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ABSTRACT

In this paper we will briefly revisit the optical vibration measurement system (OVMS) at the Large Binocular
Telescope (LBT) and how these values are used for disturbance compensation and particularly for the LBT
Interferometer (LBTI) and the LBT Interferometric Camera for Near-Infrared and Visible Adaptive Interferom-
etry for Astronomy (LINC-NIRVANA). We present the now centralized software architecture, called OVMS+,
on which our approach is based and illustrate several challenges faced during the implementation phase. Finally,
we will present measurement results from LBTI proving the effectiveness of the approach and the ability to
compensate for a large fraction of the telescope induced vibrations.

Keywords: Large Binocular Telescope, Accelerometer, Estimation, Delay, Control, Feedforward Control, Vi-
bration, LBTI, LINC-NIRVANA

1. INTRODUCTION

Large ground-based telescopes have undergone tremendous growth in size in the past decades. Today, the largest
single monolithic mirrors for telescopes have diameters of approximately 8 m, which constitutes a technical limit.
Thus, some past and most future telescope projects going beyond the 8 m-class rather utilize an array of single
mirrors to increase the effective resolution. One of these is the Large Binocular Telescope (LBT) located near
Tucson, Arizona (USA), which is equipped with two large 8.4 m primary mirrors. It is shown in Fig. 1. The light

Figure 1: Inner part of the LBT with its symmetrical layout.
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collected by both primary mirrors is reflected via the adaptive secondary mirrors and tertiary mirrors into one of
the center positioned instruments. There will be two interferometers installed at the LBT eventually, where one
is the Near-InfraRed/Visible Adaptive Camera and INterferometer for Astronomy (LINC-NIRVANA), which
is currently being installed and is described in Herbst et. al.,1 while the other is the Large Binocular Telescope
Interferometer (LBTI), which is described in more detail for example in Hinz et. al.2 and is in operation at the
LBT since 2010. Due to wind excitation at the telescope, the optically identical sides of the telescope move in
a slightly different, somewhat randomly disturbed way. These mechanical disturbance due to vibration mainly
lead to low order aberrations of piston, tip, and tilt for the single telescope mirrors. While tip and tilt can in
theory be corrected by a fast adaptive optics (AO) control loop, the AO is not sensible to piston. However, the
difference in piston between the telescope sides, the optical pathway difference (OPD), needs to remain at a
very small level at beam combination in order to enable fringe tracking for the respective interferometer. Thus,
need arises for an opto-mechanical device to correct this OPD difference to keep both light paths co-phased. For
LINC-NIRVANA, this device is a position-controlled piezo motor with a travel range of 75 µm, while LBTI has
chosen a tweeter-woofer setup, with one corrector for slow, but large differences and one corrector for fast but
small differences. The latter will be used to correct mechanical vibrations, which are typically in the order of
several µm and above 10 Hz.3

In order to measure the disturbances, the LBT main mirrors are equipped with 5 accelerometers each, which
are of piezo-type and supplied by PCB electronics. The analog accelerometer values are converted to digital
values in a PowerPC, called PowerDNR RackTangle, which is equipped with 12 DNR-AI-211 cards, all supplied
by UEI. This device can digitize 48 analog channels and send the values via GBit-ethernet. At the LBT, the 48
values and a time stamp are send out using UDP-Multicast. Each client in the network can possibly subscribe to
the multicast feed. The system is completed by a GUI, which is basically a plotting tool to visualize the current
measurements and a telemetry client taking care of archiving the data in the standard HDF5 file format. All of
this is referred to as the optical vibration measurement system (OVMS), which is described in Kürster et. al.4

