiotemporal gap-219 

filling approach for the remaining gaps (v. Buttlar et al., 2014). To derive daily time-series of 220 

FAPAR a smoothing spline approach was used to derive daily time-series of FAPAR (see 221 

also Migliavacca et al., 2011, Filippa et al., 2016). FAPAR was then used to compute half-222 

hourly APAR (absorbed photosynthetic active radiation) values (µmol m-2 s-1). Annual 223 

maximum LAI was derived by using the 90th percentile of the satellite retrieved estimates of 224 

LAI from JRC-TIP of the same year of sampling (Pinty et al., 2011). 225 

Plant functional trait collection - vegetation characteristics 226 
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Plant traits known to be relevant for photosynthesis at ecosystem scale, specifically leaf 227 

nutrient contents and stoichiometry of the nutrients were determined (Sardans & Penuelas 228 

2012): leaf nitrogen content per dry mass (Nmass or per 100gram leaf dry mass- N%), leaf 229 

nitrogen content per leaf area (Narea, g m-2), leaf phosphorus content per leaf dry mass (Pmass, 230 

mg g-1) and per leaf area (Parea, g m-2), leaf carbon content per leaf dry mass (C, mg g-1), leaf 231 

C/N ratio (C/N, g/g), leaf stable isotope concentration (δ13C) and specific leaf area, (SLA, 232 

mm mg-1).  233 

In-situ leaf samples from the selected sites were collected in the period 2011-2012 (except 234 

for two sites in 2003 and in 2004). The leaf sampling protocol was based on “Protocols for 235 

Vegetation Sampling and Data Submission” of the terrestrial carbon observations panel of 236 

the global terrestrial observing system (Law et al., 2008). Samples were collected from the 237 

dominant species present in the footprint of the flux-towers (defined by the site’s principal 238 

investigator). Depending on accessibility, multiple individuals per species were sampled. 239 

Sampling was done mostly at peak growing season on fully developed and non-damaged 240 

leaves and, from different levels of the canopy (top, middle and bottom, representing fully 241 

sunlit and shaded leaves). For forest sites, the understory vegetation was not sampled.  242 

After grinding the dried leaves, total carbon and nitrogen concentrations were determined by 243 

dry combustion with an elemental analyzer (Perkin Elmer 2400 Series II). Phosphorus 244 

concentrations were determined by digesting ground leaf material in 37% HCl: 65% HNO3. 245 

Phosphorus was subsequently measured colorimetrically at 880 nm after a reaction with 246 

molybdenum blue. Leaf carbon stable isotope values (δ13C) were determined by an elemental 247 

analyzer (NC2500, ThemoQuest Italia, Rodana, Italy) coupled on-line to a stable isotope 248 
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ratio mass spectrometer (Deltaplus, ThermoFinnigan, Bremen, Germany). Leaf area was 249 

calculated with the ImageJ freeware (http://rsb.info.nih.gov/ij/). 250 

Species abundance information was collected for each site, or if not available (one tropical 251 

forest site), all species were considered equally abundant. Abundance information for each 252 

species was used to calculate the community weighted means (CWM, Garnier et al., 2004) of 253 

the different plant traits considered in the analysis: foliar N, P, and C concentration of leaves, 254 

specific leaf area (SLA), and leaf carbon stable isotope values (δ13C). Plant trait data were 255 

also extracted from the TRY global database (Kattge et al., 2011). Species mean values were 256 

calculated from the observed plant trait values included in TRY, which were subsequently 257 

used to compute CWM trait values at each site. TRY data used in this study based on the 258 

following references:  Atkin et al., 1997, Bahn et al., 1999, Campbell et al., 2007, Cavender-259 

Bares et al., 2006, Coomes et al., 2008, Cornelissen 1996, Cornelissen et al., 2003a, 260 

Cornelissen et al., 1996, Cornelissen et al., 2004, Cornwell et al., 2008, Craine et al., 2009, 261 

Craine et al., 2005, Diaz et al., 2004, Freschet et al., 2010, Fyllas et al., 2009, Garnier et al., 262 

2007, Han et al., 2005, Hickler 1999, Kattge et al., 2011, Kattge et al., 2009, Kazakou et al., 263 

2006, Kerkhoff et al., 2006, Kleyer et al., 2008, Laughlin et al., 2010, Louault et al., 2005, 264 

Loveys et al., 2003, Medlyn et al., 1999, Messier et al., 2010, Meziane & Shipley 1999, 265 

Niinemets 2001, Ogaya & Penuelas 2003, Onoda et al., 2011, Ordonez et al., 2010, Poorter 266 

et al., 2009, Poschlod et al., 2003, Quested et al., 2003, Reich et al., 2009, Reich et al., 2008, 267 

Sack et al., 2003, Sack et al., 2006, Shipley 1995, Shipley 2002, Shipley & Vu 2002, Vile 268 

2005, White et al., 2000, Willis et al., 2010, Wright et al., 2007, Wright et al., 2004, Wright 269 

et al., 2010. 270 

Estimates of ecosystem photosynthetic capacity 271 
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To estimate the ecosystem photosynthetic capacity, we used ecosystem level light response 272 

curves, using half-hourly GPP estimates and a variety of radiation data. The resulting six 273 

different formulations of ecosystem photosynthetic capacity estimates are reported in Table 274 

1, and described in the following. 275 

We fitted non-rectangular hyperbolic light response curves (Gilmanov et al., 2003): 276 

