
1 
 

 

 

 

ACADEMIE UNIVERSITAIRE WALLONIE-EUROPE 

UNIVERSITE DE LIEGE 

FACULTE DE MEDECINE VETERINAIRE 

DEPARTEMENT DES SCIENCES CLINIQUES DES ANIMAUX DE COMPAGNIE ET DES 

EQUIDES 

PATHOLOGIE MEDICALE DES ANIMAUX DE COMPAGNIE 

 

 

EVALUATION DE MARQUEURS D’INFLAMMATION, DE BIOMARQUEURS 

CARDIAQUES ET DE LA FONCTION CARDIAQUE DANS LE SYNDROME DE REPONSE 

D’INFLAMMATION SYSTEMIQUE CHEZ LE CHIEN 

 

EVALUATION OF INFLAMMATORY MARKERS, CARDIAC BIOMARKERS AND 

CARDIAC FUNCTION IN THE SYSTEMIC INFLAMMATORY RESPONSE SYNDROME 

IN THE DOG 

 

 

 

 

Kris GOMMEREN 

 

THESE PRESENTEE EN VUE DE L’OBTENTION DU GRADE DE 

DOCTEUR EN SCIENCE VETERINAIRE 

ANNEE ACADEMIQUE 2016-2017 

  



2 
 

 

  



3 
 

WORDS OF GRATITUDE 

At the end of this journey I want to take the time to thank the people that helped launching this project, 

and made sure it came to an end. First of all, none of this would have been possible, without the staff of 

the small animal university clinic understanding the need for better emergency and critical care at their 

institution. Without their support, I would never have decided to invest myself in this “development 

project” which François would describe as a “North-South” transfer . 

Secondly, Dominique Peeters deserves to be praised (a lot). When I arrived at this university, I soon 

found out that Dominique shares many flaws with me, such as being overly direct and stubborn. 

However, Dominique also had the patience to let me undertake a research project that was situated miles 

away from his comfort zone, and has taken the time to familiarize himself with my weird thinking 

patterns. If he wouldn’t have been there to calm me down and get me back on track at the appropriate 

times, this PhD surely would only have ended somewhere around May 2045. 

Dr. Natali Bauer, Prof. Joachim Roth, Prof. Andreas Moritz, Prof. Kathleen McEntee and Prof. Soren 

Boysen also merit special credit. Dr. Bauer and Professor Moritz made the measurements of the 

inflammatory markers possible, and without Professor Roth I would never have been able to interpret 

our findings and compare them with the available literature. Professor McEntee and Professor Boysen 

introduced me into the world of cardiac ultrasonography, FAST ultrasound, and cardiac biomarkers. 

You have widened my horizon and the knowledge I have acquired thanks to you will hopefully one day 

help me to help ECC patients. Soren, looking forward to continuing this research with you whilst having 

a couple of beers and watching some soccer! 

I would also like to thank the members of the jury. Undoubtedly I owe you an apology for the extensive 

literature review that I wrote in the initial document, and I hope you will find these revised manuscript 

easier to digest. All of your comments improved the scientific value of this document tremendously. 

The flow diagrams, reports on correlation, improvement of figures and correction of silly typos with 

massive implications were all very much appreciated. Many people don’t know that you all do this on a 

voluntary basis, drive by nothing but passion. 

As I did spend a couple of years working on the findings of this project, in between clinics, lectures and 

work for the European Veterinary Emergency and Critical Care Society, it would be easy to forget how 

it all started. Most of the practical work that has been performed was performed by two extremely 

motivated (or perhaps naïve?) interns: Isabelle Desmas and Alexandra Garcia. Besides being awesome 

veterinarians, they are both lovely human beings, and wonderful colleagues and I have nothing but 

gratitude for how they devoted their time to this project. It was an honor to get to know you girls. 

The past eight years I also shared my office space with special people such as Elise Mercier and Kiki 

Merveille, and the last years with a bunch of ‘visiting’ clinicians. These people were extremely helpful 



4 
 

not only for being able to stand my loud music and smelly socks, but I also want to thank them for their 

kind friendship, and their intellectual support whenever I was struggling.  

Performing this PhD also made it obvious to me that I’m much more a clinician than a researcher, 

although clinical research will always remain a passion. Working on this project often meant less time 

in clinics. Clinics that are ran by our residents, interns, ‘oriented interns’, and our support staff. Finishing 

this project also would never have been possible if it weren’t for the arrival of Liz-Valerie, who gave 

me the feeling I could turn my back on our ECC patients knowing they were in extremely well trained 

hands. Hopefully they all know how much I appreciate their efforts, how guilty I’ve felt whenever I was 

unavailable. Hopefully the little time I had to spare could still be appreciated. I’m already looking 

forward to being on the floor again, being able to prepare the transition of our ECC department into the 

new clinic, and to be able to continue performing clinical research with future colleagues, residents 

interns, and students. 

Although they’ll probably never read this, I also want to thank my non-veterinary friends. Thank God 

you exist and allow me to talk about something else than dogs or cats for a change. Without the fun you 

all bring to my life, I would not be able to find the energy to do what I do, including this project. I’ll 

also take the opportunity to thank my parents and my sisters. I know they are always struggling to 

understand what I do, or what I don’t do (No I don’t operate…! No I don’t do vaccines…! Yes, I do 

have a job dad, you can stop worrying!). The past 15 years I’ve been away or absent a lot, and I might 

not have been the son, brother or uncle you wished for. Well, don’t get your hopes up to high, finishing 

this probably won’t change anything on that level, as I’ll undoubtedly keep all of the other irritating 

habits I have. I will however do the best I can to no longer miss any festivities, and I’ll be the best uncle 

and godfather I can be.  

Finally, Liesbeth, I need to thank you for making me the happy man I am. Falling in love with you 

undoubtedly is the best thing that ever happened to me, marrying you the best decision I ever took 

(moving to Leut remains debatable however ). Thanks for being there, and being you, coping with me, 

being me… Thanks for being an amazing, passionate general practitioner, a brilliant mother for Hanne 

and Jeff, and a lovely companion for me on this road that’s called life. Looking forward to build our 

house together and grow old there with you . 

 

THANKS 

Krisje G.  



5 
 

SUMMARY 

The systemic inflammatory response syndrome (SIRS) accounts for a significant part of the clinical 

syndrome of sepsis. SIRS is not limited to infectious causes, but can also be caused by non-infectious 

inflammatory conditions such as, for example, pancreatitis1. SIRS is mediated by the release of pro-

inflammatory cytokines, such as TNF-α, IL-1β and IL-6, from activated macrophages and other sentinel 

cells2. TNF-α  and IL-1β are both produced early in inflammation, with rapidly declining concentrations3 

that often are undetectable within 24 hours4-8, rendering both cytokines poor tools for diagnostic and 

prognostic purposes in critical care patients. TNF-α and IL-1β induce the release of IL-69, which readily 

circulates10. Moreover, IL-6 has a longer half-life than TNF-α and IL-1β11. IL-6 seems to be an 

interesting marker of systemic inflammation and could potentially be an interesting prognostic marker 

(increased mortality above 1000ng/L in humans)12. Concentrations however overlap too much to 

distinguish infectious from non-infectious causes, although septic patients tend to demonstrate higher 

levels. In canine medicine, evidence regarding the prognostic utility of IL-6 in SIRS and sepsis is 

unequivocal11,13,14.  

The main pro-inflammatory cytokines IL-6, IL-1β and TNF-α also initiate the acute phase response 

(APR)9, characterized by increased concentration of acute phase proteins (APPs) leading to different 

systemic effects such as fever, leukocytosis or metabolic changes15-17. APPs such as C-reactive protein 

(CRP) allow for diagnosing systemic inflammation, evaluate the extent of ongoing lesions and the 

severity of the disease, and may give prognostic information and evaluate the response to treatment17-25. 

CRP concentrations usually are less than 5mg/L in healthy dogs and reference ranges vary from 0.22 to 

16.4mg/L24. The late-coming peak of CRP at 36 to 48 hours after the start of the inflammatory process 

may reduce the sensitivity of the marker to identify patients in SIRS in an emergency setting26. CRP 

appears very useful to detect systemic inflammation in dogs27-29 while it does not seem useful to 

distinguish septic and non-septic disease in dogs30 and is a poor marker of disease severity. This is easily 

explained as CRP not only is influenced by the type of underlying disease and the timing of sampling, 

but also by the definition of ‘disease severity’. According to literature, a single CRP concentration at 

presentation probably does not add valuable prognostic information in SIRS patients, yet CRP-kinetics 

might predict prognosis in dogs with SIRS30. Moreover, CRP-kinetics could be used to monitor disease 

progression and the response to treatment27,30.  

Currently the clinical diagnosis of SIRS in canine patients is based on finding two or more abnormalities 

in clinical and basic laboratory parameters31,32, a clinical diagnosis which is highly sensitive, but poorly 

specific33. We therefore wanted to evaluate whether dogs presented to the emergency department with 

SIRS had measurable concentrations of the main inflammatory cytokines and CRP. In a cohort of 69 

dogs, CRP was increased in 73.1% (49/67) of dogs at presentation, and remained within the reference 

interval (0-14.9 mg/L) throughout hospitalization in only 6% (4/67) of cases. CRP decreased 

significantly over time during treatment and hospitalization. At the time of the follow-up visit, CRP 
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measurements (2.4±4.5 mg/L) were within reference interval (0-14.9 mg/L) in 95% (18/19) of dogs. 

CRP concentrations at presentation tended to be higher in dogs with SIRS due to an infectious cause, 

but the difference was not statistically significant. The utility of CRP as a monitoring tool for treatment 

evaluation in the acute phase appears limited based on the findings of this study. CRP concentrations 

remained elevated during the initial 24 hours and were only mildly decreased by day 3 in survivors, and 

therefore do not appear to be very informative to evaluate treatment efficacy.  

As expected based on the available literature, TNF-α was detected in only a small percentile of patients 

(29.0%), and this for a limited period. TNF-α concentrations still changed significantly over time and 

values observed at T6, T12 and T24 were significantly different from observed concentrations at T72 

and during the control visit. TNF-α shows a very early peak activity (within 2 hours), typically vanishes 

within 6 hours after induction and rarely remains present for longer than 24 hours7,34-38. Therefore TNF-

α was expected to only be detectable in dogs presented with hyperacute disease such as gastric dilation 

and volvulus (GDV) and trauma, while it probably would have been detectable at time points prior to 

presentation in other dogs. IL-6 on the other hand  is even detectable in the plasma of healthy dogs, but 

reference ranges have not been described37. Concentrations of IL-6 changed significantly during 

hospitalization, with concentrations at T0, T6 and T12 higher than at T72, T120 and the control visit. 

Therefore IL-6 concentrations did indicate systemic inflammation in our population of dogs with a 

clinical diagnosis of SIRS. 

Additionally, CRP and IL-6 were significantly correlated (p <0.001 with r 0.605). Unfortunately, based 

on our findings, neither CRP, IL-6 or TNF-α can predict underlying disease or outcome in dogs with 

SIRS, and these biomarkers seem to be of limited value to evaluate treatment efficacy in canine 

emergencies with a clinical diagnosis of SIRS.   

In human medicine, it is generally accepted that SIRS and sepsis influence cardiac function in a large 

percentile of these patients39. As an example, a quarter of hemodynamically unstable human critically 

ill patients display significant LV systolic dysfunction40-42. TNF-α, IL-1β and IL-6 induce myocardial 

depression in humans and in experimental studies in dogs43, and normalization of cardiac function is 

associated with decreases in TNF-α and IL-6 concentrations44,45. This myocardial 

depression/dysfunction/hibernation during SIRS is characterized by a variation of left and right 

ventricular systolic and diastolic dysfunction, with potential ventricular dilation despite adequate 

resuscitation. Modifications can resolve completely within 10 days to 4 weeks, and might serve as a 

protective mechanism for the patient42,46. Unfortunately, little clinical information is however available 

about the impact of SIRS and sepsis on cardiac function in dogs.  

Although cardiac function was initially evaluated via invasive procedures, practical knowledge in 

echocardiography has developed while the value of central venous and pulmonary arterial pressures has 

been questioned40. This lead to an increased interest in the use of echocardiography for the evaluation 
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of cardiovascular function47,48. Echocardiography offers the benefits of direct visualization, allowing for 

real-time assessment of cardiovascular structure and function48. Non-cardiologists can adequately 

answer a limited amount of clinical questions via focused goal-oriented echocardiography, allowing to 

titrate fluid therapy and hemodynamic care40,49. Left atrial size and the left ventricular diameter in 

diastole estimate preload50,51, while fractional shortening (FS) evaluates ventricular systolic function52.  

In veterinary medicine, left atrial size is typically assessed using LA/Ao-ratios51. Left ventricular 

diameter in diastole is normalized according to bodyweight (nLVIDd) and is easily assessed in dogs, 

just like FS53,54.  

Despite experimental evidence of myocardial hibernation in dogs43,55,56, only few clinical studies 

evaluated myocardial dysfunction via echocardiography in dogs in SIRS. A retrospective study in dogs 

with critical (both septic- and non-septic) illness reports 16 dogs with poor cardiovascular function and 

prognosis57. To the authors knowledge, no single study did ever prospectively evaluate cardiac effects 

of SIRS in dogs. Although our study only included a limited number of dogs without severe hypotension, 

it did identify a few interesting changes.  In our study, dogs with SIRS did not display clear evidence of 

cardiac dysfunction on echocardiography. Ventricular function (evaluated via FS) did not change during 

hospitalization, however left atrial size (evaluated via the LA/Ao ratio) and left ventricular diameter 

(expressed as nLVIDd) significantly increased during hospitalization. Heart rate was significantly 

associated with prognosis. Despite not reaching significance, LA/Ao and nLVIDd were higher, while 

FS was lower in survivors compared to non survivors during the initial 24 hours. Heart rate was 

negatively correlated with LA/Ao and nLVIDd and positively correlated with FS. nLVIDd was 

positively correlated with LA/Ao but negatively correlated with FS. The increase of nLVIDd and LA/Ao 

during hospitalization could either be explained by the decreasing heart rate (mediated by decreasing 

stress, pain relief, anti-inflammatory treatment or any other factor than hypovolemia). But might also 

indicate a mild degree of hypovolemia in these patients. Whether the trend towards lower FS and higher 

nLVIDd in survivors observed in this study are consequences of changing heart rates and sympathetic 

tone, explained by changes in volume status, or early signs of myocardial hibernation, can unfortunately 

not be determined in this study. The major limitation of this paper was the reluctance of clinicians in 

charge to allow for rapid evaluation of cardiac function via ultrasonography. Consequently, findings of 

this study are influenced by the inclusion of fewer dogs with in general less severe disease. Inclusion of 

all presented canine emergencies in SIRS should allow to demonstrate more significant changes, and 

needs to be the objective of future studies. 

To avoid the necessity of a time-consuming and technique-requiring cardiac ultrasonography, cardiac 

biomarkers might allow for indirect evaluation of the effects of systemic inflammation on cardiac 

function. Cardiac troponins (cTnI and cTnT) are leakage markers, as increased myocyte permeability 

secondary to irreversible or reversible injury causes the release of cTn into circulation58-61. Cardiac 
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troponin I is elevated in 43 to 85% of human critical patients62,63, while incidence varies from 36 to 69% 

for cTnT64,65.  

Increased cTnI concentration have been associated with increased pro-inflammatory cytokine levels (IL-

1β, IL-6 and TNF-α) in experimental and clinical studies in human critical patients62,66. cTn 

concentrations are correlated with the severity of myocardial hibernation67, the severity of lesions68 and 

with poor outcome62,65,68,69.  However, as concentrations remain increased for over 50 hours in humans, 

they are less useful to evaluate the response to therapeutic interventions70-73. Several studies looked into 

cTn concentrations in canine SIRS populations presented to the ICU at the same time as when our 

research was performed74-76. These papers demonstrated that increased cTnI and cTnT concentrations 

are associated with short term and long term prognosis74-76. Moreover, cTnI concentrations were 

demonstrated to be correlated with CRP concentrations at presentation77. 

Natriuretic peptides form an important endocrine system of cardiovascular and renal origin that 

participates in the integrative control of cardiovascular and renal function.  Elevated ventricular filling 

pressures secondary to chronic or acute fluid or pressure overload lead to increased cardiac wall stress, 

inducing secretion of brain natriuretic peptide (BNP) from cardiomyocytes78,79. The N-terminal portion 

of proBNP (NT-proBNP) circulates at higher levels, has a longer half-life, is less likely to be perturbed 

by acute stimuli, and rise more steeply for a given degree of cardiac impairment, compared with 

BNP80,81. NT-proBNP concentrations should be interpreted carefully without proper understanding of 

renal function. Increased NT-proBNP concentrations in critical human patients indicates myocardial 

depression82-85. NT-proBNP levels are poor markers to distinguish SIRS from sepsis, but are correlated 

with hemodynamic and echocardiographic parameters, indicating the severity of cardiac dysfunction86-

88. Finally, several studies identified that NT-proBNP is a valuable prognostic marker in human SIRS89-

92. Only very limited studies have been performed in domestic animals and until now increased NT-

proBNP and/or BNP concentrations have been described in pulmonary disease, renal disease, and some 

other systemic illnesses such as canine babesiosis93-98, but their role as a potential marker for diagnosis, 

severity, prognosis or treatment evaluation in SIRS has not been studied in the dog.  

Our study detected significant changes in concentrations of cTnT and NT-proBNP during 

hospitalization. cTnT concentrations were higher at T12, T24 and T72 and were always below the lower 

limit of detection at the control visit. NT-proBNP was significantly higher at T24, T72 and T120. 

Moreover this paper confirmed that serum cTnT concentrations are correlated with survival in SIRS 

patients, but did not find a significant correlation with increased NT-proBNP concentrations.  

Besides significant correlations demonstrated between parameters within each paper, we also identified 

several correlations between inflammatory markers, cardiac biomarkers and echocardiographic 

parameters which are interesting to note. nLVIDd appeared to be mildly positively correlated with cTnT 

and NT-proBNP concentrations, suggesting a link between echocardiographic findings and cardiac 



9 
 

biomarkers in this population of SIRS patients. Moreover cTnT concentrations were positively 

correlated with TNF-α, suggesting a direct link between inflammation and cardiac biomarkers. However 

inversely NT-proBNP was negatively correlated with IL-6 concentrations. The small study population 

and the bias towards the selection of less severely affected patients (especially in the echocardiographic 

study) should caution us to interpret all of these findings very carefully. 

The research performed in this PhD demonstrated that biochemical confirmation of inflammation can 

indeed be identified in the majority of dogs presented to an emergency department with a clinical 

diagnosis of SIRS. Unfortunately, CRP did not appear to be an independent predictor of prognosis in 

this cohort of patients. The third study confirmed the prognostic value of cardiac troponins in canine 

emergencies presented with SIRS. However, cardiac biomarkers offer interesting but only indirect 

information, as an increase can be the result of a primary cardiac dysfunction, myocardial hibernation 

or inflammatory and/or ischemic effects on the cardiorespiratory system. Only when critical care in 

companion animals will be more frequently confronted with ‘chronically critical cases’, such as 

ventilator patients, where markers might offer an additional method to evaluate treatment efficacy, will 

the application of cardiac biomarkers to evaluate the response to therapy gain interest. The value of 

cardiac biomarkers until then in canine SIRS appears to be rather limited, as the obtained information is 

rather unspecific, and for NT-proBNP appears to be obtained only late in the process. 

It therefore seems much more interesting to investigate the possibility to adequately train veterinarians 

in the rapid assessment of cardiac function and fluid status via ultrasound. These real-time images could 

potentially allow to detect cardiac dysfunction, hypo- or hypervolemia, and allow the monitoring of the 

response to therapeutic interventions. This option can only be valid when veterinarians feel competent 

in the performance of this complementary examination. If veterinarians are faced with an emergency, 

the step towards the use of ultrasonography is bigger than one might expect. Almost half of our patients 

did not receive a cardiac ultrasound as the attending clinician thought this would be too stressful or time 

consuming. As the attending clinician remained blinded to the obtained results, one must also consider 

that the cardiac ultrasound would not provide any useful information to the clinician. We are currently 

investigating the possibility to perform an adequate basic cardiac ultrasound after a minimal training 

programme. These findings have been quite encouraging, and it seems that a 6 hour theoretical course 

allows for ‘naïve’ veterinarians to perform repeatable echocardiographic studies in healthy research 

beagles. Whether findings are also repeatable in ill clinical patients however remains to be determined.  

If we manage to design minimal training programmes for basic cardiac ultrasonography, we hope this 

will allow for easier implementation of echocardiography techniques in a clinical setting. Larger, ideally 

multicentre studies including all SIRS or emergency patients will allow us to confirm the findings of 

these papers. Furthermore, with these basic tools, we should also be capable to investigate these 

parameters in experimental and clinical research projects.  
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RESUME 

Le syndrome de réponse inflammatoire systémique (SIRS) joue un rôle significatif dans le syndrome de 

sepsis. Le SIRS peut être causé par des agents infectieux mais aussi par diverses affections 

inflammatoires non infectieuses comme, par exemple, une pancréatite aiguë1. Ce syndrome est induit  

par le relargage de cytokines pro-inflammatoires, comme TNF-α, IL-1β et IL-6, par les macrophages 

activés et d’autres cellules sentinelles2. TNF-α et IL-1β sont produites tôt dans le processus 

inflammatoire, avec des concentrations qui chutent rapidement3 et qui sont souvent non détectables dans 

les 24 heures4,7,8,35,99, ce qui rend le dosage de ces cytokines peu utile pour préciser le diagnostic et le 

pronostic chez des patients en état critique. TNF-α et IL-1β induisent le relargage rapide d’IL-69,10. Cette 

cytokine, qui a une demi-vie plus longue que TNF-α et IL-1β11, semble constituer un marqueur 

d’inflammation systémique intéressant et pourrait aussi être un marqueur pronostique intéressant 

(augmentation du risque de mortalité si concentration sérique en IL-6 > 1000ng/L chez l’homme12). 

Cependant, les concentrations en IL-6 se chevauchent de trop pour permettre la distinction entre une 

cause infectieuse et une cause non-infectieuse de SIRS, même si les patients septiques tendent à avoir 

des concentrations supérieures. En médecine canine, l’utilité du dosage de l’IL-6 lors de SIRS ou de 

sepsis est non équivoque11,13,14.  

Les cytokines pro-inflammatoires majeures que sont IL-6, IL-1β et TNF-α initient également la réponse 

de la phase aiguë de l’inflammation (APR)9, caractérisée par l’augmentation de la concentration en acute 

phase proteins (APPs) qui déclenchent divers effets systémiques comme la fièvre, une leucocytose ou 

certaines modifications métaboliques15-17. La protéine C-réactive (CRP) est une APP dont le dosage est 

utile en médecine vétérinaire pour diagnostiquer une inflammation systémique et en évaluer la sévérité, 

donner des informations pronostiques et évaluer la réponse au traitement17-25. Cependant, chez l’homme, 

le pic de concentration en CRP est tardif et survient 36 à 48 heures après le début de l’inflammation, ce 

qui peut réduire la sensibilité de ce marqueur pour la détection de patients en SIRS reçus en urgence26. 

La concentration en CRP est habituellement < 5mg/L chez le chien sain, les valeurs de référence variant 

de 0.22 à 16.4 mg/L24. Le dosage de la CRP semble très utile pour détecter une inflammation systémique 

chez le chien27-29 alors qu’il ne semble pas utile pour distinguer un patient septique d’un patient non-

septique dans cette espèce30 et c’est un mauvais marqueur de la sévérité de la maladie. Ceci est expliqué 

par le fait que la valeur de CRP est influencée par le type de maladie sous-jacente, le timing du 

prélèvement, mais aussi par la définition de ‘la sévérité de la maladie’. Un seul dosage de la 

concentration en CRP lors de la présentation n’apporte probablement pas d’information pronostique 

pour les chiens en SIRS ; cependant, la cinétique de la CRP pourrait prédire le pronostic des chiens en 

SIRS30. De plus, cette cinétique pourrait aussi permettre le monitoring de l’évolution de la maladie et de 

la réponse au traitement27,30.  
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Actuellement, le diagnostic clinique de SIRS chez le chien est basé sur la présence de deux ou plusieurs 

anomalies à l’examen clinique et dans un bilan sanguin de base31,32. Cette méthode de diagnostic est très 

sensible mais très peu spécifique33. C’est pourquoi nous avons voulu évaluer si les chiens présentés en 

urgence avec un SIRS avaient des concentrations mesurables en CRP, TNF-α et IL-6. Dans une cohorte 

de 69 chiens, la concentration sérique en CRP était augmentée chez 73.1% (49/67) des chiens lors de la 

présentation, et elle est restée dans l’intervalle de référence (0-14.9 mg/L) au cours de l’hospitalisation 

dans seulement 6% (4/67) des cas. La concentration en CRP a diminué en cours de traitement et 

d’hospitalisation. Lors de la visite de contrôle/suivi, la concentration en CRP était dans l’intervalle de 

référence (2.4±4.5 mg/L) chez 95% (18/19) des chiens. La concentration en CRP lors de la présentation 

tendait à être plus haute chez les chiens souffrant d’une maladie infectieuse que chez les autres, mais la 

différence n’était pas statistiquement significative. L’utilité du dosage de la CRP comme moyen de  

monitoring de l’efficacité du traitement lors de la phase aiguë de SIRS apparait limitée sur base des 

résultats de cette étude. En effet, la concentration en CRP est restée élevée au cours des 24 premières 

heures d’hospitalisation et elle était seulement légèrement diminuée à J3 chez les chiens survivants.  

Comme attendu sur base des données de la littérature, du TNF-α n’a été détecté dans le sérum que d’un 

faible pourcentage des patients (29.0%), et cela pendant une période de temps limitée. La concentration 

en TNF-α montre un pic très précoce après le début de l’inflammation (endéans les 2 heures), elle 

disparait le plus souvent endéans les 6 heures après l’induction et elle reste rarement détectable pendant 

plus de 24 heures7,34-38. C’est pourquoi, nous nous attendions, dans cette étude, à ne détecter du TNF-α 

que chez les chiens souffrant d’une maladie suraiguë comme une torsion d’estomac ou un trauma, alors 

que cette cytokine aurait probablement été détectée avant la présentation en urgence chez les autres 

chiens. L’IL-6 par contre est détectable même dans le plasma des chiens sains, mais aucun intervalle de 

référence n’est rapporté pour l’instant chez le chien37. Dans ce travail, les concentrations en IL-6 n’ont 

pas changé significativement en cours d’hospitalisation, mais elles étaient significativement supérieures 

en cours d’hospitalisation par rapport à celles obtenues lors de la visite de contrôle. C’est pourquoi, la 

concentration en IL-6 indique bien la présence d’une inflammation systémique dans notre population de 

chiens avec un diagnostic clinique de SIRS. 

De plus, les concentrations logarithmiques en CRP et  IL-6 étaient significativement corrélées (p <0.001 

avec r = 0.479). Malheureusement, sur base de nos résultats, ni la CRP, ni l’IL-6 ou le TNF-α ne peuvent 

prédire la maladie sous-jacente ou l’issue chez les chiens en SIRS, et ces biomarqueurs semble avoir 

une valeur limitée pour évaluer l’efficacité du traitement chez les chiens présentés en urgence avec un 

diagnostic clinique de SIRS.   

En médecine humaine, il est généralement accepté que le SIRS et le sepsis influencent la fonction 

cardiaque chez un grand pourcentage de patients39. Par exemple, un quart des patients en phase critique 

qui sont instables du point de vue hémodynamique présentent une dysfonction systolique significative 
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du ventricule gauche (LV)40-42. TNF-α, IL-1β et IL-6 induisent une dépression myocardique chez 

l’homme et chez le chien en conditions expérimentales43, et la normalisation de la fonction cardiaque 

est associée à la diminution des concentrations en TNF-α et IL-644,45. Cette 

dépression/dysfonction/hibernation myocardique lors de SIRS est caractérisée par une variété de 

dysfonction systolique et diastolique ventriculaire gauche et droite, avec une dilatation ventriculaire 

potentielle malgré une ressuscitation adéquate. Ces modifications peuvent se résoudre complètement 

endéans 10 jours à 4 semaines, et elles peuvent constituer un mécanisme de protection du patient42,46. 