This system has been in operation since 2009 and delivers stable and reliable data since its commissioning
in March 2013. However, its use was mainly limited to engineers in the search for vibrations sources at the
LBT, and possible options for their mitigation and telescope enhancements. For instrument scientists and their
specific need of a flexible, fast and easy to use system, a solution was yet to be found. On top of this, the
calculation of the actual mirror motion from the accelerometer values was left to every instrument’s control loop.
In hindsight, this does not seem reasonable. To increase synergy between using and testing OVMS with different
instruments, we now implemented a centralized calculation of OPD, tip and tilt, as these calculations do not
rely on instrument specific parameters. We present now in this paper a solution which not only estimates the
differential OPD (and also tip and tilt values) from the accelerometer readings, but also offers a simple and
flexible use to the instrument scientists, for which it is eventually intended. Additionally, this system can be
used for feedforward correction of mechanically originated tip and tilt disturbances to the adaptive secondaries
and thus also offers a benefit not only to the interferometers at the LBT, but to all instruments that make
use of LBTs adaptive optics capabilities. Because our solution is based on the OVMS, but greatly enhances its
capabilities, it has been called OVMS+.

The paper will focus on the basics of the implemented algorithm in section 2. This is followed by a description
of changes and additions that we have made to the OVMS software in section 3. At the end, we present and
discuss on sky measurements illustrating the performance of the new disturbance estimation and compensation.

2. ALGORITHM

In order to make use of the disturbance compensation, the actual OPD has to be calculated from the accelerometer
measurements. For this, we have a dynamic system, called estimator, which is essentially a linear filter. The
estimator is designed to match the double integration very well for a specific frequency range of 8 Hz to 60 Hz, in
which most of the relevant mechanical vibrations at the LBT occur. Small frequencies representing offsets and
drifts have to be attenuated by this filter. The filter is designed for optimal performance at a sampling rate of
1 ms. The presented algorithm is based on recently published results.5,6
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As illustrated by Figure 2, the estimation algorithm can be divided into two steps. First, the measurements
are integrated by the dynamic estimator to find the position values of the mirrors at the accelerometer locations.
These values can then be used to find the actual piston, tip, and tilt values of the respective mirror.

Measurement Integration Transformation Distribution

Figure 2: The estimation algorithm can be devided into two steps: integration of the measurements and geometric
transformation of the positions to derive the low order aberrations.

2.1 Integration

The broadband filtering aims at approximating the double integrating behaviour for a specific frequency range.
The estimation filter is based on two lowpass filters GL(s) and three highpass filters GH(s). It is supplemented
with two lead lag elements Gll,1 and Gll,2, which are introduced to reduce the phase error in the low frequency
regime around 8 Hz and bring it closer to the ideal −180◦, and to compensate the phase drop for higher frequencies
due to discretization, respectively. The effect of Gll2 on the overall transfer function degrades at higher sample
rates, and it can be omitted for sample rates of 2 kHz or more. Details on these individual filters can be found
in Böhm et. al.5 The overall filter transfer function GF is then given by:

GF(s) = GH(s)GL(s)GH(s)GL(s)GH(s)Gll,1(s)Gll,2(s)

= G3
H(s)G2

L(s)Gll,1(s)Gll,2(s).

=

(
s

s+ π

)3(
1

s+ 3π

)2
s+ 10π

s+ 0.6π

s+ 98π

s+ 103π
(1)

Thus, with the estimated position z(t) and the measured acceleration yacc(t), it holds:

Z(s) = GF(s)Yacc(s). (2)

The bode diagram for GF(s) is shown in Fig. 3. The estimation filter from equation (1) can be rewritten in state
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Figure 3: Bode Diagramm for the broadband filter GF (s), comparing the ideal double integrator (dash-dotted blue) with
the designed filter used for position estimation (solid dark) in the complete frequency range (left) and for the desired
frequency range of 8 Hz to 60 Hz (right).

space notation:

˙̂
ξ(t) = Aξ̂(t) +Byacc(t)

z(t) = Cξ̂(t).
(3)
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Figure 4: (a) Transformation of the observer scheme (3) into (4) and (b) extension to the full delay compensating observer
scheme (7) featuring additional measurement delay (blue box 1) and the delay compensating extensions to the original
observer feedback (blue box 2).

This filter is now extended by a delay compensation, which is described in a publication currently under
review.6 This is necessary, because due to the distribution using the UDP-Multicast protocol, the estimated
values are subject to a delay of approximately Td = 3 ms. Without compensation, for a 24 Hz sine disturbance,
the best case residual error will remain at about 40 % of the original value, which illustrates the importance of
a delay compensation algorithm. In the following, we will sketch the main idea for the derivation.

