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Bât. M2, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France.
E-mail address: Antoine.Ayache@univ-lille.fr
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Abstract. We focus on a stochastic process {Y (t)}t∈[0,v] defined by a pathwise
Young integral of a general form. Thanks to the Haar basis, we connect the classi-
cal method of approximation of {Y (t)}t∈[0,v] through Euler scheme and Riemann-
Stieltjes sums with a new approach consisting in the use of an appropriate series
representation of {Y (t)}t∈[0,v]. This representation is obtained through a general
compactly supported orthonormal wavelet basis. An advantage offered by the new
approach with respect to the classical one is that a better almost sure rate of con-
vergence in Hölder norms can be derived, under a general Wiener chaos condition.
Also, this improved rate turns out to be optimal in some situations; typically, when
the integrand and integrator associated to {Y (t)}t∈[0,v] are independent fractional
Brownian motions with appropriate Hurst parameters.

1. Introduction and motivations

Throughout the article the integer v ≥ 1 is arbitrary and fixed, and the interval
[0, v] is often denoted by I. We focus on a real-valued stochastic process {Y (t)}t∈I
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of a general form: it is given by the pathwise Young integral

Y (t) :=

∫ t

0

σ(s) dX(s), for each t ∈ I. (1.1)

Such kind of process is closely connected to (stochastic) differential equations driven
by fractional Brownian motions and more generally by (random) Hölder functions
with correlated increments (see e.g. Baudoin and Coutin (2007); Decreusefond and

Üstünel (1999); Gubinelli et al. (2016, 2006); Lejay (2010); Lyons et al. (2007);
Nualart and Răşcanu (2002); Ruzmaikina (2000); Zähle (1998, 2001)). Therefore it
is useful to find approximation procedures for {Y (t)}t∈I paths which converge at
the fastest possible rate.

In this article, for convenience, the real-valued integrand σ and integrator X are
assumed to be defined on the whole real line and not only on the interval I := [0, v].
Also it is assumed that the paths of σ and X, on any compact interval K ⊂ R,
respectively belong to some Hölder spaces Cα(K) and Cβ(K), where α ∈ (0, 1)
and β ∈ (0, 1) do not depend on K and satisfy α + β > 1. Notice that this is a
classical condition (see e.g. Lyons et al. (2007)) which guarantees the existence of
the pathwise Young integral in (1.1). We recall that, for any θ ∈ [0, 1), the Hölder
space Cθ(K) is defined as the Banach space of the continuous functions h, from K
to R, such that

sup
(x1,x2)∈K2, x1<x2

{
|h(x1)− h(x2)|

|x1 − x2|θ

}
< +∞;

it is equipped with the norm

∥h∥Cθ(K) := ∥h∥K,∞ + sup
(x1,x2)∈K2, x1<x2

{
|h(x1)− h(x2)|

|x1 − x2|θ

}
, (1.2)

where

∥h∥K,∞ := sup
x∈K

|h(x)| (1.3)

denotes the uniform norm over K. It is clear that C0(K) is nothing else than the
whole space of the real-valued continuous functions on K; moreover ∥ · ∥C0(K) and
∥ · ∥K,∞ are two equivalent norms. We mention that sometimes we will say that “h
satisfies a Hölder condition of order θ on K”, or more simply that “h is θ-Hölder
continuous on K”, in order to indicate that h belongs to the Hölder space Cθ(K).

The classical Euler scheme corresponding to Riemann-Stieltjes sums associated
with dyadic intervals of fixed length 2−J , J ∈ N, provides a natural method for
approximating paths of the process {Y (t)}t∈I . More precisely, for every dyadic
number m/2J , with m ∈ {1, . . . , 2Jv}, one approximates

Y
(m
2J

)
=

∫ m

2J

0

σ(s) dX(s) =

m−1∑
l=0

∫ l+1

2J

l

2J

σ(s) dX(s)

by

YJ

(m
2J

)
:=

m−1∑
l=0

σ(s̃J,l)∆J,l(X), (1.4)

where the s̃J,l’s denote arbitrary fixed real numbers in the dyadic intervals [l/2J , (l+
1)/2J ], and the ∆J,l(X)’s are the first order increments of X associated with these
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intervals, namely

∆J,l(X) := X

(
l + 1

2J

)
−X

(
l

2J

)
. (1.5)

Then, using linear interpolation, one gets a random function, from I to R, t 7→
Y RS
J (t) which approximates the whole path t 7→ Y (t). More precisely, for every
t ∈ I, one sets

Y RS
J (t) := YJ

(
[2J t]

2J

)
+
(
2J t− [2J t]

)(
YJ

(
[2J t] + 1

2J

)
− YJ

(
[2J t]

2J

))
= YJ

(
[2J t]

2J

)
+
(
2J t− [2J t]

)
σ(s̃J,[2J t])∆J,[2J t](X), (1.6)

where [ · ] is the integer part function, and with the convention that

Y RS
J (0) := 0 and Y RS

J (v) := YJ(v).

The following crucial proposition allows to derive a control on the uniform norm
over I of the error term Y − Y RS

J .

Proposition 1.1 (Young – Loeve inequality). There exists a positive finite constant
Λα+β, depending only on α+ β > 1, such that the inequality∣∣∣ ∫ t2

t1

σ(s) dX(s)− σ(t1)
(
X(t2)−X(t1)

)∣∣∣
≤ Λα+β∥σ∥Cα([t1,t2])∥X∥Cβ([t1,t2])(t2 − t1)

α+β (1.7)

holds for all real numbers t1 and t2 satisfying t1 < t2.

The proof of the proposition can be found in Section 1.3 of Lyons et al. (2007),
just to give one reference.

Remark 1.1. It results from Proposition 1.1 and the Hölderianity assumption on
the paths of σ and X that the paths of Y , on any compact interval K ⊂ R, belong
to the Hölder space Cβ(K). In other words, one has ∥Y ∥Cβ(K) < +∞.

Remark 1.2. It can easily be derived from Proposition 1.1 and (1.2) that the
inequality∣∣∣ ∫ t2

t1

σ(s) dX(s)− σ(s̃)
(
X(t2)−X(t1)

)∣∣∣
≤ (1 + Λα+β)∥σ∥Cα([t1,t2])∥X∥Cβ([t1,t2])(t2 − t1)

α+β (1.8)

holds for all real numbers t1, t2 and s̃ satisfying t1 < t2 and s̃ ∈ [t1, t2].

In view of (1.1), (1.4), the triangle inequality and Remark 1.2, one has for all
m ∈ {1, . . . , 2Jv},∣∣∣Y (m

2J

)
− YJ

(m
2J

)∣∣∣ ≤
m−1∑
l=0

∣∣∣∣∣
∫ (l+1)2−J

l2−J

σ(s) dX(s)− σ(s̃J,l)∆J,l(X)

∣∣∣∣∣
≤ c02

−J(α+β−1),
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where c0 := (1 + Λα+β)∥σ∥Cα(I)∥X∥Cβ(I). Then, the straightforward inequality

∥Y − Y RS
J ∥I,∞ ≤ ∥Y ∥Cβ(I)2

−Jβ

+max

{ ∣∣∣Y (m
2J

)
− YJ

(m
2J

)∣∣∣ , m ∈ {1, . . . , 2Jv}
}

implies that

∥Y − Y RS
J ∥I,∞ ≤ c12

−J(α+β−1), (1.9)

where c1 := ∥Y ∥Cβ(I)+c0. The following proposition, proved in Appendix, provides
an extension of (1.9) to some Hölder norms.

Proposition 1.2. There exists a random finite constant c > 0 such that for all
γ ∈ [0, β) and J ∈ N, one has

∥Y − Y RS
J ∥Cγ(I) ≤ c2−J min(β−γ,α+β−1). (1.10)

Is it possible to find approximation procedures, for {Y (t)}t∈I paths, allowing to
have better rates of convergence than the one provided by (1.10)?

Studying this question is the main motivation behind our article; to this end, it
is very useful to have an appropriate explicit expression for the error term.

The rest of the article is organized in the following way. In Section 2 we in-
troduce, via a compactly supported orthonormal wavelet basis for L2(R), a series
representation of the process Y ; the partial sums of the series, denoted by YW

J ,
are somehow similar to the Riemann-Stieltjes sums Y RS

J and play the same role.
Under the sole weak Hölderianity assumption, made at the beginning of the present
section, one can only show that the approximation error ∥Y −YW

J ∥Cγ(I) converges
to 0 at the same rate as the one in (1.10). Yet, the wavelet approach offers the
advantage to provide a rather “nice” explicit expression for the error term Y −YW

J .
This advantage is exploited in Section 3 where it is further assumed that the Wiener
chaos condition (WC), given by Definition 3.2, holds. Under this additional con-
dition (WC), it turns out that the approximation error ∥Y − YW

J ∥Cγ(I) converges
to 0 at a better rate of convergence than the one provided by (1.10). The main
goal of Section 4 is to show that a wide class of integrators X and integrands σ
satisfies the condition (WC); for example X and σ can be multiple Itô-Wiener
integrals. Last but not least, the issue concerning the optimality of the improved
rate of convergence is discussed in Section 5. This improved rate is optimal in some
situations, such as when the integrand and integrator associated to {Y (t)}t∈I are
independent fractional Brownian motions with appropriate Hurst parameters.

2. The approximation method and its general rate of convergence

In order to state the main result of this section, one first needs to introduce some
notations. Assume that the collection of functions, from R to itself,{

φ(• − l) : l ∈ Z} ∪
{
2j/2ψ(2j • −k) : (j, k) ∈ Z+ × Z

}
(2.1)

satisfies one of the following two hypotheses.

(H1) This collection is simply the Haar wavelet basis of L2(R), in other words
one has φ := 1[0,1) and ψ := 1[0,1/2) − 1[1/2,1).
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(H2) This collection is an arbitrary compactly supported orthonormal wavelet
basis of L2(R) such that the scaling function φ and the mother wavelet ψ
are α-Hölder continuous on R, which means that

sup
(x1,x2)∈R2,x1<x2

{
|φ(x1)− φ(x2)|+ |ψ(x1)− ψ(x2)|

|x1 − x2|α

}
< +∞.

Notice that this order of Hölderianity α for φ and ψ is exactly the same as
the one for the paths of the integrand σ in (1.1).

It is known that (see e.g. Meyer (1992); Daubechies (1992); Wojtaszczyk (1997))
one has ∫ +∞

−∞
φ(x) dx = 1 and

∫ +∞

−∞
ψ(x) dx = 0, (2.2)

and that the integer translates of φ form “a partition of unity” in the sense that:

+∞∑
l=−∞

φ(x− l) = 1, for all x ∈ R. (2.3)

Now, notice that one can derive from the continuity of the paths of σ that, for
any fixed t ∈ I, the (random) function of the variable s

s 7→ σt(s) := σ(s)1[0,t](s) (2.4)

belongs to L2(R). So, it can be expressed as the series of functions

σt =

+∞∑
l=−∞

b0,l(t)φ(• − l) +

+∞∑
j=0

+∞∑
k=−∞

aj,k(t)2
j/2ψ(2j • −k) (2.5)

which converges in L2(R). Notice that the coefficients of the series are defined as:

b0,l(t) :=

∫ t

0

σ(s)φ(s− l) ds (2.6)

and

aj,k(t) := 2j/2
∫ t

0

σ(s)ψ(2js− k) ds. (2.7)

Thus many of these coefficients vanish due to the compactness of the supports of
φ and ψ. More precisely, let N1 and N2 be two fixed integers with N1 < N2, such
that

supp φ ⊆ [N1, N2] and supp ψ ⊆ [N1, N2]. (2.8)

Then, it is clear that

(l +N1, l +N2) ∩ (0, t) = ∅ =⇒ b0,l(t) = 0

and (
2−j(k +N1), 2

−j(k +N2)
)
∩ (0, t) = ∅ =⇒ aj,k(t) = 0.

Thus, for any fixed t ∈ I, the equality (2.5) reduces to

σt =

[t]−N1∑
l=1−N2

b0,l(t)φ(• − l) +

+∞∑
j=0

[2jt]−N1∑
k=1−N2

aj,k(t)2
j/2ψ(2j • −k).
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Next we consider, for any J ∈ N, the partial sum

σt,J :=

[t]−N1∑
l=1−N2

b0,l(t)φ(• − l) +

J−1∑
j=0

[2jt]−N1∑
k=1−N2

aj,k(t)2
j/2ψ(2j • −k). (2.9)

Using the multiresolution analysis (see e.g. Meyer (1992); Daubechies (1992); Wo-
jtaszczyk (1997)) generated by φ, one can derive that

σt,J =

[2J t]−N1∑
l=1−N2

bJ,l(t)2
J/2φ(2J • −l), (2.10)

where

bJ,l(t) := 2J/2
∫ t

0

σ(s)φ(2Js− l) ds. (2.11)

In view of (2.8) and (2.10), the random functions σt,J , t ∈ I and J ∈ N, have
compact supports uniformly bounded in t and J . More precisely, setting

Q1 := 1− (N2 −N1) and Q2 := v + (N2 −N1) , (2.12)

then one has supp σt,J ⊆ [Q1, Q2], for every t ∈ I and all J ∈ N.