 277 

��� = �
��

�	
 + �
�� − ��	
 +	�
���� − 4	�
���
�   EQ.1  278 

  279 

where α is the initial slope of the light response curve, θ is the curvature parameter (ranging 280 

from 0 to 1), Amax is the plateau of the light response curve, GPP is the half-hourly GPP 281 

values, Q is the incoming radiation used to drive the model. Specifically two different 282 

estimates of radiation were used (PAR, and APAR): in the estimation of the EFPs, APAR 283 

was used to account for seasonal and across-site variations in canopy structure (e.g. LAI) as 284 

it stand for the amount of light that is absorbed by the leaves of the ecosystem.  285 

The ecosystem photosynthetic capacity values were estimated by using a 5-days moving 286 

window. The parameters of the light response curves were estimated and attributed to the day 287 

at the center of the window (Fig. 1a). The parameters were estimated by minimizing the 288 

model-observation residual sum of square with the Quasi-Newton method that allows box 289 

constraints (Byrd et al., 1995). To this purpose we used the optim function implemented in R 290 

(http://CRAN.R-project.org/). For comparison a Michaelis-Menten based light response 291 
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curve (Hollinger et al., 2004) was used. Results were comparable with the non-rectangular 292 

hyperbolic light response curve (data not shown). 293 

Each light response curve fitting was used to derive the Amax parameter, the value of GPP at 294 

light saturation and the integral of the light response curve at light saturation (Falge et al., 295 

2001). For light saturation we defined a threshold of Rg of 1000 Wm2 (corresponding to PAR 296 

of 2110 µmol m-2 s-1) (see also Jacobs et al., 2007). This resulted in 6 different estimates 297 

describing ecosystem photosynthetic capacity: 1) Amax: parameter of the Eq. 1; 2) Amax.structure: 298 

parameter of Eq. 1 but with APAR as driving radiation to account for canopy structure; 3) 299 

GPPsat : GPP at light saturation using PAR as driving radiation 4) GPPsat.structure : as GPPsat but 300 

with APAR as radiance variable; 5) GPPcum : integral of the fitted light response until light 301 

saturation and 6) GPPcum.structure: as GPPsat but using APAR as radiation until light saturation 302 

(Fig. 1a, Table 1). 303 

A time series of daily values of Amax, Amax.structure, GPPsat, GPPsat.structure, GPPcum, and 304 

GPPcum.structure was then derived for each year. In Fig. 1b GPPsat is shown as an example. 305 

Daily parameters were retained for further analysis only if the R2 of the fit of light response 306 

curve was higher than 0.6. In this way we first retain parameters estimated when the 307 

performance of the fitting is good, and second we retain data only in the active growing 308 

season as the R2 of the model fit of the model was higher than 0.6 only within the growing 309 

season (Fig. S1).  310 

To extract the corresponding annual ecosystem photosynthetic capacity for each site-year, 311 

maximum and different percentiles (90th to 60th) of the time series of the estimated 312 

parameters were computed. Finally, the coefficient of variation (CV, Everitt 1998) of the 313 
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annual ecosystem photosynthetic capacity estimates was computed for each site. For 314 

example, at each site we computed the annual value for GPPsat (i.e. 90th percentile of GPPsat 315 

daily time series). The CV was subsequently computed as the standard deviation of annual 316 

GPPsat of all years available, divided by the mean annual GPPsat for all years available at the 317 

respective site (CV GPPsat). The CV was used as a measure of the interannual variability 318 

(IAV) of the ecosystem photosynthetic capacity estimates. Low IAV (i.e. the lowest CV) was 319 

used as criteria to identify the most appropriate estimates to characterize the ecosystem 320 

photosynthetic capacity at ach site. This was repeated for both ecosystem photosynthetic 321 

capacity estimates with and without the effect of canopy structure included (i.e. using PAR 322 

and APAR, respectively. This comparison was done using sites with at least five years of 323 

data. The average of annual ecosystem photosynthetic capacity of the selected estimates was 324 

used to relate to leaf functional traits.  325 

Relationship between ecosystem photosynthetic capacity and leaf nitrogen concentration 326 

 This study evaluates the relevance of synchronizing measurements of plant functional traits 327 

and EFPs in space and time for joint analyses. We analyzed the relationship between the best 328 

estimates for ecosystem photosynthetic capacity selected as described above, and CWM of 329 

plant traits e.g. N%. N% is chosen here, since the relationship between N% and 330 

photosynthetic processes is well established (e.g. Field & Mooney 1986, Reich et al 1997) at 331 

the leaf scale and to a lesser extent at ecosystem scale (e.g. Kergoat et al., 2008, Ollinger et 332 

al., 2008). The relationship with other traits is included in the supplementary material (Fig. 333 

S2). Three different combinations of synchronizing ecosystem photosynthetic capacity and 334 

N% were tested: 335 
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1) Ecosystem photosynthetic capacity derived from the La Thuile database and species CWM 336 

N% derived from TRY (no synchronization in space and time). 2) Ecosystem photosynthetic 337 

capacity derived from the La Thuile database and the N% sampled at the FLUXNET sites 338 

(in-situ, synchronization in space). 3) Ecosystem photosynthetic capacity derived for the 339 

same year of trait sampling and N% in-situ (synchronization in space and time). 340 

For each combination of ecosystem photosynthetic capacity and N%, the slope and R2 of the 341 

linear regression were determined. Distance correlation was computed as well, since it 342 

accounts for non-linear relationships (Szekely et al., 2007). In order to evaluate the predictive 343 

capacity of the selected model a leave-one-out cross-validation was performed. Modeling 344 

efficiency (EF; Loague & Green 1991) and relative root mean square error (RRMSE) were 345 

computed to test the performances of the relationships. An analysis of covariance 346 

(ANCOVA) was conducted to statistically test the differences of regression slopes in the 347 

three relationships. In addition, to assess the significance of canopy structure in the 348 

relationship of plant traits and ecosystem photosynthetic capacity, we evaluated the 349 

information that LAI, representing the canopy structure, provides to the relation of N% and 350 

photosynthetic capacity estimated using GPP and PAR. 351 

Identifying plant functional traits controlling ecosystem photosynthetic capacity 352 