Malheureusement, il y a très peu d’information clinique à propos de l’impact du SIRS et du sepsis sur 

la fonction cardiaque chez le chien.  

Même si la fonction cardiaque a d’abord été évaluée par des procédures invasives, les connaissances en 

échocardiographie se sont développées alors que la valeur clinique des pressions veineuse centrale et 

artérielle pulmonaire a été remise en question40. Ceci a augmenté l’intérêt pour l’utilisation de 

l’échocardiographie pour l’évaluation de la fonction cardiovasculaire47,48. L’échocardiographie permet 

l’évaluation en temps réel des structures et de la fonction cardiovasculaire48. Des médecins non 

cardiologues peuvent ainsi répondre de manière adéquate à un nombre limité de questions cliniques via 

une échocardiographie ciblée, ce qui permet le suivi étroit de la fluidothérapie et du traitement  

hémodynamique40,49. La taille de l’oreillette gauche et le diamètre du ventricule gauche en diastole 

estiment la précharge50,51, alors que la fraction de raccourcissement (FS) évalue la fonction ventriculaire 

systolique52.  En médecine vétérinaire, la taille de l’oreillette gauche est évaluée à l’aide de rapports 

entre les tailles de l’oreillette gauche et de l’aorte (LA/Ao-ratios)51, le diamètre de la ventricule gauche 

est exprimé par rapport au poids (nLVIDd) et ces paramètres, ainsi que le FS sont facilement évaluables 

chez le chien53,54.  

Malgré les preuves expérimentales de l’existence de l’hibernation myocardique chez le chien43,55,56, peu 

d’études cliniques ont évalué la dysfonction myocardique par échocardiographie chez les chiens avec 

SIRS. Une étude rétrospective a rapporté 16 chiens en état critique (souffrant de maladie septique ou 

non)  avec une dysfonction cardiovasculaire et un mauvais pronostic57. A la connaissance de l’auteur, 

aucune n’a pour l’heure évalué de façon prospective les effets cardiaques du SIRS chez le chien. Bien 

que notre étude ne comporte qu’un nombre limité de chiens, elle a permis d’identifier quelques 

modifications intéressantes. Ainsi, il n’y avait pas de signes évidents de dysfonction cardiaque à 

l’échocardiographie chez nos chiens en SIRS. La fonction ventriculaire (évaluée par FS) n’a pas changé 

en cours d’hospitalisation ; cependant, la taille de l’oreillette gauche (évaluée par le rapport LA/Ao) et 

le diamètre du ventricule gauche (nLVIDd) a significativement augmenté, et les rapports observés à J3 

étaient similaires à ceux observés lors de la visite de contrôle. De plus, une FS plus petite et un LA/Ao 

plus grand étaient associés à un meilleur pronostic. Un LA/Ao plus grand et une rapide augmentation 

du LA/Ao chez les survivants (en comparaison avec les non-survivants) illustrent probablement 

l’importance de la volémie et de sa restauration chez les chiens en SIRS. La FS plus petite chez les 
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survivants pourrait indiquer une hibernation myocardique, comme décrit chez l’homme en SIRS. Le 

principal problème dans le design de cette étude réside dans le refus de certains cliniciens de permettre 

l’évaluation rapide de la fonction cardiaque de leur patient par échocardiographie. Par conséquent, les 

données de cette étude sont influencées par l’inclusion de moins de chiens en général souffrant de 

maladie moins sévère. L’inclusion de tous les chiens présentés en urgence en SIRS aurait probablement 

permis de démontrer des modifications plus importantes dans les indices étudiés. Ceci sera étudié dans 

des études futures.  

Pour éviter la nécessité d’une échocardiographie, l’utilisation de biomarqueurs cardiaques pourrait 

permettre l’évaluation indirecte des effets de l’inflammation systémique sur la fonction cardiaque. Les 

troponines cardiaques (cTn) sont des marqueurs de fuite cellulaire liée à l’augmentation de la 

perméabilité des cardiomyocytes secondaire à un dommage réversible ou irréversible causant la 

libération de cTn dans la circulation58-61. La concentration en troponine cardiaque I (cTnI) et T (cTnT) 

est élevée chez, respectivement, 43 à 85% et 36 à 69% des patients humains en phase critique62,63,64,65.  

Une augmentation de la concentration en cTnI a été associée à une augmentation de la concentration en  

cytokines pro-inflammatoires (IL-1β, IL-6 et TNF-α) chez des patients humains en phase critique 

(études expérimentales et cliniques)62,66. Les concentrations en cTn sont corrélées à la sévérité de 

l’hibernation myocardique67, la sévérité des lésions68 et le caractère grave du pronostic62,65,68,69.  

Cependant, comme les concentrations demeurent augmentées pendant plus de 50 heures chez l’homme, 

elles sont moins utiles pour évaluer la réponse au traitement70-73. Quelques études concomitantes à la 

nôtre ont investigué les concentrations en cTn dans des populations de chiens en SIRS74-76. Ces études 

ont démontré qu’une augmentation des concentrations en cTnI et cTnT est corrélée au pronostic à court 

et à long terme74-76. De plus, la concentration en cTnI est corrélée à la concentration en CRP à la 

présentation77. 

Les peptides natriurétiques forment un important système endocrine d’origine cardiovasculaire et rénale 

qui participe au contrôle intégré des fonctions cardiovasculaire et rénale. Des pressions de remplissage 

ventriculaires élevées secondairement à une surcharge volumique ou en pression, aiguë ou chronique, 

entrainent une augmentation du stress de la paroi cardiaque, ce qui induit la sécrétion du peptide 

natriurétique cérébral (BNP) à partir des cardiomyocytes78,79. La portion N-terminale du proBNP (NT-

proBNP) se retrouve à de plus fortes concentrations dans la circulation, a une plus longue demi-vie, et 

est moins influencée par les stimuli aigus. De plus, la concentration plasmatique en NT-proBNP 

augmente plus fortement que celle en BNP pour un degré donné de dysfonctionnement cardiaque80,81. 

Une valeur de concentration en NT-proBNP doit être interprétée avec prudence sans connaissance de la 

fonction rénale du patient. Une augmentation de la concentration en NT-proBNP chez un patient humain 

en phase critique indique la présence d’une dépression myocardique82-85. La valeur de NT-proBNP est 

un mauvais marqueur de distinction entre SIRS et sepsis, mais cette valeur est corrélée avec certains 
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paramètres hémodynamiques et échocardiographiques, et elle constitue donc un indicateur de la sévérité 

de la dysfonction cardiaque86-88. Enfin, plusieurs études rapportent que le NT-proBNP est un marqueur 

fiable de pronostic lors de SIRS chez l’homme89-92. Seulement un nombre limité d’études sont rapportées 

chez les animaux domestiques. Ainsi, une augmentation des concentrations en NT-proBNP et/ou BNP 

ont été décrites dans des maladies pulmonaires, rénales ou systémiques (comme la babésiose canine)93-

98, mais leur valeur comme marqueur de diagnostic, sévérité, pronostic ou pour l’évaluation de la réponse 

au traitement lors de SIRS n’a pas été étudiée chez le chien.  

Notre étude, réalisée sur des chiens présentés en urgence chez qui un diagnostic clinique de SIRS a été 

posé, a confirmé que la concentration sérique en cTnT est corrélée avec la survie chez ces chiens. De 

plus, notre étude a aussi  détecté des concentrations en NT-proBNP augmentées (avec les concentrations 

les plus hautes observées après 72 heures d’hospitalisation), et démontré que ces concentrations 

augmentées sont négativement corrélées avec la probabilité de survie, quelle que soit la catégorie de 

maladie à l’origine du SIRS.  

La recherche réalisée dans cette thèse de doctorat a démontré qu’une inflammation peut être 

biochimiquement confirmée (via le dosage sérique de cytokines pro-inflammatoires) chez la majorité 

des chiens présentés en urgence avec un diagnostic clinique de SIRS. Malheureusement, la CRP ne 

semble pas être un marqueur indépendant fiable de prédiction du pronostic dans cette cohorte de chiens. 

La troisième étude a confirmé la valeur pronostique des troponines cardiaques, et elle a démontré que le 

NT-proBNP apporte de l’information supplémentaire sur le pronostic des chiens présentés en SIRS. 

Cependant, les biomarqueurs cardiaques offrent une information intéressante mais seulement indirecte 

car une augmentation peut indiquer une maladie cardiaque primaire, de l’hibernation cardiaque ou des 

répercussions d’une inflammation ou d’une ischémie sur le système cardiorespiratoire. L’utilisation des 

biomarqueurs cardiaques pour évaluer la réponse au traitement gagnera de l’intérêt lorsque la médecine 

de soins intensifs sera plus fréquemment confrontée à des cas critiques ‘plus chroniques’, comme des 

patients sous ventilation, où les marqueurs peuvent offrir une source d’information supplémentaire à 

propos de l’efficacité du traitement. Actuellement, l’utilité des biomarqueurs cardiaques lors de SIRS 

chez le chien apparait assez limité puisque l’information obtenue est peu spécifique, et, pour ce qui 

concerne NT-proBNP, apparait être obtenue seulement tard dans l’évolution. 

C’est pourquoi, il apparait beaucoup plus intéressant d’investiguer la possibilité d’entrainer de façon 

adéquate les vétérinaires à l’évaluation rapide de la fonction cardiaque et le statut volumique. Ces images 

en temps réel pourraient permettre de détecter une dysfonction cardiaque, une hypo- ou une 

hypervolémie, et ainsi permettre le monitoring de la réponse au traitement. Cette option n’est valable 

que si les vétérinaires se sentent compétents pour la réalisation de cet examen complémentaire. 

Lorsqu’un vétérinaire est confronté à une urgence, le pas à franchir pour utiliser l’échographie est plus 

grand qu’il n’y parait. Presque la moitié des patients inclus dans nos études n’ont pas subi 
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d’échocardiographie car le clinicien en charge du cas pensait que cet examen serait trop stressant ou 

prendrait trop de temps. Nous investiguons pour le moment la possibilité de réaliser un examen 

échocardiographique de base après un programme d’entrainement minimal. Nos données sont 

encourageantes et il semble qu’un cours de 6 heures permet à des vétérinaires ‘novices’ de réaliser des 

examens échocardiographiques répétables chez des chiens expérimentaux de race beagle. Il nous reste 

à déterminer si les données obtenues sont aussi répétables chez des chiens cliniquement malades. Si 

nous parvenons à mettre au point des programmes d’entrainement minimaux pour l’échocardiographie 

de base, nous espérons que cela facilitera l’implantation de ces techniques dans le contexte clinique 

général de la profession vétérinaire. 
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1. PREFACE 

Contrary to most PhD projects, this manuscript will contain a vast and broad literature review. In fact 

the starting point of this project for me was to orient the future clinical research that I would like to 

perform during the years to come. Several years in emergency and critical care have taught me the 

obvious: despite all energy and commitment, a portion of our patients will in the end not survive. Some 

of the most frustrating scenarios are those patients presented in hypotensive shock that you do not 

manage to resuscitate, or possibly even more devastating those that you tried to resuscitate but 

apparently overcharged, and subsequently die due to volume overload. I still clearly remember an 

American Staffordshire terrier with an acute cholangiohepatitis on which we ‘diagnosed’ a decreased 

systolic function at presentation, and whom after appropriate therapy for his cholangiohepatitis was 

found to have a restored systolic function. This dog, and the large amount of feline emergencies 

presenting with bradycardia and hypotension, spiked my interest in the cardiac function in emergency 

patients. Trying to read up on the available literature on cardiac function in canine emergencies, I soon 

figured out that very little had been studied. In contrast, in human emergency and critical care literature, 

I discovered a huge amount of interesting information.  

My aim for the performed research was to find new ways to help general practitioners providing better 

care for canine emergencies. I therefore invite the reader to look at this thesis as my personal 

investigation on some easily available tools to evaluate cardiac function in canine emergencies presented 

with systemic inflammation. This journey resulted in three distinct chapters/studies, and these required 

a vast literature review comparing the available human and canine literature to allow the reader to 

understand the goals of the research. 
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2. LITERATURE REVIEW 

2.1 INTRODUCTION 

Current veterinary guidelines advise to provide cardiovascular support to patients presented to the 

emergency department with signs of hypoperfusion in a step-wise fashion100. Canine emergencies 

presented with shock secondary to a systemic inflammatory response syndrome (SIRS), receive large 

volumes of isotonic crystalloids for initial cardiovascular support. Insufficient response is answered by 

the administration of hypertonic saline solutions and/or (although controversy surrounds this topic) 

colloid solutions. Most textbooks recommend the administration of vasopressors or inotrope therapy 

only after these procedures fail to result in an improved circulation. 

In human medicine, it has been generally accepted that SIRS leads to major implications on cardiac 

function in a large percentile of patients39. Little clinical information is available about the impact of 

SIRS on cardiac function in dogs. If a similar proportion of dogs experiences cardiac consequences of 

SIRS, then our current veterinary concept of a stepwise approach to the cardiovascular support of these 

patients may require rethinking. Obviously, the first hurdle in this thought process would be to 

investigate whether dogs indeed display cardiac consequences of SIRS. 

SIRS is a syndrome, which can be provoked by a multitude of diseases. Therefore, although an 

experimental design would have allowed to limit the amount of unknown factors, and would allow for 

a more controlled evaluation of cardiac consequences, it would also only represent a single inciting 

factor, and findings would be hard to extrapolate to a clinical setting. Moreover, such studies are not 

without possible harm to the studied dogs. Therefore, we decided to perform prospective clinical studies, 

accepting the typical difficulties this decision would imply.  

In the following chapters we will try to give an overview of the current evidence on the effects of SIRS 

on cardiac function. Throughout the literature overview, we will first present the current evidence in 

human medicine, and compare this with the available literature in canine veterinary medicine. 

The first chapter will discuss the definition and clinical diagnosis of SIRS and sepsis, as well as its’ 

clinical importance. Subsequent chapters will discuss the role of three key pro-inflammatory cytokines 

(interleukin-1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α)) in the 

development of SIRS. Afterwards the focus shifts to the acute phase response (APR) and how acute 

phase proteins (APP) such as C-reactive protein (CRP) could help to more rapidly obtain a clinical 

diagnosis of SIRS, provide additional information regarding disease severity, prognosis for survival, 

and guide and monitor therapy. 
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The next chapter is dedicated to the historical evolution of cardiac evaluation in human emergency and 

critical care (ECC) settings. The current standards in human ECC are afterwards compared with the 

current state in small animal veterinary care. 

The past decade also saw the development of cardiac biomarkers such as troponins and natriuretic 

peptides, allowing for point-of-care evaluation of cardiac function and integrity. Although biomarkers 

do not replace gold standard diagnostics, they might be useful in directing care in the early phase after 

presentation to an emergency or intensive care unit. A literature overview of the information available 

for cardiac troponins (cTn) and brain natriuretic peptide (BNP), with an emphasis on their use in SIRS 

and sepsis is therefore provided.  

When reading this literature overview, it will hopefully become clear to the reader that very little is 

currently known about the effect of SIRS and sepsis on cardiac function in dogs… and this lack of 

information constituted the basis of this PhD. 

2.2 SIRS AND SEPSIS 

Sepsis was until recently defined as SIRS secondary to an infectious cause101. The third international 

consensus definition for sepsis and septic shock however changed this definition as they considered it 

overemphasized inflammation. Sepsis was therefore redefined as a life-threatening organ dysfunction 

caused by a dysregulated host response to infection102.  Such an infection is usually caused by Gram 

negative and positive bacteria, whose membrane substances (such as lipopolysaccharides, lipoteichoic 

acid and peptidoglycanes) stimulate the cellular immune system103. Endotoxin (a heat stable toxin from 

the outer membrane of gram-negative bacteria) binds to receptors on cell-membranes and induces 

inflammation and cytokine production104. A cascade of events leads to maldistributed blood flow, 

disturbed oxygen delivery, nitric oxide production, increased catecholamine concentrations lead to 

organ dysfunction and multiple organ failure (MOF)105. Mortality rates of sepsis are as high as 50%106 

in human medicine and range from 20% to 68%101 in veterinary medicine. The organ dysfunction seen 

during sepsis is however associated with less cellular death than commonly assumed107.  

The third international consensus meeting has also recommended to eliminate the terms sepsis syndrome 

and septicemia to improve future clarity and content validity of publications108. Moreover, severe sepsis 

which was defined as a subset of sepsis with organ failure, has been considered redundant102. Septic 

shock is now redefined as a subset of sepsis in which underlying circulatory and cellular metabolism 

abnormalities are profound enough to substantially increase mortality102. This again is in contrast to the 

‘narrower’ old definition in which septic shock was defined as a state of sepsis which required 

vasopressor therapy despite adequate resuscitation109. However, the new consensus definitions have not 

yet been adopted by all medical councils. Moreover, as most publications in this review applied the old 

nomenclature, we still refer to severe sepsis and septic shock as they are defined in the previous 

surviving sepsis campaigns for ease of understanding109. 
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Although infection results in direct tissue injury, the inflammatory response accounts for a significant 

part of the clinical syndrome1. As an example, many complications described in leptospirosis are caused 

by the cytokine network of the host’s inflammatory response, activating coagulation and 

fibrinolysis110,111. In 1992, the term SIRS was introduced1 to describe the effects of systemic activation 

of inflammation on organ function33. SIRS is not limited to infectious causes, but can also be caused by 

several non-infectious inflammatory conditions such as pancreatitis (Figure 1)1. Meeting the clinical 

diagnostic criteria of SIRS is associated with lower survival rates and longer hospitalization, and if not 

successfully addressed, can lead to multiple organ failure, shock or death in humans and dogs31.  

 

Currently, the clinical diagnosis of canine SIRS is based on finding two or more abnormalities in five 

clinical and basic laboratory parameters31,32. Different guidelines have been published, with mild 

differences regarding the cut-offs for body temperature, respiratory rate and white blood cell count: 

     Hauptman et al32  Brady and Otto31 

- Hypothermia or hyperthermia <38.0°C or >39.2°C   <38°C or >40°C  

- Tachycardia   >120 beats/min   >120 beats/min  

- Tachypnea   >20 breaths/min  >40 breaths/min 

- Leukocytosis or leukopenia <6000 or > 16.000 x 10³/µL  <5000 or >18000 x 10³/µL 

- Band neutrophils  >3%    >3% 

Figure 1 : The relationship of infection, SIRS, sepsis, severe sepsis and septic shock. From Brunicardi F.C., 

Andersen D.K., Billiar T.R., Dunn D.L., Hunter J.G., Matthews J.B. and Pollock R.E., Schwartz’s Principles 

of Surgery, 9th Edition 
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The high sensitivity (97%) of this clinical screening for SIRS is very much appreciated as delayed 

diagnosis of SIRS can have severe consequences33. This high sensitivity has however recently been 

questioned in human medicine112 and several studies indicated that classical inflammatory markers such 

as hyperthermia, leukocytosis, leukopenia and a left shift, as well as this clinical diagnosis are unspecific 

markers of SIRS in dogs33,113. This places the emergency veterinarian in a difficult position, proposing 

time-consuming and costly diagnostics and procedures without the guarantee of finding an underlying 

cause. Moreover, the clinical diagnosis of SIRS lacks prognostic information and does not allow to guide 

treatment114. 

In conclusion, SIRS remains a theoretical concept based on a clinical diagnosis rather than a practical 

tool in human and veterinary medicine, as it is unspecific, has questionable sensitivity, and fails to guide 

treatment decisions or contribute significantly to prognosis. Therefore alternative, ideally inexpensive, 

easily available, and practical tests correctly identifying dogs in SIRS, guide therapy and offer 

prognostic information are needed in veterinary emergency and critical care. 

2.3 INFLAMMATORY CYTOKINES 

Tissue damage and microbial invasion lead to the circulation of substances that are often referred to as 

DAMPs (damage-associated molecular patterns such as high-mobility group box 1) and PAMPs 

(pathogen-associated molecular patterns)115, which are alarmins, recognized by pattern-recognition 

receptors (PRR) on sentinel cells116. These sentinel cells (such as macrophages, dendritic cells and mast 

cells) are the key components of the inflammatory response of the innate immune system. Toll-like 

receptors are the most important PRR and activate the genes for the three major pro-inflammatory 

cytokines: interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the 

sentinel cells116. The release of pro-inflammatory cytokines from sentinel cells leads to the systemic 

effects of the inflammatory response in addition to local tissue inflammation2. Excessive production of 

pro-inflammatory cytokines secreted by macrophages activates neutrophils, the coagulation system and 

other mediator cascades potentially leading to organ dysfunction117. IL-1β, IL-6 and TNF-α also induce 

the hepatic APR, fever, activate T-, B- and NK-cells and induce IL-2 production in T-cells, inducing 

further organ dysfunction118-120. 

Cytokines are protein mediators with local effects on surrounding cells via cell-to-cell communication, 

and systemic (endocrine) effects, via transport via the blood stream, playing an important part in the 

APR15,121-123. Cytokines affect many different cell types, and cells rarely secrete a single cytokine at a 

time. Moreover, cytokines are redundant in their biological activities in that many different cytokines 

have similar effects118,124,125. TNF-α, IL-1β and IL-6 indeed exert a broad range of biological effects with 

substantial cross-species activity126-130. Finally, cytokine-mediated signals are transient, and the 

delivered message may vary over time125. This complexity results in a cytokine network - whereby a 

series of cytokines has a concerted effect, or antagonize each other - with different signals by complex 



35 
 

mixtures of cytokines9,123. IL-1β and TNF-α are IL-1β type cytokines acting through different receptors 

than IL-6 type cytokines. IL-1β type cytokines elicit a primary auto-stimulatory signal131-133, stimulating 

the release of secondary cytokine signal (IL-6 type cytokines)134, while IL-6 type cytokines exert a 

negative feed-back on the production of IL-1β type cytokines135-138. 

Lipopolysaccharide (LPS) endotoxins and different bacterial components from Gram positive bacteria 

produce similar inflammatory and hemodynamic changes, suggesting a common pathway of injury106,139. 

Endotoxin is cleared from the circulation within minutes, making it a poor disease marker in a clinical 

setting140, and suggesting that secondary mediators provoking the sustained systemic effects141,142, such 

as the inflammatory cytokines may be more interesting markers of disease.  

Variable host reactivity mirrored in the cytokine response, plays a major role in defining the prognosis 

of septic patients143,144. Gene polymorphism of cytokines such as TNF-α and interleukins IL-1β and IL-

6 contributes influences prognosis and survival scores2,145-149. Sensitivity to LPS also differs between 

species, with rabbits being much more sensitive than mice3 and humans more sensitive than 

dogs141,142,150-152. 

Cytokines also play a role in myocardial depression in sepsis. The presence of negatively inotropic 

factors in septic plasma was suspected in the early 70s5, and was confirmed in experimental studies 

demonstrating in vitro depression of rodent cardiac myocyte contractile function by serum from human 

acute septic shock patients153,154. Other evidence confirmed the suspicion of a circulating myocardial 

depressant substance45,106,155,156. It was demonstrated that cytokine containing supernatants of activated 

macrophages exhibit myocardial depressant activity157,158. Subsequent studies demonstrated that these 

myocardial depressant substances were heat-labile and proteinase-sensitive and had a molecular mass 

of 10 to 30kD, consistent with cytokines, yet excluding electrolytes, catecholamines, pharmacological 

agents and prostaglandins and leukotrienes45,153,155.  

IL-1β and TNF-α were subsequently found to be responsible for myocardial depression126,159-161. TNF-

α and IL-1β demonstrate a dual or biphasic mechanism for myocardial depression126. A rapid (<10min) 

depressing effect126, and a later onset myocardial depression. This depression is unrelated to direct 

cytotoxicity126. As TNF-α is produced very early in inflammation, followed by waves of IL-1β and IL-

69, these pivotal pro-inflammatory cytokines will be discussed in this chronological order in the present 

manuscript. 
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2.3.1 Tumor necrosis factor α 

2.3.1.1 Experimental studies and human experience 

2.3.1.1.1 Molecular properties and analysis 

Tumor necrosis factor alfa (TNF-α) also previously described as cachectin, is a polypeptide that is 

induced by endotoxins, muramyl dipeptide (MDP) and macrophage migration inhibitory factor (MIF)162 

and is primarily produced by monocytes3,163.  

It is a 17kDa monomer, shaped as an elongated 

antiparallel β-pleated sheet, circulating as a trimer164, and 

produced as a soluble and membrane-bound form. The 

membrane bound form of TNF-α is cleaved from the cell 

surface by TNF-α convertase9. The biological function of 

TNF-α is largely influenced by two receptors: soluble 

TNF receptors (sTNFR) and cell surface TNF receptors 

(cTNFR)165. At least two different forms of soluble 

neutralizing receptors exist, with different properties166. 

TNF-α is not re-released after binding the soluble 55kDa 

receptor, but is released again from the 75kDa receptor166. 

The soluble TNF-α receptor type 1, often referred to as 

TNF binding protein (TNF-bp) is even present in the 

blood of septic patients in the absence of circulating TNF-α167 and soluble TNF-α receptors have a longer 

half-life in plasma than TNF-α itself168. 

The used anticoagulant affects assayed levels with comparable results for TNF-α in serum and EDTA, 

but lower levels in lithium heparin and sodium citrate10. If blood samples are separated immediately 

after sampling, TNF-α remains stable at 4°C for up to 6 hours and remains stable at -70°C for prolonged 

(although undefined) periods10. Minor losses in these circumstances are due to plasma proteases. Freeze-

thaw cycles induces increases in TNF-α levels, due to the β-pleated sheet structure10.  

2.3.1.1.2 Role in sepsis and SIRS 

TNF-α is a crucial triggering cytokine for the cytokine cascade together with IL-1β in sepsis and 

SIRS117,169,170. TNF-α predominantly functions in an autocrine/paracrine fashion, as opposed to IL-1β 

and IL-6, which are primarily circulating cytokines10. 

Heat-killed staphylococci, LPS, endotoxin, toxic shock syndrome toxins, lipoteichoic acid, viruses, 

fungi, parasites and non-microbial products such as C5a can induce TNF-α synthesis by 

macrophages4,7,36,171,172, yet elective surgery or accidental injury is not typically associated with TNF-α 

 

Figure 2: Molecular structure of TNF-α 

Source: Wikipedia.com 
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in the acute phase in humans173. TNF-α is produced within minutes after stimulation and peaks after 1.5 

to 3 hours in horses, rabbits, dogs and humans3,7,174-176. The peak is very short-lived, lasting only 1 to 4 

hours174, and concentrations usually non-detectable within 24 hours3,4,7,8. The disappearance of TNF-α 

is biphasic, suggesting two forms being cleared from plasma, perhaps depending on the degree of 

aggregation177,178. Following maximal stimulation, macrophages do not release additional TNF-α upon 

repeated stimulation179. In early studies in human clinical septic patients, TNF-α levels were reported to 

remain elevated for more than 24 hours34, but these studies used immunoradiometric assays and ELISA 

techniques, detecting both biologically active TNF-α and inactive TNF-α-TNF-receptor complexes180. 

High dose steroids prior to endotoxin administration prevent TNF-α release, and endotoxin mediated 

toxicity181,182. Similarly, anti-TNF-α antibodies protect against lethal intravenous bacterial and 

endotoxin infusion when administered prior to or shortly after the septic insult in baboons, rabbits, rats 

and mice3,177,183-186. TNF-bp also neutralizes TNF-α rapidly in guinea-pigs injected with LPS or MDP166.  

Administration of TNF-α induces a SIRS-like clinical picture within hours43. TNF-α has many biological 

functions shared with IL-1β, and both cytokines are largely synergetic in the development of 

hemodynamic changes in rabbits and rats187,188. Additionally TNF-α increases IL-1β and TNF-α 

synthesis9,132,188. 

TNF-α has a pyrogenic action, activates neutrophils and osteoclasts, induces IL-6 and APP synthesis, 

provokes hypotension, metabolic acidosis, hemoconcentration, capillary leak and pathophysiologic 

changes similar to septic shock which may even lead to death43,121,169,176,183,188-193. 