Definition 2.1. For any t ∈ I and all J ∈ N, one sets

YW
J (t) :=

∫ Q2

Q1

σt,J(s) dX(s) .

It is important to note that, in view of (2.9) and (2.10), this pathwise Young integral
satisfies the two equalities:

YW
J (t) =

[t]−N1∑
l=1−N2

b0,l(t)η0,l +

J−1∑
j=0

[2jt]−N1∑
k=1−N2

aj,k(t)λj,k =

[2J t]−N1∑
l=1−N2

bJ,l(t)ηJ,l , (2.13)

where the stochastic processes {λj,k}(j,k)∈Z+×Z and {ηJ,l}(J,l)∈Z+×Z are defined as

λj,k := 2j/2
∫ 2−j(k+N2)

2−j(k+N1)

ψ(2js− k) dX(s), for all (j, k) ∈ Z+ × Z, (2.14)

and

ηJ,l := 2J/2
∫ 2−J (l+N2)

2−J (l+N1)

φ(2Js− l) dX(s), for all (J, l) ∈ Z+ × Z. (2.15)

Remark 2.1. The main result of the present section, that is the following theorem,
shows that {Y (t)}t∈I paths can be approximated by {YW

J (t)}t∈I paths. Actually this
approximation procedure can be connected to the one with Riemann-Stieltjes sums,
presented in the previous section. More precisely, assume that the basis in (2.1) is
the Haar wavelet basis, and that the s̃J,l’s in (1.4) are chosen so that

σ(s̃J,l) = 2J
∫ 2−J (l+1)

2−J l

σ(s) ds , for every l ∈ {0, . . . , 2Jv − 1}.

Then, in view of (1.6), (1.4), (2.13), (2.11) and (2.15), one has

YW
J (2−J l) = Y RS

J (2−J l) , for all l ∈ {0, . . . , 2Jv}.



Approximations in Hölder norms of stochastic Young integrals 7

Theorem 2.1. There is a finite random constant c > 0 such that, for all γ ∈ [0, β)
and J ∈ N, one has

∥Y − YW
J ∥Cγ(I) ≤ c 2−J min(β−γ,α+β−1).

A straightforward but important consequence of this theorem and the first equal-
ity in (2.13) is the following:

Corollary 2.2. Almost every path of the process {Y (t)}t∈I can be expressed as
path of the following series of random functions:

[•]−N1∑
l=1−N2

b0,l(•)η0,l +
+∞∑
j=0

[2j•]−N1∑
k=1−N2

aj,k(•)λj,k ,

which converges in the Hölder space Cγ(I), for any γ ∈ [0, β).

Remark 2.2. We mention that, in some sense, Corollary 2.2 is reminiscent of
Theorem 3.14 in Gubinelli et al. (2016) which provides, via the Haar basis, a series
representation for processes defined by Young integrals. Also, Corollary 2.2 might
have some connections with the pathwise stochastic integral introduced in Ciesielski
et al. (1993) via the same basis. Yet, we point out that there is a considerable
difference between the approach in the two articles Ciesielski et al. (1993); Gubinelli
et al. (2016) and the one in our present paper. Indeed, in these two articles it is the
“derivative” of the integrator, namely dX(•), which is expanded in the Haar basis
in order to get the series representation for the integral, while in our present paper
it is the integrand σ(•)1[0,t](•) which is expanded in this basis, and more generally
in a wavelet basis.

In order to prove Theorem 2.1, one needs to introduce, for each fixed J ∈ N and
t1, t2 ∈ I satisfying t1 < t2, the following two finite sets of indices l:

LJ,t1,t2 :=

{
l ∈ {1−N2, . . . , 2

Jv −N1} :

[
l +N1

2J
,
l +N2

2J

]
⊆ [t1, t2]

}
, (2.16)

and

∂LJ,t1,t2 :=
{
l ∈ {1−N2, . . . , 2

Jv −N1} : l /∈ LJ,t1,t2

and
[
µJ,l(t1, t2), νJ,l(t1, t2)

]
̸= ∅

}
(2.17)

where, for every l ∈ ∂LJ,t1,t2 , the interval
[
µJ,l(t1, t2), νJ,l(t1, t2)

]
is defined as[

µJ,l(t1, t2), νJ,l(t1, t2)
]
:=

[
l +N1

2J
,
l +N2

2J

]
∩ [t1, t2]. (2.18)

Notice that LJ,t1,t2 or ∂LJ,t1,t2 can sometime be the empty set.
Also, the proof of Theorem 2.1 requires to make use of the three properties (P1),

(P2) and (P3) of the scaling function φ listed in the following lemma.

Lemma 2.3. Under the hypothesis (H1) or the hypothesis (H2), given at the very
beginning of the present section, the following four results hold.

(P1) There is a finite random constant c1 > 0 such that, for every J ∈ N and
every l ∈ {1−N2, . . . , 2

Jv −N1}, one has∣∣∣ ∫ 2−J (l+N2)

2−J (l+N1)

φ(2Js− l) dX(s)
∣∣∣ ≤ c12

−Jβ . (2.19)
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(P ′
1) There is a finite random constant c′1 > 0 such that, for every j ∈ Z+ and

every k ∈ {1−N2, . . . , 2
jv −N1}, one has∣∣∣ ∫ 2−j(k+N2)

2−j(k+N1)

ψ(2js− k) dX(s)
∣∣∣ ≤ c′12

−jβ . (2.20)

(P2) There is a finite random constant c2 > 0 such that, for every J ∈ N and
every l ∈ {1−N2, . . . , 2

Jv −N1}, one has∣∣∣ ∫ 2−J (l+N2)

2−J (l+N1)

(
σ(s)− σJ,l

)
φ(2Js− l) dX(s)

∣∣∣ ≤ c2 2
−J(α+β), (2.21)

where

σJ,l := 2J
∫ 2−J (l+N2)

2−J (l+N1)

σ(s)φ(2Js− l) ds. (2.22)

(P3) There is a finite random constant c3 > 0 such that, for every t1, t2 ∈ I with
t1 < t2, every J ∈ N and every l ∈ ∂LJ,t1,t2 (see (2.17)), one has∣∣∣ ∫ t2

t1

σ(s)φ(2Js− l) dX(s)
∣∣∣ ≤ c3 min

(
2−Jβ , |t1 − t2|β

)
. (2.23)

The proof of Lemma 2.3 is postponed to Appendix, we now focus on that of
Theorem 2.1.

Proof of Theorem 2.1: In view of (1.2), it is enough to show that there is a finite
random constant c > 0 such that, for all γ ∈ [0, β), all t1, t2 ∈ I with t1 < t2, and
all J ∈ N, one has∣∣Y (t2)− Y (t1)− YW

J (t2) + YW
J (t1)

∣∣
|t1 − t2|γ

≤ c 2−J min(β−γ,α+β−1). (2.24)

Notice that (2.13), (2.11), the first inclusion in (2.8), (2.16), (2.22), (2.15), (2.17),
and (2.18) imply that

YW
J (t2)− YW

J (t1) =
∑

l∈LJ,t1,t2

∫ 2−J (l+N2)

2−J (l+N1)

σJ,l φ(2
Js− l) dX(s)

+
∑

l∈∂LJ,t1,t2

ηJ,l 2
J/2

∫ t2

t1

σ(s)φ(2Js− l) ds. (2.25)

Moreover, it follows from (1.1), (2.3), the first inclusion in (2.8), (2.16), (2.17), and
(2.18) that

Y (t2)− Y (t1) =

∫ t2

t1

σ(s) dX(s) =

∫ t2

t1

σ(s)
( +∞∑

l=−∞

φ(2Js− l)
)
dX(s)

=

∫ t2

t1

σ(s)
( ∑

l∈LJ,t1,t2

φ(2Js− l) +
∑

l∈∂LJ,t1,t2

φ(2Js− l)
)
dX(s)

=
∑

l∈LJ,t1,t2

∫ 2−J (l+N2)

2−J (l+N1)

σ(s)φ(2Js− l) dX(s)

+
∑

l∈∂LJ,t1,t2

∫ t2

t1

σ(s)φ(2Js− l) dX(s) . (2.26)
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Next using (2.25), (2.26) and the triangle inequality, one gets∣∣Y (t2)− Y (t1)− YW
J (t2) + YW

J (t1)
∣∣ ≤ A(1)

J (t1, t2) +A(2)
J (t1, t2), (2.27)

where

A(1)
J (t1, t2) :=

∑
l∈LJ,t1,t2

∣∣∣ ∫ 2−J (l+N2)

2−J (l+N1)

(
σ(s)− σJ,l

)
φ(2Js− l) dX(s)

∣∣∣ (2.28)

and

A(2)
J (t1, t2) :=

∑
l∈∂LJ,t1,t2

∣∣∣ ∫ t2

t1

σ(s)φ(2Js− l) dX(s)

− ηJ,l 2
J/2

∫ t2

t1

σ(s)φ(2Js− l) ds
∣∣∣. (2.29)

Let us first provide an appropriate upper bound for A(1)
J (t1, t2). Assume that

l ∈ LJ,t1,t2 is arbitrary. Using (P2) in Lemma 2.3, one gets∣∣∣ ∫ 2−J (l+N2)

2−J (l+N1)

(
σ(s)− σJ,l

)
φ(2Js− l) dX(s)

∣∣∣ ≤ c1 2
−J(α+β), (2.30)

where the finite random constant c1 > 0 does not depend on J , t1, t2 and l; in fact
c1 is nothing else than the finite random constant c2 in (2.21). Also notice that, in
view of (2.16), there is a finite deterministic constant c2 > 0 (which should not be
confused with the constant c2 in (2.21)) not depending on J , t1 and t2, such that,
for all J ∈ N, one has

card(LJ,t1,t2) ≤ c22
J |t1 − t2|. (2.31)

Thus, (2.28), (2.30) and (2.31) yield

A(1)
J (t1, t2) ≤ c3|t1 − t2|2−J(α+β−1), (2.32)

where c3 > 0 is a finite random constant not depending on J , t1 and t2.

Let us now give an appropriate upper bound for A(2)
J (t1, t2). It follows from

(2.29) and the triangle inequality that

A(2)
J (t1, t2) ≤

∑
l∈∂LJ,t1,t2

(
B(1)
J,l (t1, t2) + B(2)

J,l (t1, t2)
)
, (2.33)

where, for every l ∈ ∂LJ,t1,t2 ,

B(1)
J,l (t1, t2) :=

∣∣∣ηJ,l 2J/2 ∫ t2

t1

σ(s)φ(2Js− l) ds
∣∣∣ (2.34)

and

B(2)
J,l (t1, t2) :=

∣∣∣ ∫ t2

t1

σ(s)φ(2Js− l) dX(s)
∣∣∣. (2.35)

First, one provides an appropriate upper bound for B(1)
J,l (t1, t2). Using (2.15) and

(P1) in Lemma 2.3, one obtains that

|ηJ,l| ≤ c42
−J(β−1/2), (2.36)
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where c4 is nothing else than the finite random constant c1 in (2.19), which does
not depend on J , t1, t2 and l. Moreover, it can easily be derived from (1.3), (2.17),
(2.18) and (2.8) that∣∣∣ ∫ t2

t1

σ(s)φ(2Js− l) ds
∣∣∣

≤ ∥σ∥[Q1,Q2],∞∥φ∥[N1,N2],∞(N2 −N1)min
(
2−J , |t1 − t2|

)
.

(2.37)

Putting together (2.34), (2.36) and (2.37) leads to

B(1)
J,l (t1, t2) ≤ c52

J(1−β) min
(
2−J , |t1 − t2|

)
, (2.38)

with c5 > 0 being a finite random constant, not depending on J , t1, t2 and l.

Now, one provides an appropriate upper bound for B(2)
J,l (t1, t2). Using (P3) in

Lemma 2.3, one obtains

B(2)
J,l (t1, t2) ≤ c6 min

(
2−Jβ , |t1 − t2|β

)
, (2.39)

where c6 is in fact the finite random constant c3 in (2.23), that does not depend on
J , t1, t2 and l. Next, one sets c7 := 2

(
N2 −N1 + 1

)
. It can be derived from (2.17)

and (2.18) that

card(∂LJ,t1,t2) ≤ c7. (2.40)

Then, it follows from (2.33), (2.38), (2.39) and (2.40) that

A(2)
J (t1, t2) ≤ c8

(
min

(
2−Jβ , 2J(1−β)|t1 − t2|

)
+min

(
2−Jβ , |t1 − t2|β

))
, (2.41)

where c8 := c7 max(c5, c6). Next, one sets c9 := max(c3, c8). Combining (2.27)
with (2.32) and (2.41) yields∣∣Y (t2)− Y (t1)− YW

J (t2) + YW
J (t1)

∣∣ ≤ c9

(
|t1 − t2|2−J(α+β−1)

+min
(
2−Jβ , 2J(1−β)|t1 − t2|

)
+min

(
2−Jβ , |t1 − t2|β

))
. (2.42)

Finally, in view of (2.42), a straightforward computation shows that, in both
cases |t1 − t2| ≥ 2−J and |t1 − t2| < 2−J , one has, for every γ ∈ [0, β),∣∣Y (t2)− Y (t1)− YW

J (t2) + YW
J (t1)

∣∣
|t1 − t2|γ

≤ c9
(
v1−γ 2−J(α+β−1) + 2−J(β−γ)+1

)
≤ c2−J min(β−γ,α+β−1),

where c := 3c9v
1−γ . Therefore (2.24) holds, hence the conclusion. □

3. A better rate of convergence under the Wiener chaos condition (WC)

First, it is useful to make some brief recalls on the notion of Wiener chaos; our
presentation of it is inspired by the one in the book Janson (1997). Throughout
this article the underlying probability space is denoted by (Ω,F ,P). Moreover, for
any fixed p ∈ (0,+∞), the space of the real-valued random variables on (Ω,F ,P)
having a finite absolute moment of order p is denoted by Lp(Ω,F ,P).
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Definition 3.1 (Wiener chaos). Let G be an arbitrary fixed Gaussian subspace
of L2(Ω,F ,P), that is a closed subspace consisting of real-valued centred Gaussian
random variables. Let n be a nonnegative integer, the Wiener chaos of order n
associated with G is denoted by Pn(G), or more simply by Pn. The space P0 is
defined to be the closed subspace of L2(Ω,F ,P) consisting of all the constant random
variables. When n ≥ 1, the space Pn is defined as the closed subspace of L2(Ω,F ,P)
spanned by the following set of random variables:{

n∏
l=1

gml

l : (g1, . . . , gn) ∈ Gn and (m1, . . . ,mn) ∈ Zn
+ with

n∑
l=1

ml ≤ n

}
.