Because the functional relationship between plant traits, their interactions and photosynthetic 353 

capacity is not yet completely defined (Sardans & Penuelas 2012), a purely data driven 354 

approach was used (Golub et al., 2010). To identify the main explanatory variables (plant 355 

functional traits and LAI) of ecosystem photosynthetic capacity we used a stepwise multiple 356 

regression for variable selection based on the Akaike’s Information criterion (AIC; 357 
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Yamashita et al., 2007). Plant traits used in this context include N%, Narea, Pmass and Parea, C, 358 

δ13C and SLA. We allowed the variables (traits and LAI) to be raised to the half and second 359 

power and also included the logarithm and ratios of all predictors to account for non-linear 360 

relationships and interactions as well. 361 

RESULTS 362 

Identifying robust estimates to characterize ecosystem photosynthetic capacity 363 

Among the different percentiles that were used for the extraction of annual ecosystem 364 

photosynthetic capacity estimates, the 90th percentile is the one that minimizes the CV (i.e. 365 

the IAV) of most estimators (Fig. 2). The maximum values show the highest IAVs, and 366 

therefore are not considered appropriate estimates of ecosystem photosynthetic capacity. The 367 

use of the 60th percentile for the extractions shows slightly higher IAV than the 90th 368 

percentile. Other percentiles such as 85, 80, 75, and 70 are also tested and have similar 369 

results to the 60 percentile (data not shown). However, considering that we are interested in 370 

the annual maximum photosynthetic rates the 90th percentile of the different parameters was 371 

selected for further analyses. 372 

Among the different estimators for ecosystem photosynthetic capacity (Table 1), Amax and 373 

Amax.structure have the highest IAV regardless of how they are extracted annually. GPPcum and 374 

GPPsat have the lowest IAV, even though a detailed analysis revealed a substantial IAV for 375 

both estimators at some La Thuile sites (Fig. 3). While GPPcum is related to the whole 376 

growing season, GPPsat is related mostly to the peak of growing season. However, GPPcum 377 

and GPPsat are strongly correlated (Table S1). GPPcum.structure and GPPsat.structure, accounting for 378 

canopy structure, show slightly higher IAV than GPPcum and GPPsat. Since we aim at 379 
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developing a method to derive maximum ecosystem photosynthetic capacity robust to 380 

meteorological variability, we assess the impact of excluding from the analysis site-years 381 

with documented extreme events, such as the heat wave of 2003 in Europe (Fig. S3). 382 

Removing the year 2003 from the European sites-years does not change the results (Fig. S4). 383 

In addition, the estimated parameters e.g. GPPsat are not strongly linked to climate variables 384 

(Fig. S8). 385 

We conclude that the 90th percentile of GPPcum or GPPsat parameters of non-rectangular 386 

hyperbolic light response curves (either with or without structural information included) is an 387 

appropriate approach to characterize ecosystem photosynthetic capacity.  388 

Relationship between ecosystem photosynthetic capacity and plant functional traits 389 

Using a linear relationship, the CWM N% based on data from the TRY database explains 390 

27% of the variance of site averaged GPPsat (20% of GPPsat.structure) (Fig. 4a, Table 2). CWM 391 

N% derived from TRY and in-situ were strongly correlated (Fig. S5), and the R2 of the 392 

relationship between N% and GPPsat, and GPPsat.structure improves from 0.27 to 0.39 and from 393 

0.20 to 0.32, respectively when in-situ N% was used (Fig. 4b, Table 2). When additionally 394 

site averaged estimates of GPPsat and GPPsat.structure were replaced by GPPsat and GPPsat.structure 395 

from the years of in-situ sampling R2 increases to 0.50 and 0.37, respectively (Fig. 4c, Table 396 

2). The fit is even better when a non-linear fit is used for Fig. 4a and Fig. 4b (distance 397 

correlation increases from 0.56 to 0.73 for GPPsat and from 0.47 to 0.63 for GPPsat.structure, See 398 

also Fig. S6). An ANCOVA test reveals that the relationship between ecosystem 399 

photosynthetic capacity and N% is significantly different between the levels of 400 

synchronization when GPPsat (significantly different in slope and intercept, p < 0.01) or 401 
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GPPsat.structure (only significantly different intercept, p < 0.05) is used to characterize 402 

ecosystem photosynthetic capacity. Similar improvements of the relationship of CWM traits 403 

to GPPsat and GPPsat.structure were realized using other plant traits and synchronizing the plant 404 

traits with the ecosystem photosynthetic capacity estimates in time and space (Fig. S2). We 405 

also tested whether the improvement of this relationship was due to random. To do this we 406 

randomly resampled the annual photosynthetic capacity (specifically GPPsat and 407 

GPPsat,structure) to test if the use of corresponding years statistically improves the relationship 408 

or not. The results confirm that the best fit is obtained when the N% and the photosynthetic 409 

capacity estimate match in time and space (Table S2). 410 

Since species abundance information at the FLUXNET sites can be a relevant source of 411 

uncertainty we also calculated site-level species-averaged N% without accounting for 412 

differences in abundance. The results of the R2 decreases but only by about 0.05 (Fig. S7). 413 

Part of the unexplained variance may be due to the fact that we use leaf level N%, while not 414 

accounting for differences in LAI. Indeed, although N% and LAI are highly correlated, the 415 

combination of N% and LAI leads to a better explanation of the variability of GPPsat, 416 

(adjusted R2 = 0.56, R2 = 0.64) than N% (R2 = 0.50) or LAI (R2 = 0.28) alone (Table 3 - for 417 