A more detailed list of actions of TNF-α is detailed hereunder. This cytokine 

- induces the release of chemokines and cytokines (such as IL-6) from nearby cells9,194 

- induces change in vascular endothelial cells, leading to heat, swelling, pain and redness at a 

local level9 

- promotes adherence, migration, attraction, and activation of leukocytes9,195-198 

- participates in cell destruction by suppressing protein synthesis with resulting cachexia3 

- provokes endothelial damage leading to capillary leakage177,199 

- downregulates the normal anticoagulant properties of the endothelial surface and express pro-

coagulant activity that may induce aggregation of platelets leading to microvascular 

thrombosis200-202 

- increases catecholamine concentrations, in association with an increased urine output and 

falling arterial blood pressure and lack of increased vascular resistance163 

- increases lactate concentrations163,203 

- facilitates the transition from innate to adaptive immunity via T-cells in a later phase9 
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TNF-α has important cardiac and hemodynamic effects in humans, dogs, cats, hamsters and other lab 

animals9,159,204-207, for which many have been demonstrated to occur synergistically with IL-

1β126,188,208,209. TNF-α induces depressed contractility and velocity of shortening cardiomyocytes126, left 

ventricular (LV) dysfunction, pulmonary edema and cardiomyopathy204. In human septic shock patients 

increased TNF-α plasma levels are associated with early impaired LV relaxation, either isolated, or in 

combination with LV dysfunction, while normalization of LV systolic and diastolic function was 

associated with significant decreases of TNF-α44,45. 

The main pathway for the myocardial depression induced by TNF-α is nitric oxide (NO)-mediated 

blunting of α-adrenergic receptor signaling157,158. Maximal depression is observed after 72 hours, and 

can persist up to 1 week, and occurs in the absence of altered α-adrenergic receptor density or ligand 

binding affinity157. NOS-independent pathways such as degradation of the fibrillary collagen matrix, 

altering the spatial arrangement of myocytes also contributes to the myocardial depression210.  

Removal of TNF-α via immunoabsorption from serum of humans acute septic shock patients eliminates 

the myocardial depressant activity of this serum126. Blockade of TNF-α with soluble TNF-α receptor or 

antibodies in murine heart failure models also improves ventricular dysfunction6,211. TNF receptor 

antibodies (TNFR:Fc), a specific TNF-α antagonist, reverses the negative inotropic effects of TNF-α in 

cardiomyocytes in vitro and partially reverses myocardial depression in rats210,212. Unfortunately, clinical 

trials of TNF-α blockade in human heart failure patients demonstrated little to no benefit, even 

harm213,214.  

TNF-α is only one of the responsible mediators of myocardial depression, and its effects are potentiated 

by endotoxins215. Anti-TNF-α antibodies temper clinical and cardiac signs, but do not block the 

development of an appreciable response by other substances such as IL-1β3. TNF-α appears to be an 

important early step in the process, inducing production of other mediators such as IL-1β132,177,216. 

2.3.1.1.3 Clinical application 

TNF-α blood levels in severely septic human patients have been related to the severity of disease217. In 

humans, serum concentrations of pro-inflammatory cytokines such as TNF-α correlate with morbidity 

and mortality in severe inflammatory diseases such as meningococcemia34,218-221. TNF-α was detected 

more commonly in patients with septic shock than in humans with non-septic shock34. TNF-α levels 

remain higher throughout time in human septic shock non survivors222. The log transformed 

concentration of TNF-soluble receptors at presentation also seems predictive of 28-day mortality in 

human severe sepsis patients220, although this was not confirmed in a multivariate analysis220. 

Indeed, most publications find TNF-α to be a rather poor diagnostic and prognostic tool in critical care 

patients. Liability of serum dynamics of TNF-α explains its poor capacity to evaluate changes in patient 

status over time223,224. Plasma TNF-α levels depend on the net balance between production and 
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disappearance, and this disappearance is influenced by receptor-binding, metabolism, degradation, and 

neutralization by inhibitors4. TNF-α is an early mediator of the APR, with rapid downregulation and 

rapid neutralization and degradation, explaining its limited clinical use4,34,35,37,38,170. Due to the transient 

elevation of TNF-α, levels often returned to normal before admission in clinical cases177,225. 

Consequently, TNF-α levels do not reflect the precise cytokine activation225. To add to the confusion, 

circulating inhibitors, such as the TNF-bp or α2-macroglobulin, interfere with TNF-α assays4. The 

difference in assays also explains why, although most studies display rapid decreases of circulating 

TNF-α177,218,226, some studies found levels to remain stable over time227,228. 

The pivotal role of TNF-α in the development of the APR make it an interesting target for the treatment 

of these patients. Although anti-TNF-α immunotherapy with monoclonal antibodies has marked efficacy 

in experimental studies on mice and primates, results in human studies are very disappointing3,184,229,230. 

Positive results in baboons might be explained by the fact that monoclonal antibodies were administered 

2 hours prior to the administration of a lethal dose of E. coli184. Similarly, although glucocorticoids 

decreased TNF-α response when administered prior to endotoxin, administration of prednisolone after 

endotoxin does not affect TNF-α levels182, illustrating the importance of timing of events. The lack of 

efficacy of anti-TNF-α treatments could also be due to immunosuppression caused by the interruption 

of the normal host defense mechanism117,231. Chronic anti-TNF-α therapies does however decrease the 

risk heart failure in rheumatoid arthritis patients214, and anti-TNF-α antibodies can result in transiently 

increased left ventricular stroke work index (LVSWI) and reduced heart rate in human septic shock 

patients180. 

2.3.1.2 Canine experience 

2.3.1.2.1 Role in sepsis and SIRS 

Dogs are particularly sensitive to TNF-α displaying severe hypotension at doses 50 times less than 

required in rabbits183. Mature dogs express higher TNF-α production than puppies232. TNF-α levels 

increase within 30 minutes after stimulation and peak after 2 to 3 hours in dogs, with concentrations 

becoming hardly detectable from 6 to 24 hours35,175. TNF-α does not typically rise following elective 

surgery or accidental injury, although some mild changes can be observed 3 to 24 hours after the 

injury233. Increases are relatively mild in localized inflammation in dogs173,233. TNF-α concentrations 

rise in certain non-infectious conditions such as experimental intestinal ischemia, despite the absence of 

detectable concentrations of endotoxin234. TNF-α concentrations decrease rapidly due to inhibitory 

effects of IL-6 on TNF-α production135. 

Administration of TNF-α to dogs results in findings over a seven to ten day period similar to those in 

humans, notably fever, hypotension, metabolic acidosis, hemoconcentration, capillary leak and even 

death43,176,190,191, strongly resembling the clinical signs of septic shock43,176. TNF-α induces myocardial 
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depression in dogs characterized by LV depression and reduced LVEF43 and a reduced maximal early 

velocity of ejection180. TNF-α reversibly impairs LV diastolic and systolic function and increases LV 

unstressed dimension in dogs, suggesting diastolic myocardial creep and increased diastolic elastic 

stiffness235. TNF-α induced elongation of the external diameter of the LV is explained by elongation of 

myocardial fibers, rearrangement of interstitial matrix and formation of myocardial edema235. The 

prolonged duration indicates the involvement of secondary mediators or a change in gene expression235. 

Despite functional changes, cardiac index (CI) is maintained via compensatory tachycardia235. This 

hyperdynamic state with concomitant myocardial depression due to TNF-α is similar to observations in 

sepsis and septic shock3,42,55,56,139,236,237. LVEF decreases 2 hours after and peaks 8 hours after TNF-α 

administration238. Although sympathetic system compensation via changing heart rate could explain 

these findings239, later work on dogs without interference by the endogenous sympathetic tone and with 

a single paced heart confirmed a biphasic effect of TNF-α on myocardial contractility240. After a short-

lasting increase in contractile performance during the initial 60 minutes, TNF-α induces systolic 

dysfunction between 2 to 7 hours after exposure, persisting for 25 hours240. TNF-α also affected diastolic 

LV performance, and induced LV dilation, suggesting myocardial creep240. 

Myocardial injury induced by TNF-α may depend upon the recruitment and activation of neutrophils235. 

TNF-α enhances margination and infiltration of neutrophils through endothelium195,241 and promotes 

adhesion of neutrophils to cardiac myocytes196. Neutrophils are known to participate in ischemic 

myocardial injuries resulting in both cell death and reversible contractile dysfunction242-246. TNF-α 

promotes systemic and local release of secondary mediators from white blood cells197,216,247-249 that may 

further compromise myocardial contractile function250-253. 

2.3.1.2.2 Clinical application 

The rapidly evolving kinetics of TNF-α render this cytokine of limited value in a clinical setting and 

techniques to measure TNF-α are labor-intensive and expensive10,254. Canine TNF-α remains stable at 

temperatures below -70°C, allowing for pooling of samples to measure TNF-α in batches for research 

purposes. Two clinical studies demonstrated detectable TNF-α concentrations in a high proportion of 

dogs with SIRS and sepsis14,255. One study however used an enzyme-linked immunosorbent assay 

(ELISA) to measure TNF-α, which also measures clinically inactivated TNF-α by TNF-α soluble 

receptors. Nevertheless, the other paper, used a (different) bioassay, detecting biologically active TNF-

α in 39/42 dogs with SIRS or sepsis14,135. In a group of dogs with pyometra only a low proportion of 

dogs had detectable TNF-α concentrations, and TNF-α concentrations were not related to SIRS255.  Most 

clinical studies failed to detect significant differences in TNF-α related to outcome13,14, although one 

study found TNF-α to be predictive of mortality in puppies with parvoviral enteritis256. 

Anti-TNF-α antibodies protect against lethal intravenous bacterial and endotoxin infusion176. 

Pretreatment with cyclooxygenase inhibitors such as ibuprofen abolishes most of the hemodynamic 
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changes and attenuates other responses to TNF-α infusion in dogs163. Ibuprofen reverses many of the 

deleterious hemodynamic and metabolic effects in canine septic shock, but simultaneously failed to 

demonstrate an effect on TNF-α or IL-6 levels257. This supports the hypothesis that TNF-α and IL-6 

mediate proximal events in the sepsis cascade, while ibuprofen exerts inhibitory effects distal to this 

point257. 

2.3.2 Interleukin-1 

2.3.2.1 Experimental studies and human experience 

2.3.2.1.1 Molecular properties and analysis 

There are two distinct genes coding for IL-1, IL-1α and IL-1β with the latter the predominant form and 

a major product of human monocytes, accounting for 1-2% of ribonucleic acid (RNA) after 

stimulation258. IL-1α remains attached to the cell, IL-1β is produced as a large precursor protein that is 

cleaved by caspase-1 to form a 17.5kDa molecule9.  

IL-1β was previously called endogenous pyrogen, leukocyte 

endogenous mediator, and leukocyte-activating factor259, 

and is a polypeptide constituted of long-chain β-sheet 

structures, similar to TNF-α125. IL-1β and TNF-α are 

important triggers of the cytokine cascade117. 

Despite the similarities in molecular structure between TNF-

α and IL-1β, their biological activity is regulated differently, 

and both substances bind different receptors. IL-1β activity 

is regulated by CD121b and IL-1RA, an antagonist and 

blocker of the antagonist, respectively9. IL-1β type II 

receptors act as decoys as they are biologically inactive125. Finally IL-1β binds to glycosaminoglycans 

such as heparin allowing it to form a reservoir of readily available molecules125. 

2.3.2.1.2 Role in sepsis and SIRS 

Endo- and exotoxins such as LPS from bacteria and tissue injury initiate the synthesis and release of IL-

1β from macrophages188. IL-1β levels peak after 3-4 hours, and decline after several hours4,9. The 

transient release of IL-1β illustrates its role in the first response of the host to bacterial infection35. IL-

1β predominantly induces local effects and only small amounts spill over into circulation and frequently 

escape detection166,260. Elevated IL-1β plasma levels are inconsistently demonstrated after LPS 

administration or in sepsis in humans217,261.  

 

Figure 3: Molecular structure of IL-1β  

Source: Wikipedia.com 
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Biologic activities of IL-1β largely overlap with TNF-α121, and often IL-1β and TNF-α act 

synergistically, as in the production of hypotension188 and pro-coagulant activity in endothelial cells201. 

Moreover, IL-1β potentiates the lethal effects of TNF-α in mice209. 

IL-1β is responsible for 

- sickness such as fever, lethargy, malaise, lack of appetite, pain and fatigue9 

- systemic changes such as hypoferremia, and elevated corticosteroid levels188,262,263 

- stimulation of synthesis of nitric oxide synthase (NOS)-2 and cyclooxygenase (COX)-2 by 

macrophages9 

- mobilization of mature neutrophils from the bone marrow into the peripheral blood, resulting in 

neutrophilia121 

- tissue infiltration by leukocytes via IL-8 synthesis264 

- increased adherence and activation of neutrophils121,132,189,201,241,265  

- induction of IL-6 synthesis125 

- induction of synthesis of some APPs121,189 

- non-specific vascular smooth muscle relaxation which can induce systemic vasodilation and 

decreased systemic vascular resistance (SVR)188,266 

- downregulation of anticoagulant properties of the endothelium and induction of pro-coagulatory 

factors that may induce aggregation of platelets200,201 

- osteoclast and osteoblast activation with bone and cartilage degradation267 

- activation of stroma, chondrocytes and epithelium268 

- regulation of B-lymphopoiesis in bone marrow269 

Many effects of IL-1β are mediated through the induction of prostaglandins (PG) such as PGE2, PGI2, 

thromboxane B2 and other secondary substances such as platelet activating factor270-273. Administration 

of a cyclooxygenase inhibitor prior to the administration of IL-1β prevents many of the effects of IL-

1β188. In summary, IL-1β plays a key role in the development of a SIRS like symptomatology188,209,274.  

IL-1β induces myocardial depression (cardiomyocyte contractility, velocity of shortening, inhibition of 

α-adrenergic increases in cardiomyocyte contractility), and this synergistically with TNF-α126,157. 

Maximal suppression occurs after 72 hours, and persists up to 1 week126,157, suggesting that IL-1β’s 

effects are mediated by secondary effector factors157. NOS, induced by IL-1β, produces NO which is 

possibly the key-involved secondary mediator275. 

2.3.2.1.3 Clinical application 

The elevation of IL-1β is transient and levels often returned to normal on hospital admission in 

humans225. Consequently, blood levels do not reflect the exact inflammatory situation of patients225, and 

few studies evaluated this biomarker in a clinical setting. IL-1β levels have been correlated with the 
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severity of sepsis in two studies on infectious purpura and meningococcal meningitis in humans219,226. 

IL-1β correlated with survival in human sepsis patients, although it was only detected in 14% of patients 

in one paper4,222. IL-1β was inferior to TNF-α to assess disease severity in human volunteers with 

injected endotoxin217. A recent study demonstrated decreasing IL-1β plasma levels in human septic 

patients during normalization of LV systolic and diastolic function44. IL-1β could be a target for 

treatment, IL-1β-receptor antagonists improved survival in septic rabbits, and similar treatment 

modalities might become available for human and canine septic patients276,277. 

2.3.2.1.4 Canine experience 

LPS administration induces increased IL-1β levels after 30 to 60 minutes with peak levels at 1.5 to 3 

hours in dogs35,99. Turpentine oil injection or intestinal ischemia does not result in detectable rises in IL-

1β concentrations in dogs233,234. Increased concentrations of IL-1β in septic conditions are short-lived, 

returning to normal within 6 to 24 hours35,99, rendering IL-1β less interesting in a clinical setting. BNP 

and prepro-atrial natriuretic peptide (preproANP) gene expression is enhanced by IL-1β278,279, and these 

cardiac biomarkers might therefore be correlated with IL-1β levels in SIRS. 

2.3.3 Interleukin-6 

2.3.3.1 Experimental studies and human medicine 

2.3.3.1.1 Molecular properties and analysis 

IL-6 was previously called B-cell/hybridoma growth factor, 

interferon β2, B-cell stimulatory factor 2, and hepatocyte 

stimulating factor. It is one of the major pro-inflammatory 

cytokines, mainly produced by macrophages, although many 

cell types such have the potential to produce IL-6 after 

stimulation by LPS, PAMPs, DAMPS, TNF-α or IL-1β232,280-

282. IL-6 exerts its function via IL-6 receptors, heterodimers 

consisting of two proteins, gp130 and IL-6R, found on T-cells, 

neutrophils, macrophages, hepatocytes and neurons9. In 

contrast to TNF-α and IL-1β, IL-6 primarily is a circulating 

cytokine with a longer half-life10,11. Subsequently, plasma 

concentrations of IL-6 are elevated in various diseases 

associated with systemic inflammation35,117,122,283-286 and 

measurable baseline values of IL-6 can be detected in healthy 

guinea-pigs, while TNF-α and IL-1β are undetectable in healthy individuals166. 

 

 

Figure 4: Molecular structure of IL-6 

Source: Wikipedia.com 
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IL-6 is a 30kDa molecule with a four α-helical bundle fold and intramolecular disulphide bonds287. If 

blood samples are separated immediately, IL-6 remains stable at 4°C for up to 6 hours, and at -70°C for 

prolonged (although unspecified) periods10,254. Minor losses in refrigerated samples occur due to 

proteases in the plasma. Freeze-thaw cycles do not affect IL-6 concentrations due to its stable α-helical 

structure, whereas TNF-α levels increase due to the unstable β-pleated sheet structure 10. Anticoagulants 

impact IL-6 levels, with comparable levels in serum and EDTA, yet lower levels in lithium heparin and 

sodium citrate10. 

2.3.3.1.2 Role in sepsis and SIRS 

IL-6 is a major mediator of the APR and septic shock and circulates in large quantities9,220. Increases in 

IL-1β and TNF-α in endotoxemic shock precede increases in IL-6 activity7,34,36,37. Administration of 

TNF-bp or IL-1β receptor antagonists blunts the rise in IL-6 concentrations upon stimulation with LPS 

or MDP in guinea-pigs and rats166,288,289. IL-6 secretion via IL-1β has been demonstrated in a variety of 

cells290,291. IL-6 concentrations increase >4 hours and peak 24 hours after stimultation4. Biological 

activities of IL-6 partially overlap those of IL-1β and both cytokines act synergistically284. IL-6 is 

however less toxic than IL-1β and TNF-α121,122. The most important functions of Il-6 are listed below. 

- IL-6 is an important endogenous pyrogen122,290,292-294. 

- IL-6 acts as a messenger between damaged tissues and the liver281, where it is the main inducer 

of the APR122,281,292-296. The rise in IL-6 typically precedes the rise of APPs173,233,297.  

- IL-6 stimulates production of LPS binding protein (LBP), an APP capturing and presenting 

bacterial endotoxin, lipoteichoic acid and peptidoglycan fragments to CD14 receptors on 

monocytes and endothelial cells, thereby inducing the secretion of TNF-α IL-1β and IL-62,298. 

- IL-6 regulates the transition of a neutrophil-dominated process to a macrophage-dominated 

process9. IL-6 increases the membrane expression of tissue factor (TF) on circulating 

monocytes. Destruction of these monocytes releases TF causing massive activation of the 

coagulation cascade leading to thrombin production and clotting2,299,300. 

- IL-6 stimulates the adaptive immune system via several actions. It induces B cell 

differentiation122 and immunoglobulin secretion292-294, induces cytotoxic T lymphocyte 

activation and differentiation284,301 and activates thymocytes122,293.  

- IL-6 stimulates hematopoiesis and differentiation of hematopoietic stem cells122,284,302 and 

stimulates neutrophil mobilization from bone marrow292-294. 

- IL-6 is considered a growth factor for plasmocytomas and hybridomas284 and induces 

adrenocorticotropic hormone122.  

- IL-6 has immunomodulatory roles by inhibiting some actions of TNF-α and IL-1β, promoting 

the production of IL-1β receptor antagonist (IL-1RA) and IL-109, and modulating IL-1β and 

TNF-α production122,135,138. 
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Besides these functions, IL-6 possibly affects myocardial function. IL-6 depresses papillary muscle 

contraction159, and has negative inotropic effects in chick and guinea-pig ventricular myocytes in 

vitro160,303. IL-6 would have a prominent role in myocardial dysfunction in meningococcal septic shock, 

although TNF-α might have synergistic activity304 as IL-6 correlates with sTNFR-p55168. IL-6 induces 

increased secretion of natriuretic peptides such as ANP and BNP in cultured cardiomyocytes305 and co-

secretion of peptides of the IL-6 family (cardiotrophin-1) has been described with BNP secretion306. In 

human septic patients, LV systolic dysfunction and normalization is associated by increasing and 

decreasing concentrations of IL-644,168. However, IL-6 fails to depress cardiac myocyte contractility over 

a wide range of concentrations in an experimental study in rats126, and evidence is lacking that IL-6 

induces myocardial depression via the NO-cyclic GMP pathway307.  

2.3.3.1.3 Clinical application 

When discussing the clinical application of disease markers, one needs to describe the context in which 

it was evaluated. Markers can help to respond to different questions, and the value of a biomarker 

depends on the question asked. For this literature review 5 questions were evaluated. 

- Value to diagnose SIRS patients  

- Value to differentiate non-infectious SIRS from sepsis 

- Value to evaluate disease severity 

- Value to give prognostic information 

- Value to evaluate therapeutic response 

2.3.3.1.3.1 Value to diagnose SIRS patients 

As discussed, IL-6 concentrations are more sustained, making IL-6 more interesting than TNF-α in a 

clinical setting38,220. IL-6 rises before APPs such as procalcitonin (PCT), making it an interesting marker 

in a hyperacute setting308. Clinical utility of IL-6 measurement has been confirmed in various 

publications309-313 and IL-6 concentrations above 1000pg/mL are considered indicative of SIRS in 

humans4,220. Unfortunately, inter- and intra-individual heterogeneity in reaction patterns make it difficult 

to establish valid decision cut-offs within a population143,144 and extremely high IL-6 concentrations in 

humans with septic shock are associated with cytokine-related gene polymorphism314. Consequently, 

although IL-6 is an interesting marker of inflammation, it is inferior to procalcitonin in humans2. 

2.3.3.1.3.2 Value to differentiate non-infectious SIRS from sepsis 

High IL-6 levels are indicative of septic disease in human medical critical care patients315. Unfortunately, 

concentrations of non-infectious and infectious disease patients overlap significantly. A paper 

demonstrated higher IL-6 concentrations in septic shock patients compared to SIRS and septic patients, 

yet mean IL-6 levels were above 1000pg/mL in all groups and significant overlap was identified117. 
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2.3.3.1.3.3 Value to evaluate disease severity 

Peak IL-6 concentrations are correlated with maximum sepsis-related organ function assessment 

(SOFA) scores in SIRS and cardiogenic shock patients, suggesting IL-6 accurately reflects disease 

severity117,316. IL-6 blood levels are useful in severity assessment in human trauma, severe acute 

pancreatitis, cardiogenic and septic shock patients316-319. IL-6 concentrations correlate with plasma 

lactate concentrations and heart rate and are inversely correlated with arterial blood pressure and platelet 

counts in shock patients284. IL-6 concentrations are correlated with complement factors C1-inhibitor and 

C3a, which play a key role in sepsis mediated vasodilatation ad increased vasopermeability284. 

2.3.3.1.3.4 Value to give prognostic information 

IL-6 blood levels are useful in outcome prediction in humans with a number of inflammatory conditions, 

such as SIRS, septic shock, trauma, severe acute pancreatitis and cardiogenic 

shock2,4,12,38,117,220,221,226,284,312,313,316-328. In humans, IL-6 concentrations are correlated with mortality in 

severe sepsis patients220,221,329, similarly levels 6 hours after experimentally induced sepsis are predictive 

of mortality in mice330. Of all cytokines, IL-6 levels correlate best with mortality in septic patients4,226,284. 

Studies demonstrated that IL-6 kinetics are more important for prognosis prediction, with survivors 

displaying a rapid decrease in plasma IL-6, and non-survivors displaying persistently high IL-6 

levels117,221,331-333. Consequently, prognosis prediction of SIRS patients should not be based on a single 

IL-6 measurement, but the kinetics of IL-6 should be monitored117. 

2.3.3.2 Canine experience 

2.3.3.2.1 Molecular properties and analysis 

IL-6 is highly conserved across species and IL-6 kinetics are similar in dogs and other species, with IL-

6 levels increasing after 60 minutes to 2 hours, peaking at 1,5 hours to 12 hours, and concentrations 

remaining high for 24 hours to 6 days after stimulation35,37,233. IL-6 kinetics depend on the origin of the 

inflammation (the administration of an intravenous toxin, compared to the provocation of an 

inflammatory response after injection of an inflammatory substance). IL-6 is detectable in the plasma 

of healthy dogs37, but reference ranges for IL-6 have not been established. Regarding sample 

conservation, canine IL-6 remains stable at temperatures below -70°C10,254. 

2.3.3.2.2 Role in sepsis and SIRS 

Induction of inflammation, whether via infusion of LPS or artificial inflammation by turpentine oil, will 

invariably result in high IL-6 levels in dogs35,37,233,234,257,334. Dogs with pyometra failed to demonstrate 

increased IL-6 concentrations compared to healthy control dogs255. However, the healthy dogs in this 

study had remarkably high IL-6 concentrations, which does place some questions about the validity of 

the used assay255. Ibuprofen reverses many of the deleterious hemodynamic and metabolic effects seen 

in canine E. coli septic shock, despite unchanged TNF-α and IL-6 levels257. Therefore, although TNF-α 
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and IL-6 are mediators of proximal events in the sepsis cascade, ibuprofen exerts its inhibitory effects 

distal to this point257. IL-6 does not appear to result in adverse hemodynamic changes or cause acute 

toxic effect on the cardiovascular system, as it does not create hypotension and does not induce a 

decreased CI in dogs335,336.  

2.3.3.2.3 Clinical application 

IL-6 appears to be a good diagnostic marker of SIRS and IL-6 concentrations are markedly increased in 

dogs with an APR11,233,293. High IL-6 levels have been identified in serum and CSF of dogs with juvenile 

polyarteritis syndrome and steroid responsive meningitis-arteritis (SRMA)293,337,338. However, IL-6 

concentrations were unchanged in idiopathic epilepsy, non-inflammatory central nervous disease and 

healthy dogs293. 

IL-6 concentrations are correlated with disease severity, and the likelihood of septic disease11. IL-6 

appeared to be a good prognostic marker in canine SIRS and sepsis11. This paper measured biologically 

active IL-6 using a bioassay11. However, the mortality rate was rather high (48%), and 71% of deceased 

cases were euthanized, creating a serious bias to these findings. The association of IL-6 with prognosis 

was not confirmed in two later clinical studies13,14. The findings of one of these studies are difficult to 

interpret as an ELISA technique was used, poorly reflecting biologically active IL-6 and no other 

inflammatory cytokines or acute phase proteins were assessed for comparison13. A single paper 

suggested that IL-6 can be useful to monitor SRMA patients, as increased IL-6 concentrations were 

detected in relapsing patients338. 

In summary, based on these findings, IL-6 seems to be an interesting marker of systemic inflammation 

and could potentially be an interesting prognostic marker. 

2.3.4 Conclusion 

Elevated IL-6, IL-1β and TNF-α concentrations occur in a variety of inflammatory diseases220,339-341, can 

assist in the diagnosis of inflammatory disease, could indicate the severity of disease and the prognosis 

of a patient320,342,343, but do not give additional information regarding the etiology of the inflammation. 

Several studies in human medicine evaluated complex scoring systems of several cytokine 

concentrations and cells associated with circulating proteins with variable results329,344-346. IL-6 and 

TNF-α levels and clinical scores are correlated in some research rather than clinical papers343. Ratios 

evaluating markers of a hyperinflammatory response (IL-6) together with increased anti-inflammatory 

molecules (TNF-bp) have a high potential to predict complications in septic shock220. However, most 

classical pro-inflammatory cytokines (TNF-α, and IL-1β in particular) are only briefly or intermittently 

increased, if at all347. Although cytokines are closely linked with inflammation, the major pro-

inflammatory cytokines TNF-α, IL-6 and IL-1β will probably never be regularly used as markers of 
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sepsis in general practice, as the assays to measure their biologically active fraction are time-consuming 

and not developed for routine use348.  