Remarks 3.1.

(a) One clearly has Pn ⊆ Pn+1, for every n ∈ Z+. Moreover, for all fixed
p ∈ (0,+∞), the space P∗ :=

∪
n∈Z+

Pn is dense in Lp(Ω,F(G),P), where
F(G) denotes the smallest sub σ-field of F for which all the random vari-
ables in G are measurable (see for instance Theorem 3.51 in Janson (1997)).

(b) The Lp(Ω)-norms are equivalent on Pn (see for instance Theorem 3.50 in
Janson (1997)). In other words, there are two positive and finite universal
constants c1(n, p) ≤ c2(n, p), depending only on n and p, such that, for any
random variable χ ∈ Pn, one has

c1(n, p)
(
E
[
|χ|2

])p/2

≤ E
[
|χ|p

]
≤ c2(n, p)

(
E
[
|χ|2

])p/2

. (3.1)

(c) For every fixed n ∈ Z+ and for each sequence of random variables in Pn,
convergence in probability is equivalent to convergence in Lp(Ω)-norm, for
any fixed p ∈ (0,+∞) (see for instance Theorem 3.50 in Janson (1997)).

(d) For all fixed integer n ≥ 1, there exists a positive finite universal constant
c3(n), depending only on n, such that, for every random variable χ ∈ Pn

and for each real number y ≥ 2, one has

P
(
|χ| > y∥χ∥L2(Ω)

)
≤ exp

(
− c3(n)y

2/n
)
, (3.2)

where ∥χ∥L2(Ω) :=
(
E
[
|χ|2

])1/2

(see for instance Theorem 6.7 in Janson

(1997)).

Let us now precisely define the so-called Wiener chaos condition (WC).

Definition 3.2 (the Wiener chaos condition (WC)). One says that the stochastic
process {Y (t)}t∈I , defined through the pathwise Young integral (1.1), satisfies the
Wiener chaos condition (WC) when, for some arbitrary integer n ≥ 1, the integrand
{σ(s)}s∈R and the integrator {X(s)}s∈R are two stochastic processes belonging to
the Wiener chaos Pn (i.e. σ(s) ∈ Pn and X(s) ∈ Pn, for all s ∈ R) and possessing
the following two properties:

(C1) There exist two positive real numbers α0 and β0, satisfying α0 ≤ 1, β0 ≤ 1
and α0 + β0 > 1, such that the restrictions of {σ(s)}s∈R and {X(s)}s∈R
to any compact interval K are respectively α0-Hölder continuous and β0-
Hölder continuous in quadratic mean. In other words, the inequalities

E
[∣∣σ(s1)− σ(s2)

∣∣2] ≤ c0|s1 − s2|2α0 for all s1, s2 ∈ K (3.3)
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and

E
[∣∣X(s1)−X(s2)

∣∣2] ≤ c1|s1 − s2|2β0 for all s1, s2 ∈ K (3.4)

hold, for some finite deterministic constants c0 and c1 which a priori depend
on K.

(C2) The wavelet coefficients1 aj,k := aj,k(v) and λj,k, defined through (2.7) and
(2.14), have the following “short-range dependence” property: the inequality

2jv−N2∑
k1=−N1

2jv−N2∑
k2=−N1

∣∣∣E [
aj,k1λj,k1aj,k2λj,k2

]∣∣∣ ≤ c22
−2j(α0+β0−1/2) (3.6)

is satisfied, for some finite deterministic constant c2 > 0 and for all positive
integer j such that 2jv ≥ N2 − N1. Recall that N1 and N2 are two fixed
integers satisfying (2.8).

Remarks 3.2. Assume that the Wiener chaos condition (WC) holds.

(a) Combining (C1) with the second inequality in (3.1), where taking χ =
σ(s1) − σ(s2) (resp. χ = X(s1) − X(s2)) and p large enough, and us-
ing the Kolmogorov-Čentsov Hölder continuity theorem (see Chapter 2 in
Karatzas and Shreve (1988)), it can be shown that the process σ (resp. X)
has a modification whose paths belong to the Hölder spaces Cα(K), for all
α ∈ (0, α0) (resp. Cβ(K), for all β ∈ (0, β0)) and for all compact intervals
K. This modification is always identified with σ (resp. X) itself, therefore
Proposition 1.1 implies that the paths of the process {Y (t)}t∈I are Hölder
continuous of any order β ∈ (0, β0).

(b) In view of the fact that for s ∈ R, the random variables σ(s) and X(s)
belong to the Wiener chaos Pn (for some arbitrary integer n ≥ 1), by
approximating the pathwise Young integral in (1.1) by Riemann-Stieltjes
sums and by using Remark 3.1 (c), it can be shown that, for each t ∈ I, the
random variable Y (t) belongs to the Wiener chaos P2n.

(c) Using similar arguments, one can prove that for all (J, l) ∈ Z+×Z, (j, k) ∈
Z+ × Z and t ∈ I, the random variables aj,k(t), bJ,l(t), λj,k and ηJ,l (see

(2.7), (2.11), (2.14) and (2.15)) belong to the Wiener chaos Pn. This
implies that YW

J (t) (see Definition 2.1) belongs to the Wiener chaos P2n.

The main goal of the present section is to obtain the following theorem.

Theorem 3.1. Under the condition (WC), for any fixed real numbers α ∈ (0, α0),
β ∈ (0, β0) and γ ≥ 0 satisfying α + β > 1 and γ < min(β, 1/2), there is a finite
random constant c > 0 such that the inequality

∥Y − YW
J ∥Cγ(I) ≤ c 2−J min(β−γ,α+β−1/2−γ) (3.7)

1Observe that, for every j ∈ N and k ∈ {−N1, . . . , 2jv −N2}, one has

supp ψ(2j • −k) ⊆ [2−j(N1 + k), 2−j(N2 + k)] ⊆ I

and consequently (see (2.7)) that

aj,k := aj,k(v) = 2j/2
∫
R
ψ(2js− k)σ(s) ds. (3.5)
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holds almost surely, for each J ∈ N. We recall that the processes Y := {Y (t)}t∈I and
YW
J := {YW

J (t)}t∈I have respectively been introduced in (1.1) and in Definition 2.1.
Also, we recall that the interval I := [0, v].

In order to derive Theorem 3.1 one needs several preliminary results. First we
are going to state all of them and then we will give their proofs.

The following lemma shows that for deriving the theorem it is enough to prove
it when γ = 0. Let us mention that this lemma remains valid even if one drops the
Wiener chaos condition (WC).

Lemma 3.2. Assume that α, β and γ are as in the statement of Theorem 3.1.
Also, assume that there is a finite random constant c′ > 0 such that the inequality

∥Y − YW
J ∥I,∞ ≤ c′ 2−J min(β,α+β−1/2) (3.8)

holds almost surely, for each J ∈ N. Then, there exists a finite random constant
c > 0 for which (3.7) is satisfied almost surely, for all J ∈ N.

Let us now explain the strategy that will be employed to get the crucial inequality
(3.8). To this end, for each fixed j ∈ N, one denotes by Zj := {Zj(t)}t∈I the
stochastic process defined, for all t ∈ I, as

Zj(t) :=

2jv−N1∑
k=1−N2

aj,k(t)λj,k =

[2jt]−N1∑
k=1−N2

aj,k(t)λj,k , (3.9)

where the last equality follows from (2.7) and (2.8). Observe that Zj “lives” in

the Wiener chaos P2n (see Remark 3.2 (c)), and has continuous paths since the
aj,k(•, ω)’s are continuous functions on I. Also, observe that one knows from the
first equality in (2.13) and from Corollary 2.2 that the paths of the stochastic
process Y − YW

J can be expressed, for any fixed J ∈ N and ω ∈ Ω (the underlying
probability space), as the series of functions

Y (•, ω)− YW
J (•, ω) =

+∞∑
j=J

Zj(•, ω),

which converges in the Hölder space Cγ(I), for any γ ∈ [0, β). Therefore, using the
triangle inequality, one has∥∥Y (•, ω)− YW

J (•, ω)
∥∥
I,∞ ≤

+∞∑
j=J

∥∥Zj(•, ω)
∥∥
I,∞. (3.10)

Then it turns out that in order to get the crucial inequality (3.8) it is enough to
obtain the following lemma.

Lemma 3.3. Assume that α and β are as in the statement of Theorem 3.1. Then,
one has almost surely

sup
j∈N

{
2j min(β,α+β−1/2)∥Zj∥I,∞

}
< +∞ . (3.11)

Next, let us point out that ∥Zj∥I,∞ := supt∈I |Zj(t)| is the supremum of infinitely
many random variables. Actually, it is more convenient to work with a supremum
of finite number of them; this can be done thanks to the following lemma.
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Lemma 3.4. For each j ∈ N, one sets

ν(Zj) := sup
l∈{0,...,2jv}

|Zj(2
−j l)|. (3.12)

Then, for any fixed β ∈ (0, β0), one has almost surely

sup
j∈N

{
2jβ

∣∣∥Zj∥I,∞ − ν(Zj)
∣∣} < +∞ . (3.13)

Proof of Lemma 3.3: In view of Lemma 3.4, it turns out that in order to get
Lemma 3.3 it is enough to obtain the following lemma. □
Lemma 3.5. Assume that α and β are as in the statement of Theorem 3.1. Then,
one has almost surely

sup
j∈N

{
2j min(β,α+β−1/2)ν(Zj)

}
< +∞ . (3.14)

Notice that if one shows that
+∞∑
j=1

P
(
2j min(β,α+β−1/2)ν(Zj) > 1

)
< +∞ , (3.15)

then the Borel-Cantelli lemma entails that (3.14) holds. Using the Markov inequal-
ity, one has, for every j ∈ N,

P
(
2j min(β,α+β−1/2)ν(Zj) > 1

)
≤ 2j min(β,α+β−1/2) E

(
ν(Zj)

)
. (3.16)

In view of (3.12) and of the fact that, for every fixed j ∈ N, the random variables
Zj(2

−j l), l ∈ {0, . . . , 2jv}, “live” in the Wiener chaos P2n, one can see that, to get
an appropriate upper bound for the expectation E

(
ν(Zj)

)
, it suffices to use the

following result with n replaced by 2n.

Lemma 3.6. Let the integer n ≥ 1 be arbitrary and fixed. There exists a universal
deterministic finite constant c(n) > 0, depending only on n, such that, for every
sequence {χl}l∈N of random variables belonging to the nth Wiener chaos Pn, the
inequality

E
(

sup
1≤l≤L

|χl|
)

≤ c(n) logn/2(8 + L) sup
1≤l≤L

(
E
[
|χl|2

])1/2

(3.17)

holds, for all L ∈ N. Observe that log denotes Napierian logarithm.

Proof of Lemma 3.6: For each integer L ≥ 1, one sets

ML := sup
1≤l≤L

|χl| , µL := sup
1≤l≤L

∥χl∥L2(Ω) and λL :=
2 logn/2(8 + L)

min
{
(2−1c1(n))n/2, 1

} ,
(3.18)

where c1(n) > 0 denotes the constant c3(n) in (3.2). There is no restriction to
assume that µL > 0. Using Tonelli theorem for nonnegative functions and the
change of variable x = yµL, one has

E (ML) =

∫ +∞

0

P(ML > x) dx = µL

∫ +∞

0

P
(
ML > yµL

)
dy .