19 sites with available LAI).  418 

Essential plant traits for ecosystem photosynthesis capacity 419 

The variable selection analysis conducted with the stepwise regression using time-space 420 

synchronized data of ecosystem photosynthetic capacity estimates and in-situ measured plant 421 

traits and LAI shows that the variability of GPPsat and GPPsat.structure between sites is best 422 

explained by leaf C/N ratio and Parea
2 (considering AIC as the selection criteria). However, 423 
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only C/N is a significant predictor for both of the ecosystem photosynthetic capacity 424 

estimates. The selected model explains 61% and 54% of the variance of GPPsat and 425 

GPPsat.structure, respectively (Table 4). 426 

DISCUSSION 427 

Determining robust estimates of an EFP 428 

We postulated that the IAV of ecosystem photosynthetic capacity at optimal growth 429 

conditions (e.g. at optimal light, temperature and water availability) derived with the 430 

proposed methodology and in the absence of disturbances should be low, and we 431 

demonstrated that it is not strongly related to climate drivers (Fig. S8). Additionally, 432 

assuming that the variation of plant traits across years is relatively low, this would allow for 433 

coupling ecosystem photosynthetic capacity estimates at any year, or averaged over several 434 

years, to species traits collected at the respective site (typically sampled during peak growing 435 

season). 436 

Based on these criteria, the use of the light response curve was suitable as it accounts for 437 

variation in radiation, which is one of the important parameters explaining variation in GPP 438 

(van Dijk et al., 2005). The estimation of the parameters using a moving window approach 439 

was also suitable because it accounts for variation in meteorological variables such as 440 

temperature and vapor pressure deficit. Among the parameters derived from the light 441 

response curve, Amax (or Amax.structure) had the largest IAV and was therefore the least suitable 442 

estimator for ecosystem photosynthetic capacity. This may have several reasons: The 443 

response of GPP to PAR/APAR does not exhibit a clear saturation and still tends to increase 444 

at high PAR/APAR and reaches Amax outside the range of PAR/APAR measurements. 445 
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Therefore, small changes in the slope at high PAR/APAR may cause large deviations in Amax 446 

(Gilmanov et al., 2003). In periods of the year when the PAR/APAR is not high, or the 447 

numbers of data points at high PAR is limited, the Amax parameter is poorly constrained. In 448 

this case the fit can be affected by random flux uncertainty that scales with the magnitude of 449 

fluxes and is not easily constrainable (Richardson et al., 2012). GPPsat or GPPcum showed 450 

much smaller IAV and therefore we suggest the use GPPsat or GPPcum derived with PAR or 451 

APAR (Falge et al., 2001, Lasslop et al., 2010, Ruimy et al., 1995) as more robust estimators 452 

of ecosystem photosynthetic capacity than Amax. Our results also demonstrate that the use of 453 

higher percentiles (i.e. 90th) rather than the maximum for EFP extraction should be preferred 454 

as it was more robust to outliers. 455 

Linking plant functional traits and EFP estimates 456 

EFPs are whole-ecosystem properties and thus depend on both ecosystem structure and 457 

function (Reichstein et al., 2014). Since GPP depends on both the efficiency with which the 458 

absorbed energy is converted to chemical energy at leaf level (Monteith 1972) and the 459 

canopy structure, GPPsat variability ultimately depends on the variability of FAPAR 460 

(Reichstein et al., 2014). In this study we accounted for this aspect by using APAR in Eq 1 461 

for the estimation of GPPsat-structure. APAR accounts for the seasonal and canopy structural 462 

(e.g. LAI) variability of the different ecosystems (Wang & Jarvis 1990). In extreme 463 

combinations, it is possible for an ecosystem to maintain a high LAI but low N% and vice 464 

versa (McMurtrie et al., 2008, Fig. S9). However, due to the smoothing and reconstruction of 465 

time-series of daily FAPAR from 16-days data (e.g. Kandasamy et al., 2013), and the spatial 466 

mismatch between satellite pixel and the eddy-covariance footprint (Cescatti et al., 2012, 467 

Jung et al., 2008, Roman et al., 2009), the EFP estimates using APAR exhibited larger 468 
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uncertainties that more likely is reflected in the higher IAV compared to using PAR. The 469 

FAPAR product that we used for our estimates has a high temporal resolution (16 days) but 470 

its spatial resolution (1km) makes it uncertain; the footprints of FLUXNET sites are often 471 

smaller than a 1km grid-cell, and sites located in heterogeneous grid-cells have higher 472 

uncertainties in FAPAR as a consequence (Cescatti et al., 2012). Nevertheless, the 473 

relationships of the estimates of photosynthetic capacity to plant traits were consistent, 474 

whether PAR or APAR was used. Our results also indicate the importance of accounting for 475 

canopy structure (Baldocchi & Meyers 1998, Reich 2012). The LAI-N% interaction 476 

contributes to the explanatory power of the model for predicting GPPsat, as it shows how N% 477 

has an approximately linear relationship with GPPsat (i.e. the GPP at light saturation without 478 

accounting for canopy structure) while the impact of LAI saturates.  479 

A critical aspect when comparing leaf level attributes and EFPs is scaling these traits from 480 

leaf to canopy level. Based on the hypothesis that the dominant species are most adapted to 481 

their ambient environment (Vile et al., 2006), also known as “dominance hypothesis” (Grim 482 