To compensate the delay, the estimator from equation (3) has to be extended in order to increase the phase
in the desired frequency regime. The method we choose to derive such an extended estimator is backstepping
applied to a transport PDE representing the measurement delay and cascaded with a virtual system, which is
extracted from the original disturbance estimator (3). This method has been published,7 but instead of an actual
plant model, we extract a virtual model from our estimator. For this, let us rewrite the estimator given in (3)
in a Luenberger observer scheme:8

˙̂
ξ(t) = (A+BCw) ξ̂(t) +B

(
yacc(t)−Cwξ̂(t)

)
,

ŵ(t) = Cwξ̂(t),

z(t) = Cξ̂(t),

(4)

with Cz = [−1, 0, 0, 0, 0, 0, 0]. This choice of Cz guarantees the stability of the observed autonomous system

ξ̇(t) = (A+BCw) ξ(t)

w(t) = Cwξ(t).
(5)

due to the structure of A (lower triangular).6 The transformation from (3) to (4) is illustrated in Figure 4(a).

The measurement delay Td described by a transport PDE is now appended to the output of the autonomous
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system (5):

ξ̇(t) = (A+BCw) ξ(t)

u(Td, t) = Cwξ(t),

∂tu(v, t) = ∂vu(v, t),

w(t) = u(0, t).

(6)

with u(v, t) ∈ [0, Td] × [0,∞) being a distributed state to model the infinite dimensional delay Td. The partial
derivatives with respect to t and v are denoted by ∂t and ∂v, respectively. The following observer then guarantees
asymptotically stable observer error dynamics:7

˙̂
ξ(t) = (A+BCw) ξ̂(t) + e(A+BCw)Td B (yacc(t)− ŵ(t)) ,

∂tû(v, t) = ∂vû(v, t) +Cw e(A+BCw)vB (yacc(t)− ŵ(t)) ,

û(Td, t) = Cwξ̂(t),

ŵ(t) = û(0, t).

(7)

In order to get a predicted estimate of z(t), called zp(t), the estimated state ξ̂(t) can be used with:

zp(t) = Cξ̂(t). (8)

A comparison of the delay compensating and the original observer is shown in Figure 4(b). The additional
Transport PDE can be seen on the right modeling the measurement delay. Because the PDE state has to be
estimated as well, the extension is shown in the second box with the prediction e(A+BCw)Td for the ODE observer,
and the distributed prediction e(A+BCw)v for the PDE part of the observer. For implementation, the observer
scheme from equation (7) is discretized in space and used in its time discrete state space representation.

2.2 Transformation

First, the values acquired in the integration step have to be transformed into tip, tilt and piston values for the
individual mirrors. For this, we look first at the inverse problem: the calculation of the sensor displacement from
known mirror translation (d - OPD), rotation around the x-axis (ϕx - tip), and rotation around the y-axis (ϕy

- tilt). For mirror k, the displacement of sensor i can be calculated using the sensor coordinates (xi, yi) along
with the geometric constraints, which yields:

zi,k = dk + yi,kϕx,k − xi,kϕy,k (9)

Since tip and tilt angles at the LBT are small, this linear relationship can be used. For a number of nk sensors
measuring along the z-axis (i. e. perpendicular to the optical surface), this can be summarized as follows:

z1,k
z2,k

...
znk,k

 =


y1,k −x1,k 1
y2,k −x2,k 1

...
ynk,k −xnk,k 1


︸ ︷︷ ︸

=Tk

ϕx,k

ϕy,k

dk

 (10)

As can be seen, the matrix Tk contains the sensor positions of the nk sensors of the k-th mirror. This set of
algebraic equations can be solved using the (pseudo-)inverse of the matrix Tk in the case of nk ≥ 3:

ϕx,k

ϕy,k

dk

 = T+
k


z1,k
z2,k

...
znk,k

 . (11)
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For less than 3 sensors, the set of equations is undertermined and cannot be solved.