Thus, one gets that

E (ML) ≤ µLλL + µL

∫ +∞

λL

P
(
ML > yµL

)
dy . (3.19)
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Moreover, it follows from the first two equalities in (3.18) that, for all y ∈ [λL,+∞),
one has

P
(
ML > yµL

)
= P

( L∪
l=1

{|χl| > yµL}
)

≤
L∑

l=1

P
(
|χl| > y∥χl∥L2(Ω)

)
. (3.20)

On the other hand, one knows from the third equality in (3.18) that λL ≥ 2. Thus,
(3.2) and the third equality in (3.18) imply that, for all l ∈ {1, . . . , L},∫ +∞

λL

P
(
|χl| > y∥χl∥L2(Ω)

)
dy ≤

∫ +∞

λL

exp
(
− c1(n)y

2
n

)
dy

≤ c2(n)

∫ +∞

λL

y
2
n−1 exp

(
− 2−1c1(n)y

2
n

)
dy

= c3(n) exp
(
− 2−1c1(n)λ

2/n
L

)
≤ c3(n)(8 + L)−1, (3.21)

where the constants c2(n) := sup
y∈[0,+∞)

y exp
(
− 2−1c1(n)y

2/n
)
< +∞ and c3(n) :=

nc2(n)/c1(n). Next, one can derive from (3.20) and (3.21) that, for each L ∈ Z+,∫ +∞

λL

P
(
ML > yµL

)
dy ≤ c3(n) . (3.22)

Finally, putting together (3.18), (3.19) and (3.22) leads to (3.17). □

Proof of Lemma 3.5: It follows from (3.12) and from Lemma 3.6 that, for all j ∈ N,
one has

E
(
ν(Zj)

)
≤ c(2n)

(
log(9 + 2jv)

)n
sup

l∈{0,...,2jv}

(
E
(
|Zj(2

−j l)|2
))1/2

. (3.23)

Then, in view of (3.23), (3.16) and the inequality β < β0, it turns out that in order
to get (3.15) it is enough to obtain the following lemma. □

Lemma 3.7. One has

sup
j∈N

sup
l∈{0,...,2jv}

{
22j min(β0,α0+β0−1/2) E

(
|Zj(2

−j l)|2
)}

< +∞ . (3.24)

We mention in passing that the condition (WC) will play a crucial role in the
proof of Lemma 3.7.

Having stated the preliminary results one needs for getting Theorem 3.1 and
having explained the connections between these preliminary results, the proof of
the theorem then becomes quite straightforward.

Proof of Theorem 3.1: The theorem is a straightforward consequence of Lemma 3.2,
(3.10) and Lemma 3.3. □

From now on, one focuses on the proofs of Lemmas 3.2, 3.4 and 3.7.

Proof of Lemma 3.2: In view of (1.2), it is enough to show that, for every fixed
nonnegative real number γ < min(β, 1/2), there is a finite random constant c > 0
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such that, for all t1, t2 ∈ I with t1 < t2, and for each J ∈ N, one has

RJ(t2, t1) :=

∣∣Y (t2)− Y (t1)− YW
J (t2) + YW

J (t1)
∣∣

(t2 − t1)γ

≤ c 2−J min(β−γ,α+β−1/2−γ). (3.25)

Notice that, without any restriction, it can be further assumed that t2 − t1 < 1;
indeed, when t2 − t1 ≥ 1, it easily follows from the equality in (3.25), the triangle
inequality, (1.3) and (3.8) that the inequality in (3.25) holds, for any finite random
constant c ≥ 2c′ and for all J ∈ N.

Let J0 be the unique positive integer such that

2−J0 ≤ t2 − t1 < 2−(J0−1). (3.26)

Observe that, in the case where J ≥ J0, using the equality in (3.25), (3.26), the
triangle inequality, (1.3) and (3.8), one has

RJ(t2, t1) ≤ 21+Jγ ∥Y − YW
J ∥I,∞ ≤ (2c′)2−J min(β−γ,α+β−1/2−γ), (3.27)

which proves that the inequality in (3.25) holds in this case, for any finite random
constant c ≥ 2c′. From now on, one assumes that J < J0. Then, from (3.26)
and (2.16), it turns out that Lj,t1,t2 is the empty set, for all j ∈ {J, . . . , J0 − 1}.
Therefore, in view of (2.17), one has, for every j ∈ {J, . . . , J0 − 1},

∂Lj,t1,t2 =

{
k ∈ {1−N2, . . . , 2

jv−N1} :

[
k +N1

2j
,
k +N2

2j

]
∩ [t1, t2] ̸= ∅

}
. (3.28)

Next, one sets

SJ0,J(t2, t1) :=
∣∣YW

J0
(t2)− YW

J0
(t1)− YW

J (t2) + YW
J (t1)

∣∣. (3.29)

It results from the equality in (3.25), the triangle inequality and (3.27) that

RJ(t2, t1) ≤ RJ0(t2, t1) + (t2 − t1)
−γ SJ0,J(t2, t1)

≤ (2c′)2−J0 min(β−γ,α+β−1/2−γ) + (t2 − t1)
−γ SJ0,J(t2, t1)

≤ (2c′)2−J min(β−γ,α+β−1/2−γ) + (t2 − t1)
−γ SJ0,J(t2, t1) . (3.30)

Let us now provide an appropriate upper bound for the random quantity SJ0,J(t2, t1).
Using (3.29), the first equality in (2.13), (2.7), (2.8), (2.14), (3.28), the triangle in-
equality, (2.20), (1.3), (2.40) and (3.26), one gets that

SJ0,J(t2, t1) ≤
J0−1∑
j=J

2j
∑

k∈∂Lj,t1,t2

∣∣∣∣ ∫ 2−j(k+N2)

2−j(k+N1)

σ(s)ψ(2js− k)1[t1,t2](s) ds

∣∣∣∣
×
∣∣∣∣ ∫ 2−j(k+N2)

2−j(k+N1)

ψ(2js− k) dX(s)

∣∣∣∣
≤ c1∥σ∥I,∞∥ψ∥[N1,N2],∞(t2 − t1)

J0−1∑
j=J

2j(1−β)

≤ c1∥σ∥I,∞∥ψ∥[N1,N2],∞(t2 − t1)
γ
J0−1∑
j=J

2−j(β−γ)

≤ c2(t2 − t1)
γ 2−J(β−γ), (3.31)
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where

c2 := c1∥σ∥I,∞∥ψ∥[N1,N2],∞

+∞∑
n=0

2−n(β−γ) < +∞ ,

and c1 is a finite random constant not depending on J , t1 and t2.
Finally, setting c := 2c′ + c2, one can derive from (3.27), (3.30) and (3.31) that

the inequality in (3.25) is satisfied. □
Proof of Lemma 3.4: Let us fix an arbitrary j ∈ N. The fact that the paths of the
process {Zj(t)}t∈I are continuous functions on the compact interval I implies that
there exists a random point t0 ∈ I such that

∥Zj∥I,∞ := sup
t∈I

|Zj(t)| = |Zj(t0)|. (3.32)

Let us set l0 := [2jt0]. Using (3.32), (3.12), the inequality ν(Zj) ≤ ∥Zj∥I,∞ and
the triangle inequality, one has∣∣∥Zj∥I,∞ − ν(Zj)

∣∣ ≤ ∣∣|Zj(t0)| − |Zj(2
−j l0)|

∣∣ ≤ ∣∣Zj(t0)− Zj(2
−j l0)

∣∣ . (3.33)

Moreover, it follows from (3.9), (2.14) and (2.20) that∣∣Zj(t0)− Zj(2
−j l0)

∣∣ ≤
l0−N1∑

k=1−N2

∣∣aj,k(t0)− aj,k(2
−j l0)

∣∣ |λj,k|
≤ c12

−(β−1/2)j
l0−N1∑

k=1−N2

∣∣aj,k(t0)− aj,k(2
−j l0)

∣∣
= c12

−(β−1/2)j
l0−N1∑

k=l0−N2+1

∣∣aj,k(t0)− aj,k(2
−j l0)

∣∣ ,
(3.34)

where c1 denotes the finite random constant c′1 in (2.20), and where the equality
results from the fact that aj,k(t0) = aj,k(2

−j l0), when k ≤ l0 − N2 (see (2.7) and
(2.8)). Next observe that, using (2.7), (1.3) and the equality l0 := [2jt0], one has,
for each k ∈ {l0 −N2 + 1, . . . , l0 −N1}, that∣∣aj,k(t0)− aj,k(2

−j l0)
∣∣ = 2j/2

∣∣∣∣∫ t0

2−j l0

σ(s)ψ(2js− k) ds

∣∣∣∣
≤ 2j/2

(
t0 − 2−j l0

)
∥σ∥I,∞∥ψ∥[N1,N2],∞

≤ 2−j/2 ∥σ∥I,∞∥ψ∥[N1,N2],∞.

Thus, letting c2 be the finite random constant, not depending on j, defined as
c2 := c1(N2 −N1)∥σ∥I,∞∥ψ∥[N1,N2],∞, one can derive from (3.33) and (3.34) that∣∣∥Zj∥I,∞ − ν(Zj)

∣∣ ≤ c22
−jβ ,

which proves that (3.13) holds. □
In order to derive Lemma 3.7, one needs the following lemma.

Lemma 3.8. Assume that (C1) in Definition 3.2 holds. Then, there is a finite
deterministic constant c > 0 such that, for every t ∈ I and j ∈ N, one has

E
[
|λj,k|2

]
≤ c2−j(2β0−1), for all k ∈ {1−N2, . . . , [2

jv]−N1} , (3.35)
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E
[
|aj,k(t)|2

]
≤ c2−j(2α0+1), for all k ∈ Lj,0,t , (3.36)

and

E
[
|aj,k(t)|2

]
≤ c2−j , for all k ∈ ∂Lj,0,t , (3.37)

where the sets Lj,0,t and ∂Lj,0,t are defined through (2.16) and (2.17), with J = j,
t1 = 0 and t2 = t.

Proof of Lemma 3.8: It is clear that (3.35) holds when ψ satisfies the hypothesis
(H1) (see the beginning of Section 2). The proof of (3.35) under the hypothesis
(H2) is long and technical. For the sake of simplicity we only gives it in the case
where ψ is continuously differentiable. Denoting by ψ′ the derivative of ψ, in view
of (2.14), one has almost surely that

λj,k = −23j/2
∫ 2−j(k+N2)

2−j(k+N1)

X(s)ψ′(2js− k) ds .

Then, the change of variable u = 2js− k and the equality
∫ N2

N1
ψ′(u) du = 0 imply

almost surely that

λj,k = −2j/2
∫ N2

N1

X
(
2−j(u+ k)

)
ψ′(u) du

= −2j/2
∫ N2

N1

(
X
(
2−j(u+ k)

)
−X

(
2−jk

) )
ψ′(u) du .

Thus, setting c1 :=
∫ N2

N1
|ψ′(u)|2 du and applying Cauchy-Schwarz inequality as well

as Tonelli theorem for nonnegative functions, one obtains that

E
[
|λj,k|2

]
≤ c12

j

∫ N2

N1

E
[∣∣∣X(

2−j(u+ k)
)
−X

(
2−jk

) ∣∣∣2]du .
Then (3.35) follows from (3.4).

We skip the proof of (3.36) since it is rather similar to that of (3.35).
Let us now turn to the proof of (3.37). Assume that k ∈ ∂Lj,0,t. Using (2.7),

the change of variable u = 2js− k, and the second inclusion in (2.8), one has

|aj,k(t)| ≤ 2j/2
∫ +∞

−∞
|σ(s)||ψ(2js− k)|ds = 2−j/2

∫ N2

N1

∣∣σ(2−j(u+ k)
)∣∣∣∣ψ(u)∣∣du.