1998), we used CWM estimates of traits from dominant species at the sites. Here we 483 

considered sites with different vegetation types and environments (e.g. climate), where 484 

differences between the locations and vegetation types are large enough to ignore 485 

intraspecific trait variability, this allows us to use averaged trait values from TRY database in 486 

this study and in likewise global scale analyses (see Albert et al., 2011). 487 

Robustness of ecosystem photosynthetic capacity –plant trait relationship to relaxed 488 

time-space synchrony of measurements  489 
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Here we show that the general pattern of the relationship between ecosystem photosynthetic 490 

capacity and plant traits (slopes of the linear regression, Fig. 4) is apparently independent 491 

using locally measured traits (in-situ) or species mean values from the TRY database. In 492 

addition, the relationships are independent of whether all data corresponded to the same year 493 

or the ecosystem photosynthetic capacity represented the multi-year averages of ecosystem 494 

photosynthetic capacity we used (most cases, Fig. S2). However, we observed a strong 495 

degradation of the explained variance when the synchronization in time and space was 496 

relaxed. The predictive power of plant functional traits for ecosystem photosynthetic capacity 497 

substantially improved when variation of species abundance, intraspecific variability of plant 498 

traits and interannual variability of ecosystem photosynthetic capacity was accounted for. 499 

In part, this variability may be due to community species composition dynamics and 500 

competitive interactions that are partly triggered by disturbances or extreme environmental 501 

conditions. The study sites were not chosen to be in their late successional stage, and in the 502 

course of e.g. ten years of flux measurements, species abundances can change and plant 503 

species can be replaced. Site history and aging of the ecosystems contributes to the 504 

variability of the plant traits (Becknell & Powers 2014) and EFPs (e.g. Kutsch et al., 2009, 505 

Urbanski et al., 2007). This includes also the effect of fertilization on few sites, which could 506 

be one of the reasons why the in-situ N% from the cropland and grasslands are very different 507 

from the mean N% from TRY. Plant traits also have a temporal variability, which can be due 508 

to plant development or changes in the environment (e.g. Mickelbart 2010). Plant traits are 509 

responsible for the plastic response of an ecosystem to environmental changes and thus 510 

influence the interannual variability of ecosystem photosynthesis (Grassi et al., 2005, Ma et 511 

al., 2010). Furthermore, it confirms that species signals of some traits, specifically leaf 512 
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nutrients, are not strong enough (high trait variability) (Kazakou et al., 2014) and this 513 

contribute to the uncertainty observed when linking EFPs and trait values derived from data 514 

bases. One way to account for intraspecific trait variation is to use trait observations from 515 

TRY that were reported from similar climatic conditions to the FLUXNET sites, or to predict 516 

intraspecific trait variation (Schrodt et al., 2015). These opportunities are promising for 517 

future work, but could not be used here due to data scarcity and insufficient prediction 518 

accuracy. It remains to be better understood how the intraspecific variation of plant traits in 519 

time contributes to the response of plant communities to hydrometeorological changes and 520 

thus how the interannual and long-term variability of ecosystem photosynthetic capacity is 521 

mediated by dynamics of the vegetation (Reichstein et al., 2014). A promising approach to 522 

monitor long-term variation of plant traits for different FLUXNET sites worldwide is novel 523 

remote sensing information (e.g. Asner & Martin 2015, Asner et al., 2015). But, the 524 

contribution of physiological vs. structural information in the remote sensing signals needs to 525 

be better understood (e.g. Homolova et al., 2013, Wong & Gamon 2015). The common 526 

protocols developed in initiatives like ICOS - integrated carbon observation system 527 

(https://www.icos-ri.eu/) and NEON - national ecological observatory network 528 

(http://www.neoninc.org/) might help to overcome such limitations. 529 

Identifying plant traits determining ecosystem photosynthetic capacity  530 

We considered leaf traits relevant for photosynthesis and used a data-driven exploratory 531 

approach with all combinations of the selected leaf traits, mining for possible functional 532 

relationship between photosynthetic capacity and foliar traits (Golub 2010). Our results are in 533 

line with other studies conducted at the leaf-scale showing that C, N and P stoichiometry 534 

have a complimentary role in explaining photosynthetic capacity (Sardans & Penuelas 2013, 535 
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Walker et al., 2014, Perez-Priego et al., 2015). While C has low variation during the growing 536 

season (e.g. Jayasekera & Schleser 1991, Ma et al., 2010, Kattge et al., 2011), N is the main 537 

factor driving the C:N ratio and influencing photosynthesis (see also Rong et al., 2015). The 538 

N% is related to the chlorophyll content (e.g Houborg et al., 2013) and to the amount of 539 

Ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes that ultimately controls the 540 

photosynthetic rates and carbon uptake (Kattge et al., 2009, Evans 1989). Several studies 541 

have also shown this link at the ecosystem level (Kergoat et al., 2008, Ollinger et al., 2008, 542 

Reich 2012). P is found in adenosine triphosphate molecules (ATP) and nucleotides of 543 

Nicotinamide adenine dinucleotide phosphate (NADP), which are involved in carbon fixation 544 

reactions. Several hypotheses connect the stoichiometry of leaves with optimum 545 

photosynthetic capacity and growth (e.g. growth rate hypothesis) (Elser et al., 2000; Sterner 546 

& Elser, 2002). In particular, the N/P ratio is related to photosynthetic capacity via the 547 

connection between the allocation of P into P-rich ribosomal RNA and of N to protein 548 

synthesis (Hessen et al., 2007). Since P is also used in carbon fixation as N, it influences the 549 

nitrogen-photosynthesis relationship by constraining the response of photosynthesis to N 550 

when P is low (Reich et al., 2009, Walker et al., 2014). However, more data are needed to 551 

build robust models that predict ecosystem photosynthetic capacity directly from plant 552 

functional traits and stoichiometry. Currently no consensus exists on which traits are most 553 

important to be measured at the sites in order to monitor the effect of plants on ecosystem 554 

functioning in response to their environment. Trait-ecosystem functioning studies with more 555 

data are needed to allow for robust conclusion on a suit of traits in this regard.  556 

