

Volumetric brain MRI measurements in a retrospective Belgian multi-center MRI biomarker study in dementia - REMEMBER

E. Niemantsverdriet¹, D. Smeets², C. Bastin³, J.C. Bier⁴, O. Deryck⁵, P.P. De Deyn^{1,6}, D. De Surgeloose⁷, C. Gilles⁸, A. Ivanoiu⁹, E. Mormont^{10,11}, P.M. Parizel¹², G. Picard¹³, E. Salmon^{3,14}, K. Segers¹⁵, A. Sieben¹⁶, E. Thiery¹⁷, J. Tournoy^{17,18}, E. Triau¹⁹, R. Vandenberghe^{20,21}, M. Vandewoude²², J. Versijpt²³, S. Engelborghs^{1,6}

¹Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium

²icometrix, Louvain, Belgium

³GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège, Belgium

⁴Department of Neurology, Hôpital Erasme, ULB, Brussels, Belgium

⁵Neurology Department and Centre for Cognitive Disorders, AZ Sint-Jan Brugge-Oostende, Belgium

⁶Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium

⁷Department of Radiology, Hospital Network Antwerp (ZNA) Middelheim, Antwerp, Belgium

⁸Cognitive and Behavioral Geriatrics, Centre Hospitalier de l'Ardenne, Memory Clinic, Libramont-Chevigny, Belgium

⁹Department of Neurology, St Luc Hospital, Institute of Neuroscience, UCL, Brussels, Belgium

¹⁰Université catholique de Louvain, CHU UCL Namur, Department of Neurology, Yvoir, Belgium

¹¹UCL Institute of Neuroscience (IoNS), Brussels, Belgium

¹²Department of Radiology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium

¹³Neurology Department, Clinique Saint-Pierre, Ottignies, Belgium

¹⁴Memory Clinic, CHU Liège, Liège, Belgium

¹⁵Neurology Department, University Hospital Brugmann, Brussels, Belgium

¹⁶Department of Neurology, Ghent University Hospital, Ghent University, Ghent, Belgium

¹⁷Department of Clinical and Experimental Medicine, KU Leuven, Louvain, Belgium

¹⁸Geriatric Medicine, University Hospitals Leuven, Louvain, Belgium

¹⁹Neurology Consult Leuven, Louvain, Belgium

²⁰Department of Neurology and Memory Clinic, University Hospitals Leuven, Louvain, Belgium

²¹Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium

²²Department of Geriatrics, Hospital Network Antwerp (ZNA) Middelheim and University of Antwerp, Antwerp, Belgium

²³Department of Neurology and Memory Clinic, UZ Brussel, Brussels, Belgium All centers are part of the Belgian Dementia Council (BeDeCo)

Background

Hippocampal atrophy is a well-known feature of Alzheimer's disease (AD). Also, whole brain and (whole) grey matter (GM) volumes have been used as neuroimaging biomarkers for AD. Since these anatomical structures are considerably larger than the hippocampus, automated quantification of their volumes is less prone to measurement errors.

Methods

The Belgian Dementia Council (BeDeCo) initiated a retrospective, multi-center Belgian study on magnetic resonance imaging (MRI) as a biomarker for AD. Using advanced image analysis techniques, which generate automated and reproducible volumetric measurements, we will investigate hippocampal volume, cortical volume, (whole) GM volume, and whole brain volume in subjects with subjective cognitive decline (SCD), mild cognitive impairment (MCI) and AD dementia, as well as in

cognitively healthy elderly. Subanalyses related to disease progression will be performed in subjects who underwent MRI scans and neuropsychological evaluations at least two time points.

Results

Preliminary data, based on data from five out of ten centers, consist of 482 baseline MRI scans in cognitively healthy controls (n=45), SCD (n=80), MCI (n=178), and AD dementia patients (n=179). Thirty-six MRI brain volumetric measurements were excluded based on a quality check. Longitudinal MRI scans were available in 75 subjects, of which four SCD patients converted to MCI and 11 from MCI to AD dementia.

In contrast to gender, age was significantly different between diagnostic groups. AD dementia patients had a significantly smaller whole brain, GM, and WM volume than cognitively healthy controls, SCD, and MCI patients. Correction for age and center did not affect the significant differences .

Cerebrovascular lesion volumes were measured if FLAIR sequences were available (n=442). In total, 95 volumetric lesion volumes were rejected due to limited quality. Lesion volumes were not significantly different between diagnostic groups.

Discussion

The primary objective of this study was to assess the diagnostic value of automated MRI volumetric measures in the AD continuum as compared to healthy controls in a real-life clinical context. The secondary objective of this study will be to validate the volumetric techniques as an early diagnostic marker for AD and as a possible predictor for clinical progression. Also, we will calculate the correlation between hippocampal volume and total brain volume with disease duration (based on an estimation of the first disease symptoms).

Conclusion

Preliminary data suggest that volumetric MRI measurements, whole brain, GM, WM, and CSF could differentiate between AD dementia patients and cognitively healthy controls, SCD, and MCI patients.