Thus, it follows from Cauchy-Schwarz inequality as well as Tonelli theorem for
nonnegative functions that

E
[
|aj,k(t)|2

]
≤ c22

−j

∫ N2

N1

E
[∣∣∣σ(2−j(u+ k)

)∣∣∣2] du , (3.38)

where c2 :=
∫ N2

N1
|ψ(u)|2 du. On the other hand, observe that (3.3) entails that

x 7→ E
[
|σ(x)|2

]
is a continuous function on R, and consequently a bounded function

on each compact interval. Therefore, (3.37) results from (3.38) and (2.17). □

Proof of Lemma 3.7: Assume that j ∈ N and l ∈ {0, . . . , 2jv} are arbitrary and
fixed. Using (3.9), the triangle inequality and the inequality (x+ y)2 ≤ 2x2 + 2y2,
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for all x, y ∈ R+, one obtains that

E
[
|Zj(2

−j l)|2
]
= E

[∣∣∣ ∑
k∈Lj,l

aj,k(2
−j l)λj,k +

∑
k∈∂Lj,l

aj,k(2
−j l)λj,k

∣∣∣2]

≤ 2E
[∣∣∣ ∑

k∈Lj,l

aj,k(2
−j l)λj,k

∣∣∣2]+ 2E
[∣∣∣ ∑

k∈∂Lj,l

aj,k(2
−j l)λj,k

∣∣∣2] , (3.39)

where Lj,l and ∂Lj,l denote the two sets of indices defined as Lj,l := Lj,0,2−j l and
∂Lj,l := ∂Lj,0,2−j l (see (2.16) and (2.17)). Next, observe that, when k ∈ Lj,l, one

has aj,k(2
−j l) = aj,k := aj,k(v). Thus, using the inclusion Lj,l ⊆ {−N1, . . . , 2

jv −
N2} and (3.6), one gets that

E
[∣∣∣ ∑

k∈Lj,l

aj,k(2
−j l)λj,k

∣∣∣2]
=

∑
k1∈Lj,l

∑
k2∈Lj,l

E
[
aj,k1

λj,k1
aj,k2

λj,k2

]
≤

∑
k1∈Lj,l

∑
k2∈Lj,l

∣∣∣E [
aj,k1

λj,k1
aj,k2

λj,k2

]∣∣∣
≤

2jv−N2∑
k1=−N1

2jv−N2∑
k2=−N1

∣∣∣E [
aj,k1

λj,k1
aj,k2

λj,k2

]∣∣∣ ≤ c12
−2j(2α0+β0−1/2) , (3.40)

where c1 is a finite constant not depending on j and l.
Let us now provide an appropriate upper bound for the second term in the right-

hand side of (3.39). First, observe that, as done in (2.40), it can be shown that
there is a finite deterministic constant c2 > 0, not depending on j and l, such that
one has

card(∂Lj,l) ≤ c2. (3.41)

Also, observe that it follows from the Cauchy-Schwarz inequality and the second
inequality in (3.1) that for all j ∈ N, k1, k2 ∈ {1 − N2, . . . , 2

jv − N1}, and l ∈
{0, . . . , 2jv}, one has∣∣∣E [

aj,k1
(2−j l)λj,k1

aj,k2
(2−j l)λj,k2

]∣∣∣
≤

(
E
[
|aj,k1(2

−j l)|4
]
E
[
|λj,k1 |4

]
E
[
|aj,k2(2

−j l)|4
]
E
[
|λj,k2 |4

]) 1
4

≤ c3

(
E
[
|aj,k1

(2−j l)|2
]
E
[
|λj,k1

|2
]
E
[
|aj,k2

(2−j l)|2
]
E
[
|λj,k2

|2
]) 1

2

,

(3.42)

where c3 is a finite constant not depending on j, k1, k2 and l. Thus, when k1, k2 ∈
∂Lj,l, combining (3.42) with (3.35) and (3.37) one obtains

∣∣∣E [
aj,k1

(2−j l)λj,k1
aj,k2

(2−j l)λj,k2

]∣∣∣ ≤ c3

(
c2−jc2−j(2β0−1)c2−jc2−j(2β0−1)

)1/2

= c42
−2jβ0 (3.43)
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where c4 = c3c
2 is a finite constant not depending on j, k1, k2 and l, with c being

the constant given in Lemma 3.8. Next, it follows from (3.41) and (3.43) that

E
[∣∣∣ ∑

k∈∂Lj,l

aj,k(2
−j l)λj,k

∣∣∣2]
≤

∑
k1∈∂Lj,l

∑
k2∈∂Lj,l

∣∣∣E [
aj,k1

(2−j l)λj,k1
aj,k2

(2−j l)λj,k2

]∣∣∣
≤ c52

−2jβ0 , (3.44)

where c5 = c22c4 is a finite constant not depending on j and l.
Finally, putting together (3.39), (3.40) and (3.44) one gets (3.24). □

4. Examples of processes satisfying the condition (WC)

This section involves constructing wide classes of examples of real-valued sto-
chastic processes σ and X satisfying the Wiener chaos condition (WC) described
in Definition 3.2. For the sake of convenience one assumes that these two processes
are independent, centred and given by multiple Itô-Wiener integrals (see for exam-
ple Janson (1997); Nualart (1995)) in the frequency domain. More precisely, one
denotes by {Wσ(u)}u∈R and {WX(u)}u∈R two independent real-valued Brownian
motions defined on the probability space (Ω,F ,P). Then, for µ = σ or µ = X, one

lets Ŵµ be the complex-valued Gaussian random measure, defined as the “Fourier
transform” of Wµ, that is:

√
2π Ŵµ(A) :=

∫
R

(∫
A

cos(uη) dη
)
dWµ(u) + i

∫
R

(∫
A

sin(uη) dη
)
dWµ(u) ,

for each Borel set A with a finite Lebesgue measure; notice that
∫
R
(
·
)
dWµ is the

Wiener integral associated with the Brownian motion Wµ. Recall that {µ(s)}s∈R
denotes either the process {σ(s)}s∈R or the process {X(s)}s∈R. It is assumed to
be, for some positive integer Nµ and for each s ∈ R, of the following form:

µ(s) =

∫
RNµ

(
eis(η1+...+ηNµ ) − 1

)
gµ

(
η1, . . . , ηNµ

)
dŴµ(η1) . . . dŴµ(ηNµ

) , (4.1)

where gµ is a Borel function from RNµ into C (the set of the complex numbers),
which satisfies the following three properties2.

(i) One has∫
RNµ

min
(
1, (η1 + . . .+ ηNµ

)2
)∣∣g(η1, . . . , ηNµ

)∣∣2 dη1 . . . dηNµ
< +∞ . (4.2)

(ii) The function gµ is symmetric in its variables η1, . . . , ηNµ
, i.e. the quantity

gµ
(
η1, . . . , ηNµ

)
remains the same when η1, . . . , ηNµ

are interchanged.

(iii) Denoting by gµ
(
η1, . . . , ηNµ

)
the complex-conjugate of gµ

(
η1, . . . , ηNµ

)
, one

has, for almost all (η1, . . . , ηNµ
),

gµ
(
η1, . . . , ηNµ

)
= gµ

(
− η1, . . . ,−ηNµ

)
.

2Notice that these properties guarantee the existence of the multiple Itô-Wiener integral in

(4.1) and the fact that it is real-valued.
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Remark 4.1. It is worth mentioning that the well-known Gaussian fractional Brow-
nian motion of an arbitrary Hurst parameter H ∈ (0, 1) belongs to the class of pro-
cesses defined through (4.1): in its case, one has Nµ = 1 and gµ(η) = c|η|−H−1/2,
for almost all η ∈ R, where c is an arbitrary nonvanishing constant. Also we
mention that the non-Gaussian Rosenblatt process of an arbitrary parameter d ∈
(1/4, 1/2) belongs to this same class of processes: in its case one has Nµ = 2 and
gµ(η1, η2) = −i(η1 + η2)

−1|η1η2|−d, for almost all (η1, η2) ∈ R2.

Let us now observe that it follows from the “isometry property” of the multiple
Itô-Wiener integral in (4.1) and from the change of variable ξ = η1+η2+ . . .+ηNµ

,

that, for all (s1, s2) ∈ R2, one has

E
[
µ(s1)µ(s2)

]
= (Nµ)!

∫
RNµ

(
eis1(η1+η2+...+ηNµ ) − 1

)(
e−is2(η1+η2+...+ηNµ ) − 1

)
×
∣∣gµ(η1, η2, . . . , ηNµ

)∣∣2 dη1 dη2 . . . dηNµ

= (Nµ)!

∫
RNµ

(
eis1ξ − 1

)(
e−is2ξ − 1

)
×
∣∣gµ(ξ − η2 − . . .− ηNµ

, η2, . . . , ηNµ

)∣∣2 dξ dη2 . . . dηNµ
.

(4.3)

Next, one denotes by fµ the even3 and positive Borel function defined, for each
ξ ∈ R, as

fµ(ξ) := (Nµ)!

∫
RNµ−1

∣∣gµ(ξ − η2 − . . .− ηNµ
, η2, . . . , ηNµ

)∣∣2 dη2 . . . dηNµ
, (4.4)

with the convention that fµ(ξ) := |gµ(ξ)|2, when Nµ = 1. On one hand, one can
easily derive from (4.2) and (4.4) that∫

R
min

(
1, ξ2

)
fµ(ξ) dξ < +∞ . (4.5)

On the other hand, using (4.3), (4.4) and Fubini theorem one obtains, for all
(s1, s2) ∈ R2, that

E
[
µ(s1)µ(s2)

]
=

∫ +∞

−∞
(eis1ξ − 1)(e−is2ξ − 1)fµ(ξ) dξ . (4.6)

In other words, one has

E
[∣∣µ(s1)− µ(s2)

∣∣2] = E
[∣∣µ(|s1 − s2|)

∣∣2] = 4

∫ +∞

−∞
sin2

(
|s1 − s2|ξ

2

)
fµ(ξ) dξ .

(4.7)

Remark 4.2. Assume that the process {µ(s)}s∈R is self-similar of order γ0 ∈ (0, 1),
that is the processes {µ(as)}s∈R and {aγ0µ(s)}s∈R have the same finite-dimensional
distributions, for any fixed positive real number a. Then, the corresponding func-
tion fµ is more precisely denoted by fµ,SS(γ0) and satisfies, for almost all ξ ∈ R,
fµ,SS(γ0)(ξ) = c|ξ|−2γ0−1, where c is some positive constant. We recall in passing
that the Gaussian fractional Brownian motion of Hurst parameter H ∈ (0, 1) is

3This means that fµ(ξ) = fµ(−ξ), for almost all ξ ∈ R. Notice that the fact that fµ is an even

function implies that the integral in (4.6) is real-valued.
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self-similar of order γ0 = H. Also, we recall that non-Gaussian Rosenblatt process
of parameter d ∈ (1/4, 1/2) is self-similar of order γ0 = 2d.

A simple sufficient condition on fσ and fX for the processes σ and X to satisfy
(C1) in Definition 3.2 is provided by the following remark.

Remark 4.3. Let α0, β0 ∈ (0, 1) be as in Definition 3.2. A sufficient condition
for the process σ to satisfy (3.3) is the following: there exist two positive finite
deterministic constants c and ξ0, such that the inequality

fσ(ξ) ≤ c|ξ|−2α0−1 (4.8)

holds for almost all real number ξ satisfying |ξ| ≥ ξ0. Notice that in order to get a
sufficient condition for the process X to satisfy (3.4), one simply has to replace in
(4.8) σ by X and α0 by β0. Also notice that, in view of Remark 4.2, the inequality
(4.8) holds as soon as the process σ is self-similar of order γ0 ≥ α0.

Proof of Remark 4.3: Let s1 and s2 be two arbitrary and distinct4 real numbers
belonging to some fixed compact interval K. It can easily be derived from (4.7) with
µ = σ, from (4.8) and from the classical inequality | sin(x)| ≤ |x|, for all x ∈ R,
that

E
[∣∣σ(s1)− σ(s2)

∣∣2]
≤ (s1 − s2)

2

∫ ξ0

−ξ0

ξ2fσ(ξ) dξ + 4c

∫ +∞

−∞
sin2

(
|s1 − s2|ξ

2

)
|ξ|−2α0−1 dξ.

Then, setting ζ = |s1 − s2|ξ in the second integral, and using (4.5), the fact that
α0 ∈ (0, 1), and the inequalities |s1 − s2| ≤ diam(K) < +∞, one obtains (3.3). □

From now on our goal is to provide sufficient conditions on fσ, fX and the
wavelet ψ (see (3.5) and (2.14)) under which (C2) in Definition 3.2 holds.

Remark 4.4. Let α0, β0 ∈ (0, 1) be as in Definition 3.2. Suppose there are a
constant c > 0 and two nonnegative integers U0 and V0 satisfying U0+V0 = 2, such
that, for every j ∈ N and for all k1, k2 ∈ {−N1, . . . , 2

jv −N2}, one has∣∣E [aj,k1
aj,k2

]
∣∣ ≤ c2−j(2α0+1)

(
1 + |k1 − k2|

)−U0
(4.9)

and ∣∣E [λj,k1
λj,k2

]
∣∣ ≤ c2−j(2β0−1)

(
1 + |k1 − k2|

)−V0
. (4.10)

Then (3.6) is satisfied.

Proof of Remark 4.4: The fact that {σ(s)}s∈I and {X(s)}s∈I are independent im-
plies that the aj,k’s and λj,k’s are independent. This together with the inequalities
(4.9), (4.10) and the fact that U0 + V0 = 2 yields∣∣∣E [

aj,k1
λj,k1

aj,k2
λj,k2

]∣∣∣ = ∣∣∣E [
aj,k1

aj,k2

]∣∣∣∣∣∣E [
λj,k1

λj,k2

]∣∣∣
≤ c22−2j(α0+β0)

(
1 + |k1 − k2|

)−2
, (4.11)

for all k1, k2 ∈ {−N1, . . . , 2
jv−N2}. Then (3.6) can be straightforwardly obtained

by using (4.11). □
The following four propositions are the four main results of the present section.

4It is clear that (3.3) holds when s1 = s2.
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Proposition 4.1. Assume that the wavelet ψ in (2.14) is the Haar function, that
is ψ := 1[0,1/2)−1[1/2,1). Then (4.10) holds as soon as fX is V0 times continuously

differentiable on R \ {0} and satisfies the following condition (D1,X), in which f
(n)
X

denotes the derivative of fX of order n, with the convention that f
(0)
X := fX .

(D1,X) There exist two finite deterministic constants β′
0 ∈ [β0, 1) and c > 0 such

that, for all n ∈ {0, . . . , V0} and ξ ∈ R \ {0}, one has∣∣f (n)X (ξ)
∣∣ ≤ cmax

(
|ξ|−2β0−n−1, |ξ|−2β′

0−n−1
)
. (4.12)

Proposition 4.2. Let M ∈ N be arbitrary and fixed. Assume that the wavelet ψ in
(2.14) is continuously differentiable on the real line and has at least M vanishing
moments, that is∫ +∞

−∞
sm ψ(s) ds = 0, for all m ∈ {0, . . . ,M − 1}. (4.13)

Then (4.10) holds as soon as fX is V0 times continuously differentiable on R \ {0}
and satisfies the following condition (DM,X), which is weaker5 than (D1,X).