2.4 ACUTE PHASE PROTEINS 

2.4.1 Acute phase response 

Erythrocyte sedimentation rate is increased in blood from patients with infectious disease18 and reflects 

elevated concentrations of plasma proteins such as fibrinogen349, CRP and serum amyloid-A (SAA) in 

dogs350. The term acute phase was introduced in 1941 to describe serum in which acute phase proteins 

(APP), such as CRP are present351,352. The APR is characterized by different systemic effects as fever, 

leukocytosis, increased blood cortisol and decreased thyroxine, metabolic changes (ie, lipolysis, 

gluconeogenesis, muscle catabolism), decreased serum iron 

and zinc concentrations and dramatic changes in the 

concentration of APPs15-17. The APR is a phylogenetically 

old component of the nonspecific innate host defense 

syndrome124,353-355. The APR aims to repair host tissue 

damage and is initiated in a reaction to traumatic, 

infectious, immunologic or neoplastic “injury”, as all these 

processes provoke increases in pro-inflammatory 

cytokines2,17. The initiation of the APR (Figure 5) is 

induced by IL-6, IL-1β and TNF-α, acting as messengers 

between the site of injury and the hepatocytes that 

synthesize most of the APPs17,18, after which these APPs 

are released into the bloodstream2.  

Positive APPs are blood proteins or glycoproteins that are synthesized by hepatocytes17, leading to 

concentrations rising over 25%, as opposed to negative APPs such as albumin which are produced less 

during the APR. APPs can have both pro- and anti-inflammatory effects356, regulate the immune 

response, or protect and repair tissue17. Some of the APPs down-regulate pro-inflammatory cytokine 

production and activity in monocytic cells, providing a negative feedback mechanism357. 

Although increased levels of IL-6 can be demonstrated during the APR in dogs233, APPs are easier to 

measure than IL-6, and are preferred to diagnose a systemic response to infection or 

inflammation17,18,358,359. The response pattern of APPs is species specific17, although serum albumin 

concentration decreases 10-30% in all studied mammalian species134. For example, CRP is a major APP 

in dogs, but not in cats360.  

APPs are divided into major, moderate and minor APPs, reflecting the magnitude of the increase in 

serum concentrations and the speed at which this increase occurs (major: 100-1000 fold increased 

 

Figure 5: The acute phase response 

Source: www.medscape.com 



49 
 

concentration within 24-48h; moderate: 5-10 fold within 2-3 days and minor: 1.5-2 fold within a few 

days)268,353. APPs are highly sensitive (major APPs can even increase before the onset of clinical signs), 

but tend to lack specificity17,353 and cannot identify the cause of inflammation353,361. 

Besides to diagnose systemic inflammation, APPs provide information about the severity of disease, 

and may serve as prognostic tools and to evaluate the response to treatment17-25. In humans a high 

individual variation in APP pattern has been observed362,363. Additionally, as in laboratory rodents, age, 

gender and genetic (rodent strain) specific differences in APP responses may occur364. Therefore, proper 

evaluation of APPs is required before drawing meaningful conclusions. 

2.4.2 C-reactive protein 

C-reactive protein (CRP) was discovered in 1926, was isolated in 1930 and was the first APP to be 

described365. It has received its name for its ability to bind the C-polysaccharide of Pneumococcus 

(Streptococcus pneumoniae)366. 

2.4.2.1 Experimental studies and human experience 

2.4.2.1.1 Molecular properties and analysis 

CRP is a cyclic pentameric protein with a molecular size of 

approximately 115kDa (118 to 144kDa) and consists of 5 

identical non-covalently associated protomers which are 

polypeptide subunits each consisting of 206 amino acids 

(Figure 6)16,367,368. The protomers are non-covalently associated 

in an annular configuration creating a cyclic pentameric 

symmetry369. This structure is described as a pentraxin, and is a 

P-type lectin, acting as a pattern-recognition receptor binding 

PAMPs116. Serum and plasma (EDTA and citrate) samples 

yield comparable CRP results370. Delays (up to 6 hours) in 

sampling processing, and repeated (up to seven) freeze-thaw 

cycles have little effect on CRP concentrations254,370. CRP 

remains stable for 3 months at -10°C, and remains stable for years at temperatures below -70°C254. 

CRP has a half-life of 19 hours in plasma26 under nearly all circumstances (including hemodialysis)371, 

as levels are exclusively determined by its rate of synthesis26. This is in contrast to most APPs which 

depend on synthesis, consumption and catabolism26. 

Plasma CRP levels in healthy adult humans (regardless of sex254) are under 10mg/L120, but increase more 

rapidly in elderly humans372. Immunosuppression by corticosteroids or cyclosporine decrease plasma 

concentrations in humans373,374. 

 

Figure 6: Molecular structure of CRP 

Source: Wikipedia.com 
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2.4.2.1.2 Role in sepsis and SIRS 

CRP production in hepatocytes is under transcriptional control of IL-6 in combination with either IL-1β 

or TNF-α375-378, and CRP has several functions: 

- general scavenger protein,  

o recognition and binding of microorganisms, LPS, PAMPs and DAMPs116,359,379-386 

- opsonization of material387-390 

- activation of the classical complement pathway116,379,387-390 (although not in rats!)391 

- facilitating phagocytosis359,380,392-394 

- modulating neutrophil, monocyte, macrophage and natural killer (NK) cell function116,359,380,392-

394 

- inducing cytokine production359,380,392-394 

- inhibiting  chemotactic effects359,380 

o preventing tissue migration386  

o modulating neutrophil function and chromatin binding359,380,395 

- anti-inflammatory role379 

o inhibiting neutrophil superoxide production379 

o inhibiting degranulation379 

o blocking platelet aggregation379 

- induction of vascular endothelial dysfunction396,397 

o decreasing vasodilatory molecule release from endothelial cells396-399 

o procoagulatory396-399 

o pro-inflammatory effects396-399 

CRP binds phosphocholine which is found in many bacteria and protozoa, forming a crystal structure369. 

The other side binds to antibody receptors on neutrophils, promoting phagocytosis379. Besides this main 

role in phagocytosis, there is accumulating evidence that CRP induces vascular endothelial 

dysfunction396,397. PGI2 production, a major arachidonic acid product in macrovascular endothelium with 

potent vasodilatory and antiplatelet effects, is decreased by CRP, inducing increased platelet 

aggregability398,400,401. CRP increases plasminogen activator inhibitor (PAI)-1 in aortic endothelial cells 

and promotes tissue factor expression in monocytes393,396-398,402. CRP should be considered a pro-

inflammatory, vasoconstrictive381,383,384, procoagulant403 and prothrombotic substance393,396-398,402. 

2.4.2.1.3 Clinical application 

Comparison of studies is severely hampered as the etiology, the severity of illness and the risk of 

infection in between populations differs; different papers use different cut-off values for decision 

making; timing of sampling varies, or often even is not specified404.  As CRP secretion starts only 4 to 
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6 hours after stimulation and peaks around 36 to 48 hours348,405, the timing of sampling will impact 

measured concentrations, and therefore findings. 

2.4.2.1.3.1 Value to diagnose SIRS patients 

Both infectious and non-infectious inflammatory conditions such as neoplasia, pancreatitis, surgery, 

trauma, burns, (myocardial) infarctions, immune mediated disease and even connective tissue disorders 

and diabetes mellitus induce an increase in CRP values365,383,406-408. The late-coming peak of CRP at 36 

to 48 hours after the start of the inflammatory process may however reduce the sensitivity of the marker 

to identify patients in SIRS in an emergency setting26. Additionally, CRP can be mildly elevated in non-

inflammatory conditions such as obesity, sleep disturbance, depression, chronic fatigue, aging, physical 

inactivity or inversely long distance running, radiotherapy and smoking254,409.   

2.4.2.1.3.2 Value to differentiate non-infectious SIRS from sepsis 

CRP is superior to body temperature or white blood cell count to diagnose bacterial infection410, and 

several papers advise CRP to diagnose sepsis in critically ill patients309,404,408,411-418. However, other 

publications demonstrate disappointing findings and no definite correlation between infection and CRP-

changes has been documented411. Procalcitonin (PCT), another APP in human medicine, is superior to 

CRP to diagnose sepsis315,419-427. Unfortunately, even PCT has insufficient diagnostic accuracy to the 

detect infection-related conditions413,414,428-430. 

CRP is however cheap and widely available in human medicine. The optimal CRP cut-offs to distinguish 

sepsis from non-infectious SIRS in studies ranges from 39 to 180mg/L404,410,424. According to a meta-

analysis, CRP should have acceptable reliability with a sensitivity of about 85% and a specificity of 

about 70% at cut-off between 50 and 100mg/L to distinguish sepsis from non-infectious SIRS2,367,404,413. 

This is however insufficient to accurately diagnose sepsis431 and early diagnosis of sepsis is difficult 

based on temperature, white blood cells and CRP424.  

CRP is an indirect marker of infection, as it is a marker of inflammation. Moreover, CRP has a slow 

response (4-6 hours) and late peak levels, and immunosuppressive therapies can reduce levels419,426,432-

435. Therefore the routine use of leukocyte counts and CRP to differentiate SIRS from sepsis in humans 

is motivated by low cost, easy availability and historical practice rather than strong evidence347 and the 

value of CRP might increase when evaluating kinetics rather than a single time-point or a single disease 

entity. Unfortunately, even when focusing on a specific disease, such as humans with meningitis or 

pneumonia, studies found conflicting results21,363,436. Similarly, serial measurement of CRP provides 

only limited additional information to diagnose sepsis367,431. In conclusion, CRP is insufficiently reliable 

to rule out sepsis, and can at best substantiate a clinical suspicion of sepsis367,410,431.  
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2.4.2.1.3.3 Value to evaluate disease severity  

CRP has been associated with the degree of organ dysfunction, SOFA (sequential organ failure 

assessment) scores and arterial lactate concentrations404,412,437-439. However, at least as many papers 

failed to find an association between CRP and disease severity315,419,428,440,441 or SOFA scores419,442,443. 

Higher CRP concentrations have been related to severe sepsis and septic shock414,423, but reviews and 

recent papers concluded that PCT is superior (although still imperfect) to differentiate sepsis, severe 

sepsis and septic shock367,424,431,444,445. Again, the late rise and the delay until peak concentrations, and 

the different underlying conditions and the different timing of sampling between studies explain some 

of these findings. However, another characteristic of CRP in humans offers an additional explanation. 

CRP levels demonstrate a ceiling effect in humans, and values rarely exceed 300-400mg/L, a 

concentration readily obtained during ‘less severe’ disease. This prevents discrimination of critically ill 

patients which tend to demonstrate ‘maximal’ concentrations367. PCT on the contrary does rise 

unlimitedly in proportion with disease severity367. 

2.4.2.1.3.4 Value to give prognostic information 

Given the ceiling effect of CRP in humans, it is no surprise that CRP is superseded by PCT (and even 

pro-inflammatory cytokines446) to evaluate prognosis in humans404,405,421,424,427,442,447-449. CRP is poorly 

correlated with mortality312, although the odd publication found a positive correlation in septic 

patients144. In less severe disease, where the ceiling effect of CRP is less of a concern, results are more 

positive, such as in neoplastic diseases in humans450-452. 

2.4.2.1.3.5 Value to evaluate therapeutic response  

CRP can be used to monitor the response to treatment in inflammatory or autoimmune disorders, and to 

screen for organ rejection reactions in renal transplantation254,453,454. CRP also is useful in evaluating and 

assessing the duration of antibiotic therapy in neonatal septicemia as CRP concentrations decrease 

rapidly following effective therapy406,407,455,456. 

2.4.2.2 Canine experience 

APP assays are robust alternative to 

cytokine assays to quantify the 

induced APR to infection or 

inflammation17,18,358,359. On 

electrophoresis, APPs can be 

identified in the α- and β-globulin 

area (Figure 7)457. The 

albumin/globulin ratio provides an 

estimate of the APR in dogs and cats, 

but the ratio’s sensitivity and 

 

Figure 7: Changes on electrophoresis during the APR in humans. 

Source: www.scielo.br 
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specificity to detect clinical or subclinical disease is inferior to individual positive APPs assays458,459, 

which are recommended to evaluate the systemic response secondary to infection or 

inflammation17,18,358,359. 

2.4.2.2.1 Molecular properties and analysis 

CRP is a highly conserved protein weighing 100kDa in dogs17. However, CRP is not identical in dogs 

and humans, as canine CRP has 2 out of 5 subunits that are glycosylated460,461. These small molecular 

differences account for some of the encountered difficulties when measuring canine CRP concentrations 

with human CRP-antibodies17,462. Automated turbidimetric human CRP immunoassays463 and a semi-

quantitative near-patient slide reversed passive latex agglutination test (randox®) have been validated 

to measure canine CRP462-464, but a canine commercial ELISA kit27, a rapid nephelometric assay465,466 

canine specific immunoturbidimetric and467,468 even canine automated immunoturbidimetric assay469,470 

have also been validated.  

CRP concentrations do not have a circadian rhythm in dogs and are not affected by sex, age, breed, or 

repeated venous blood sampling. Nevertheless, pregnancy induces increased CRP concentrations471,472, 

one month old puppies might have lower peak concentrations24,472-475, and long-distance exercise induces 

severe increases in dogs476 (contrary to moderate exercise)477. The administration of short term 

administration of non-steroidal anti-inflammatory drugs (NSAIDs) does not alter CRP concentrations 

in dogs478,479 as NSAIDs do not suppress IL-6 production, the major stimulus for CRP production478,480. 

CRP concentrations are not affected by glucocorticoid administration in dogs, in contrast to other APPs 

such as haptoglobin481. 

CRP can be measured in canine blood, saliva, effusions (abdominal, thoracic and pericardial; transudate, 

modified transudate and exudate) and cerebrospinal fluid353,482-485. CRP is stable for 14 days at room 

temperature or 4°C, for 3 months at -10°C, and remains stable at temperatures below -70°C for 

prolonged, undefined periods in canine studies (for years in human studies)254,470,486. Hemolysis, 

lipaemia and hyperbilirubinaemia can falsely modify CRP measurement487. Changes are especially 

expected in lipemic or hemolytic samples using the ELISA test, and with hemolytic samples using the 

canine-species specific immunoturbidimetric method that was first described. Interference would only 

be expected at very high concentrations of intralipid (10g/L), bilirubin (800mg/L) and hemoglobin 

(5g/L) with the latest canine specific automated immunoturbidimetric technique467,469,470,487. 

CRP concentration is usually less than 5mg/L in healthy dogs and reference ranges vary from 0.22 to 

16.4mg/L24,233,474,481,488-490. When looking at the kinetics of CRP, it has been suggested not to compare 

to the reference range, but rather to screen for a critical difference of 4,85mg/L in CRP concentrations480. 

This may be more interesting when one considers the high individual variability in CRP491.  
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Although CRP is not considered to be an APP in cats and cattle360,492, it is in dogs, pigs and 

horses233,460,488,490,493-498. In comparison with other APPs such as haptoglobin, CRP concentration 

increases more rapidly in dogs with SIRS, resulting in an earlier serum peak (1-2 days versus 3-7 days 

for haptoglobin) which can rise up to 800-fold the starting concentrations17,350. 

2.4.2.2.2 Clinical application 

2.4.2.2.2.1 Value to diagnose SIRS patients 

CRP is very useful to detect systemic inflammation in dogs17,27-29,461,473,499 secondary to  a myriad of 

conditions such as infectious disease (e.g. babesiosis, leishmaniosis, ehrlichiosis, trypanosomiasis, 

leptospirosis, Bordetella bronchiseptica infection, parvovirosis, E. coli endotoxinaemia, pyometra, 

cystitis and pneumonia)17,23,24,255,350,353,458,490,491,500-502, immune mediated disease (e.g. arthritis, 

inflammatory bowel disease, immune mediated hemolytic anemia, steroid-responsive meningitis 

arteritis)353,484,490,503-506, neoplasia (e.g. lymphoma, hemangiosarcoma)490,503,507-509, tissue trauma (e.g. 

surgery or experimental gastric lesions)510-512, but also intestinal obstruction and acute pancreatitis or 

sterile pericarditis465,473,510,513, and CRP is increased in a general population of critically ill patients514.  

CRP is more sensitive to detect inflammatory disease than white blood cell counts17,350,515 or erythrocyte 

sedimentation rates17,350. CRP is a promising marker for dogs suspected to be in SIRS491, as it 

discriminates canine pyometra patients with and without SIRS491, healthy dogs and dogs with focal 

inflammation from SIRS patients516, and asymptomatic Leishmania carriers from dogs with 

symptomatic leishmaniasis458. CRP can indicate concurrent inflammation in dogs suffering from 

hyperadrenocorticism, although hyperadrenocorticism did seem to blunt the response517.  

Canine CRP concentrations were first thought to be unaffected by glucocorticoid administration481, 

however administration of methylprednisolone acetate does moderately (not statistically significant) 

decrease CRP518. The CRP-suppressive effect of steroids could be explained by glucocorticoid mediated 

suppression of the NF-kB pathway which activates genes involved in cytokine production519,520. 

The timing of peak values depends on the insult, with surgery511 and bacterial pneumonia causing peak 

concentrations within 1 day, and rickettsial disease only resulting in peak concentrations 4 to 10 days 

after infection 23. Furthermore, the half-life of canine CRP is relatively short511 and concentrations return 

to normal range within 14 to 21 days of experimentally induced inflammation17,233,481. These factors may 

limit the use of CRP to detect systemic inflammation.  

In conclusion, identifying clinical SIRS-criteria in canine emergency cases justifies CRP 

measurement491. CRP concentrations are correlated with WBC, segmented and banded neutrophil 

counts521,522, but have superior sensitivity than WBC count, longer analyte stability and exhibit a faster 

response17.  
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2.4.2.2.2.2 Value to differentiate non-infectious SIRS from sepsis 

The only paper specifically evaluating the value of CRP to distinguish SIRS from sepsis did not find 

significant differences between both groups on day 0, 1 and 230. 

2.4.2.2.2.3 Value to evaluate disease severity 

CRP could be a valuable parameter to evaluate the severity of any ongoing inflammatory 

disease500,501,510, reflecting the clinical situation at the time of 

sampling27,30,460,503,523,52427,30,460,503,523,52427,30,460,503,523,52427,30,460,503,523,52427,30,460,503,523,52427,30,460,503,523,52427,30,46

0,503,523,52427,30,460,503,523,52427,30,474,517,538,539. However, as the magnitude of the increase in CRP depends on 

multiple factors besides the severity of disease such as the initiating cause, and the extent of tissue 

damage, mixed findings have been published17,23,24.  

CRP is correlated with disease severity in canine pyometra255,491, babesiosis350,525, mammary 

tumors490,526,527, immune-mediated polyarthritis528, and in critically ill patients514. In multicentric 

lymphoma, CRP is not different between substage a versus substage b patients507, but mean CRP 

concentrations are higher in more aggressive lymphoid neoplasia (acute lymphoblastic leukemia and 

lymphoma)508. CRP concentrations in acute pancreatitis are not correlated with a clinical severity index 

score529, but higher CRP concentrations are correlated with pancreatic necrosis530. In idiopathic 

inflammatory bowel disease, CRP is not correlated with the canine inflammatory bowel disease activity 

index (CIBDAI)504,531, but a correlation between CIBDAI and the combination of CRP and 

histopathology has been demonstrated504. CRP failed to assess disease severity in dogs with immune 

mediated hemolytic anemia, defined as the amount of blood transfusions or duration of 

hospitalization532.  

In conclusion, the link between CRP levels and disease severity is poorly convincing, and depends on 

the type of disease, timing of sampling, and the definition of ‘disease severity’. 

2.4.2.2.2.4 Value to give prognostic information 

CRP could be considered a marker of prognosis in dogs27,30,460,503,523,524, but no correlation between CRP 

and prognosis is identified in conditions such as leptospirosis114, Babesia rossi infection533, immune 

mediated hemolytic anemia506,532, acute pancreatitis529, and acute abdomen syndrome515. In three 

populations of dogs with SIRS, no correlation was found between the initial CRP concentration and 

survival30,514,516. However CRP is higher in parvovirosis non survivors534, but as the survival rate in this 

study was particularly low (46,5%) these results should be interpreted with great caution.  

APP-kinetics appear to be more suited to assess prognosis in canine SIRS30,503,524. The 2- or 3-day change 

in CRP predicts survival, survivors experiencing a bigger drop in CRP concentrations30,516. Similarly, 

persistently elevated CRP concentrations in acute pancreatitis529 and acute abdomen syndrome515 are 
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correlated with poor outcome. Contrarily, CRP changes during the first 24 hours do not distinguish 

survivors and non-survivors in Babesia rossi infection533.  

In conclusion, although CRP concentrations at presentation does not add prognostic information of SIRS 

patients, CRP-kinetics are promising to predict prognosis in dogs with SIRS30,503,524. 

2.4.2.2.2.5 Value to evaluate therapeutic response 

Successful treatment results in decreased APP concentrations, while increasing or persistently elevated 

concentrations are associated with poor response to treatment or relapse503. Therefore CRP may allow 

to monitor disease progression and treatment response27,30,460,500,503,523,524. 

CRP is useful to monitor treatment response in dogs with pancreatitis513, Babesia canis infection350, 

leishmaniosis535, trypanosomiasis501, inflammatory bowel disease504, immune mediated hemolytic 

anemia532, steroid responsive meningitis-arteritis484,523,536, and polyarthritis505,528. CRP can be used to 

screen for postoperative complications524,537,538. CRP concentrations are also lower in dogs in complete 

remission of lymphoma compared to other remission states507.  

In conclusion, CRP is very useful to monitor treatment response in dogs, and persistently elevated serum 

CRP concentrations in patients receiving appropriate therapy warrants further clinical investigation. 

2.4.2.2.2.6 Value in canine heart disease 

CRP increases during natural canine heart disease539-541. In dogs with mitral valve disease (MVD), CRP 

is inconsistently increased541,542 and CRP is not correlated with the severity of MVD543. In human 

medicine, high-sensitivity CRP assays evaluate for the risk of cardiovascular disease544. The lower limit 

of detection of most canine assays is however higher470, and several assays demonstrate slight 

proportional discrepancy at low concentrations463. These characteristics do not allow to screen for such 

small differences in concentrations545,546. Moreover, dogs do not suffer from the same cardiac diseases 

as humans. 

In conclusion, despite positive results regarding CRP measurement in dogs with SIRS for the clinical 

diagnosis, evaluation of disease severity, prognosis and monitoring treatment response, its use in the 

emergency setting is limited, mainly due to practical concerns. However, the availability of canine 

specific kits and user-friendly immunoassays at an economic price make CRP-analysis in clinical 

practice a reality. Findings relating CRP to cardiac disease in humans should not be extrapolated to 

canine medicine. 
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2.5 CARDIAC (AND CARDIOVASCULAR) FUNCTION 

2.5.1 Evaluation of cardiovascular (dys-)function 

A patient’s history, physical examination, electrocardiogram and radiologic data are often sufficient to 

explain cardiac problems. Unfortunately, these tools are not specific and can lead to misinterpretation 

of findings547. Simple obtainable information such as blood pressure, pulse quality, urine output and 

central/peripheral temperature gradients provide a lot of information and are often sufficient to guide 

therapy in non-critically ill patients548. Although clinical observation and these simple monitoring tools 

might indicate tissue- and organ- hypoperfusion, they also are insensitive and non-specific548. 

To better understand cardiac function, in vitro models and invasive or advanced techniques such as 

radionuclide assessment and thermodilution were developed549. Although such methods have been 

applied in human critical care for decades, these methods are now replaced by echocardiography. The 

next chapters will give an overview of the benefits and drawbacks of these techniques. 

2.5.1.1 Invasive techniques 

The pulmonary artery catheter (PAC) has 

been the standard hemodynamic monitoring 

technique for patients in the ICU since the 

70s550,551. The PAC is placed through an 

introducer in any of the central venous 

cannulation sites (the internal jugular veins, 

the subclavian veins, and the femoral veins). 

The right internal jugular vein is often 

preferred as it is situated closest to the heart 

and provides a direct route to the right atrium 

(RA). PACs have a flow-directed balloon-

tipped end. Inflating the balloon when the 

catheter reaches the heart allows to ‘go with 

the flow’ through the RA and RV into the 

pulmonary artery. The placement of PACs 

allows to (Figure 8) measure central venous pressure (CVP) evaluating preload, pulmonary artery 

pressure (PAP), right ventricular ejection fraction (RVEF), estimate LV filling pressures (evaluating 

preload), sample for continuous mixed venous oxygen saturation (SVO2), and calculate cardiac output 

(CO)548.  

CVP and PAP unfortunately are unreliable parameters to predict fluid responsiveness (i.e. the benefit of 

an additional fluid bolus to CO) in critical care patients552. Volume administration in hypotensive critical 

 

Figure 8: The pulmonary artery catheter 

Source: www.studypk.com 
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care patients has been guided by PAC measurements of pulmonary capillary wedge pressure (PCWP). 

PCWP is measured after placement of the PAC into a pulmonary artery and inflation of the balloon, 

occluding the pulmonary artery. Obstruction of the artery causes pressure in the part distal to the 

occlusion to drop rapidly and within a couple of seconds reach a steady state where the remnant pressure 

will be equal to the pressure in the left atrium (LA) (mean pressure around 8-10mmHg in healthy 

humans). During volume loading to increase blood pressure and improve ventricular function the 

objective is to keep PCWP at 12-14mmHg. The upper endpoint of LA pressure is set at 18 to 20mmHg 

as higher values are associated with an increased risk of pulmonary edema553,554. These values 

correspond to the pressures in the healthy heart at which the plateau in the relationship between cardiac 

function and filling pressures is reached555,556.  

Thermodilution applies a special thermistor-tipped catheter (Swan-Ganz catheter) inserted from a 

peripheral vein into the pulmonary artery. A cold saline solution of known temperature and volume is 

injected into the RA from a proximal catheter port. The injected solution mixes with blood as it passes 

through the right ventricle (RV) into the pulmonary artery, cooling the blood. The temperature of the 

blood is measured at the catheter tip by a thermistor situated in the pulmonary artery, and a computer is 

used to acquire the thermodilution profile (quantifying the change in blood temperature as it flows over 

the thermistor surface). The CO computer calculates flow (CO from the RV) using the blood temperature 

information, and the temperature and volume of the injected solution. This scenario is repeated several 

times and results are averaged to obtain CO. Because CO changes with respiration, saline must be 

injected at a consistent time point during the respiratory cycle, usually the end of expiration. Since its 

first description, fully automated systems have been developed to assess CO continuously, avoiding 

variations due to operator technique557.  

Radionuclide-gated blood pool scanning can also be performed using PACs. The technique uses a 

radioactive tracer such as Technetium-99m-pertechnetate that labels the patient’s red blood pool and 

radioactivity is measured with a gamma camera over an area of interest. The acquisition can be ‘gated’ 

to coincide with the cardiac cycle, allowing for the measurement of ejection fractions and calculations 

of the peak systolic pressure/end-systolic volume index ratio, considered to be a load-independent 

marker of ventricular function558. PACs also allow for the assessment of venous oxygen saturation 

(SVO2)559. Although whole body maximal oxygen uptake volume (VO2) offers interesting information, 

gastric intramucosal pH and subcutaneous oxygen tension might be more sensitive indicators of 

circulatory impairment than this conventional measurements560,561, which by any means is outside the 

scope of this literature review.  

Although technical progress has been made, PACs remain impractical, require substantial amounts of 

material and equipment for easy monitoring, and are associated with severe complications562,563. Some 

observational studies suggest an association of PAC with increased mortality563-565. Catheter associated 
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morbidity includes local trauma at the insertion site, generalized infections, an increased incidence of 

pulmonary thromboembolism and even pulmonary artery rupture548,562. Very pessimistic speculations 

suggested that PACs might be accountable for up to 15000 excess deaths per year in the United States566. 

