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Introduction Materials and Method j a0 @
»  Zooplankton: » Sampling was carried out in the Calvi Bay F ? \\
- is abundant, world-wide spread and highly (Corsica, France), NW of the Mediterranean Sea  Corsica )a @
diverse; (Fig. 1). Sub-surface samples were collected
- ensures vital ecosystem roles in food webs, | | Pimonthly from 2004 to 2016, using a WP2 net A s HC
organic carbon flux and microbial communities;| | (200 pm) and preserved in formaldehyde. | B/ ~_~

- represents bio-indicators of climate change.

» Long time series are crucial to understand
long-term changes of the ecosystem.

» In addition,
biological and chemical) were registered.
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» Zooplankton data were obtained through - Aglljgla‘z';'SCE
» This study was conducted in the framework | | di8ital imaging and automatic classification SIZE SPECTRUM
of the STARECAPMED program. (Fig. 2) using the Zoo/Phytolmage software Fig. 2: Data

and a high resolution scanner (Fig. 3).

Fig. 1: Sampling area location acquisition workflow

Fig. 4: Partial analysis of the plankton series (five years). Temporal evolution of water temperature and
the abundance of a few taxonomical plankton groups. Interannual differences are already observable.
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Copepod Copepod Chaetognath Euphausiacea Phyllosoma of Decapod Mantis shrimp larva
Calanus sp. Monstrilloida sp. (Krill) larva Spiny lobster larva Squilla mantis
= — —
1 mm 1
Mollusc Cavolinia Zoe decapod lchtyoplankton
sp. Porcellana sp. Fish larva
Tunicate Tunicate Cladocera Annelid Cnidaria Cephalopod lchtyoplankton
Salp Appendicularia Evadne sp. (Ephyra stage) larva Fish eqgg
Fig. 3: Examples of acquired plankton images
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Final results are still to come,

we’ll be back...
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