In conclusion, to quantitatively evaluate the link between ecosystem photosynthetic capacity 557 

and plant traits to improve predictions of ecosystem carbon uptake, continuous observations 558 
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of species composition and plant traits at FLUXNET sites can be the key. We showed that 559 

currently the evaluation is limited by the scarcity of observations of both species composition 560 

and traits. We therefore suggest systematic sampling of plant traits, species abundance and 561 

auxiliary data for up-scaling traits at FLUXNET sites in parallel to flux measurements. In 562 

addition, remote sensing can be a solution in the future to acquire canopy level traits, 563 

circumventing up-scaling issues of in-situ measurements and may contribute to better 564 

detection of temporal and spatial variation of ecosystem level plant traits in synchrony with 565 

ecosystem photosynthetic capacity. 566 
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Figures & Tables 

Table 1 Definitions of ecosystem photosynthetic capacity estimated using light response curve. In the column ‘Radiation’ the 

independent variable used in Eq. 1 is reported. 

Ecosystem 

Photosynthetic 

Capacity 

Radiation Definition 

GPPsat PAR GPP at light saturation using PAR as driving radiation and 2110 µmol m-2 s-1 as saturating light 

GPPsat.structure APAR GPP at light saturation using APAR as driving radiation and 2000 µmol m-2 s-1 as saturating light 

Amax PAR Light saturated GPP - parameter of Eq. 1 with PAR as driving radiation 

Amax.sructure APAR Light saturated GPP - parameter of Eq. 1 but with APAR as driving radiation 

GPPcum PAR integral of the light curve GPP up to the saturation point 2110 µmol m-2 s-1 of PAR 

GPPcum.structure APAR integral of the light curve GPP up to the saturation point 2000 µmol m-2 s-1 of PAR 
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Figure 1 a. Conceptual figure of the different estimates of Ecosystem Functional Property (EFP) 

related to ecosystem photosynthetic capacity. Light response curves are fitted using GPP flux 

and PAR or APAR according to Table 1. b. Time series of GPPsat for one year. Higher values of 

GPPsat occur during the growing season (usually around mid-spring to end-summer). For this 
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study we use the 90th percentile as the maximum GPPsat of each year, which is indicated with the 

dashed line. For comparison the 60th percentile of GPPsat is indicated with the dotted line. 
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Figure 2 Comparison of mean and ranges of the different estimates of ecosystem photosynthetic 

capacity and different annual extractions. CV denotes the coefficient of variation (standard 

deviation/mean), which was calculated for every site. The results are based on sites with at least 

5 years of available estimates (AT-Neu, DE-Hai, FI-Hyy, FR-Hes, IL-Yat, IT-MBo, IT-Ren, IT-

SRo, NL-Loo, RU-Fyo). The lines across the box indicate the mean CV values and lower and 

upper boxes show the 25th and 75th percentiles. The lines on the ending of the boxes range from 

the maximum to minimum values.  CV can be used to quantify the interannual variability of the 

estimates (small range and low average denotes low interannual variability). For explanations of 

the ecosystem photosynthetic capacity estimates described in the legend see Table 1. 
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Figure 3 Boxplots of annual GPPsat values derived from the La Thuile database for each 

FLUXNET site. The line across the boxplot shows the mean GPPsat for each site and the lower 

and upper boxes show the 25th and 75th percentiles of GPPsat. The stars denote GPPsat values of 

the respective sites in the year of in-situ plant trait measurements (bold years).
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Figure 4 Relationship between a) GPPsat and GPPsat.structure extracted from La Thuile and N% from TRY,  b) GPPsat and GPPsat.structure 

from La Thuile and N% in-situ, c) GPPsat and GPPsat.structure derived from the same year of the trait sampling and N% in-situ. Y axes are 

ecosystem photosynthetic capacity as an example of an EFP and x axes are community weighted N%. The Macro accent on the EFP 

indicates that the GPPsat and GPPsat.structure are the multi-year averages for each site. The gray color indicates ecosystem photosynthetic 

capacity estimates using APAR and black color stands for estimates using PAR. Bold R2 and star symbols are for the relationships 

with ecosystem photosynthetic capacity estimates using PAR (GPPsat). Non-bold R2 and round points are for the relationship with 

ecosystem photosynthetic capacity estimates using APAR (GPPsat.structure). The colors dark blue, light blue, dark green, light green, 

orange and yellow represent evergreen needle leaf forest, evergreen broad leaf forest, deciduous broad leaf forest, grassland, closed 

shrub-land and cropland as the plant functional types of the sites, respectively. 
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Table 2 Statistics of the relationships shown in Fig. 4. Ecosystem photosynthetic capacity estimates with macron accent are averaged 

over several years at each site and thosewithout macron accent are from the year of leaf sampling. RRMSE and EF are estimated in a 

cross-validation with leave-one-out mode and represents, relative root mean square error and model efficiency, respectively. The 

number of FLUXNET sites that are used with GPPsat are 20, but 19 of the sites have GPPsat.structure available. 

Ecosystem 

photosynthetic 

capacity 

Model 
Distance-

Correlation 
R2 

adj. 