(DM,X) There exist two finite deterministic constants β′
0 ∈ [β0, 1) and c > 0 such

that, for all n ∈ {0, . . . , V0} and ξ ∈ R \ {0}, one has∣∣f (n)X (ξ)
∣∣ ≤ cmax

(
|ξ|−2β0−n−1, |ξ|−2β′

0−nM−1
)
. (4.14)

Proposition 4.3. Assume that the wavelet ψ in (3.5) is the Haar function. Also
assume that the integer U0 in (4.9) belongs to the set {0, 1}. Then (4.9) holds
as soon as fσ is U0 times continuously differentiable on R \ {0} and satisfies the

following condition (D1,σ), in which f
(n)
σ denotes the derivative of fσ of order n,

with the convention that f
(0)
σ := fσ.

(D1,σ) There exist two finite deterministic constants α′
0 ∈ [α0, 1) and c > 0 such

that, for all n ∈ {0, . . . , U0} and ξ ∈ R \ {0}, one has∣∣f (n)σ (ξ)
∣∣ ≤ cmax

(
|ξ|−2α0−n−1, |ξ|−2α′

0−n−1
)
. (4.15)

Proposition 4.4. Let M ∈ N be arbitrary and fixed. Assume that the wavelet ψ in
(3.5) is continuously differentiable on the real line and has at least M +1 vanishing
moments. Then (4.9) holds as soon as fσ is U0 times continuously differentiable on
R \ {0} and satisfies the following condition (DM,σ), which is weaker6 than (D1,σ).

(DM,σ) There exist two finite deterministic constants α′
0 ∈ [α0, 1) and c > 0 such

that, for all n ∈ {0, . . . , U0} and ξ ∈ R \ {0}, one has∣∣f (n)σ (ξ)
∣∣ ≤ cmax

(
|ξ|−2α0−n−1, |ξ|−2α′

0−nM−1
)
. (4.16)

Remark 4.5. For µ = σ or µ = X, it is clear that (D1,µ) holds when µ is self-
similar of order γ0 (see Remark 4.2).

A major motivation for weakening the condition (D1,µ) to the condition (DM,µ)
is the following: the behavior of fµ in the neighborhood of 0 can then be much more
singular, namely fµ can have infinitely many oscillations in the vicinity of 0. This
is for instance the case, when, for all ξ ∈ R \ {0}, one has

fµ(ξ) = |ξ|−2u−1 + |ξ|−2v−1 sin2
(
|ξ|−w

)
,

5More generally, (DM,X) is weaker than (DM′,X), for any M ′ < M .
6More generally, (DM,σ) is weaker than (DM′,σ), for any M ′ < M .
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where the three parameters u, v and w are arbitrary real numbers such that 0 < u ≤
v < 1 and w > 0. Observe that the larger is w the more oscillating is this function
fµ in the neighborhood of 0. Also observe that this function fails to satisfy (D1,µ);
yet, for any integer M ≥ 1 + w, it satisfies (DM ), with β0 = u and β′

0 = v.

In the sequel, one only gives the proofs of Propositions 4.1 and 4.2. The other
two Propositions can be derived rather similarly to Proposition 4.2.

Proof of Proposition 4.1: It easily follows from (2.14) and the equality ψ :=
1[0,1/2) − 1[1/2,1) that, for all j ∈ N and k ∈ {−N1, . . . , 2

jv −N2}, one has

2−j/2 λj,k = 2X

(
2k + 1

2j+1

)
−X

(
k

2j

)
−X

(
k + 1

2j

)
.

Therefore, using (4.6) and standard computations, one gets, for any k1, k2 ∈ {−N1, . . . , 2
jv−

N2}, that

E [λj,k1λj,k2 ] = 22(j+2)

∫
R
ei(k1−k2)η sin4

(η
4

)
fX(2jη) dη .

There is no restriction to assume that k1 ≥ k2. Then, setting

G(η) := e−iη sin4
(η
4

)
, (4.17)

one can write

E [λj,k1
λj,k2

] = 22(j+2)

∫
R
ei(1+|k1−k2|)ηFj(η) dη , (4.18)

where

Fj(η) := G(η)fX(2jη) . (4.19)

Next, observe that it easily results from (4.17), the general Leibniz rule and standard
computations, that G is infinitely differentiable on R. Moreover, there is a finite
deterministic constant c1 > 0, such that, for all q ∈ {0, . . . , V0} and η ∈ R, one has∣∣G(q)(η)

∣∣ ≤ c1 min
(
1, |η|4−q

)
, (4.20)

where G(q) denotes the derivative of G of order q, with the convention that G(0) :=
G.

Let us now derive useful properties of the function Fj defined in (4.19). Notice
that Fj is V0 times continuously differentiable on R \ {0} since fX is V0 times
continuously differentiable on R \ {0} and G is infinitely differentiable on R. Also
notice that using (4.19), the general Leibniz rule, the condition (D1,X) and (4.20),
one can show that, for some finite deterministic constant c2 > 0 (not depending
on j) and for any arbitrary η ∈ R \ {0}, one has, for all p ∈ {0, . . . , V0},∣∣F (p)

j (η)
∣∣ ≤ c2 2

−j(2β′
0+1) |η|3−p−2β′

0 , if 0 < |η| < 2−j , (4.21)

and∣∣F (p)
j (η)

∣∣ ≤ c2 2
−j(2β0+1)

p∑
q=0

min
(
1, |η|4−q

)
|η|q−2β0−p−1, if |η| ≥ 2−j . (4.22)

Next, observe that it follows from (4.21) and (4.22) that, for each p ∈ {0, . . . , V0},
the function F

(p)
j belongs to the Lebesgue space L1(R) and has vanishing limits at

±∞. Moreover, it has a vanishing limit at 0 when p ̸= 2.
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In view of these properties of Fj , V0 integrations by parts allow to obtain that∫ +∞

0

ei(1+|k1−k2|)ηFj(η) dη = i−V0
(
1+|k1−k2|

)−V0

∫ +∞

0

ei(1+|k1−k2|)ηF
(V0)
j (η) dη .

(4.23)
Similarly one has∫ 0

−∞
ei(1+|k1−k2|)ηFj(η) dη = i−V0

(
1 + |k1 − k2|

)−V0

∫ 0

−∞
ei(1+|k1−k2|)ηF

(V0)
j (η) dη .

(4.24)
Finally, putting together (4.18), (4.23), (4.24), (4.21) with p = V0, (4.22) with
p = V0, and the inequality β′

0 ≥ β0, it can be shown that there exists a finite
deterministic constant c > 0, not depending on j, k1, k2, such that (4.10) holds. □

In order to show that Proposition 4.2 holds one needs the following lemma, which
provides an explicit convenient expression of the expectation E [λj,k1λj,k2 ] in terms

of fX and of the Fourier transform ψ̂ of the wavelet ψ.

Lemma 4.5. Assume that the wavelet ψ in (2.14) is continuously differentiable on
the real line. Then, for all j ∈ N and for every k1, k2 ∈ {−N1, . . . , 2

jv −N2}, one
has

E [λj,k1
λj,k2

] = 22j
∫
R
ei(k1−k2)η η2 |ψ̂ (η) |2fX(2jη) dη . (4.25)

Proof of Lemma 4.5: First notice that the integration by parts formula can be
applied to the Young integral in (2.14), since ψ is continuously differentiable. Thus,
in view of (2.8), one can express λj,k, for all j ∈ N and k ∈ {−N1, . . . , 2

jv −N2},
as the Lebesgue integral

λj,k = −23j/2
∫
R
ψ′(2js− k)X(s) ds ,

where ψ′ denotes the first order derivative of ψ. Then, using Fubini theorem, (4.6),
elementary properties of the Fourier transform, and the change of variable η = 2−jξ,
one obtains

E [λj,k1
λj,k2

] = 23j
∫
R

∫
R
ψ′(2js1 − k1)ψ

′(2js2 − k2)

×E
[
X(s1)X(s2)

]
ds1 ds2

= 23j
∫
R

∫
R

∫
R
ψ′(2js1 − k1)ψ

′(2js2 − k2)

×(eis1ξ − 1)(e−is2ξ − 1)fX(ξ) dξ ds1 ds2

= 2−j

∫
R
ei(k1−k2)2

−jξ ξ2
∣∣ψ̂(2−jξ)

∣∣2fX(ξ) dξ

= 22j
∫
R
ei(k1−k2)η η2

∣∣ψ̂(η)∣∣2fX(2jη) dη .

□

Proof of Proposition 4.2: The proof is rather similar to that of Proposition 4.1.
Let j ∈ N and k1, k2 ∈ {−N1, . . . , 2

jv − N2} be arbitrary and fixed with k1 ≥ k2
(there is no restriction to assume this). In view of (4.25), setting

G̃(η) := e−iη η2 |ψ̂ (η) |2 , (4.26)
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E [λj,k1
λj,k2

] can then be expressed as

E [λj,k1
λj,k2

] = 22j
∫
R
ei(1+|k1−k2|)ηF̃j(η) dη , (4.27)

where

F̃j(η) := G̃(η)fX(2jη) . (4.28)

Now, let us derive the properties of the function G̃ which one needs in the

proof. First, observe that the fact that ψ is compactly supported implies that ψ̂

is infinitely differentiable on R. Thus, in view of (4.26), the function G̃ shares the
same regularity property. Next, we show that there is a finite deterministic constant
c1 > 0 such that the inequality∣∣G̃(q)(η)

∣∣ ≤ c1 min
(
1, |η|2(M+1)−q

)
(4.29)

holds, for all q ∈ {0, 1, 2} and η ∈ R. In view of (4.26), the inequality (4.29) can be
obtained by using the general Leibniz rule, if one shows that there exists a finite
deterministic constant c2 > 0 such that the inequality∣∣ψ̂(n)(η)

∣∣ ≤ c2 min
((

1 + |η|
)−1

, |η|M−n
)

(4.30)

holds, for every n ∈ {0, . . . , V0} and η ∈ R. One can derive from the definition of

the Fourier transform ψ̂ that, for any l ∈ Z+ and η ∈ R,

ψ̂(l)(η) = (−i)l
∫
R
e−iηs

(
slψ(s)

)
ds . (4.31)

Notice that s 7→ slψ(s) is a compactly supported continuously differentiable func-
tion. Therefore, an integration by parts in (4.31) yields, for each η ∈ R, that∣∣ψ̂(l)(η)

∣∣ ≤ c3
(
1 + |η|

)−1
, (4.32)

where c3 > 0 is a finite deterministic constant not depending on η. Thus, when
−1 ≤ M − n ≤ 0, the inequality (4.30) results from the inequality (4.32). In the

opposite case M −n > 0, one knows from (4.13) and (4.31) that ψ̂(n+r)(0) = 0, for
any nonnegative integer r satisfying r < M − n. Thus, Taylor formula applied to

ψ̂(n) allows to obtain, for all η ∈ [−1, 1], that∣∣ψ̂(n)(η)
∣∣ ≤ c4|η|M−n, (4.33)

where c4 > 0 is a finite deterministic constant not depending on η. Then combining
(4.32) and (4.33) one gets (4.30).

Now, one derives some useful properties of the function F̃j defined in (4.28).

Notice that F̃j is V0 times continuously differentiable on R \ {0} since fX is V0
times continuously differentiable on R \ {0} and G̃ is infinitely differentiable on
R. Also notice that using (4.28), the general Leibniz rule, the condition (DM,X)
and (4.29), one can show that, for some finite deterministic constant c5 > 0 (not
depending on j) and for any arbitrary η ∈ R \ {0}, one has, for all p ∈ {0, . . . , V0},∣∣F̃ (p)

j (η)
∣∣ ≤ c5 2

−j(2β′
0+1) |η|2M+1−pM−2β′

0 , if 0 < |η| < 2−j , (4.34)
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and∣∣F̃ (p)
j (η)

∣∣ ≤ c5 2
−j(2β0+1)

p∑
q=0

min
(
1, |η|2(M+1)−q

)
|η|q−2β0−p−1, if |η| ≥ 2−j .

(4.35)
Next, observe that it follows from (4.34) and (4.35) that, for each p ∈ {0, . . . , V0},
the function F̃

(p)
j belongs to the Lebesgue space L1(R) and has vanishing limits at

±∞. Moreover, it has a vanishing limit at 0 when p ̸= 2.

In view of these properties of F̃j , V0 integrations by parts allow to obtain that∫ +∞

0

ei(1+|k1−k2|)ηF̃j(η) dη = i−V0
(
1+|k1−k2|

)−V0

∫ +∞

0

ei(1+|k1−k2|)ηF̃
(V0)
j (η) dη .

(4.36)
Similarly, one has that∫ 0

−∞
ei(1+|k1−k2|)ηF̃j(η) dη = i−V0

(
1 + |k1 − k2|

)−V0

∫ 0

−∞
ei(1+|k1−k2|)ηF̃

(V0)
j (η) dη .