Besides the safety-aspect, the diagnostic yield of pulmonary artery catheters has also been 

questioned563,567. Several studies have demonstrated a poor correlation between PCWP, CO and the 

systolic function as evaluated by echocardiography548,568,569. Measurements of PCWP might be 

influenced by underlying lung disease such as chronic obstructive pulmonary disease (COPD) and acute 

respiratory disease syndrome (ARDS), alterations in the filling of the pulmonary circulation, increases 

in pulmonary vascular resistance, mitral stenosis or incompetence, aortic incompetence, changes in LV 

compliance, changes in thoracic muscle tone, changes in lung compliance, changes in intrathoracic 

pressure and bad coordination of spontaneous breathing during mechanical ventilation, and finally the 

timing of measurements within the ventilator cycle42,548,570. As all these factors can influence PCWP, 

correctly interpreting changes in PCWP is virtually impossible if no complementary information is 

available. Currently baseline PCWP is generally considered an inaccurate predictor of preload568,570,571, 

that also fails to predict fluid responsiveness in the individual patient572,573. The information obtained 

from PACs does not allow the detection of early changes, or discern systolic from diastolic changes574. 

It is therefore not surprising that a randomized controlled clinical trial did not find any benefit of PAC 

directed therapy over standard care in intensive care patients562. 

2.5.1.2 Transthoracic and transoesophageal echocardiography  

2.5.1.2.1 Human experience 

Echocardiography has been used to assess cardiac function as early as the 50s575. Echocardiography was 

first limited to M-mode studies, but two-dimensional (2D) imaging and Doppler systems were rapidly 

developed576. The 80s and 90s saw the development of phased array scanners with M-mode 

visualization, the assessment of intra-cardiac pressures and flow velocities, the birth of color Doppler 

and contrast ultrasonography577,578. The technical progress allowed for the manufacturing of 

transoesophageal echocardiography probes, real-time three-dimensional (3D) imaging and even intra-

cardiac echocardiography579-581. Intracardiac and 3D echocardiography have not yet gained access to 

general clinical practice, and are outside of the scope of this literature review, although 3D-

measurements correlate well with conventional 2D-measurements581. 

While technical and practical knowledge in echocardiography developed, negative results from studies 

evaluating the value of CVP and PAP accelerated the interest in the use of echocardiography for the 

evaluation of cardiovascular function47,48,547,562,563,582-584. Echocardiography does indeed offer the 

benefits of direct visualization of the heart, allowing for real-time assessment of cardiovascular structure 

and function, as well as providing information on hemodynamics via Doppler measurements of blood 
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flow velocity48. This combination offers enough information to determine the cause of hypotension that 

is refractory to the use of vasopressors or inotropic support585. 

When physical examination and echocardiography on cardiac patients performed by a general physician 

were compared, cardiac examination missed 59% of all abnormalities and failed to correctly detect 43% 

of major cardiovascular findings, while echocardiography missed 29% of all and failed to correctly 

detect 21% of major abnormalities586. As physicians were not even trained in echocardiography and 

received only 15 minutes to complete the echocardiography, this study illustrates the potential of 

echocardiography to complement physical findings586.  

Several studies comparing PACs and echocardiography demonstrate that transthoracic (TTE) and 

transesophageal (TEE) echocardiography add valuable information to patients already monitored by 

PACs41,587-589. Echocardiography provides a better index of LV preload than invasive monitoring571. In 

human patients with uncomplicated acute MI, PAC estimates of LA pressure agree with 

echocardiographic measurements in up to 85% of patients, however in patients with multisystem failure 

this level can be as low as 30%590,591. PACs give unreliable information on preload, LV end-diastolic 

volume, and LV systolic function in septic patients compared to TTE568. 

If fluid loading to correct hypovolemia in patients with preserved LV systolic function is guided by 

echocardiography, some patients display PCWP values of 13 to 19 mmHg, while others demonstrate 

‘supranormal’ PCWP pressures (20 to 25mmHg). These second groups of patients also demonstrate 

increased wall thickness and decreased ventricular compliance. Although PCWP values are increased, 

fluid administration based on echocardiography is beneficial in these cases, demonstrating the benefit 

of echocardiography over PCWP592.  

Currently, several human ICUs have more than 15 years of experience guiding the initial management 

of acute circulatory failure solely based on echocardiography, and no longer use PACs49,593. 

Echocardiography however remains confronted with several challenges. Echocardiography findings are 

besides cardiac disease, influenced by variations in loading conditions, positive pressure ventilation, 

sedation, changes in arterial carbon dioxide pressures, vasopressors or positive inotropes and cardiac 

pacing; common circumstances in critically ill patients549. Moreover, ‘normal’ values are not necessarily 

applicable to an ICU population, and separate references might be applicable549.  

For TTE a dedicated machine should be available 24 hours a day with a probe working at a variety of 

frequencies to obtain optimal resolution at different depths, and a high frame rate to smoothly display 

cardiac movement594. In immobile ventilated patients, TTE can usually be performed using a sub-costal 

view, and poor image quality can usually be improved by contrast ultrasonography549. The main reasons 

TTE may result in inadequate image quality are interposed structures such as thoracic wall edema, 

surgical dressings, air (mechanical ventilation), bone, calcium or foreign bodies (chest tubes), and 
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restricted patient positioning547,595. Failure rates of TTE were first reported to be 30-40%596,597, hindering 

its clinical efficacy, but technological improvements have decreased this number to 5-15% in 

ambulatory patients595, with even lower percentiles in ventilated patients548. Some authors describe 

adequate image quality for bedside TTE in 99% of cases598. 

Echocardiography has found a place in human critical care, and the most common motivations to request 

an echocardiography are assessment of volume status and left and right ventricular function549. TTE is 

recommended over TEE in most cases, unless when superior resolution is required or views are 

impossible to acquire using TTE549. Although many urgent management decisions can be based on 

echocardiographic interpretations of ventricular filling and function, many clinicians turn to PAC data 

for objective quantification of data, as echocardiography remains operator dependent and interpretation 

can be subjective592,599,600. Indeed, the availability of an echography machine does not omit the need of 

a trained physician, and the development of echocardiographic training for critically ill patients by 

criticalists will be discussed in the following section88.  

2.5.1.2.2 Training in ECC ultrasonography 

Over the last decade, interest of application of echocardiography in the ICU has greatly increased in 

human medicine, leading to an increased availability48,595,601. However, only 20% of European 

intensivists have certification to perform echocardiography48. So despite greater availability of 

machines, the clinical application diffuses slowly into ICUs48. When implementing echocardiography 

for monitoring critically ill patients, a decision needs to be made as to whom will be the trained physician 

performing these exams: an internist, intensivist, anesthesiologist, cardiologist or imager. Early official 

guidelines to practice echocardiography did not include trained intensivists for evaluation of ICU 

patients602, and even discouraged their participation603. If however one wants to use echocardiography 

24h/24h, training of intensivists seems logical, and training programs for intensivists should be 

provided48. Although several papers warn intensivists to anticipate resistance from cardiology 

colleagues when suggesting such an approach594, echocardiographic training is already being 

incorporated into some human ICU fellowships48. 

Performance characteristics of echocardiography by non-specialists is determined by the hours of 

training, the quality of the device, the patient characteristics and the definition of a ‘successful 

examination’559. Two different training approaches are proposed: Courses aimed to perform a complete 

ultrasound, and focused goal directed training courses trying to answer specific questions. Focused goal-

oriented TTE training courses of 3 hours of theoretical training and 5 hours of hands-on training have 

been described with positive results604. Trainees could adequately answer clinical questions such as 

- LV systolic dysfunction (subjectively assessed as <50% volume change) 

- presence of LV dilation 
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- presence of right ventricular dilatation (cor pulmonale) 

- presence of pericardial effusion  

- presence of pleural effusion 

A slightly longer program (10 one-hour tutorials) allowed candidates to successfully perform limited 

TTE exams evaluating 4 views (the parasternal long- and short-axis and apical 2- and 4- chamber views 

(Figure 9)) to assess LV volume and function605. An extended 20 hour training program aiming to 

complete an 18-point check-list resulted in 23% of missed significant findings compared to 14% of 

missed findings by experts606. Such studies illustrate how short training programs are feasible, and that 

broadening the objectives can be associated with poorer results607,608. Non-cardiologists will not achieve 

better results than trained echocardiographers606, and will easily miss regional wall motion 

abnormalities, intra-cardiac thrombi, right ventricular dysfunction and non-trivial pericardial effusion606. 

 

A French ECHO-in-ICU group offering a complete 2-year training program had accredited 16% of 

French ICUs by 2008. The program consists of a 20 hour specific course and 120 supervised TTEs 

during the first year, and hands-on practice in ICUs or in cardiac surgery rooms with at least 50 TEEs 

Figure 9: The 4 basic cardiac views in human ECC training 

Source: www.criticalecho.com 
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during the second year. Despite the success of the course, this and other groups express the need for 2-

levels of training48,594.  

Advanced training would allow for comprehensive evaluation of cardiac anatomy and function with 

two-dimensional echocardiography and Doppler echocardiography. The trainee would be able to 

identify segmental wall dysfunctions, mild ventricular dysfunction or abnormal interventricular septal 

motion. However, this in-depth training would require a lot of time (as in the ECHO-in-ICU protocol), 

and this level probably only needs to be obtained by a minority of intensivists594.  

The basic level training would aim for goal-directed examination via TTE or TEE, allowing the 

evaluation of simple but useful parameters and techniques to evaluate volume status, systolic function 

and diastolic function594. These assessments should allow the clinician to categorize the cause of shock 

and decide on the treatment strategy594. Furthermore basic training should also allow the clinician to 

adequately assess the presence of pericardial fluid, presence of pleural effusion, valvular function, and 

assist in the placement of central lines and performing thoracocentesis48,594.  

The next chapters will give a short overview of the most important techniques to assess volume status, 

systolic function and diastolic function. 

2.5.1.3 Volume status or preload and volume responsiveness 

Critical patients often suffer from hypovolemia, requiring volume expansion to prevent or treat 

hemodynamic collapse. Echocardiography can aid hemodynamic care by diagnosing hypovolemia 

and/or decreased preload40,49. When preload is optimized further fluid loading will not increase oxygen 

delivery further, and may cause harm through the development of pulmonary edema and increased 

intestinal bacterial translocation609.  

As previously described, data from PACs may be misleading as ventricular compliance is influenced by 

numerous factors570,610. Differences in diastolic compliance explain the weak correlation in between 

pressure and volume, limiting the use of pressure measurements alone to predict LV preload611. 

Subjective assessment of LV volume evaluating cavity size in the short- and long-axis 

echocardiographic views is often adequate to guide fluid therapy at the extreme ends of cardiac filling 

and function595. Finding a small, hyperdynamic LV is strongly indicative of a severely hypovolemic 

patient with normal underlying cardiac function595. An extreme form of severe hypovolemia can be 

recognized as systolic obliteration, characterized by dynamic obstruction of the LV cavity and a 

decreased end diastolic volume595. Unfortunately, a large end diastolic volume can also indicate LV 

dysfunction595. Detecting changes in LV volume will therefore be more difficult in patients with dilated 

or poorly contractile ventricles592. Quantitative values are therefore preferable. Transient changes in 

blood volume due to de- or over-hydration alter atrial geometry51. Therefore, LA dimensions are 

interesting for the assessment of volume status. Evaluation of ventricular dimensions using TTE is useful 
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to assess preload and optimize therapy of ICU patients40,612. Atrial and ventricular dimensions however 

dependent on other factors such as systolic and diastolic properties, and do not allow to assess the benefit 

of additional fluid loading613. Fluid responsiveness is the potential to increase CO in response to a fluid 

challenge, and assessing fluid responsiveness is important in the initial treatment of emergency 

patients552. Different techniques assessing fluid responsiveness have been described in ventilated and 

spontaneously breathing patients. 

2.5.1.3.1 Ventilated patients 

The heart-lung interactions produced by controlled positive-pressure ventilation creates a well-

controlled situation that allows fluid responsiveness to be easily assessed614-617. Under controlled 

ventilation with tidal volumes above 8ml/kg, and with 

patients in sinus rhythm, respiratory changes in vena 

cava diameter or in stroke volume are considered the 

most useful echocardiographic parameters to assess 

fluid responsiveness618. Mechanical ventilation causes 

an increase in intrathoracic pressure, impeding venous 

blood returning to the heart. A small vena cava in 

ventilated patients reliably excludes the presence of 

elevated right atrial pressure (RAP)619,620.The changes 

in intrathoracic pressure throughout the respiratory 

cycle impact the amount of blood in the vena cava 

(Figure 10). Changes in inferior vena cava (IVC) 

diameter during respiration are correlated with volume responsiveness615,616. The variation of IVC 

diameter during respiration after a fluid bolus is significantly correlated with an increase in CO615,616. 

The superior vena cava (SVC) suffers more from intrathoracic pressure changes, especially during 

positive pressure ventilation, but is less influenced by intraabdominal pressure changes and can also be 

used to assess fluid responsiveness621,622. The collapsibility index is based on beat-to-beat changes in the 

diameter of the superior vena cava. High SVC collapsibility (>30%) predicts a positive response to 

volume expansion49,614,618. 

Several techniques using Doppler flow measurement (aortic velocity-time integral617,621,623,624, 

transmitral and pulmonary vein Doppler patterns595,625-627) have also been described to assess fluid 

responsiveness. These are however technically more difficult to perform compared to evaluation of the 

vena cava size and collapsibility. In addition to respiratory pressure variations, systolic pressure 

variations and pulse pressure variations can also be used to evaluate flow variations secondary to 

pressure changes and to develop an index of volume loading617. The relation of early to late transmitral 

diastolic filling (E/A ratio), isovolumetric relaxation time and rate of deceleration of early diastolic 

inflow (deceleration time) all provide additional information regarding preload585. Finally, a small LV 

 

Figure 10: IVC diameter in M-mode 

Source: www.acep.org 
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cavity, with end-systolic obliteration628 or the presence of interatrial septal deviation to the left during 

positive-pressure ventilation629 are strongly indicative of hypovolemia and can be assessed subjectively.  

2.5.1.3.2 Spontaneously breathing patients  

Spontaneously breathing patients are harder to evaluate than ventilated patients, as the respiratory 

pressure changes are not controlled, and cannot be used to evaluate volume or flow changes. However, 

several static and dynamic parameters have been suggested to evaluate volume responsiveness. An 

inferior vena cava diameter <1cm is indicative of a low preload and volume responsiveness in 

hypotensive human patients630,631. A small hyperdynamic LV with end-systolic cavity effacement 

indicates hypovolemia594. An IVC >20mm without a >50% decrease in diameter with gentle sniffing 

indicates elevated RAP (>10mmHg)632. The effect of passive leg raising on stroke volume has been 

validated in human patients and an increase in CO of >10% predicts a positive response to volume 

loading in a hypotensive individual633,634.  

2.5.1.4 Left Ventricular Systolic dysfunction 

Approximately a quarter of hemodynamically unstable critically ill patients, including septic patients, 

suffer from significant LV systolic dysfunction40-42,568,635. Evaluation of LV systolic function can usually 

be performed using TTE595, but most echocardiographic parameters evaluating systolic function are 

affected by loading conditions49,54988. Systolic dysfunction can become apparent after restoration of 

afterload, and revaluation is important in critically ill patients636,637. LV size and function in critically ill 

patients might not be similar to outpatients, and separate ‘reference ranges’ might be applicable549. A 

large number of parameters have been described. Subjective visual inspection is very reliable when used 

by criticalist experienced in echocardiography or echocardiographers601,638. The basic-level 

echocardiographer should be able to distinguish global hypokinesis from regional abnormalities559. 

Regional wall motion is evaluated using semi-quantitative scoring systems (1= normal; 2=hypokinesia; 

3=akinesia; 4=dyskinesia)52. Regional hypo- or dyskinesis is typical of MI and chronic ischemic 

conditions600. Besides such qualitative and semi-quantitative visual evaluation, several indices have been 

described to quantitatively assess systolic function568,639. Fractional shortening (FS) is assessed via M-

mode echocardiography (Figure 12), and is the most commonly described parameter evaluating 

ventricular systolic function52-54. FS is the degree of systolic reduction in the minor axis expressed as a 

percentage of end-diastolic dimension548. It is an estimate of global systolic function, but depends on 
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factors besides contractility, such as heart rate, preload 

and afterload549,576,640. FS assesses changes in 

ventricular size in one plane, while systolic function 

may change depending on the plane assessed as 

ventricles are not perfect geometrical shapes549,576,640. 

LV ejection fraction (LVEF) can be calculated via a 

modified Simpson’s rule interpreting the LV as a stack 

of elliptical disks (Figure 13)52,54. LVEF is the 

difference between diastolic and systolic volumes 

compared to the diastolic volume (LVEDV-

LVESV)/LVEDV568. LVEF is influenced by 

geometrical assumptions regarding ventricular shape, 

heart rate, preload and afterload and valvular 

lesions549,576,640. Finding a normal LVEF in a low SVR-

state is indicative of depressed systolic function40 and 

vasopressors will markedly decrease LVEF and CI40.  If 

LVEF is low, any additional adverse stress on preload, 

afterload or contractility may have catastrophic 

effects576. Low LVEF despite adequate preload is often associated with low flow (Q)641, and may be an 

indication for positive inotropes642. Fractional area change (FAC) is calculated via the assessment of LV 

end diastolic area (LVEDA) and LV end-systolic area (LVESA) via a short axis midpapillary 

transgastric view by TEE ((LVEDA-LVESA)/LVEDA)547. End-diastolic, end-systolic areas and the 

end-systolic volume index (ESVI) (LVIDs³/m²) are technically more complicated and are outside of the 

scope of this review44,568,643,644. Besides these morphological characteristics, other parameters have been 

described which evaluate the timing of events during the cardiac cycle related to the start of systole and 

closure of aortic valves to assess systolic function, such as long axis movement645-647, velocity of 

circumferential fiber shortening648, ventricular pre-

ejection/ejection time ratio filling649,650, ventricular long axis 

function, tissue Doppler imaging (TDI) and aortic flow 

velocity548,549,645. Again, although these parameters might hold 

promise they are outside the scope of this review. 

Finally, in human medicine two specific patterns of LV systolic 

function have been described. Dynamic left outflow tract 

obstruction which blocks further ejection and reduces stroke 

volume (Figure 14) 651, and transient apical ballooning (aka 

Takotsubo) characterized by hyperdynamic basal function, 

 

Figure 12: M-mode of the left ventricle, 

allowing to calculate FS 

Source: http://www.uk-

ireland.bcftechnology.com 

 

 

Figure 13: Diastolic and systolic calculated LV 

volume, allowing to calculate LVEF 

Source: http://www.uk-ireland.bcftechnology.com 

 

Figure 14: Dynamic left outflow tract 

obstruction. 

Source: 

http://ehjcimaging.oxfordjournals.org/ 
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impaired mid-chamber function and aneurysmal dilation of the apex and results from severe emotional 

stress652 but does not require any treatment. As these patterns impact treatment, they merit mentioning 

in this review559. 

2.5.1.5 Left Ventricular Diastolic dysfunction 

Diastolic dysfunction is suspected when PACs pressures are elevated, but LVEF is normal or 

supranormal653. Preload can be reduced by a decreased LV diastolic compliance resulting in a filling 

impairment and decreased CO654,655. Similar to previously discussed cardiac parameters, diastolic 

properties are influenced by a myriad of factors such as valvular pathologies, LA pressure, heart rate, 

ischemia and ventricular hypertrophy. Diastolic function is often not evaluated when the heart rate is 

>110/min, when persistent arrhythmias, a non-sinus rhythm or a paced rhythm noted547. The evaluation 

of diastolic function remains very tricky and becomes easier when LA and LV size, pulmonary venous 

flow velocity and alterations of preload are known88,656,657. Echocardiography provides only indirect 

assessment of initial active relaxation, and does not evaluate passive relaxation44. Doppler flow across 

the mitral valve can be abnormal despite normal LVEF or FS, indicating diastolic dysfunction548,658-660. 

The E/A ratio evaluates the proportion of passive (early or E-wave) and active (atrial or A-wave) 

diastolic ventricular filling. In healthy young people 70% of ventricular filling occurs in the early (E-

wave) phase of diastole, after the isovolumetric relaxation time (IVRT, from A2 to mitral leaflet 

opening), the remaining 30% of ventricular filling occurs during atrial (A-wave) contraction. In case of 

abnormal relaxation, the amplitude of the A wave will increase, while the E-wave will be reduced or 

even suppressed44,661-664. Age, heart rate, loading conditions, LA pressure, auricular contraction, LV 

systolic function and peripheral vascular resistance all influence the transmitral Doppler E/A ratio 

independently of ventricular diastolic function548,657,658,665. Moreover, in ICU patients discrepancies exist 

between hemodynamic measurements and echographic evaluation of LV performance568,666. Shortened 

E-wave deceleration time, increased velocity, short IVRT and dominant E-wave are all strongly 

indicative of LV restriction or cardiac disease658. Other Doppler derived parameters are flow propagation 

velocity of early mitral inflow on color M-Doppler (Vp)661,667,668, peak velocity of mitral annulus 

displacement, and peak diastolic lengthening rate by tissue Doppler imaging (Ea) 662. Diastolic function 

can also be evaluated via assessment of the isovolumic relaxation time from aortic closure until 

separation of the mitral cusps548, shape change during isovolumic relaxation548, longitudinal motion of 

the atrioventricular rings646,669-671, and asynchrony of long- and short axis movement646 but these 

parameters are all outside of the scope of this literature study. 

2.5.1.6 Ventricular dilation 

Ventricular dimensions are primarily determined by volume status and SVR which can be easily 

assessed in systole and diastole using echocardiography in short- or long-axis views595. Low vascular 

resistance will lead to a higher EF with smaller end systolic dimensions. Inversely, excessive fluid 
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loading will lead to LV dilatation672. Heart rate affects ventricular volume, with diastolic volumes being 

inversely correlated with heart rate673. In general, echocardiography tends to underestimate LV 

volume674. Different parameters (many of which have previously been described as ratios used to assess 

ventricular function) are described to evaluate ventricular volume. LVEDV can be assessed by TTE673. 

LV end diastolic area (LVEDA) is measured via TTE in a left parasternal short-axis view or via 

TEE40,569,612. LV end diastolic and end systolic long axis can also be measured as the distance from the 

apex to the midpoint of the mitral valve ring on the long axis view568. 

2.5.1.7 Right ventricular dysfunction and dilation 

In the critical care setting acute cor pulmonale can occur secondary to massive pulmonary embolism or 

acute respiratory distress syndrome675-678. Right ventricular function can be affected by right ventricular 

infarction, increased pulmonary vascular resistance or ventilation with positive end expiratory 

pressure595. RV failure is always a combination of pressure and volume overload due to its inherent 

muscle fiber characteristics compared to the more sturdy LV. RV failure may become apparent after 

starting mechanical ventilation and periodic bedside evaluation is therefore warranted559. The primary 

focus of the assessment of right ventricular function is the evaluation of the size and kinetics of the 

cavity and the septum593,679. RV pressure and volume overload will distort LV geometry, and induce 

abnormal motion of the interventricular septum (paradoxic septum motion), flattening out and giving a 

D-shape to the LV593,679. In case of acute pulmonary thromboembolism regional RV dysfunction can 

also be observed, characterized by akinesia of the mid-free wall, but normal motion at the apex (observed 

via TTE)680. Although TTE is useful for the evaluation of RV function, TEE is often preferred to detect 

emboli in the main and right pulmonary arteries681. Many parameters, such as septal flattening and 

paradoxic septum motion, RV-LV ratio, right ventricular long axis function, the eccentricity index, 

tissue Doppler indices and RV filling patterns have been described for the assessment of right ventricular 

function and size, but are outside of the scope of this literature review. 

2.5.1.8 Assessment of cardiac output 

When assessing hemodynamics in critically ill patients, measurement of CO is invaluable595. Early 

reports assessed ventricular dimensions on the short axis and calculated the volume of the ventricle 

based on a modified ellipsoid model equation which correlated cardiac indices with thermodilution 

values571. Several methods using two-dimensional and Doppler echocardiography have since been 

described to determine CO682-685. The rationale is to use Doppler to assess instantaneous blood flow 

velocity, while two-dimensional echocardiography gives information about the cross-sectional area of 

the conduit548,685. Again an in depth discussion is outside the scope of this review.  

2.5.1.9 Conclusion 

The key benefits of echocardiography are speed, noninvasiveness, possibility to assess pericardial and 

valvular disease simultaneously and intuitiveness559. Additionally echocardiography can detect diastolic 
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dysfunction, hyperdynamic obstruction and acute right heart failure which are difficult to diagnose with 

invasive techniques547,592. Ultrasound decreases the number of missed cardiac findings on physical 

examination586, helps to explain unexplained hypotension686, and changes treatment (fluids, inotropic 

agents, anticoagulants and antibiotics)41,588,635,687,688. The use of bedside echocardiography is well 

demonstrated in human emergency and ICU patients with acute hemodynamic disturbances549,595, and 

undoubtedly deserves consideration in veterinary medicine. 

2.5.1.10  Canine experience 

Canine echocardiography continues to evolve alongside human echocardiography581,662689. The biggest 

practical differences between human and canine echocardiography, besides financial restraints, is the 

wide variation in breed characteristics. This variation makes the evaluation of cavity sizes based on 

ratios and indices more practical. The general application of ultrasound in canine emergency and critical 

care is still in its infancy. Focused assessment with sonography for trauma (FAST) has become common 

place in human medicine, but these techniques are just starting to find their way into general veterinary 

ECC, with the first FAST studies only recently being published in dogs690.  

FAST techniques allow veterinary clinicians to 

take the first steps in sonographic evaluation of 

cardiovascular function of the emergency 

canine patient. The use of thoracic FAST 

(TFAST) describes a right pericardial site view, 

which allows for evaluation of LA to aortic 

ratio (LA/Ao) and the assessment of volume 

status and contractility on a LV short axis 

view690. Additionally the diaphragmatico-

hepatic view allows screening of the size of the 

caudal vena cava and to look for hepatic 

venous distension, allowing assessment of 

preload and the detection of volume 

overload691. The described VetBlue technique 

(Figure 15) identifies signs of ‘wet lungs’ (B-

lines or lung rockets) in the perihilar region 

and enables to detect cardiogenic pulmonary 

edema at an early stage, but more experience 

needs to be gained with these techniques690,692-

695. Recently a 6-hour training program for 

non-cardiologists demonstrated successful 

recording of correct views (97%), pleural (90%) and pericardial (95%) effusion, and identification of 

 

Figure 15: VetBlue protocol 

Source: Greg Lisciandro 

 

Figure 16: B-lines on thoracic ultrasound 

Source: http://www.scielo.br 
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LA enlargement (86%) 696. However, the course was unsuccessful in teaching candidates to assess 

volume status, and ventricular size or hypertrophy as well as more specific cardiac diseases696.  

2.5.1.11 Left atrial size  

Transient changes in blood volume due to de- or over-hydration alter atrial geometry. Subsequently, LA 

size serves as an estimate of preload and LV filling pressure50,51. LA size is related to mitral and 

pulmonary venous flow velocity patterns and is correlated with LV diastolic pressure in patients without 

MVD50. Increases in LA size are associated with an increased risk of CHF as LA hypertrophy and stretch 

reflect an increase in LA pressure697. Therefore LA size reflects the severity of left heart disease and the 

risk of development of CHF, making it an inherent part of the evaluation of cardiac function51.  

In veterinary medicine LA size is typically assessed using LA/Ao-ratios (Figure 12)51.  LA size is usually 

assessed just prior to opening of the mitral valve or at the 

closure of the aortic valve, as this is the moment at which the 

size of LA normally is at its peak51.  In the short-axis view, 

the window should be optimized to visualize the aortic 

valve51. M-mode measurement of LA dimension has the 

benefit of not being influenced by geometric assumptions50. 

The LA/Ao-ratio is a consistent, age-independent 

measurement, as the aortic diameter is expected to change less 

over time than body weight in an adult dog51,698-700. 