R2 
Intercept ± s.e. Slope ± s.e. p RRMSE EF df 

GPPsat N% 0.73 0.50 0.47 15.67 ± 3.51 7.25 ± 1.71 0.0005 26.2 0.31 1 + 18 

���������������� N% 0.67 0.39 0.36 16.89 ± 3.95 6.57 ± 1.93   0.003 29.09 0.18 1 + 18 

���������������� N% TRY 0.56 0.27 0.23 14.88 ± 5.74 8.55 ± 3.28 0.018 30.65 0.09 1 + 18 

                     

GPPsat.structure N% 0.63 0.37 0.34 20.45 ± 5 7.62 ± 2.39 0.005 30 0.10 1 + 17 

������. �������� ������������������������ N% 0.58 0.32 0.28 21.18 ±  4.87 6.59 ± 2.33 0.01 25.5 -0.15 1 + 17 

������. �������� ������������������������ N% TRY 0.47 0.20 0.15 20.08 ± 7.01 8.07 ± 3.94 0.06 26.1 -0.20 1 + 17 
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Table 3 Relationships between N%, LAI, and GPPsat tested. The GPPsat is derived from the year at which the sampling of leaf N% was 

done. N% here is measured from in-situ samples. LAI is the 90th percentile of the bi-monthly LAI values retrieved from remote 

sensing and corresponds to the LAI of the sampling year as well (available for 19 sites). 

Variable Model 
Distance-

Correlation 
R2 

adj. 

R2 
Intercept ± s.e. Slope ± s.e. p df AIC 

LAI N% 0.70 0.48 0.45 0.34 ± 0.38 0.71 ±  0.18 0.001 1 + 17 44 

GPPsat LAI 0.57 0.28 0.24 20.10 ± 4.03 5.43 ± 2.09 0.01 1 + 17 138 

GPPsat N% 0.73 0.50 0.47 15.25 ± 3.79 7.41 ± 1.81 0.0008 1 + 17 132 

GPPsat LAI + N% 0.71 0.50 0.44 14.96 ± 3.98 N%  6.78 ± 2.58 

LAI 0.87 ± 2.51 

0.004 2 + 16 134 

GPPsat N% + LAI + 

LAI:N% 

- 0.64 0.56 0.74 ±  6.94 N%  15.22 ± 4.22 

LAI 10.33 ± 4.55 

N%:LAI -4.71 ± 

1.98 

0.001 3 + 15 129 
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Table 4 Results of the variable selection analyses conducted with a stepwise regression. The selected explanatory variables for GPPsat 

are C/N + Parea
2. The same variables are tested for GPPsat.structure as well. Subsets of sites are used because only 18 sites had these two 

traits available and only 17 have the two traits and LAI measurements. 

Variable Model 
Distance-

Correlation 
R2 adj. R2 Intercept ± s.e. Slope ± s.e. p df AIC EF 

GPPsat C/N + Parea
2 0.67 0.61 0.55 41.62 ±  3.01 C/N -0.39 ±  0.08 

  Parea
2 23.94 ± 16.20 

0.0009 2 + 15 119 0.18 

GPPsat.structure C/N + Parea
2 0.65 0.54 0.48 49.02 ±  4.07 C/N -0.48 ±  0.12 

  Parea
2 38.89 ±  22.22 

0.004 2 + 14 123 -0.28 
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SUPPORTING MATERIAL 

Table S1 Summary of Pearson correlation coefficient between the different estimates of 

ecosystem photosynthetic capacity. 

 GPPsat GPPsat.structure Amax Amax.structure GPPcum GPPcum.structure 

GPPsat 1      

GPPsat.structure 0.93 1     

Amax 0.82 0.90 1    

Amax.structure 0.84 0.95 0.94 1   

GPPcum 0.97 0.85 0.71 0.73 1  

GPPcum.structure 0.95 0.95 0.86 0.86 0.90 1 

 

 

Table S2 In order to compare Fig. 4b with Fig. 4c in respect to random effects (whether the 

relationship in Fig. 4c is just by chance better that Fig. 4b), we performed a bootstrapping 

test. For the relationship in Fig. 4b prior to estimating the mean GPPsat (or GPPsat.structure) 

of the sites, we sampled randomly (with replacement) for each site the annual GPPsat (also 

GPPsat.structure) and then estimated the mean over the years. This was done 100 times and at 

each step the linear regression of the model was tested for R
2
 and p-value. In none of the 

cases the fit was better than the one in Fig. 4c when GPPsat was used (time and space 

matched data). Using GPPsat.structure only 1% of the random site-year combination had an R
2
 

higher than the one in Fg.4c (0.37) with a p-value < 0.05 and a positive slope. Below are the 

summary of the results from the 100 random fit of Fig. 4b. 

 R
2
 p.value EFP estimate 

Min. 0.2683 0.002288 

G
P

P
s
a

t  

1
st

 Qu. 0.2845 0.004134 

Median 0.3315 0.007891 

Mean 0.3309 0.009602 

3
rd

 Qu. 0.3745 0.015435 

Max. 0.4118 0.019314 

Min. 0.2799 0.002061 

G
P

P
s
a

t.s
tru

c
tu

re  

1
st

 Qu. 0.2967 0.007480 

Median 0.3345 0.009494 

Mean 0.3320 0.011045 

3
rd

 Qu. 0.3514 0.015927 

Max. 0.4369 0.019853 
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Figure S1 Time series of daily GPPsat. Data filtering using the R
2
 of the model fit shows that 

only GPPsat during growing season will be selected (colored in dark green). The related 

model fit R
2
 of the filtered data is shown in red stars. The example is made for two sites 

with two different plant functional types. ENF is ever green needle leaved forest and DBF is 

for deciduous broad leaved forest.  
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Figure S2 a) Relationship between GPPsat and GPPsat.structure extracted from La Thuile and 

the trait from TRY. b) GPPsat and GPPsat.structure from La Thuile and the trait from in-situ 

measurements. c) GPPsat and GPPsat.structure derived from the same year of the trait 

sampling and the trait from in-situ measurements. The Macro accent on the EFP indicates 

that the GPPsat and GPPsat.structure are the multi-year averages for each site. The traits are all 

community weighted averaged. The adjusted R
2 
of the relationship is shown in the figures 

in case there was a significant relationship (0.05>p-value). Bold R
2
 and star symbols are for 

the relationships with GPPsat as the EFP estimate. Non-bold R
2
 and round points are for 

the relationship with GPPsat.structure as the EFP estimate. The colors dark blue, light blue, 

dark green, light green, orange and yellow represent evergreen needle leaf forest, 

evergreen broad leaf forest, deciduous broad leaf forest, grassland, closed shrub-land and 

cropland as the plant functional types of the sites, respectively. 
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Figure S3 Boxplots of annual GPPsat values derived from the La Thuile database for each 