Additionally, these values have to be converted into a common reference frame for which the respective
sensitivities have to be known. This is necessary especially for tip and tilt angles, because e. g. a 1 mas tilt angle
of M1 has to be corrected by a different tilt angle at M2. A very suited common reference frame is the instrument
focal plane, because it also considers the respective rotation of M3, which is specific to the instrument.

3. SOFTWARE ARCHITECTURE

Before OVMS+, the OVMS software at the LBT had 3 basic parts. The software on the UEI RackTangle is
used to read the AD-Conversion cards and distribute the values along with a correspnding time stamp via UDP-
Multicast. The GUI runs on a seperate linux computer in the operator control room of the LBT and visualizes
the measurements on large screens. Last, the telemetry is used to read the UDP stream and write the values
to an archive in HDF5 file format. This is visualized in Figure 5. Because the new estimation software runs on
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AD Init
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Client 1 · · · Client n GUI Telemetry
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Figure 5: Overview of the software architecture of OVMS (black) and OVMS+ (blue extension). While the software’s
AD module is not changed, two new modules have been added. The initialization parses the config-files to calculate the
estimator structure, which is then used in the estimation module. The estimation is triggered by the AD module, whereas
the initialization is called only once at startup.

the PowerPC UEI RACKtangle, the architecture of OVMS+ and the original architecture are very similar. The
multicast buffer, which is sent at a constant sample rate, has now been appended with the estimated values.

One of the challenges during implementation was to supply a software, from which both the engineers, and
the instrument scientists and astronomers could benefit. Thus, there are basically two important modes in
which the software can be run. In the instrument mode, the software calculates 5 values: the differential piston
(= OPD) and the equivalent focal plane motion resulting from the tip and tilt angles of the three main mirrors
for each side of the telescope. In the engineering mode, the software calculates 18 values: the piston, tip and tilt
motion for all six main mirrors. This mode needs more ressources on the PowerPC and thus runs at a maximum
sample speed of 1300 Hz when used with the delay compensation. For science use, the better accuracy of higher
sampling rates might be needed, while the LBTO engineers are very much interested in the more on information
of this mode. Additionally, there is a compatibility mode, where the software behaves as the original OVMS
software and no additional values are sent. The mode can be chosen upon startup of the service by the user.
The prediction time as a parameter to the delay compensation can also be set by the user upon startup.

When the service starts, the estimator is initialized and then used in the actual estimation function, which is
triggered by the A/D-conversion of the sensor signals and therefore runs at the specified sample rate. Usually,
the sample rate is Tsample = 1 ms, however, lower or higher values can be set if desired. For the initialization
of the estimation, two configuration files are needed. One specifies the location, calibration data and channel
number for each accelerometer for each of the six mirrors. These values presumably do not change very often and
will be mainly maintained by LBTO personnel, e. g. after the replacement of a broken sensor or after mounting
additional sensors. The second config file contains several instrument specific parameters, i. e. the focal plane
sensitivities of the main mirrors, which depend on the optics and the initial focal ratio of the secondary. Also,
the angle of M3 is different for different instruments, which can be set in this file.
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4. RESULTS

Measurements taken with LBTI on March 5, 08:01 - 08:22 UTC, illustrate the performance of the presented
algorithm. Three typical sequences of 3 s are compared in Figure 6. Note that the OVMS+-software was
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(c) OVMS+ ON, Ki = 30

Figure 6: Time series and cumulated power spectrum of the estimated OPD (blue) and the closed loop residual error
(black). Note the two different scales in the spectrum plots for better comparison, with the left axis showing the spectrum
of the estimated OPD, and the right axis that of the residual OPD. On the left, there is pure feedback action, in the
middle a combination of feedback and disturbance feedforward is used. On the right, the feedback integral gain is reduced
by a factor of 10. Without OVMS+ feedforward, the RMS (shown as dashed lines) is reduced from 1489 nm to 539 nm
(-64 %), while with OVMS+ feedforward the OPD residual is reduced from 1724 nm down to 403 nm (-77 %). Thus, the
combination of both reduces the input disturbance RMS by about a factor of 4.5. Using OVMS+ feedforward, but a much
smaller feedback gain restores the performance of the original pure feedback system with a reduction from 1793 nm to
651 nm (-64 %).