Unfortunately M-mode derived assessment also comes with 

some limitations including the difficulty of measuring the 

aortic maximal diameter and the risk of assessing the diameter 

of the left auricle rather than the LA body. Different 2D measurements of LA size in dogs have been 

proposed, such as LA short axis (LASAX) diameter, LA long axis (LALAX) diameter, LA and aortic 

circumference (LACIRC) and LA and aortic cross-sectional area (LAAREA). LASAX is assessed by tracking 

the internal short-axis diameter of the aorta along the commissure between the non-coronary and right 

coronary aortic valve cups right after aortic valve closure, while the internal short-axis diameter of the 

LA is measured on the same frame, but as a line extending from and parallel to the commissure between 

the non-coronary and left aortic valve cups to the distant margin of LA51. Although LASAX  is very well 

correlated with M-mode derived values, LASAX results in higher results (median and mean 1.3, 

maximum value 1.6) compared to M-mode LA/Ao-ratios (mean about 1.0, with a maximum of 1.3). 

Differences in results are probably explained by the fact that M-mode measurements might not transect 

the aorta at the widest diameter, and since canine cardiac positioning is different than in humans, M-

mode measurements could transect the left auricle rather than the atrium51. Regardless of the applied 

technique, all methods have an intra subject variability ≤12% in dogs, suggesting good repeatability 

when performed by a single experienced observer51. 

 

Figure 11 : LA/Ao-ratio in dogs 

Source : www.vettimes.co.uk 



71 
 

2.5.2 Cardiac function in human critical care 

2.5.2.1 Myocardial infarction 

Myocardial infarction (MI) is a common disease in human medicine and is associated with a 5 to 17% 

incidence of cardiogenic shock701. Although MI in itself is not the scope of this literature review, it 

merits mentioning, as the monitoring of these patients was the trigger for echocardiographic monitoring 

of critical patients and we will come back to myocardial infarction when discussing cardiac biomarkers. 

2.5.2.2 Myocardial dysfunction in SIRS and sepsis 

In human medicine, several infectious diseases such as Q-fever702, Chagas disease703, bartonellosis704 

and Rocky Mountain spotted fever705 are associated with infectious myocarditis resulting in LV 

enlargement. In addition to these infectious pathogens with specific cardiac tropisms, SIRS and sepsis 

have been reported to cause a cardiovascular and hemodynamic impairment in humans42,49,205,706-711.  

Septic shock was first described as a “hyperdynamic” state of low SVR due to an abnormal vascular 

tone712. It was further characterized by a hyperkinetic LV on echocardiography and high forward 

Doppler flow, resulting in high CO or CI639,713,714. Patients displaying low CO were believed to have 

absolute or relative hypovolemia, as fluid resuscitation normalized preload and increased CO in the 

presence of low SVR236,706,713,715-718. The typical symptoms of poor peripheral perfusion, thready pulses 

and cool extremities, also referred to as “cold shock”, was considered a reflection of inadequate 

resuscitation and relative hypovolemia714,719,720.  

Nearly half (35% to 50%) of septic human patients have a low CO at admission42. Despite the 

encouraging reports of increasing CO after fluid resuscitation, low CO often remains unresponsive to 

fluid resuscitation. These patients, unresponsive to fluid challenges, often suffer from decreased 

ventricular contractility or LV hypokinesis, a phenomenon first described as a “hypodynamic” state, and 

later redefined as myocardial dysfunction40,49,568,641. Myocardial dysfunction in SIRS patients is referred 

to as myocardial depression describing a state of poor myocardial contractility, decreased peripheral 

vascular tone (SVR), changed afterload and a loss of microvascular control548. The increased awareness 

of the repercussions of sepsis on cardiac function lead to the incorporation of proof of cardiac 

dysfunction (low CI or echocardiographic evidence) in the diagnostic criteria for severe sepsis, 

highlighting its important role in sepsis309,721.  

Myocardial dysfunction or depression has also been described in situations other than sepsis, such as 

secondary to ischemia, hypoxemia, respiratory or metabolic (lactic) acidosis, low ionized serum 

calcium, hypothermia, hyperthermia, advanced neoplasia and immune mediated disease214,722-724. 

Myocardial dysfunction is currently reported in up to 44% of normotensive septic 

patients42,162,641,710,711,725-727. Other contributing factors such as diastolic dysfunction, ventricular dilation 

and decreased adrenergic response have been reported in sepsis and SIRS. Myocardial dysfunction or 
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depression is also called myocardial hibernation, indicating the supposedly “physiologic” and 

“reversible” nature728. Myocardial depression could be an adaptive response to decrease energy 

requirements and oxygen and adenosine triphosphate (ATP) demands, preventing initiation of cell death 

pathways39,729 and preserving cell viability39,730. The next sections describes current evidence of 

myocardial dysfunction and will discuss the pathophysiological mechanisms that may explain these 

observations. 

2.5.2.2.1 Systolic left ventricular dysfunction 

The first report of myocardial depression dating back to 1984 identified decreased systolic LV function 

in adequately resuscitated severe sepsis patients, with low SVR and low PCWP42. These findings have 

been confirmed by many other publications731-735, and indicate that survivors can display more severe 

systolic dysfunction than non-survivors40,42,49,65,88. Despite severely depressed LVEF, survivors have an 

adequate LV stroke volume thanks to simultaneous acute LV dilation42,639. This confirms that systolic 

function can be impaired in sepsis despite normal or increased CO42.  Later work illustrates that normal 

or supranormal LVEF does not exclude systolic dysfunction, as it can be masked by a decreased 

afterload following inappropriately decreased SVR595. 

2.5.2.2.2 Diastolic left ventricular dysfunction 

Cardiac dysfunction in SIRS and sepsis is most often systolic, but can also be systolic and diastolic, or 

solely diastolic55,56,654,655,736,737. Reduced LV compliance with increased end-diastolic LV pressures have 

been demonstrated738. About 20% of septic shock patients suffer from isolated diastolic dysfunction, 

with abnormal cardiac filling and relaxation, and preserved systolic function44,672.  

2.5.2.2.3 Increased left ventricular volume 

Septic patients often display ventricular dilation, with dilation more pronounced in survivors40,42,46,672,739. 

However, LV dilation is not a consistent finding40,654 and acute LV dilatation in septic shock is not 

supported by all authors549,569,573,641. Based on the physiological properties of the pericardial sac, 

pericardial stiffness may preclude acute dilation, regardless of the administration of fluids for 

resuscitation. Furthermore, a normal LV should not have a preload reserve, as it operates on the steep 

portion of its pressure-volume relation beyond its optimal filling pressure740. Methodological differences 

might account for these discrepancies: differences in treatment strategies, inherent differences in studies 

using TTE or TEE and differences between ventilated and non-ventilated patients make it difficult to 

compare findings. Less severely dilated LV were found in patients receiving less fluids and more 

vasopressors672. TTE underestimates LV volumes and mechanical ventilation decreases image quality40.  

Finally, as the incidence of impaired LV relaxation is estimated around 50%, LV dilatation might be 

missed in smaller studies44,672.  
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2.5.2.2.4 Right ventricular dysfunction 

Although less, myocardial dysfunction can affect the RV569,641,741-744. Right ventricular dysfunction 

explains poor response to volume resuscitation, demonstrated by a lack of increase in CI despite a 

decreased LV preload744. Right ventricular dysfunction may be due to intrinsic depressed contractility, 

acute cor pulmonale675, or an acute increase in pulmonary vascular resistance (PVR). Besides intrinsic 

pulmonary or vascular disease increasing PVR, mechanical ventilation can increase PVR, and raise RV 

afterload745. Mechanical ventilation will reduce venous return secondary to the provoked increase in 

intrathoracic pressure. Therefore, volume-controlled positive end expiratory pressure (PEEP) will lead 

to respiration-phase-specific reductions in RV output, which are most pronounced during inspiration746. 

Demonstrating acute right ventricular dilation and RV failure indicates RV volume overload and 

excludes hypovolemia, but increases the likelihood of acute cor pulmonale (e.g. pulmonary 

thromboembolism)559,679. 

2.5.2.2.5 Cardiovascular consequences of myocardial dysfunction 

Myocardial depression during SIRS is characterized by a variation of left and right ventricular systolic 

and diastolic dysfunction, with potential ventricular dilation and potentially resolves within 10 days to 

4 weeks40,42,46,49,153,558,639. To add to the confusion, these patients often display peripheral vasodilatation 

resulting and reduced SVR40,42,44,672,739. The combination of myocardial dysfunction and decreased SVR 

results in an unexpected maintained CO and CI42. In cases of normal LVEDV SV will however tend to 

be severely reduced40. Therefore an increased end-diastolic volume might compensate for a decreased 

systolic function and be a pathophysiological adaptation to keep CO in the normal 

range42,43,55,56,237,725,732,733,744. 

2.5.2.3 Pathophysiology of myocardial dysfunction 

2.5.2.3.1 Myocardial ischemia and myocardial injury 

Although myocardial hibernation was first hypothesized to occur secondary to myocardial ischemia45,747, 

echocardiography, electrocardiography and experimental models evaluating “coronary blood flow”- and  

“myocardial metabolism”-studies demonstrate preserved myocardial blood flow and lactate extraction, 

refuting the hypothesis of global myocardial ischemia64,235,748,749. Microcirculation is however severely 

altered in sepsis, and regional ischemia could still potentially contribute to myocardial depression750. 

Cytopathic hypoxia occurs in other organs during sepsis and could be another potential explanation of 

myocardial dysfunction751. However, finding preserved ATP in dysfunctional myocardium contradicts 

this hypothesis752-755. During myocardial hibernation in ischemia and hypoxia, cardiomyocytes remain 

viable by down-regulation of oxygen consumption, energy requirements and ATP demands756,757.  

Histopathological studies do not demonstrate myocardial injury as a prerequisite for clinical myocardial 

dysfunction57,758,759. Disruption of the actin/myosin contractile apparatus could also contribute to 
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myocardial depression in septic shock760, but the major explanation for the depressed myocardial 

contractility during systemic inflammation appears to be endotoxin, interleukins and tumour necrosis 

factor548. 

2.5.2.3.2 The role of pro-inflammatory cytokines 

Injection of bacteria or endotoxins into lab animals and humans results in myocardial depression55,205. 

Although endotoxin triggers the inflammatory cascade, endotoxin itself does not cause myocardial 

dysfunction45,153 however endotoxin elicits the release of inflammatory mediators761. Serum from human 

septic patients induces similar cardiac effects in rats, and heat-labile, proteinase-sensitive substances 

with a molecular mass of 10 to 30kD appear to be responsible45,153. These properties are consistent with 

cytokines, but exclude prostaglandins and leukotrienes45,155. Studies investigating different cytokines 

demonstrated that TNF-α and IL-1β have a synergistic depressant effect on myocardial contractility at 

concentrations similar to clinical conditions4,126,159,219,762 and explain most of the symptoms observed in 

circulatory shock43,55,235,304,763-765, while publications on IL-6 are inconclusive on its role126. In vitro 

studies and observations in living lab-animals confirm these hemodynamic effects126,204,766188,208,209. 

Removal of TNF-α and IL-1β from serum of septic humans (by washing or using immunoabsorption) 

rapidly eliminates myocardial depressor effects126,204. Exposure of cardiomyocytes to TNF-α and IL-1 

does not increase lactate dehydrogenase concentrations, neither does supravital staining demonstrate 

any loss of cell viability126, underlining the concept of depression rather than injury. 

TNF-α induces reversible (systolic and diastolic) myocardial depression in dogs and other 

animals43,235,767. Myocardial depression in dogs appears 24 hours after administration of TNF-α and 

disappears after 72 hours235. This late onset of action supports the theory that secondary mediators are 

involved in the process235, and explains why early studies focusing on the first day after injection did 

not see myocardial depression with TNF-α or IL-1β304. TNF-α causes myocardial depression via 

secondary mediators released by recruited and activated neutrophils235. Neutrophils participate in 

myocardial ischemic injury and lead to myocardial dysfunction242-246, and neutrophil margination and 

diapedesis through the endothelium as well as adhesion to cardiomyocytes is enhanced by TNF-α and 

IL-1β195,196,241.  TNF-α also stimulates liberation of IL-1β from neutrophils which will further aggravate 

myocardial depression216,247,768.  

2.5.2.3.3 Molecular basis of myocardial systolic dysfunction 

2.5.2.3.3.1 Nitric oxide 

Nitric oxide (NO) is an important intracellular mediator, which regulates myocardial energy production, 

coronary vessel tone, thrombogenecity and has direct effects on cardiac contractility769-773. NO is 

produced via NO synthases (NOS), of which NOS2 (or inducible NOS (i-NOS)) is induced in the 

myocardium in response to pro-inflammatory cytokines, endotoxin and CRP398,774-777. Low doses of NO 
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improve LV function, yet high concentrations decrease myocardial contractility778-780, and can induce 

apoptosis781. Several experimental studies demonstrate the key-importance of NO and NOS2 in the 

development of myocardial depression158,159,275,782-784. NO additionally has direct cytotoxic effects via 

generation of the oxidant peroxynitrite, which is harmful to DNA, proteins and lipids785. Studies 

demonstrating a near immediate effect of endotoxin are explained by effects of endotoxin on endothelial 

NOS, rather than the effects of cytokines on inducible NOS159. 

2.5.2.3.3.2 Altered metabolism and cytopathic hypoxia 

Myocardial hypoperfusion does not participate in myocardial dysfunction (myocardial blood flow even 

seems elevated)748,749, but altered myocardial metabolism is suspected, although research does not agree 

on the occurring alterations748. During endotoxinaemic shock myocardial cells switch to glucose as a 

primary energy substrate and undergo anaerobic glycolysis for ATP production786,787. Myocardial 

specific glucose transporters (GLUT1 and GLUT4) facilitate the required increased glucose uptake787-

789 and hibernation leads to increased glycogen deposition in the cardiomyocytes790. Sepsis in mice leads 

to increased glucose uptake, up-regulation of the GLUT-4 myocardial specific glucose transporter and 

increased glycogen deposits in the cardiomyocytes, indicating altered metabolism728. Other studies in 

human septic patients and canine endotoxemic models describe an increased uptake of lactate, with 

decreased use of glucose, free fatty acids and ketone bodies748,791, indicating that lactate becomes the 

main energy source786. On the other hand, nearly half of myocardial oxygen consumption cannot be 

explained by substrate extraction, indicating a significant amount of endogenous substrate utilization748. 

As carbohydrate reserves are low in cardiomyocytes, consumption of those reserves might add to 

progressive cardiac depression, as described in experimental models792-794. 

Cytopathic hypoxia leads to uncoupling of oxidative phosphorylation and disruption of adenosine 5’-

triphosphate production, resulting in decreased contractile forces644. Sepsis-induced irreversible 

inhibition of myocardial cytochrome oxidase was previously demonstrated795, rendering the 

cardiomyocyte “functionally hypoxic” despite the presence of oxygen, and inducing myocardial 

hibernation728,795.  

As previously stated, coronary hypoperfusion has not been identified in sepsis748,749 and sepsis is 

accompanied by increased oxygen availability749. Moreover, there is no evidence of net myocardial 

lactate production749. This indicates that coronary blood flow is probably not determined by myocardial 

oxygen needs in sepsis, similar to systemic peripheral shunting in septic shock42,713. However, sepsis 

decreases oxygen extraction in other tissues749 and increases lactate uptake748. Myocardial blood flow 

redistribution occurs in canine septic shock796 and global myocardial lactate extraction can mask 

regional lactate production797. Therefore the hypothesis of microcirculatory derangements in sepsis can 

not be excluded. 
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2.5.2.3.3.3 Other mechanisms 

Although the primary method of action of TNF-α is probably centered on changes in nitric oxide (NO) 

production, calcium homeostasis and other mechanisms have a role in the development of myocardial 

dysfunction. Sepsis and TNF-α decrease sarcolemmal calcium concentrations, leading to reduced 

cardiac contractility39,204,798. As previously stated, neutrophils adhere to the endothelium during 

myocardial depression799 and contribute to ventricular hypocontractility by generation of oxygen free-

radicals causing oxidative injury210,799,800.  

Cardiac dysfunction is associated with a strong attenuation of sympathetically and vagally mediated 

heart rate variability707. Endotoxins reduce β-adrenergic receptors, leading to a decreased response to 

catecholamines801. TNF-α (similarly to IL-1β) decreases the sensitivity of the septic heart to β-adrenergic 

catecholamines157. This impaired adrenergic responsiveness802 improves during the course of disease802-

804. The effect is induced by TNF-α and IL-1β which inhibit cyclic adenosine monophosphate (cAMP) 

accumulation in response to catecholamines and increases inhibitory G-proteins which inhibit cAMP, 

leading to decreased β-adrenergic responsiveness without a decrease in β-adrenergic receptor 

density157,805,806.  

2.5.2.3.4 Pathophysiology of diastolic dysfunction 

Few studies looked into the pathophysiology of diastolic dysfunction. Impaired ventricular relaxation is 

associated with increased concentrations of TNF-α, IL-8, IL-10 and cTnI807. The initial part of relaxation 

depends on an activation-inactivation process involving β-adrenergic stimulation, calcium homeostasis, 

functions of sarcoplasmic reticulum, contractile proteins of myofilaments, and their interaction with 

calcium, all of which can be impeded during septic shock as previously explained44. 

2.5.2.3.5 Myocardial dysfunction and prognosis 

Although a general consensus exists that myocardial depression or dysfunction has a high prevalence in 

sepsis and SIRS, there is a lot of contradicting information regarding its effect on prognosis. Early 

reports indicated a better prognosis for patients displaying signs of cardiac depression42, but recent 

papers indicate a worse prognosis for patients with decreased systolic function88. Increased heart rate808 

and severely decreased SVR are other cardiovascular parameters that are associated with poor prognosis 

in SIRS808-810. 

2.5.3 Cardiac function in canine critical care 

2.5.3.1 Experimental evidence 

Despite the vast amount of scientific evidence in the human field, little is known about the clinical 

prevalence of myocardial dysfunction in veterinary medicine. Most of our current knowledge is based 

on animal experiments and extrapolations from human medicine. Experimental studies of septic 

peritonitis, bacteremia or infusion of TNF-α and endotoxin in dogs43,55,56,139,235,237,240,811 following 
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adequate fluid resuscitation results in  hyperdynamic patients with a high CO, low SVR, and myocardial 

(systolic and diastolic) dysfunction similar to human patients, including ventricular 

dilatation42,43,55,56,139,237,240,732,811. 

Early experimental canine models did not identify myocardial depression811, or suspected a principal 

role for coronary hypoperfusion812-816 but these studies displayed major differences from the human 

clinical setting. First of all, many experiments were performed on denervated hearts using bypass models 

on anesthetized animals not receiving fluid resuscitation, resulting in low CO. Moreover, these studies 

only recorded the initial 3 to 6 hours, after which animals died due to poor hemodynamic support812,814. 

As myocardial depression typically takes 24 hours to appear, it was probably missed43,235. The major 

contribution of canine experimental studies is undoubtedly that myocardial depression was observed in 

any therapy besides fluid resuscitation, confirming it is a result of pathology secondary to a disease 

process and not a result of therapeutic interventions55. 

2.5.3.2 Clinical evidence 

As echocardiography in dogs is complicated by breed differences, ratios and indices are used to evaluate 

cardiac function817. Unfortunately very limited literature on clinical myocardial dysfunction during SIRS 

in dogs is available. One publication systematically evaluating cardiac function in an emergency setting, 

focused on the ability of the veterinarian to perform the examination rather than on the results696. In 

ICU-settings published canine studies focused on a single disease. A non-blinded retrospective study in 

dogs with critical illness identified 16 dogs with cardiovascular dysfunction57. Prognosis of dogs with 

myocardial dysfunction appeared poor, but was not compared with a control group of critical patients 

without myocardial dysfunction57. In canine ehrlichiosis one third of animals demonstrated 

echocardiographic abnormalities, a prevalence similar to a group with systemic inflammation due to 

other causes818. One abstract describes reversible myocardial dysfunction, demonstrated by decreased 

systolic function and ventricular dilation (non-detailed echocardiographic ratio indices) in a canine 

septic patient644.  

In summary clinical evidence of myocardial dysfunction in dogs with SIRS/sepsis is available, but little 

is known about its prevalence, echocardiographic parameters have not been studied and nothing is 

known about the effect of myocardial dysfunction on prognosis. 

2.5.4 Conclusion 

Because of the variable nature of the peripheral and central cardiovascular effects of sepsis, any rational 

treatment regimen requires monitoring of blood pressure, CO, circulating volume, myocardial function 

and vascular tone548. Point of care echocardiography is valuable for the identification of the cause of 

hemodynamic instability (hypovolemic, cardiogenic or distributive) and for the subsequent optimization 

of therapy (fluid administration, inotropic or vasopressor therapy), and the possibility to repeat this 
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examination allows to assess response to treatment819. Unfortunately, despite the convincing knowledge 

gathered in human medicine, the information in canine medicine is very limited. 

2.6 CARDIOVASCULAR BIOMARKERS 

2.6.1 Cardiac Troponins 

Myocytes contain abundant contractile proteins organized in sarcomeres with overlapping thick and thin 

filaments, sliding past each other to produce muscle contraction820. Thick filaments are primarily 

composed of myosin, having adenosine triphosphatase (ATPase) activity and forming cross-bridges 

with actin. Thin filaments consist of actin, tropomyosin and 

the troponin complex (Figure 17). Within the troponin 

complex, there are 3 interacting and functionally distinct 

proteins (I, T and C). Tissue-specific isoforms exist for each 

type of troponin, and hence these troponins differ between 

cardiac and skeletal muscle tissue821. The cardiac troponins 

(cTn) are important for excitation-contraction coupling822,823 

via regulation of the calcium-mediated interaction between 

actin and myosin73,824,825. Tropomyosin dimers form a continuous chain along the groove of the actin 

helix within the thin filament and block the myosin binding sites on actin. At regular intervals along the 

filament lies a troponin complex, and each troponin protein (Figure 18) has specific functions regulating 

muscle contraction823. 

- Troponin C binds calcium to initiate muscle 

contraction. Troponin C is not used as a marker, as the 

cardiac and one skeletal isoform are homologous and 

therefore does not have cardiac specificity821,826.  

- Troponin T attaches the troponin complex to 

tropomyosin and actin, and has a molecular weight of 

37kDa827. Cardiac troponin T (cTnT) isoforms share 

more than 50% homology with skeletal isoforms, but 

can be separately identified828. Of 4 existing cardiac 

isoforms of troponin T, only 1 is characteristic of the normal adult heart, while the 3 others are 

normally expressed in fetal tissue. These isoforms can however also be re-expressed in damaged 

skeletal muscles or in heart disease821,829-836, leading to increased cTnT values in non-cardiac 

muscle disease such as polymyositis837. Early cTnT tests cross-reacted with the skeletal 

isoforms, but this has been resolved in current kits using more specific antibodies838,839. 

- Troponin I inhibits actomyosin ATPase and prevents the structural interaction of myosin with 

actin-binding sites. The cAMP-dependent phosphorylation of troponin I at two adjacent serine 

 

Figure 17: The troponin complex 

Source: www.emdocs.net 

 

Figure 18: Troponin C (Blue), I (Green) 

and T (Magenta) 

Source: Wikipedia.org 
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residues in the amino-terminal of the molecule causes a decrease in the affinity of calcium for 

the calcium-binding troponin C and inhibition of actin-myosin interactions840. The binding of 

calcium to troponin C displaces troponin I and causes a conformational change in tropomyosin 

so it no longer interferes with myosin/actin binding and muscle contraction can occur. Cardiac 

troponin I (cTnI) has three existing isoforms, two of which are present in skeletal muscle and a 

third is specific to cardiac tissue as it shares <50% homology with skeletal isoforms828,841. This 

cardiac isoform has a molecular weight of 24kDa, is larger than the two other isoforms and 

contains an additional post-transitional 32 amino acid N-terminal peptide842-846. The rest of the 

protein has more than 40% dissimilarity in its amino-acid sequence compared with skeletal 

muscle TnI, allowing for the development of highly specific monoclonal antibodies without 

cross-reactivity with non-cardiac forms821,827,847,848. Moreover, cTnI is not expressed in fetal or 

damaged skeletal muscle846,849-851.  

2.6.1.1 Human experience 

2.6.1.1.1 Molecular properties and analysis 

Cardiac ultrasound is very insensitive to diagnose myocardial injury as injuries must involve over 20% 

of myocardial wall thickness to identify abnormal segmental wall motion, explaining the interest in 

cardiac biomarkers852. The unique amino acid sequence of cTnI and cTnT allow for the development of 

immunoassays for use in clinical laboratories853. Troponins are more specific for cardiac damage than 

other cardiac biomarkers such as lactate dehydrogenase and creatine kinase isoenzymes in humans, 

common laboratory animals and dogs59,854-856. Moreover, MB-creatine kinase, the creatinine kinase 

expressing specific cardiac iso-enzymes, persists only for 18 to 36 hours and cannot determine whether 

patients sustained an acute MI a couple of days before presentation857. Cardiac troponins become 

detectable at a similar time-interval after acute infarction, but display more sustained values858,859. 

Troponins are leakage markers as increased myocyte permeability causes the release of cTn into 

circulation58-61. Apoptosis on the other hand should not decrease membrane integrity, and subsequently 

no significant leakage of troponins should occur860. cTnI is more sensitive and specific than cTnT at 

detecting myocardial injury829,830,849,861-863. The smaller size of cTnI (with a molecular weight of 22kDa) 

versus cTnT (40kDa) could explain the higher sensitivity of cTnI864.  

The majority of troponin is structurally bound within the thin filaments, and only a small percentage 

remains free in the cytosol (2-4% for cTnI and 6-8% for cTnT). The free part can be released without 

histological evidence of myocardial cell injury854,865,866. Structurally bound cardiac troponin is only 

released after major injury with cell disruption and necrosis58,867,868. cTnI is mostly released in complexes 

(Figure 19) of Troponin T-I-C and Troponin I-C, while cTnT is released as free Troponin T, or a 
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Troponin T-I-C complex869,870. The half-life of cTnT and its complexes in circulation is about 2 hours871, 

while the half-life of cTnI is under 70 minutes857.  

The troponin release kinetics are consistent with 2 

separate intracellular reservoirs of molecules: one 

early and transient, another later and persistent872,873. 

After acute cardiac injury, the release of the 

cytosolic pool results in an early rise in blood levels. 

The structurally bound troponin is slowly degraded 

and released, resulting in a sustained 

elevation854,857,865. Originally, the consensus was for 

troponin to solely increase following irreversible 

membrane injury, but several recent studies indicate 

that troponin I can be released in reversible 

injury874,875. This cTnI comes from the free cytosolic 

pool, leaking through a reversible damaged myocyte 

membrane, and is supported by transient cTn release after strenuous exercise876,877.  

Troponins are probably eliminated via clearance by the reticuloendothelial system878. However, 

troponins might also be broken down into small fragments which can be excreted by the kidneys879. 

Normal range for plasma cTnI in humans are 0.0 to 0.04ng/mL880. Troponins remain stable for several 

days at room temperature or at 4°C, and for years at storage temperatures below -80°C881,882. Age and 

sex dependent cTnI variations have been described883-885 with elderly and male patients associated with 

troponin positivity886-888. 

False-positive results for cTnI may be caused by heterophilic antibodies, rheumatoid factor, fibrin clots, 

microparticles, and analyzer malfunction889. Measurement of cTnI in heparinized plasma results in 

significantly lower values (with a mean reduction of 15%)890. This difference occurs secondary to 

binding of heparin to troponins, decreasing their immunoreactivity891. EDTA-samples also result in 

decreased concentrations in assays using antibodies preferentially directed against complexed cTnI, as 

EDTA releases free cTnI from a calcium-dependent cTnI-troponin C complex869,870,892. Icterus and 

hemoglobinemia do not cause clinically significant interference with every cTnI test825, although falsely 

increased concentrations are described secondary to hemolysis, lipemia and increased alkaline 

phosphatase823,893. 

2.6.1.1.2 Myocardial Infarction 

Cardiac troponins are sensitive and persistent indicators of myocardial injury, with high tissue 

specificity, even in the presence of marked skeletal injury, liver disease, and chronic renal failure61,894. 