FLUXNET site. The red point denotes GPPsat values of the 2003 year were a heat wave 

happened in Europe. For some European sites that year 2003 is removed already due to 

prepossessing of data GPPsat estimates.  
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Figure S4 Relationship between a) GPPsat and GPPsat.structure extracted from La Thuile 

and N% from TRY,  b) GPPsat and GPPsat.structure from La Thuile and N% in-situ. The 

Macro accent on the EFP indicates that the GPPsat and GPPsat.structure are the multi-

year averages for each site. Here the 2003 year related to the heat wave was removed for 

European sites before using the averages. 
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Figure S5 Summary of the fit between the in-situ measured and database derived 

community weighted mean of the plant traits. X-axes are plant traits from TRY and Y-axes 

are in-situ plant traits. The numbers on the left upper corner are the Pearson correlation 

coefficients between the two sources of plant traits. 
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Figure S6 From left to right relationship between GPPsat and GPPsat.structure extracted from 

La Thuile and N% from TRY.  GPPsat and GPPsat.structure from La Thuile and N% in-situ. 

GPPsat and GPPsat.structure derived from the same year of the trait sampling and N% in-situ. 

The Macro accent on the EFP indicates that the GPPsat and GPPsat.structure are the multi-

year averages for each site. N% is the abundance weighted gram nitrogen per 100 gram 

leaf mass. The adjusted R
2 
of the relationship is shown in the figures. Bold R

2
 and star 

symbols are for the relationships with GPPsat as the EFP estimate. Non-bold R
2
 and round 

points are for the relationship with GPPsat.structure as the EFP estimate. The colors dark blue, 

light blue, dark green, light green, orange and yellow represent evergreen needle leaf 

forest, evergreen broad leaf forest, deciduous broad leaf forest, grassland, closed shrub-

land and cropland as the plant functional types of the sites, respectively.
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Figure S7 From left to right Relationship between GPPsat and GPPsat.structure extracted from 

La Thuile and N% from TRY.  GPPsat and GPPsat.structure from La Thuile and N% in-situ. 

GPPsat and GPPsat.structure derived from the same year of the trait sampling and N% in-situ. 

The Macro accent on the EFP indicates that the GPPsat and GPPsat.structure are the multi-

year averages for each site. N% is the average of species N% at each site. The adjusted R
2 

of the relationship is shown in the figures in case there was a significant relationship 

(0.05>p-value). Bold R
2
 and star symbols are for the relationships with GPPsat as the EFP 

estimate. Non-bold R
2
 and round points are for the relationship with GPPsat.structure as the 

EFP estimate. The colors dark blue, light blue, dark green, light green, orange and yellow 

represent evergreen needle leaf forest, evergreen broad leaf forest, deciduous broad leaf 

forest, grassland, closed shrub-land and cropland as the plant functional types of the sites, 

respectively.
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Figure S8 The extraction of GPPsat considers the optimal conditions and thereby less 

correlated to climate variables. The fact that GPPsat is the potential GPP at light saturation 

overcomes the direct effects of climate as well. The two figures below indicate that the 

difference between sites for GPPsat is not related to the mean precipitation and only slightly 

related to air temperature of the sites. Both climate variables were estimated during the 

growing season. In a and b the link between the annual average air temperature and 

cumulative precipitation is shown with annual GPPsat. In c and d the link between mean 

annual temperature (MAT) and mean annual precipitation (MAP) with the site averaged 

GPPsat is shown. 
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Figure S9 Relationship between N% (here total canopy nitrogen content divided by LAI) 

and photosynthetic capacity Simulations of GPP2000 were done using De Pury & 

Farquhar (1997) model, based on the combination of Farquhar photosynthesis model 

(Farquhar et al., 1980) with the two-leaf big-leaf presentation of the canopy radiative 

transfer. Simulations were done with a given leaf temperature, prescribed Ci (25 Pa), a 

diffuse fraction of 20% and a solar angle of 65° and turning off daytime mitochondrial 

respiration. Vcmax at 25°C in the model depends on leaf nitrogen content (N%) – forbs 

parameterisation from Wohlfahrt et al., (1999; Fig. 3a) were used. LAI simulations vary 

from 0.5-8 m2/m2 and N% of the uppermost leaves varying from 1.5-4.5%. 
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SUPPLEMENTARY DATA-TABLES 

 

InSitu_Traits 

Table provides the species sampled at the each site with the measured traits. Mean.trait is the 

averaged trait value, whereas Inv.No is the number of individuals that were sampled used to 

estimate the average trait value and the standard deviation of the trait values (SD.trait). DOY is 

the day of the year when the sampling was done. For more information please contact Martine 

Janet van de Weg (marjan@marjanvandeweg.com). 

 

CWMtraits_EFPs 

Community weighted traits and ecosystem photosynthetic capacity estimates for the 20 sites 

(used in the analyses of the link between plant functional traits and ecosystem photosynthetic 

capacity). CWM at the beginning of the column names means that the values are community 

weighted means of in-situ data and CWMT is for community weighted means of traits from TRY 

database. 

 

SpeciesComposition 

Species names and abundance of the FLUXNET sites. Only for BR-Sa1 we did not have access 

to the species abundance and therefore equal abundances for the species are considered. 
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