(4.37)
Finally, putting together (4.27), (4.36), (4.37), (4.34) with p = V0, (4.35) with
p = V0, and the inequality β′

0 ≥ β0, it can be shown that there exists a finite
deterministic constant c > 0, not depending on j, k1, k2, such that (4.10) holds.

□

5. Discussion on the optimality of the improved rate of convergence

What is for the approximation error ∥Y − YW
J ∥Cγ(I) the fastest possible rate of

convergence to zero? In order to provide a precise answer to this question, let us
first briefly summarize what is already known on it from our previous two main
results, namely Theorems 2.1 and 3.1. To this end, one denotes by α and β the two
critical exponents defined as:

α := sup
{
α ∈ [0, 1) : σ ∈ Cα(I)

}
and β := sup

{
β ∈ [0, 1) : X ∈ Cβ(I)

}
. (5.1)

They somehow respectively provide a measure of the critical Hölder regularity on
I of a path of the integrand σ and a measure of that of a path of the integrator X.
Notice that the assumption on the Hölder regularity of these two paths, made at
the very beginning of the article, implies that:

α ∈ (0, 1], β ∈ (0, 1] and α+ β > 1.

In the sequel, one imposes to α and β to satisfy the following invariance condition
(UC).

Definition 5.1 (the invariance condition (UC)). The values of α and β remain
almost surely unchanged when the compact interval I := [0, v] in (5.1) is replaced
by any other compact interval K ⊂ R.

It is worth mentioning that the condition (UC) holds when σ and X are Gaussian
fractional Brownian motions; in this case α and β are equal to their corresponding
Hurst parameters.

Remark 5.1. Under the condition (UC), Theorem 2.1 can be rewritten in terms of
α and β in the following way: for each fixed γ ∈ [0, β) and arbitrarily small ϵ > 0,
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one has

sup
J∈N

{
2J(min(β−γ,α+β−1)−ϵ)∥Y − YW

J ∥Cγ(I)

}
< +∞. (5.2)

Remark 5.2. Assume that the condition (UC) holds. Also, assume that the condi-
tion (WC), described in Definition 3.2, is satisfied for all α0 ∈ (0, α) and β0 ∈ (0, β)
such that α0 + β0 > 1. Then, Theorem 3.1 can be rewritten in terms of α and β in
the following way: for each fixed γ ∈ [0,min(β, 1/2)) and arbitrarily small ϵ > 0,
one has, almost surely,

sup
J∈N

{
2J(min(β−γ,α+β−1/2−γ)−ϵ)∥Y − YW

J ∥Cγ(I)

}
< +∞. (5.3)

Let us now turn to the statement of the main result of the present section.

Theorem 5.1. Suppose that the invariance condition (UC) holds. Also, suppose
that β < 1 and that, for each s ∈ I, the probability P(σ(s) = 0) vanishes (notice
that this is the case as soon as the random variable σ(s) has a probability density
function). Then for all fixed γ ∈ [0, β) and arbitrarily small ϵ > 0, one has, almost
surely,

sup
J∈N

{
2J(β−γ+ϵ)∥Y − YW

J ∥Cγ(I)

}
= +∞. (5.4)

We point out that Theorem 5.1 provides an universal lower bound for the rate
of convergence to zero of the approximation error ∥Y − YW

J ∥Cγ(I). In view of
Remarks 5.1 and 5.2, this theorem can be seen as a counterpart to Theorems 2.1
and 3.1.

Before proving Theorem 5.1, we note that the following result, which is a straight-
forward consequence of Theorems 5.1 and 3.1 (see also Remark 5.2), gives a partial
answer to the question raised at the very beginning of the present section.

Corollary 5.2. Assume that the invariance condition (UC) holds and that α ≥ 1/2
and β < 1. Also assume that the condition (WC), given by Definition 3.2, is
satisfied for all α0 ∈ (0, α) and β0 ∈ (0, β) such that α0 + β0 > 1. Moreover,
suppose that, for any s ∈ I, the probability P(σ(s) = 0) vanishes. Then, for each
fixed γ ∈ [0,min(β, 1/2)) and arbitrarily small ϵ > 0, one has, almost surely,

sup
J∈N

{
2J(β−γ−ϵ)∥Y − YW

J ∥Cγ(I)

}
< +∞ (5.5)

and

sup
J∈N

{
2J(β−γ+ϵ)∥Y − YW

J ∥Cγ(I)

}
= +∞, (5.6)

which provide a sharp estimate of the fastest possible rate of convergence to zero
of the approximation error ∥Y − YW

J ∥Cγ(I). In the sequel, one uses the concise
notation

∥Y − YW
J ∥Cγ(I) ≍ 2−J(β−γ)

to mean that both (5.5) and (5.6) are satisfied, almost surely, for all fixed arbitrarily
small ϵ > 0.

Remark 5.3. Assume that the integrand σ and the integrator X are two indepen-
dent Gaussian fractional Brownian motions whose Hurst parameters are respectively
denoted by H1 and H2 and satisfy H1 ≥ 1/2, H1 +H2 > 1.

Then, it results from Corollary 5.2 that, for all fixed γ ∈ [0,min(H2, 1/2)), one
has ∥Y − YW

J ∥Cγ(I) ≍ 2−J(H2−γ).
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Proof of Theorem 5.1: First observe that using the second equality in (5.1), Propo-
sition 1.1, the condition (UC) and the assumption that, for all s ∈ I, the probability
P(σ(s) = 0) vanishes, one has

β = sup
{
θ ∈ [0, 1) : Y ∈ Cθ(I)

}
. (5.7)

In order to show that (5.4) holds one will argue by contradiction. So, let us assume
that there exist ϵ0 ∈ (0, 1− β) and γ0 ∈ [0, β) such that

sup
J∈N

{
2J(β−γ0+ϵ0)∥Y − YW

J ∥Cγ0 (I)

}
< +∞. (5.8)

Under this assumption one will show that

β < sup
{
θ ∈ [0, 1) : Y ∈ Cθ(I)

}
, (5.9)

which will contradict (5.7).
Let ν0 be an arbitrary and fixed real number satisfying

0 < ν0 <
ϵ0

β − γ0
. (5.10)

Observe that (5.10) implies that

(β + γ0ν0 + ϵ0)(1 + ν0)
−1 > β. (5.11)

Denote by t1 and t2 two arbitrary real numbers belonging to I with t1 < t2. Then
there is a unique positive integer J̌ such that

v2−J̌(1+ν0) < t2 − t1 ≤ v2−(J̌−1)(1+ν0). (5.12)

It follows from (1.2), (5.8) and (5.12) that∣∣(Y − YW
J̌

)(t2))− (Y − YW
J̌

)(t1)
∣∣ ≤ ∥Y − YW

J̌
∥Cγ0 (I)(t2 − t1)

γ0

≤ c12
−J̌(β−γ0+ϵ0)(t2 − t1)

γ0 ≤ c2(t2 − t1)
(β+γ0ν0+ϵ0)(1+ν0)

−1

, (5.13)

where c1 > 0 and c2 > 0 are two finite random constants not depending on t1, t2
and J̌ .

Next, one assumes that ϵ1 is an arbitrary fixed real number satisfying

0 < ϵ1 < min
(
β, (1− β)ν0

)
. (5.14)

Observe that (5.14) implies that

(β + ν0 − ϵ1)(1 + ν0)
−1 > β. (5.15)

Let us show that there exists a finite random constant c3 > 0, not depending on
t1, t2 and J̌ , such that∣∣YW

J̌
(t2)− YW

J̌
(t1)

∣∣ ≤ c3(t2 − t1)
(β+ν0−ϵ1)(1+ν0)

−1

. (5.16)

It follows from (2.11), (2.13), (2.15), the triangle inequality, and property (P1) in
Lemma 2.3 that

∣∣YW
J̌

(t2)− YW
J̌

(t1)
∣∣ ≤ 2J̌v−N1∑

l=1−N2

∣∣bJ̌,l(t2)− bJ̌,l(t1)
∣∣∣∣ηJ̌,l∣∣

≤ c42
J̌(1+ϵ1−β)

2J̌v−N1∑
l=1−N2

∣∣∣ ∫ t2

t1

σ(s)φ(2J̌s− l) ds
∣∣∣, (5.17)
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where c4 > 0 is a finite random constant depending on ϵ1 but not depending on t1,
t2 and J̌ (in fact c4 is nothing else than the constant c1 in (2.19) in the case where
β = β − ϵ1). Next, observe that, using (5.12), it can be shown that the cardinality
of the finite set{

l ∈
{
1−N2, . . . , 2

J̌v −N1

}
:

[
l +N1

2J̌
,
l +N2

2J̌

]
∩ [t1, t2] ̸= ∅

}
can be bounded by some finite deterministic constant c5 > 0 not depending on t1,
t2 and J̌ . Thus setting c6 := c4c5∥σ∥[N1,N2],∞∥φ∥[N1,N2],∞, where the integers N1

and N2 are as in (2.8), one can derive from (1.3) and (5.17) that∣∣YW
J̌

(t2)− YW
J̌

(t1)
∣∣ ≤ c62

J̌(1+ϵ1−β)(t2 − t1). (5.18)

Then combining (5.12) and (5.18) one gets (5.16).
Finally, putting together (5.11), (5.13), (5.15) and (5.16), one shows that (5.9)

holds, which contradicts (5.7). □

Appendix

Proof of Proposition 1.2:
First notice that using (1.5) as well as the fact that the paths of X satisfy a

Hölder condition of order β on I := [0, v], and setting c1 := ∥X∥Cβ(I), one has that

|∆J,k(X)| ≤ c12
−βJ , for every J ∈ N and k ∈ {0, . . . , 2Jv − 1}. (5.19)

From now on, one denotes by t1 and t2 two arbitrary fixed real numbers belonging
to I and satisfying t1 < t2. In view of Remark 1.1, one has that∣∣Y (t2)− Y (t1)

∣∣ ≤ c2(t2 − t1)
β , (5.20)

where c2 > 0 is a finite random finite constant not depending on t1 and t2.
Next, for each γ ∈ [0, β) and J ∈ N, one sets

E(γ)
J (t1, t2) :=

∣∣Y (t2)− Y RS
J (t2)− Y (t1) + Y RS

J (t1)
∣∣

(t2 − t1)γ
. (5.21)

In view of (1.2), in order to show that (1.10) holds, one has to prove that there
exists a finite random constant c3 > 0, not depending on γ, t1, t2 and J , such that

E(γ)
J (t1, t2) ≤ c32

−J min(β−γ,α+β−1) . (5.22)

To this end, one denotes by k1 and k2 the two integers, belonging to {0, . . . , 2Jv},
defined as k1 := [2J t1] and k2 := [2J t2], and studies the three different cases:
k1 = k2, k1 + 1 = k2 and k1 + 2 ≤ k2.

First case: k1 = k2. It follows from (1.6), (1.3) and (5.19) that∣∣Y RS
J (t2)− Y RS

J (t1)
∣∣ =

∣∣2J(t2 − t1)σ(s̃J,k1
)∆J,k1

(X)
∣∣

≤ c1(t2 − t1)∥σ∥I,∞2(1−β)J . (5.23)

On the other hand, one necessarily has that t2−t1 < 2−J since k1 = k2. Combining
this inequality with (5.23), (5.21), the triangle inequality and (5.20), one obtains

E(γ)
J (t1, t2) ≤ c2(t2 − t1)

β−γ + c1(t2 − t1)
1−γ∥σ∥I,∞2(1−β)J

≤ c42
−J(β−γ), (5.24)

where c4 > 0 is a finite random constant not depending on γ, J , t1 and t2.
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Second case: k1 + 1 = k2. First one notes that this case is rather similar to the
previous one. It follows from (1.6) and (1.4) that

Y RS
J (t2)− Y RS

J (t1)

= (2J t2 − k1 − 1)σ(s̃J,k1+1)∆J,k1+1(X) + YJ

(
k1 + 1

2J

)
−(2J t1 − k1)σ(s̃J,k1

)∆J,k1
(X)− YJ

(
k1
2J

)
= (2J t2 − k1 − 1)σ(s̃J,k1+1)∆J,k1+1(X)

+(k1 + 1− 2J t1)σ(s̃J,k1
)∆J,k1

(X).