Any cause of myocyte injury raises cTn values, as cTn is not specific for inflammatory-mediated 

 

Figure 19: Release of troponin complexes 

Source: acb.sagepub.com 
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myocyte injury895-898. cTnI contributes to the early diagnosis, prognosis and treatment of MI in human 

medicine, but increases can be explained by any type of cardiac injury or increased permeability899-902. 

Test-improvement and continuously increased sensitivity result in lower diagnostic cutoffs, leading to 

an increased detection of cTnI elevations, which are sometimes difficult to explain885,903 or attributable 

to chronic conditions904. 

In myocardial infarction, cTnI increases 2 hours and peak after 48 (12 to 72) hours60,823,827,847,884,905-908. 

cTnI levels can remain increased for up to 8 days, suggesting irreversible and active cardiomyocyte 

damage823,827,847,884,906,909. cTn tests have lower sensitivity within six hours after symptom onset 910-913 

due to the slow release kinetics of troponins. Therefore, samples are ideally taken at admission, after 6-

9 hours and again 12-24 hours after presentation896 when cTnT and cTnI have 100% sensitivity for MI900.  

2.6.1.1.3 Other cardiac conditions 

Although troponins were first applied to detect MI, many other cardiac conditions increase serum 

troponins in humans. Severe CHF902,914-920, aortic stenosis, LV hypertrophy, myocardial bridging, 

coronary spasms, cardiac rhabdomyolysis, subendocardial ischemia847, cardioversion (albeit very 

mildly)921,922, prolonged resuscitation923, atrial fibrillation924, supraventricular tachycardia925, 

pericarditis926, myocarditis61,895 and blunt cardiac trauma927-929 are associated with increased troponin 

concentrations930. 

In human medicine, 75% of patients with acute heart failure have detectable cTnI or cTnT 

concentrations915, and increased cTnI concentrations are predictive of mortality and recurrence of 

readmission61,895,916,917,931-935. cTn levels can be used of to monitor the clinical course of the disease917, 

with persisting elevations of cTnT associated with poorer outcome916,936. cTnI and cTnT are elevated in 

myocarditis895,937, but cTnI levels are not correlated with histological lesion severity895. Moreover, 

increased cTnI concentrations in patients with myocarditis are independent predictors of mortality, and 

recurrence of hospital readmission61,895,916,917,931-935. cTnI is more accurate and sensitive than 

transthoracic echocardiography and ECG to detect cardiac contusions855,938. Subsequently, cTnI testing 

is valuable in ruling out significant blunt chest trauma as a cause of cardiogenic shock, severe 

arrhythmias, or structural damage898,928. Troponin concentrations improve risk prediction for serious 

cardiac complications as myocardial ischemia60,907 and inflammation or necrosis937, regardless of the 

cause. 

2.6.1.1.4 Non-cardiac conditions 

Many non-cardiac conditions are also associated with increased troponin concentrations in humans, 

most notably in pulmonary embolism939,940, chronic pulmonary obstructive disease exacerbation and 

respiratory failure941 ; renal failure942,943; sepsis65,68,944,945 and non-specific critical illness which are 
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discussed in the next paragraphs. The exact mechanism by which this occurs remains however 

controversial69,847,878,889,930,946-950. 

In humans, pulmonary embolism is the most common non-acute coronary syndrome to cause increased 

troponin levels, and results in increased cTn concentrations in up to 50% of patients944,951, which are 

correlated with prognosis952. 

Increased troponin concentrations are often associated with renal disease. The original hypotheses in 

human medicine were that increased cTnI were caused by independent and unassociated comorbidity of 

coronary artery disease in these patients, or by uremic cardiomyopathy878,953-959. A third explanation was 

that cTnI increases occurred without any concurrent myocardial cell damage960. 

cTnT concentrations are more often increased compared to cTnI in renal failure patients961-964, and 

several hypotheses can explain this. cTnT fragments might accumulate in the bloodstream due to poor 

renal clearance879, while the half-life and clearance of cTnI is similar regardless of renal function956. If 

the free cytosolic protein fraction is responsible for these increased concentrations, the fraction of free 

cTnT is higher than that of cTnI, and there is twice as much cTnT than cTnI per gram of myocardium948. 

Furthermore, cTnT is released both as a free fragment and in a complex, but cTnI is only released as a 

complex. Additionally the concurrent uremia can modify cTnI via phosphorylation, oxidation or 

proteolysis, while cTnT only undergoes limited proteolysis869,878,965,966. With only one standardized assay 

available for cTnT, and different monoclonal antibodies exist for cTnI, such modified molecules might 

influence measurements of cTnI more than cTnT948.  

Severity of renal failure does not correlate with cTnI concentrations (not evaluated for cTnT)948,967, and 

cTnI and cTnT analysis remains useful in identifying myocardial injury in renal patients954,955,968. 

Similarly, cTnI and cTnT can identify patients with worse prognosis despite concurrent renal failure 

and/or hemodialysis952,954,962,969-972. 

Troponin elevations also increase following high dose chemotherapy (doxorubicin, 

cyclophosphamide, carboplatin, ifosfamide, methotrexate and taxotere)973,974 or thoracic radiation 

therapy975. In patients receiving chemotherapy, troponins are independent predictors of the development 

of cardiac toxicity and decreased LV function, recurrence of readmission to hospital, and 

mortality973,976,977.  

cTnI apparently increases secondary to physiologically mediated cardiac remodeling as seen in 

marathon runners978,979. Contrary, detectable concentrations of troponin have a prognostic value for 

future cardiac events and all-cause mortality in a healthy population885-887,904,938,980-983. Even small rises 

in apparently healthy older people appear indicative of future death to cardiac disease984 and 

perioperative cTnI elevations are associated with major cardiac complications up to 1 year after 
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surgery985. In summary it is likely that mild to moderate changes associated with non-cardiac disease 

reflect subclinical myocardial damage905,986-990. 

2.6.1.1.5 SIRS, sepsis and myocardial dysfunction 

Cardiac troponin I is elevated in critical illness62,945,991 with incidence rates of 43% across all patient 

groups, 60% in septic patients, 53% in medical ICUs, 43% in mixed medical and surgical ICUs, and 

32% in mixed surgical and trauma ICUs63,992. cTn positivity is seen in heterogeneous populations of 

critically ill patients in medical993,994, surgical64, and pediatric995 ICUs. The cause of a septic process 

does not play a role in the incidence and extent of cTn elevations64. Several studies found no sign of 

coronary artery disease upon testing in these critically ill patients62,945,996, but these increased 

concentrations might indicate myocardial injury. As critical patients often require anesthesia and 

surgery, and these procedures may cause further damage to the myocytes because of potential 

perioperative myocardial hypoxia997-999, further research into the cause and meaning of these elevated 

troponin concentrations has been performed and several hypotheses regarding the etiology of these so 

called ‘shock related troponin elevations’1000 have been proposed. 

- the first hypothesis is that increased cTn concentrations might be provoked by ischemia, 

subsequent cellular hypoxia and lesions following a mismatch between oxygen supply and 

demand69,748,749,945. Besides the decreased supply, demands might indeed increase in shock 

patients65,69,126,847,945,952. The tachycardia of shock patients has been implicated as a cause of 

increased oxygen consumption69,750,952. This hypothesis has been largely refuted by observations 

that coronary blood flow actually increases and regional lactate concentrations do not increase 

in SIRS and septic patients748,749. 

- focal microvascular dysfunction could provoke regional myocardial 

ischemia65,126,728,750,847,945,952,1001,1002. Hypoxia can not only cause cellular lesions but also induce 

increased cell membrane permeability to macromolecules as large as albumin or cTn1003,1004. 

cTnI may be degraded into smaller fragments after brief periods of myocardial ischemia, and 

these molecules might more easily pass the (perhaps) more permeable membrane965. 

- hypercoagulability and (septic) microthrombi can provoke regional 

hypoperfusion65,126,750,847,945,952, but this theory was not supported in a recent study996. 

- toxic effects from bacterial endotoxins65,126,847,945,952. 

- ventricular wall stress, hypertension and left wall hypertrophy can activate intracellular 

signaling leading to apoptosis, damage and micronecrosis, leading to troponin elevation69,931,1005. 

- therapy with vasopressors and positive inotropes could impact cTn levels65,126,847,945,952,1006 

via decreased perfusion secondary to vasoconstriction and cellular injury750,952,1007.  

- free radicals and leucocyte-derived superoxide radicals can cause myocardial cell damage and 

apoptosis leading to troponin elevations728.  
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- paracrine mediated (e.g. natriuretic peptides) increases in cell membrane permeability1007.  

- stress mediated effects could induce leakage of troponins without further explanation1008. 

- pro-inflammatory cytokines (TNF-α and IL-6) possess direct cardiac depressant effects and 

increase membrane permeability65,71,126,847,945,952,1005,1007. TNF-α also exert effects via the 

activation of neutral sphingomyelinase, suppression of nitric oxide and calcium transient 

pathways, modulation of intracellular proteases, effects on arachinodate metabolism, protein 

kinases, oxygen-free radicals, transcription of cytotoxic genes, nuclear regulatory factors and 

ADP ribosylation, which all contribute to myocardial depression and troponin elevation66,1006. 

In line with this hypothesis, troponins would be potential biomarkers of myocardial depression.  

In summary, the two main hypotheses are increases secondary to irreversible (necrosis, apoptosis and 

cell turn over), or reversible injury (increased permeability, intracellular proteolysis and formation of 

vesicles)828. As myocardial dysfunction during sepsis is reversible, troponin release probably occurs 

following reversible rather than irreversible injury42,1009.  

In human medicine, cTn concentrations are correlated with the severity of cardiac dysfunction in 

severe sepsis168,710,1010,1011 and human critically ill patients67,728. Cardiac dysfunction and cTn elevations 

are often simultaneously identified in sepsis65,889,1012, and cTn concentrations are correlated with 

biventricular increased ventricular volumes739, LV dysfunction62,65,71, LVSWI1008, regional wall motion 

abnormalities68, lower EF65,945,993,1008,1012-1014, and isolated and reversible impairment of LV relaxation44. 

Normalization of LV systolic and diastolic function is associated with normalization of cTnI44. Shock 

associated troponin elevations are associated with need of vasopressors or inotropes63,68,71,1008, although 

this was not confirmed in a later study65. Troponin concentrations in sepsis and critical disease are 

correlated with the clinical condition1010,1011, critical illness scores65,1011, degree of hypotension1014 and 

APACHE II score65,68. 

In non-cardiac disease, cTnI levels correlate with prognosis, regardless of the underlying primary 

disease process62,945,957,961. In septic (shock), surgical ICU and critically ill patients, cTnT and cTnI are 

associated with length of ICU stay63,68,1015, and outcome44,62,64,65,68,69,71,994,1008,1012,1015. 

cTnI concentrations in septic patients might be useful to monitor treatment response as concentrations 

correlate with severity of lesions68, but as troponin concentrations remain increased for over 50 hours, 

they are probably less useful for this purpose70-73. 

In conclusion, the mechanisms of myocardial injury remains poorly understood and is likely 

multifactorial, but the increased cTn concentrations are universally predictive of poor outcome in critical 

human patients991,993,1016.  
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2.6.1.2 Canine experience 

2.6.1.2.1 Molecular properties and analysis 

The amino acid sequence of humans and canine cardiac troponins is nearly identical, as troponins are 

phylogenetically highly conserved proteins in mammals863,894,1017. Homology between canine and human 

genes for cTnI is 95%1018. Canine cTnI has 1 additional amino acid (Ala25), yet this does not affect 

functionality1018. The region commonly targeted for antibody production for most assays has a high 

degree of homology, with only one amino acid that differs in the 83 amino acid region853,1018. In total, 

there are 4 amino acid changes in the 23 amino acid N-terminal region between human and canine 

cTnI1018. Because of this high homology in amino-acid sequences, and because myocardial 

concentrations of cardiac troponins in humans and dogs are very similar, several human commercial 

cTnI analyzers can be used to measure canine cTnI1018. Homology between canine and human cTnT 

amino acid sequence is >91%58,863,868,1019. It is generally believed that human assays can be used to 

measure blood levels of cardiac troponin I and T in most species59,894,1018. Serum, heparinized plasma 

and whole blood can be used to measure cTnI, depending on the assay used, although serum 

concentrations tend to be slightly lower824,1020. cTnI remains stable at -70°C, several months at -20°C or 

at -4°C for 1 to 18 months864,881,953, but variable results are described after repeated freeze-thaw 

cycles824,884,1020. 

Most healthy animals have cTn levels below the threshold of detection861,880,1021-1024. The range of plasma 

cTnI concentrations in dogs is <0.03 to 0.07ng/mL with a mean of 0.02ng/mL880. High sensitivity cTnI 

tests are not yet convincingly described in companion animals828. Healthy dogs have cTnT levels below 

the threshold of detection861,1021,1023,1025. cTnI assays are more sensitive than cTnT to detect cardiac 

involvement, and cTnI received more attention in veterinary medicine824,825. However, alongside its 

superior sensitivity, cTnI has decreased specificity for myocardial damage compared to cTnT1025. 

Age dependent cTnI variations are described, yet sex effects are not confirmed543,828,884,1024. The strong 

association between age and cTnI concentrations suggests that age causes myocardial changes leading 

to cTnI leakage543. Loss of myocytes with increasing age may occur because of defects in the 

oxygenation potential in the myocardium. Associations between arteriosclerosis and age in dogs have 

been described543. Azotemia and hyperbilirubinemia may affect cTnI assay results1026 and Greyhounds 

and Boxers have higher cTnI concentrations than other breeds1027,1028. Exercise can influence canine 

cTnI concentrations, with transient release of cTnI after exercise in Alaskan sled dogs477,823,1029, with 

dramatically increased concentrations after prolonged and heavy exercise1029. 

The following sections discuss the clinical use of cTn. Different studies measured cTnI and/or cTnT, 

making these paragraphs sometimes hard to read. However, bear in mind that both troponins have 

similar release patterns and indicate myocardial lesions, with the major difference in between both the 

fact that cTnI is more sensitive than cTnT.  
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2.6.1.2.2 Experimental myocardial infarction 

Dogs have often been used as an experimental model for induced MI. cTnT and cTnI are sensitive and 

specific biomarkers of cardiac injury in dogs, as in humans58,867,868,1030,1031. cTnI concentrations increase 

earlier than cTnT58,861,867, and both can remain increased up to 7 or 10 days after the insult58,865. The half-

life of cTnI in dogs is 120 minutes, compared to a half-life under 70 minutes in humans1032,1033. 

2.6.1.2.3 Other cardiac conditions 

cTn levels can be elevated in primary heart disease1021-1024,1034 such as MVD, sub-aortic stenosis, dilated 

cardiomyopathy, and in arrhythmic dogs1021-1024,1035. cTnI is more sensitive than cTnT for the diagnosis 

of acquired heart disease1021,1023, although mild subclinical heart disease does not result in marked 

elevations in cTnI1024. cTnI is increased in English springer spaniels with bradyarrhythmias73,1036, Boxers 

with arrhythmogenic right ventricular cardiomyopathy1037, pericardial effusion1022,1038,1039, experimental 

infarction867, cardiac pacing-induced injury, positive inotropic and cardiotoxic drugs884 and 

neoplasia1040. One publication found a correlation between cTnI and CRP concentrations in dogs with 

MVD, suggesting a link with inflammation543.  

cTnI is associated with severity of cardiac disease in MVD, sub-aortic stenosis, dilated cardiomyopathy 

and Boxers with right ventricular cardiomyopathy73,543,1021-1024,1028. Progression of cardiac disease and 

response to treatment can be assessed by repeated sampling73,1036,1041. cTn levels may be correlated 

with prognosis in dogs with MVD, sub-aortic stenosis, and dilated cardiomyopathy73,864,1021-1024. On the 

contrary, cTnI was not correlated with median survival time in Brady arrhythmic dogs1036. 

Finally, dogs with pericardial effusion have increased cTnI levels, and concentrations might be even 

higher if caused by a hemangiosarcoma1038, although these findings were not confirmed in a subsequent 

study1039. 

2.6.1.2.4 Non-cardiac conditions 

In canine medicine, increased concentrations of cardiac troponins are observed in several non-cardiac 

conditions such as gastric dilation and volvulus (GDV), trauma, infectious processes and non-cardiac 

systemic disease93,818,824,825,861,953,1032,1042-1044. cTnI concentrations are often increased in azotemic 

dogs953,1045, although concentrations are not correlated with the degree of azotemia953. As coronary artery 

disease is not a feature of companion animals, this hypothesis from human medicine cannot explain this 

finding953. As one paper demonstrated cardiac lesions in 3 out of 4 autopsied cases, concurrent cardiac 

disease might be the cause of increased cTn levels1045. 

cTnI does not reliably distinguish cardiac from non-cardiac causes of dyspnea93,1046, as increased 

concentrations are seen in dogs with and without cardiac disease93. cTnI release in non-cardiac dyspnea 

could be explained by pulmonary vasculature endothelial damage resulting in activation of angiotensin-

converting enzyme, and subsequent cardiac injury and cTnI release1047,1048. 
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2.6.1.2.5 SIRS, sepsis and myocardial dysfunction 

cTnI concentrations are increased in 70% of dogs with a variety of systemic non-cardiac diseases953, 

regardless of the presence of cardiac murmurs, hypertension or the type of non-cardiac illness953.  This 

high incidence is not due to increased sensitivity of high-sensitivity cTnI assays, as concentrations are 

significantly elevated in infectious disease98,818,825,1042,1049, blunt thoracic trauma861,863, GDV824,861, 

pulmonary hypertension1050, patients receiving doxorubicin1034,1051, snake bites77,1052-1054, and in canine 

critically ill ICU patients74,75. Peak concentrations of cTnT and cTnI are observed at similar time-points 

than in humans or dogs with cardiac disease77,824,861,868,1030. 

The incidence of elevated cTnI concentrations in dogs with a pyometra is 43%, but similar amounts of 

dogs had elevated concentrations before and after surgery1032,1043, and no association was observed 

between a clinical diagnosis of SIRS and increased cTnI concentrations1032,1043. Other infectious diseases 

such as E. canis and trypanosomiasis1038,1055,1056 have been associated with more significant elevations 

in cTnI. In ehrlichiosis, babesiosis and trypanosomiasis, cTnI levels are significantly correlated with 

lesion scores, severity of anemia, severity of ECG abnormalities, disease severity, clinical diagnosis of 

SIRS, and in case of Babesia infection, with the presence of ventricular premature complexes825,1056,1057. 

Doxorubicin induces elevated troponin concentrations prior to the diagnosis of cardiac dysfunction1051, 

but troponin elevations do not predict development of cardiac dysfunction1051. 

Increased cardiac troponin concentrations correlate with poor prognosis in several studies on non-

cardiac disease74-76,114,824,825,861,1058. In GDV patients and after blunt thoracic trauma with secondary 

myocardial contusions, increased troponin concentrations are associated with poor 

prognosis824,861,863,1024,1054. In parvovirosis, higher cTnI levels are associated with non survival1058. In 

canine pyometra a non-significant trend was observed between increased troponin concentrations and 

mortality, but this may be explained by the low mortality rate of pyometra patients1043. cTnI is associated 

with prognosis in dogs with leptospirosis or babesiosis114,825.  

Increased cTnI concentrations have been demonstrated retrospectively in a group of non-cardiac 

critically ill patients953 and several studies looked into cTn concentrations in canine SIRS populations 

presented to the ICU74-76. These papers demonstrated that cTnI and cTnT are associated with short and 

long term prognosis74-76. The greater sensitivity of cTnI over cTnT was demonstrated, yet this was not 

reflected in a clear superiority to evaluate prognosis75,76. As summarized by the author, both markers are 

highly correlated sources of similar information, and clinically it is considered sufficient to measure one 

or the other828,884. Moreover, two of these studies failed to demonstrate an additional value of serial 

measurement of cTn concentrations, although in one study peak cTnI concentrations were more 

informative than concentrations at presentation74,76. cTnI concentrations are also correlated with CRP 

concentrations at presentation77, suggesting a link with inflammation. Finally, two papers identified 

myocardial dysfunction in dogs with severe systemic illness, providing an additional explanation for 
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some of the cTnI elevations observed in dogs with systemic disease, which once more might be linked 

with the inflammation57,953. 

In summary, cardiac troponins increase in many non-cardiac diseases, and are of prognostic significance, 

but much more work is required in canine medicine to better understand the added value of this 

biomarker. 

2.6.2 Brain Natriuretic Peptides 

Activation of neurohumoral systems in heart failure is beneficial in the short term to maintain cardiac 

output and organ perfusion, but is detrimental in the long term and contributes to progressive myocardial 

dysfunction and clinical deterioration in CHF patients1059. Natriuretic peptides form an important 

endocrine system of cardiovascular and renal origin that participates in the integrative control of 

cardiovascular and renal function by counteracting the initial neurohumoral responses1060.  

The group of natriuretic peptides consists of 

three distinct hormones: atrial natriuretic 

peptide (ANP) and brain natriuretic peptide 

(BNP) which are primarily of myocardial cell 

origin (ANP predominantly atrial1061, and BNP 

primarily from ventricular origin1062-1065), and 

C-type natriuretic peptide (CNP) which is of 

endothelial and renal epithelial cell origin1060. 

Besides these 3 peptides, dendroaspis 

natriuretic peptide, identified in the human and 

canine heart has natriuretic effects, but its role 

in mammals is undetermined1046,1066. Finally, 

in primitive fishes ventricular natriuretic peptide is demonstrated, but is not found in mammals1067. ANP 

and BNP mainly act as circulating hormones, whereas CNP is a paracrine/autocrine hormone1068. 

Although ANP and BNP are derived from different genes, they share a highly homologous 17-amino 

acid ring structure1069. Cardiomyocytes synthesize preprohormones such as preprobrain natriuretic 

peptide (preproBNP) which is first cleaved into a signal peptide and probrain natriuretic peptide 

(proBNP or proBNP1-108) which is then cleaved into a physiologically active C-terminal peptide (BNP) 

and an inactive N-terminal fragment (NT-proBNP or NT-proBNP1-76) (Figure 20). These peptides 

possess natriuretic, diuretic, renin-inhibiting and vasodilatory properties, mediated via second 

messengers guanosine 3’:5’-cyclic monophosphatase (cGMP) after peptide binding to the respective 

guanylate cyclase receptor. ANP and BNP bind to the natriuretic peptide receptor A (NPR-A) while 

CNP binds to NPR-B, which are located in the kidneys, vasculature and heart1070. BNP has similarities 

to ANP both in structure and in peripheral and central actions1061,1069,1071-1075. However, atrial stretch and 

 

Figure 20: ProBNP secretion and cleavage by corin 

Source: www.medscape.com 
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atrial tachycardia is the major stimuli for ANP secretion, whereas ventricular stimuli are more important 

for BNP. We focused less on ANP but will highlight some of its properties when these are of (historical) 

interest1076.  

2.6.2.1 Human experience 

2.6.2.1.1 Molecular properties and analysis 

BNP was first discovered in the porcine brain1069, but was subsequently found in mammalian organs 

such as the human heart. Where ANP (28 amino acids)1061 and CNP (22 amino acids)1077 are rather 

homologous between different species, BNP is less well conserved, and contains 26, 45 and 32 amino 

acid residues in swine, rats and humans, respectively1073,1078. The biological actions of BNP are in part 

species specific, unlike those of ANP1079. Cardiomyocytes synthesize proBNP, which is almost entirely 

immediately secreted into circulation, and is proteolytically cleaved by corin97 into BNP and NT-

proBNP81,87,1080. As little BNP is stored in granules1081-1083, BNP de novo synthesis and messenger RNA 

(mRNA) degradation occurs rapidly, as a result of a rapid-turnover nucleic acid sequence (TATTTAT) 

in the 3’ untranslated region of the mRNA1081,1084. Larger quantities of ANP are stored in granules, 

suggesting a distinctive regulation in the production and secretion of these different peptides1085. 

Ventricular BNP gene expression is rapidly induced, while ANP is not1081,1086,1087. Increased BNP 

concentrations do not occur within minutes1088, but within 1 hour BNP gene expression is activated and 

plasma concentrations increase rapidly thereafter1089. BNP is degraded after secretion by neutral 

endopeptidases in the myocardium, lungs and kidneys1090. 

Although the metabolism and tissue uptake of NT-proBNP and BNP appears similar81, the half-life for 

BNP is approximately 22 minutes in humans1091 while that of NT-proBNP is 1-2 hours1092-1095. Plasma 

concentrations of BNP and ANP are low and rapidly fluctuating1096, but the half-life of their N-terminal 

fragments are considerably longer1097,1098, resulting in 5- to 15- times greater plasma levels1099,1100.  

Neurologic disorders do not consistently result in increased BNP concentrations1101,1102 despite its 

expression in the brain1103, and in subarachnoid hemorrhage most of the BNP appears to be of cardiac 

origin1104. In the absence of cardiac disease, the tissue concentration of BNP is greatest in the atria1105, 

but 50 to 60% of circulating BNP is synthesized in the ventricles1105.  

In cardiac impairment, the proportional and absolute increment of NT-proBNP exceeds that of BNP. 

This suggests that NT-proBNP may be a more discerning marker for early cardiac dysfunction than 

BNP81. The disproportionate rise of NT-proBNP compared to BNP results either from differential 

clearance rates from the peptides across tissues and organs or from differential changes in cardiac 

secretion81. Renal clearance of NT-proBNP and BNP is however rather similar81,86,1106. Although NT-

proBNP has several theoretical benefits, both BNP and NT-proBNP assays are used in human medicine, 

and are considered equally valid97. 
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Regulation of BNP synthesis differs between atria and ventricles1105,1107-1109. In the atria, the small 

portion that is stored in granules is released by a regulatory pathway, while in the ventricles BNP is 

rapidly secreted from myocytes after synthesis via a constitutive pathway1081,1083,1110,1111. Ventricular 

overload or mechanical stretch increases BNP gene expression and secretion78,79,1085,1112-1114. Moreover, 

increased ventricular afterload via neurohumoral activation or pharmacologic vasopressors also results 

in increased production of BNP1115 1116. Finally, angiotensin II and endothelin-1 (ET-I) induce 

ventricular synthesis of BNP in rats1108,1109,1115,1117. This implies that, while ET-I directly favors LV 

remodeling, it simultaneously stimulates BNP synthesis, creating a negative feedback mechanism1118. 

In summary, BNP secretion is mainly regulated by LV wall tension1062, and this is largely related to the 

degree of ventricular volume expansion and pressure overload168,1062,1081,1082,1107,1119,1120.  

BNP binds the NPA-receptor, resulting in a multitude of systemic effects 

- inhibition of  

o the renin-angiotensin-aldosterone system via inhibition of renin secretion, causing1137 

 Natriuresis in the proximal and distal renal tubules1075 

 Diuresis1075 

 Vasodilation and vasorelaxation, subsequently decreasing CO1121 

o ET-I secretion1122,1123 

o the thirst center1124 

o salt appetite1124,1125 

o vasopressin1122,1123 

o adrenocorticotropic hormone synthesis1122,1123 

o myocardial hypertrophy1126,1127 

o smooth muscle proliferation1128 

o collagen synthesis (possibly via ET-I inhibition)1129 

o bronchoconstriction1130 

- alteration of the vago-sympathetic balance1137 

- anti-proliferative properties in cardiac fibroblasts and cardiomyocytes1129 

In summary, the major functions of BNP are to protect against the deleterious effects of prolonged 

activation of the renin-angiotensin-aldosterone system1131. BNP has inhibitory actions on renin and 

aldosterone release1132, and is involved in the regulation of blood pressure and fluid volume168. The 

release of BNP is associated with improved cardiovascular hemodynamics, including reductions in 

cardiac preload and SVR, without reflex tachycardia1133. As an important counter-regulatory hormone 

on cardiac cell growth and proliferation1134-1136 with sympathico-inhibitory effects1137, BNP protects 

against cardiac hypertrophy1134,1135,1138-1140. Finally, BNP has cytoprotective effects, as BNP opens the 

adenosine triphosphate-sensitive potassium channels of myocardial mitochondria via the NPR-A 
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signaling pathway1141. The actions of BNP are probably impaired in advanced cardiac injury1142 as BNP 

receptors coupled to guanylate cyclase are downregulated in advanced LV dysfunction1143,1144.  