operating without the delay compensation, although this feature is ready to use. However, since it is less critical
for LBTI, most tests have been carried out without this option. However, as can be seen in Figure 6c, when using
OVMS+ with a small gain in the feedback loop, there are significant residuals between 8 Hz and 60 Hz, especially
around 12 Hz and 18 Hz, which are at ≈ 30 % of the estimated OPD. Since these are modes of M2 and M3, there
is some potential to further decrease this using the prediction mode to compensate for the measurement delay
of about 3 ms.

Also, the LBTI feedback loop was not fully optimized for this demonstration, so the feedback performance
shown here does not represent LBTI’s best PHASECam control loop performance. Nevertheless, the performance
gained by using OVMS+ could be demonstrated. Later tests suggested about 15 % lower closed loop residual
with an optimized LBTI feedback loop.

As can be seen in Figure 6a, the pure integral feedback of the LBTI PHASECam9 reduces the residual to
36 % of the estimated OPD. However, there are still significant low frequency components around 10 Hz - 20 Hz
in the residual OPD. These components can be further reduced to a residual OPD of 23 % of the estimated
OPD by using the estimation provided by OVMS+ as feedforward input to the fast pathlength corrector of
LBTI, ref. Figure 6b. As illustrated, only high frequency components above 40 Hz remain. There is a very
strong disturbance frequency around 50 Hz, which is visible in the PHASECam data, but not in the OVMS data.
Thus, its source must be located within the LBTI instrument, which renders corrected by OVMS+ feedforward
impossible, unless the responsible part is identified and equipped with additional accelerometers. Preliminary
tests suggest that it is related to some resonance of the correction device, which seems to be excited more with
larger feedback gains. This theory is also supported by the comparison of Figure 6a and 6b with Figure 6c. The
extended spectrum of the residual error suggests additional internal resonances at 90 Hz, 115 Hz, and just below
170 Hz.
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Using OVMS+ feedforward, it is also possible to reduce the feedback integral gain without increasing the
residual error. As can be seen in Figure 6c, despite a reduction of the feedback integral gain from Ki = 300 to
Ki = 30, the residual OPD remains at 36 % of the estimated OPD when using the OVMS+ feedforward. This
is very important, as a smaller gain increases the robustness of the feedback loop, which is crucial for longtime
stability during observations. When using OVMS+ with a reduced feedback gain, a major part of the residual
error is due to very low frequency drifts below 8 Hz, which are not estimated by the OVMS+ algorithm.

In general, when using OVMS+ with LBTI, most of the remaining residual OPD is due to unregarded corrector
dynamics and unmeasured vibration of the instrument optics. The estimation error of OVMS+ should remain
below 8 %,5 and the error due to intrinsic sensor noise is negligible.

5. CONCLUSION

With OVMS+, the LBT is now equipped with a system to calculate piston, tip, and tilt values for all its main
mirrors in real time, aggregate these and deliver differential piston, as well as focal plane motion due to tip and
tilt angles. These values are sent via UPD multicast over ethernet and thus are easily accessible for any of the
instruments or the observatory engineers. Additionally, the software supports a prediction mode to compensate
for small delays up to 10 ms.

The calculated differential piston has been used by LBTI and the effectiveness of OVMS+ has been demon-
strated. With pure feedback, the OPD residual RMS was at 36 % of the estimated OPD RMS. This could be
reduced using OVMS+ without any other changes to 23 %. Also, the performance could be preserved at a 36 %
residual RMS by use of OVMS+ with a much smaller (factor of 10) feedback gain, which significantly improves
loop stability, robustness and thus integration time. Overall, with the experience of a handfull of LBTI runs
this year using and testing the OVMS+ system, it can be concluded that OVMS+ is very beneficial to the LBTI
team and will also be beneficial to LINC-NIRVANA, which is currently being installed at the LBT.
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