Thus, using the triangle inequality, (5.21) and (1.3) we obtain that∣∣Y RS
J (t2)− Y RS

J (t1)
∣∣

≤ c1(2
J t2 − k1 − 1)∥σ∥I,∞2−βJ + c1(k1 + 1− 2J t1)∥σ∥I,∞2−βJ

= c1(t2 − t1)∥σ∥I,∞2(1−β)J . (5.25)

On the other hand, it is necessarily true that t2 − t1 < 2 · 2−J , since k1 + 1 = k2.
Combining this inequality with (5.25), (5.21), the triangle inequality and (5.20), we
get that

E(γ)
J (t1, t2) ≤ c52

−J(β−γ), (5.26)

where c5 > 0 is a finite random constant not depending on γ, J , t1 and t2.
Third case: k1 + 2 ≤ k2. It follows from (1.1), the triangle inequality and (5.20)

that ∣∣Y (t2)− Y RS
J (t2)− Y (t1) + Y RS

J (t1)
∣∣

≤
∣∣∣∣Y (t2)− Y

(
k2
2J

)∣∣∣∣+ ∣∣∣∣Y (t1)− Y

(
k1
2J

)∣∣∣∣
+

∣∣∣∣∣
∫ k2

2J

k1
2J

σ(s) dX(s)− Y RS
J (t2) + Y RS

J (t1)

∣∣∣∣∣
≤ 2c22

−βJ +

∣∣∣∣∣
∫ k2

2J

k1
2J

σ(s) dX(s)− Y RS
J (t2) + Y RS

J (t1)

∣∣∣∣∣ . (5.27)

Moreover, using (1.6), the triangle inequality, (1.3), (1.4), (5.19), (1.5) and (1.8),
one has that∣∣∣∣∣

∫ k2
2J

k1
2J

σ(s) dX(s)− Y RS
J (t2) + Y RS

J (t1)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ k2

2J

k1
2J

σ(s) dX(s)− Y RS
J

(
k2
2J

)
+ Y RS

J

(
k1
2J

)∣∣∣∣∣
+
∣∣(2J t2 − k2)σ(s̃J,k2)∆J,k2(X)

∣∣+ ∣∣(2J t1 − k1)σ(s̃J,k1)∆J,k1(X)
∣∣

≤
k2−1∑
l=k1

∣∣∣∣∣
∫ l+1

2J

l

2J

σ(s) dX(s)− σ(s̃J,l)∆J,l(X)

∣∣∣∣∣+ 2c1∥σ∥I,∞2−βJ

≤ c6(k2 − k1)2
−(α+β)J + 2c1∥σ∥I,∞2−βJ

≤ c7(t2 − t1)2
−(α+β−1)J + 2c1∥σ∥I,∞2−βJ , (5.28)
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where c6 > 0 and c7 > 0 are two finite random constants not depending on J ,
t1 and t2. On the other hand, the fact that k1 + 2 ≤ k2 yields t2 − t1 > 2−J .
Combining this inequality with (5.27), (5.28) and (5.21), one gets

E(γ)
J (t1, t2) ≤ 2(c2 + c1∥σ∥I,∞)2−(β−γ)J + c7(t2 − t1)

1−γ 2−(α+β−1)J .

Thus, it results from the inequality (t2 − t1)
1−γ ≤ v1−γ that

E(γ)
J (t1, t2) ≤ c82

−J min(β−γ,α+β−1), (5.29)

where c8 > 0 is a finite random constant not depending on γ, J , t1 and t2.
Finally (5.24), (5.26) and (5.29) imply that (5.22) holds. □

Let us now turn to prove Lemma 2.3. In the proof one will separately study the
case of the Haar basis (see (H1) at the very beginning of Section 2) and the other
case where the compactly supported scaling function φ and mother wavelet ψ are
α-Hölder continuous on R (see (H2) at the very beginning of Section 2).

Proof of Lemma 2.3 under the hypothesis (H1)):
First notice that, under the hypothesis (H1), the integers N1 and N2 in (2.8)

can be chosen such that N1 = 0 and N2 = 1, since one has

φ := 1[0,1) and ψ := 1[0,1/2) − 1[1/2,1). (5.30)

In all the sequel, one assumes that J ∈ N and l ∈ {0, . . . , 2Jv − 1} are arbitrary
and fixed, and denotes by IJ,l the dyadic interval [2−J l, 2−J(l + 1)]. Recall that
I := [0, v].

Let us show that (P1) is satisfied. Notice that, in view of (5.30), one has that∫ 2−J (l+N2)

2−J (l+N1)

φ(2Js− l) dX(s) =

∫ 2−J (l+1)

2−J l

dX(s) = X
(
2−J(l + 1)

)
−X

(
2−J l

)
.

Thus, the fact that the paths of X are Hölder continuous of order β on the interval
I implies that (2.19) holds. Using rather similar arguments, it can be shown that
(P ′

1) is satisfied as well.
Let us now turn to (P2). Notice that, in view of (5.30) and (2.22) one has that∫ 2−J (l+N2)

2−J (l+N1)

(
σ(s)− σJ,l

)
φ(2Js− l) dX(s)

=

∫ 2−J (l+1)

2−J l

σ(s) dX(s)− σJ,l

(
X
(
2−J(l + 1)

)
−X

(
2−J l

))
, (5.31)

where

σJ,l = 2J
∫ 2−J (l+1)

2−J l

σ(s) ds.

Also notice that, using the continuity of the paths of σ and the mean value the-
orem, one has σJ,l = σ(s̃J,l), for some s̃J,l ∈ IJ,l. Thus, combining this equality
with (5.31), Remark 1.2, the inequality ∥σ∥Cα(IJ,l) ≤ ∥σ∥Cα(I) and the inequality
∥X∥Cβ(IJ,l) ≤ ∥X∥Cβ(I), one gets (2.21).

Finally, let us turn to (P3). Assume that t1, t2 ∈ I are arbitrary and such that
t1 < t2. Also assume that l ∈ ∂LJ,t1,t2 (see (2.17)), and let [a, b] be the nonempty
interval defined as

[a, b] := IJ,l ∩ [t1, t2] = [2−J l, 2−J(l + 1)] ∩ [t1, t2]. (5.32)
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Then, in view of (5.30), one has∫ t2

t1

σ(s)φ(2Js− l) dX(s) =

∫ b

a

σ(s) dX(s). (5.33)

Moreover, using the triangle inequality, Proposition 1.1, the fact that the paths of
X are β-Hölder continuous functions on I, (1.3) and (5.32), one gets that

∣∣∣ ∫ b

a

σ(s) dX(s)
∣∣∣

≤
∣∣∣ ∫ b

a

σ(s) dX(s)− σ(a)
(
X(b)−X(a)

)∣∣∣+ ∣∣∣σ(a)(X(b)−X(a)
)∣∣∣

≤ c4 min
(
2−βJ , (t2 − t1)

β
)
, (5.34)

where c4 := Kα+β∥σ∥Cα(I)∥X∥Cβ(I) + ∥σ∥I,∞∥X∥Cβ(I). Thus (2.23) results from
(5.33) and (5.34). □

Proof of Lemma 2.3 under the hypothesis (H2)):
Throughout this proof, one assumes that J ∈ N and l ∈ {1−N2, . . . , 2

Jv−N1} are
arbitrary and fixed and denotes by IJ,l the dyadic interval [2−J(l+N1), 2

−J(l+N2)];
notice that this is not exactly the same interval as in the previous proof.

Let us show that (P1) is satisfied. Using Proposition 1.1 and the equality
φ(N1) = 0 (see (2.8)), one gets that

∣∣∣ ∫ 2−J (l+N2)

2−J (l+N1)

φ(2Js− l) dX(s)
∣∣∣

≤ Kα+β(N2 −N1)
α+β

∥∥φ(2J • −l)
∥∥
Cα(IJ,l)

∥X∥Cβ(IJ,l)2
−(α+β)J . (5.35)

Moreover, it can be derived from (1.2) that

∥φ(2J • −l)∥Cα(IJ,l) ≤ 2Jα ∥φ∥Cα([N1,N2]). (5.36)

Also, it can be derived from (1.2) and (2.12) that

∥X∥Cβ(IJ,l) ≤ ∥X∥Cβ([Q1,Q2]). (5.37)

Thus, putting together (5.35), (5.36) and (5.37), it follows that (2.19) holds. Using
rather similar arguments, it can be shown that (P ′

1) is satisfied as well.
Let us now turn to (P2). One can derive from the triangle inequality, (1.2), (1.3),

(5.36) and (5.37) that∥∥(σ(•)− σJ,l

)
φ(2J • −l)

∥∥
Cα(IJ,l)

≤ ∥σ − σJ,l∥IJ,l,∞∥φ∥[N1,N2],∞ + ∥σ − σJ,l∥IJ,l,∞∥φ(2J • −l)∥Cα(IJ,l)

+∥σ∥Cα(IJ,l)∥φ∥[N1,N2],∞.

≤ c4

(
(2Jα + 1)∥σ − σJ,l∥IJ,l,∞ + ∥σ∥Cα([Q1,Q2])

)
, (5.38)
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where c4 := ∥φ∥Cα([N1,N2]). Next, using (2.22), in which one sets u = 2Js− l, and
using (2.2), one gets, for all fixed x ∈ IJ,l, that

|σ(x)− σJ,l| =
∣∣∣ ∫ +∞

−∞

(
σ(x)− σ(2−J l + 2−Ju)

)
φ(u) du

∣∣∣
≤

∫ N2

N1

∣∣σ(x)− σ(2−J l + 2−Ju)
∣∣|φ(u)|du

≤ c52
−Jα,

where c5 := (N2 − N1)
α∥σ∥Cα([Q1,Q2])

∫ N

−N
|φ(u)|du. Therefore, in view of (1.3),

one has

∥σ − σJ,l∥IJ,l,∞ ≤ c52
−Jα. (5.39)

Next putting this together with (5.37), (5.38) and (5.39) , it follows that there is a
finite random constant c6 > 0, not depending on J, l, such that∥∥(σ(•)− σJ,l

)
φ(2J • −l)

∥∥
Cα(IJ,l)

∥X∥Cβ(IJ,l)
≤ c6. (5.40)

Thus, using Proposition 1.1 and the equality φ(N1) = 0, one gets that∣∣∣ ∫ 2−J (l+N2)

2−J (l+N1)

(
σ(s)− σJ,l

)
φ(2Js− l) dX(s)

∣∣∣
≤ (N2 −N1)

α+βKα+β 2
−J(α+β)

×
∥∥(σ(•)− σJ,l

)
φ(2J • −l)

∥∥
Cα(IJ,l)

∥∥X∥∥
Cβ(IJ,l)

≤ c72
−J(α+β),

where c7 = c6(N2 −N1)
α+βKα+β . This shows that (2.21) holds.

Finally, let us turn to (P3). Assume t1, t2 ∈ I are arbitrary and such that
t1 < t2. Also assume that l ∈ ∂LJ,t1,t2 (see (2.17)) and that µJ,l = µJ,l(t1, t2) and
νJ,l = νJ,l(t1, t2) are as in (2.18). Then, one has∫ t2

t1

σ(s)φ(2Js− l) dX(s) =

∫ νJ,l

µJ,l

σ(s)φ(2Js− l) dX(s). (5.41)

Moreover, one can derive from the triangle inequality that∣∣∣ ∫ νJ,l

µJ,l

σ(s)φ(2Js− l) dX(s)
∣∣∣

≤
∣∣∣ ∫ νJ,l

µJ,l

σ(s)φ(2Js− l) dX(s)− σ(µJ,l)φ(2
JµJ,l − l)

(
X(νJ,l)−X(µJ,l)

)∣∣∣
+
∣∣∣σ(µJ,l)φ(2

JµJ,l − l)
(
X(νJ,l)−X(µJ,l)

)∣∣∣. (5.42)

Let us now provide an appropriate upper bound for each term in the last sum. On
one hand, using Proposition 1.1, (5.37) and (2.18), one obtains that∣∣∣ ∫ νJ,l

µJ,l

σ(s)φ(2Js− l) dX(s)− σ(µJ,l)φ(2
JµJ,l − l)

(
X(νJ,l)−X(µJ,l)

)∣∣∣
≤ c8

∥∥σ(•)φ(2J • −l)
∥∥
Cα(IJ,l)

(
min

(
2−J , |t1 − t2|

))α+β

, (5.43)
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where c8 > 0 is a finite random constant not depending on J , t1 and t2. Moreover,
one can derive from (1.2), (1.3) and the triangle inequality that∥∥σ(•)φ(2J • −l)

∥∥
Cα(IJ,l)

≤ ∥σ∥[Q1,Q2],∞∥φ∥[N1,N2],∞ + ∥σ∥[Q1,Q2],∞∥φ(2J • −l)∥Cα(IJ,l)

+∥σ∥Cα([Q1,Q2])∥φ∥[N1,N2],∞.

≤ c92
αJ , (5.44)

where c9 > 0 is a finite random constant not depending on J , l, t1 and t2. On the
other hand, using the fact that the paths of X are β-Hölder continuous functions
on I, (1.3) and (2.18), one gets that∣∣∣σ(µJ,l)φ(2

JµJ,l − l)
(
X(νJ,l)−X(µJ,l)

)∣∣∣ ≤ c10 min
(
2−Jβ , |t1 − t2|β

)
, (5.45)

where c10 := (N2 − N1)
β∥σ∥[Q1,Q2],∞∥φ∥[N1,N2],∞∥X∥Cβ([Q1,Q2]). Next, putting

together (5.41) - (5.45), one obtains that∣∣∣ ∫ t2

t1

σ(s)φ(2Js− l) dX(s)
∣∣∣

≤ c11

(
min

(
2−βJ , |t1 − t2|α+β 2αJ

)
+min

(
2−Jβ , |t1 − t2|β

))
, (5.46)

where c11 = max(c8c9, c10). Moreover, studying separately the two cases t2 − t1 <
2−J and t2 − t1 ≥ 2−J , one can easily show that

min
(
2−βJ , |t1 − t2|α+β 2αJ

)
≤ min

(
2−Jβ , |t1 − t2|β

)
. (5.47)

Finally combining (5.46) and (5.47) leads to (2.23). □
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