BNP is very stable under in vitro laboratory conditions, and is less affected by postural change or 

exercise than ANP1145-1147. Storage in glass is associated with decreased stability and recovery of 

BNP1148,1149. BNP is liable when stored at room temperature or at 4°C, and even at -20°C1150. NT-

proBNP is more stable during storage1150 and laboratory handling and processing of NT-proBNP can be 

undertaken without special procedures1151,1152. NT-proBNP analysis is free from common interferences 

and does not cross-react with BNP. EDTA or heparinized plasma samples in glass or plastic tubes can 

be used, and samples can be stored at room temperature for 3 days or at 4°C for up to 6 days and for at 

least 10 days at -20°C1150.  

BNP and NT-proBNP concentrations are higher in healthy and critically ill elderly people, independent 

of the presence of underlying heart-disease86,1113,1153,1154. BNP and NT-proBNP concentrations are higher 

in healthy and critically ill women compared to men86,1155-1158. BNP is not affected by a circadian rhythm 

in humans1159,1160. Obesity does not significantly affect NT-proBNP1161-1163 although decreased 

concentrations have been reported1164. As gender and age have a significant effect on BNP 

concentrations, it is probably inappropriate to apply a single cutoff point for BNP across the 

population86, and the same probably applies for NT-proBNP.  

As stated previously, NT-proBNP should probably be preferred over BNP as NT-proBNP circulates at 

higher levels than BNP, has a longer half-life, is less likely to be perturbed by acute stimuli, and plasma 

NT-proBNP levels rise more steeply for a given degree of cardiac improvement80,81. The following 

chapters will describe studies evaluating both markers, when (NT-pro)BNP is written, this indicates that 

the statement is valid for both markers, and the specific term BNP or NT-proBNP will be used when 

referring to a specific parameter.  

2.6.2.1.2 Clinical application 

2.6.2.1.2.1 Myocardial infarction 

After acute MI, BNP levels rise rapidly during the first 24 hours and are typically increased upon arrival 

helping in the diagnosis1087. Levels stabilize thereafter1087,1165-1169, before a second peak is observed after 

5 days, after which concentrations remain above normal for four weeks1087. (NT-pro)BNP increases 

because of impaired cardiac function despite normal global hemodynamic parameters via release of 

BNP from the necrotic cardiomyocytes1170 and increased mechanical stress on the area adjacent to the 

infarcted region1085,1086,1170,1171. (NT-pro)BNP helps to evaluate severity of MI1086,1087,1172-11751165,1176-1179, 

is superior to ANP as prognostic marker after MI1180, and is associated with risk of heart failure and 

death1106,1167,1179-1182. NT-proBNP concentrations later during hospitalization are better predictors1167,1182, 

but levels at admission remain independent markers of prognosis1183 and additional sampling 6 hours 
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later does not contribute significantly1183. A single measurement in the first few days after the onset of 

symptoms provides prognostic information superior to LVEF and other baseline variables80,1167,1172,1178-

1182. (NT-proBNP) is an interesting marker to guide therapeutic decisions in MI80,1173. In conclusion, 

(NT-pro)BNP is an acute-phase reactant in response to acute tissue injury in the early phase after acute 

MI1081,1085,1087, appearing useful for diagnosis, estimating severity, and establishing prognosis, perhaps 

even to guide therapy1086,1087,1106,1165,1176,1177,1180,1184.  

2.6.2.1.2.2 Other cardiac conditions 

Natriuretic peptides have clinical interest for human patients with congestive heart failure (CHF). BNP 

is the more interesting diagnostic marker of cardiac dysfunction1185, although ANP and BNP increase 

in response to atrial and ventricular overload respectively1082. Normal NT-proBNP concentrations rule 

out heart failure with a very high likelihood1152. Studies in (a) symptomatic human DCM patients 

identified increased BNP concentrations1186-1188 and BNP accurately distinguishes cardiac from other 

dyspneic patients in the emergency department1189. However, overlap of NT-proBNP values between 

patients with and without relevant heart disease exists1190 and a positive result does not equal cardiac 

disease, but rather identifies patients requiring cardiac imaging1152. 

Levels of ANP and BNP increase proportionally with heart failure severity1065,1082,1191-1198. (NT-pro)BNP 

is correlated with NYHA class81,1119,1143,1182,1190,1199-1202 and hemodynamic parameters such as PCWP in 

chronic CHF1062,1065,1082,1203. Although ventricular dilation is a major independent predictor of 

progressive cardiac disease1204, LV size assessed by ultrasound is not a good approximation of LV wall 

stress1205. (NT-pro)BNP is however inversely related to LVEF81,1185 and could be a useful tool to rule 

out severe systolic LV dysfunction in high risk patients because of its good negative predictive value1190. 

(NT-pro)BNP-levels predict poor prognosis in CHF1119,1143,1180,1182,1190,1199-1202,1206-1208, even after NYHA 

classification and independently of cTn983,1144,1209-1211. Kinetic (NT-pro)BNP studies might even be better 

to evaluate prognosis1187. (NT-pro)BNP assays can be used to monitor therapy: BNP concentrations 

can be titrated to normal levels using vasodilators1212. Similarly, NT-proBNP is reduced by 

intensification of drug therapy in heart failure patients1213 and the guidance of treatment of heart failure 

by NT-proBNP results in better outcome than treatment guided by clinical assessement1213.  

Increased (NT-pro)BNP levels may also reflect diastolic dysfunction1201,1202,1214-1219. End-diastolic wall 

stress is one of the strongest predictors of BNP concentrations in humans1220 and BNP is a marker of 

ventricular preload. (NT-pro)BNP therefore has a role in diagnosing patients with diastolic dysfunction, 

especially in those having a restrictive filling pattern or pseudo-normalized mitral flow patterns and in 

those who are asymptomatic1221. A low level in the setting of normal systolic function rules out clinically 

important diastolic dysfunction1222, and elevated BNP in patients with clinically evident heart failure yet 

normal systolic function substantiates the diagnosis of diastolic dysfunction1222. 
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In summary, (NT-pro)BNP concentrations are an excellent indicator of global myocardial function1223. 

Concentrations are elevated in all major causes of heart failure1214, whether secondary to LV 

dysfunction, atrial fibrillation, valvular disease1152, LV hypertrophy, systemic hypertension1224, 

cardiomyopathy1225, or acute coronary syndromes1183. (NT-pro)BNP is a more powerful indicator of LV 

systolic and diastolic dysfunction and LV hypertrophy than N- and C-terminal ANP1106,1180,1226.  (NT-

pro)BNP are good indicators of the severity and prognosis of human acute MI, CHF1106,1226 or systemic 

hypertension1227,1228. If LV systolic dysfunction is excluded, elevated (NT-pro)BNP may indicate 

diastolic dysfunction1214,1229. All these findings lead to common use of (NT-pro)BNP assays in human 

medicine for the diagnosis, stratification, and prognosis of CHF1120. 

2.6.2.1.2.3 Non-cardiac conditions 

BNP is a marker in patients with pulmonary rather than cardiac disease as (NT-pro)BNP concentrations 

increase with the degree of hypoxia in patients with chronic respiratory disease and pulmonary 

hypertension1145,1152,1230,1231. (NT-pro)BNP concentrations rise secondary to RV pressure overload as 

mRNA for BNP can be detected in the RV of normal human cardiac tissues obtained at autopsy1232 and 

hypoxia can increase the RV content and mRNA levels of BNP1233. As BNP is synthesized in the 

ventricles, whereas ANP originates from the atria, BNP is more useful to evaluate RV overload and end-

stage chronic respiratory disease1234. BNP is an index of severity as it correlates with PAP, PCWP and 

PVR, mean RAP, RV myocardial mass, RVEDP, RVEF and CO1145,1234 in chronic respiratory 

disease1065,1232,1234,1235. (NT-pro)BNP may be an independent prognostic marker of end stage chronic 

respiratory disease death1234. Similarly, (NT-pro)BNP concentrations are elevated in pulmonary 

thromboembolism (PTE)1236and NT-proBNP levels reflected severity of RV overload (as evidenced by 

the RV to LV ratio and inferior vena cava dimensions)1237 and were prognostic of complicated clinical 

outcome1237-1239. Although NT-proBNP is an interesting marker of RV overload and prognosis in 

pulmonary disease1237, it is important to consider comorbidities to improve the accuracy of BNP in the 

diagnosis of dyspnea1240.  

Renal dysfunction is an often cited cause of increased (NT-pro)BNP concentrations secondary to 

decreased clearance1241,1242. Kidney disease is the most common cause of increased (NT-pro)BNP in 

people without CHF83,1243-1245. However in some publications elevated BNP concentrations in renal 

patients were only observed with concurrent ventricular hypertrophy or cardiac dysfunction1246,1247, and 

in critically ill patients renal function contributed insignificantly to BNP concentrations86. In chronic 

renal failure, high NT-proBNP concentrations are associated with higher CRP concentrations, 

suggesting a possible link with systemic inflammation (which could have an effect on cardiac function 

and cardiac biomarkers)1248. Additionally, serum sodium and potassium concentrations are not 

correlated with BNP in human critically ill patients86. The severity of renal disease might have an 

important effect on the prognostic value of NT-proBNP concentrations1249. Therefore, without proper 

understanding of renal function, (NT-pro)BNP concentrations should be interpreted carefully. 
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NT-proBNP is significantly higher in anemic patients1161. This is explained by the hemodynamic 

changes associated with anemia, increasing proBNP synthesis by cardiac myocytes. Evidence is 

accumulating that anemia contributes to the functional impairment and poor outcome of patients with 

heart failure1161. Inversely, heart failure can lead to anemia via a suppression of hematopoiesis via TNF-

α and/or other cytokines1250,1251, or simply via hemodilution due to volume overload or impaired 

production of erythropoietin secondary to renal disease, a common comorbidity of heart failure1161. In 

patients with diastolic heart failure and normal EF, an inverse relationship exists between hemoglobin 

and BNP1252. The rise in (NT-pro)BNP is probably not caused by the anemia in se, yet rather by the 

adaptive mechanisms. Increased BNP concentrations are also associated with neurologic stroke, via 

direct brain-derived BNP or similarly secondary to cardiovascular adaptive changes leading to increase 

in cardiac-derived BNP83. 

Finally, (NT-pro)BNP concentrations rise secondary to prolonged strenuous exercise1170,1253. Similarly 

to cardiac disease, BNP rises more markedly than ANP during exercise1170. Although BNP and cTnT 

correlated in one paper1170, (NT-pro)BNP concentrations are more related to duration of exercise than 

cTn concentrations1253. The release of BNP in this setting may have cytoprotective and growth-

regulating effects, rather than reflecting myocardial damage and may occur secondary to different 

mechanisms1253.The resting (NT-pro)BNP concentrations in the physiologically hypertrophied hearts of 

these endurance athletes are not elevated1224,1254. BNP values before and after exercise are however 

negatively correlated with LVEF1255. Exercise induced (NT-pro)BNP increases may result from the 

increase in myocardial stress (measured as CO or ventricular pressure) during exercise in a time-

dependent manner, as reflected by the positive correlation between exercise time and NT-proBNP 

concentrations1253. However, exercise intensity (related to heart rate, and ventricular and arterial 

pressure) might also influence exercise-induced NT-proBNP release1253,1256. 

2.6.2.1.2.4 SIRS, sepsis and myocardial dysfunction 

(NT-pro)BNP concentrations are useful markers in SIRS and sepsis82,87,88,1092,1243-1245,1257,1258. Increased 

BNP concentrations in sepsis and septic shock represent myocardial depression secondary to systemic 

disease82-85, although (NT-pro)BNP concentrations can also be elevated despite a lack of obvious cardiac 

depression1259. BNP may actually also be an acute-phase reactant, released in response to acute tissue 

injury1260. The DNA for BNP, in contrast to that for ANP, has an adenosine adenine thymine-rich 

sequence in the ‘3-untranslated region which is known to destabilize mRNA and is known to be 

associated with acute-phase reactants1081,1261,1262. Furthermore, MI induces both IL-1β and BNP, and IL-

1β is a transcriptional activator of the BNP promoter279,1263,1264. LPS and up-regulation of cytokines and 

other inflammatory mediators can increase BNP gene transcription91,1265-1267, reflecting the role of BNP 

in the inflammatory cascade279.  
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Increased concentrations of cardiac troponins62,72 and natriuretic peptides89,91,1268 help in the diagnosis 

of human SIRS patients88,1092 as (NT-pro)BNP increase in human intensive care, septic and septic shock 

patients82,87-89,91,92,168,1092,1269-1272. BNP is significantly more often and more severely increased in SIRS 

patients than in non-SIRS patients in the emergency department91,1273, and this occurs regardless of the 

presence of cardiac dysfunction1269. Increases in NT-proBNP in patients with severe sepsis rise to levels 

comparable to those found in heart failure82.  

BNP levels are poor markers to distinguish SIRS from sepsis, severe sepsis or septic shock. BNP tends 

to be higher in patients with sepsis and septic shock compared to other intensive care patients1158, but 

concentrations do not differ significantly between patients with severe sepsis and those with septic 

shock1269. BNP levels correlate with hemodynamic and echocardiographic parameters indicating the 

severity of cardiac dysfunction86-88. BNP increases inversely in proportion to CI168 and NT-proBNP is 

associated with LVSWI in septic shock1274. NT-proBNP correlates with cTnI in septic patients87,1092,1274. 

BNP is inconsistently correlated with pulmonary artery occlusive pressure (PAOP) in critical care 

patients1268,1270,1275, but this probably reflects the imprecision of PAOP in a critical care setting. (NT-

pro)BNP levels are related to disease severity expressed via APACHE II and SOFA scores in SIRS, 

non-SIRS and septic emergencies91,1273,1274,1276, and with concentrations of inflammatory cytokines, CRP 

and leukocyte counts in SIRS and sepsis168,710,1268,1277.  

(NT-pro)BNP are valuable prognostic markers in SIRS, sepsis, severe sepsis, and septic shock80,87-

92,168,710,1092,1190,1268-1271,1273,1278-1280. (NT-pro)BNP is significantly associated with risk of mortality 

according to a recent meta-analysis1259. Septic patients with NT-proBNP values >1400pmol/L are 3.9 

times more likely to die from sepsis1281. Two studies suggest that BNP levels are superior to clinical 

scores to predict mortality84,91. However, not all studies support these findings168,1158,1269,1282, and one 

paper identified BNP as a predictor of mortality, but this association was lost after adjustment for 

LVEF1283. 

Increased wall stress and subsequent myocardial dilation are the major stimuli of BNP excretion in septic 

cardiomyopathy82,87,88,1008,1012,1272. This wall stress and dilation occurs secondary to myocardial 

hibernation induced by TNF-α, IL-1β and possibly IL-667,126,153,168,707,728,739, which reduce LV 

function1284. Besides the direct myocardial effects, patients also receive acute fluid loading with 

subsequent RV dilation1285, and frequently suffer from lung insults or require mechanical ventilation, 

which all increase RV pre- or afterload and subsequently increase BNP1234. Therefore, (NT-pro)BNP 

concentrations in sepsis can be explained by sepsis-induced biventricular dilatation726, direct stimulation 

by LPS1265 and pro-inflammatory cytokines279,305, volume resuscitation1244, sepsis-associated lung injury 

or acute respiratory distress syndrome67. Clinicians can be misled to believe that a patient has an acute 

cardiologic pathologic condition, when they actually have cardiovascular dysfunction related to septic 

shock1274, and this potential cause of elevated BNP levels should be kept in mind1286. 
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The optimal timing of (NT-pro)BNP measurement varies across studies, from the day of admission to 

day 2 and day 5 after admission1259,1274, due to the difficulty in determining the time of onset of sepsis. 

Peak concentrations are usually found two days after hospitalization168,710,1092. Concentrations on day 1, 

2 and 3 are all associated with survival88,1092. In summary, (NT-pro)BNP concentrations are useful to 

diagnose disease, identify patients with asymptomatic LV dysfunction, predict mortality and is a tool to 

monitor therapy in humans with SIRS and sepsis1287,1288. Elevated (NT-pro)BNP levels in the presence 

of sepsis do not equal cardiac dysfunction due to low specificity, but normal (NT-pro)BNP levels could 

be used to rule out the need for further cardiac investigation1259. 

2.6.2.2 Canine experience 

2.6.2.2.1 Molecular properties and analysis 

Most commercial kits used in canine medicine are designed for human use, but there is good reason to 

anticipate cross-reactivity based on the highly conserved nature of some of the peptides among 

mammalian species1289. However, the amino acid sequence of BNP is not homologous1290 and the lack 

of homology of preproBNP is also more marked than for preproANP1291. Canine preproBNP shares 

approximately 45% homology with human pre-proBNP1292, whereas canine NT-proANP is 87% 

homologous with human NT-proANP1289. 

In the dog, BNP has a very short half-life of 90 seconds1293-1295, and is technically difficult to 

measure93,1205,1296. Initial methodologies for measurement of canine BNP involved a radioimmunoassay 

requiring an extraction procedure from plasma1296. Therefore, species-specific immunoassays were 

designed for detection and measurement of canine (NT-pro)BNP1292,1297,1298. As in human medicine, the 

half-life of canine NT-proBNP is 15 times longer than that of BNP1299. Consequently, NT-proBNP is 

preferable to BNP in dogs for diagnostic purposes1291. 

In contrast to humans, BNP is mainly synthesized in the atrium rather than the ventricle in healthy 

dogs1297,1300. In dogs, BNP has the same primary actions as in humans, counteracting the renin-

angiotensin system and protecting the heart by lowering cardiac preload (venous return) and afterload 

(arterial pressure) while maintaining blood flow to extrasplanchnic regions1294. BNP decreases renin 

activity and arterial pressure, independently of reflex sympathetic activation1294 and causes a dose-

related increase in mesenteric vascular resistance, urine flow, natriuresis and hematocrit in dogs1294. 

Experimental studies in dogs and cats demonstrated that BNP not only uses the kidneys for controlling 

body fluid homeostasis, but also uses the intestine, decreasing jejunal fluid and electrolyte absorption1301-

1303. BNP inhibits ET-1 release1110, while local and circulating ET-1 inductions increase BNP 

synthesis1205. Most of the biological activities of BNP disappear 20 minutes after discontinuing BNP 

infusion, demonstrating the rapid effects of this molecule1294. 
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Concentrations of NT-proBNP are unaffected by sample type between serum and plasma1291. NT-

proBNP is very stable in the dog1304 and lipids, hemoglobin and bilirubin do not have a significant 

influence on the NT-proBNP concentrations1291. Age, gender and bodyweight do not influence (NT-

pro)BNP concentrations in healthy dogs97,1291,1305,1306. However, a moderate correlation between 

natriuretic peptide and creatinine concentrations has been demonstrated in (cardiac) dogs1291. Creatinine 

tended to be increased in patients with heart failure rather than cardiac disease, and some of the elevation 

of NT-proBNP may be caused by decreased glomerular filtration rather than increased release from the 

myocardium1291. Thus, natriuretic peptides should be interpreted with caution in dogs with advanced 

renal disease1046. 

2.6.2.2.2 Clinical application 

Initial studies on natriuretic peptides in dogs focused on cardiac disease and studied (NT-pro)ANP 

rather than (NT-pro)BNP. NT-proANP is highly correlated with heart rate, echocardiographic 

dimensions of the LA and LV, and fractional shortening in dilated cardiomyopathy and decompensated 

chronic valvular disease1076,1307,1308. Several studies failed to identify significantly increased ANP 

concentrations in the occult phase of canine DCM1076,1309,1310. BNP, secreted from the ventricles in 

response to volume or pressure overload, is likely to be more sensitive and specific for identification of 

subclinical LV dysfunction1310,1311. Subsequently, the focus shifted to research on (NT-pro)BNP in 

cardiac disease1311-1313. 

Plasma BNP is elevated in dogs with naturally occurring or experimentally induced MVD1296,1314 and 

BNP concentrations are correlated with PCWP1296. In early studies, BNP concentrations in dogs with 

MVD were lower than values observed in humans with myocardial disease1315, but assay methodology 

is probably to blame for these discrepant findings. In later studies, plasma BNP concentrations and 

severity were positively correlated1205,1296,1314, and BNP concentrations were associated with mortality 

in MVD patients1205. 

Early studies on canine CHF secondary to ventricular rapid pacing demonstrated increased BNP 

concentrations, yet to a lesser extent than ANP1107,1316,1317. Similarly, doxorubicin failed to induce 

significant increases in plasma BNP concentrations1318, despite decreases in fractional shortening and 

LVEF. However assay methodology of these studies may explain the disappointing findings in these 

paper. Several papers described high ANP and BNP concentrations in dogs with naturally occurring 

CHF secondary to DCM, with BNP significantly increased in the occult stage1076,1309-1311. 

Although the utility of (NT-pro)BNP for the individual diagnosis of cardiac disease is variable 

depending on the type of underlying disease, with more positive results described for MVD than for 

DCM, (NT-pro)BNP may still be valuable to assess disease severity. ANP and BNP are significantly 

different in canine patients with CHF among the heart failure classes according to the NYHA functional 

classification, and concentrations are significantly higher in decompensated heart failure patients1296.  
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Finally, (NT-pro)BNP concentrations may help to distinguish dyspneic patients with cardiac disease 

from those with respiratory disease, and this with greater accuracy than NT-proANP plasma 

concentrations and with similar accuracy than serum NT-proANP concentrations93,1291.  

2.6.2.2.3 SIRS, sepsis and myocardial dysfunction 

In parallel to human literature, recent papers demonstrated that BNP can be markedly increased in dogs 

with systemic diseases without dyspnea97. A clinically relevant proportion of non-dyspneic and non-

cardiac dogs has increased BNP concentrations exceeding previously identified diagnostic thresholds. 

This may limit the ability of BNP to identify CHF when non-cardiac comorbidities exist97, but 

simultaneously opens a new use of this marker. Currently increased (NT-pro)BNP concentrations have 

been described in pulmonary disease, renal disease, and some other systemic illnesses such as canine 

babesiosis, trauma, neurological and gastrointestinal disease93-98,1319, but their role as a potential marker 

for diagnosis, severity, and prognosis or treatment evaluation has not been studied. 
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3. OBJECTIVES 

3.1 GENERAL OBJECTIVE 

In 1992, the term “systemic inflammatory response syndrome” (SIRS) was introduced1 to describe 

the effects of systemic activation of inflammation on organ function33. Sepsis has been defined as a 

systemic inflammatory response secondary to an infection101. Although in septic patients the infection 

itself can result in direct tissue injury, the subsequent inflammatory response accounts for a significant 

part of the clinical syndrome of sepsis1. SIRS itself is not limited to infectious causes, and can occur 

independently, as a consequence of trauma, major surgery or burns, and several non-infectious 

inflammatory conditions such as pancreatitis1. The clinical diagnosis of SIRS has been linked with lower 

survival rates and longer hospitalization, and if not successfully treated, may lead to multiple organ 

failure, shock or death in humans and dogs31.  

SIRS and sepsis cause cardiovascular and hemodynamic impairment in human critical care patients, also 

referred to as myocardial hibernation. This myocardial hibernation during SIRS is characterized by a 

variation of left and right ventricular systolic and diastolic dysfunction, with potential ventricular 

dilation despite adequate resuscitation. These cardiac effects might have a great impact on prognosis. 

Rapid identification of these consequences could therefore greatly modify the initial stabilization and 

benefit the intensive care of these patients.  

This PhD focused to find out whether cardiac effects of SIRS and sepsis could be identified in canine 

emergencies in a clinical setting. From the start, we decided not to work with experimental designs, as 

we did not want to induce SIRS in experimental dogs or subject them to invasive procedures. 

Additionally, any experimental design would fail to mimic the questions asked in a clinical setting, and 

this work specifically aimed to evaluate whether cardiac effects can be observed in a clinical setting of 

dogs presented in SIRS to the emergency department, regardless of the underlying etiology.  

The present thesis should therefore be regarded as a sentinel to evaluate whether such effects can be 

observed, and by which means, in a clinical setting. If cardiac effects similar to those observed in humans 

are identified in dogs in a clinical context, in an easy, cost-effective point-of-care fashion, this would 

open many perspectives for future research and pet care. Little was known at the start of this work (in 

2010). We therefore decided to focus on: confirming that canine emergencies with a clinical diagnosis 

of SIRS display objective signs of systemic inflammation; observing whether cardiac effects can be 

identified in these patients during hospitalization; evaluating whether canine SIRS patients demonstrate 

alterations in cardiac biomarkers; and whether changes in inflammatory cytokines, acute phase proteins, 

cardiac biomarkers or on cardiac ultrasound can be linked with the prognosis of such patients. 
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3.2 SPECIFIC OBJECTIVES AND HYPOTHESES 

3.2.1 Inflammatory cytokines and C-reactive protein  

The current clinical diagnostic criteria for SIRS are considered to be oversensitive and unspecific. 

Although these characteristics are exactly what you would expect for a clinical screening for an 

important syndrome, their lack of specificity has often been criticized. Our first objective was therefore 

to evaluate whether concentrations of major inflammatory cytokines (IL-6 and TNF-α) and CRP 

would confirm systemic inflammation in dogs with a clinical diagnosis of SIRS presented to an 

emergency department, and whether the concentrations of these proteins would have any prognostic 

information. Our hypothesis was that dogs presented to an emergency department with a clinical 

diagnosis of SIRS would have increased concentrations of inflammatory cytokines and CRP. The second 

hypothesis was that changes in these inflammatory cytokines and CRP would be associated with 

prognosis in these patients. 

3.2.2 Cardiac ultrasound  

The evaluation of the effect of SIRS on cardiac function has experienced a tremendous evolution in 

human medicine thanks to the development of echocardiography. The use of echocardiography was 

demonstrated to give more reliable information than invasive procedures such as the direct measurement 

of pulmonary capillary wedge and central venous pressures. Preload can be evaluated by evaluating the 

size of the left atrium (e.g. left atrium to aortic (LA/Ao) ratio in dogs) and of the left ventricular diameter 

in diastole (expressed as the normalized diameter to adjust for variation in body weight (nLVIDd), and 

systolic function can be evaluated via measurement of the fractional shortening (FS). Despite the huge 

possibilities that echocardiography offers, this technique is very much operator dependent, and the 

required equipment is expensive (although often available) and often is reserved for the use by 

cardiologists or medical imagers. In human medicine, training programs have slowly been developed 

allowing intensivists to perform bedside echocardiography on a 24 hour service to their patients. These 

training courses permit the intensivist to reply to a specific set of questions. Echocardiography in canine 

medicine is further complicated by the huge variety in body shapes, sizes and conformations, requiring 

ratios (such as LA/Ao and nLVIDd) to evaluate cardiac size and function. Based on findings in human 

medicine and the available information from studies on dogs, we designed a protocol for non-

cardiologist veterinarians to perform a basic cardiac ultrasound, recording LA/Ao, nLVIDd and FS in 

canine SIRS patients. The second objective of this thesis was to evaluate whether dogs presented to 

the emergency department with a clinical diagnosis of SIRS display changes in LA/Ao, nLVIDd 

and FS at presentation or during hospitalization, and whether changes would be associated with 

prognosis. Our hypothesis was that dogs presented to an emergency department with a clinical diagnosis 

of SIRS would have lower FS compared to their values at a control visit, and that LA/Ao and nLVIDd 
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values would increase during the initial hours of hospitalization to levels above values observed at a 

control visit. Moreover, we hypothesized that FS, nLVIDd and LA/Ao would be associated with 

prognosis in these patients. 

3.2.3 Cardiac biomarkers 

Cardiac biomarkers such as cardiac troponins (cTn) and natriuretic peptides, such as brain natriuretic 

peptide (BNP) and the N-terminal portion of the prohormone (NT-proBNP), can help to evaluate cardiac 

effects of SIRS. Measuring cardiac biomarker concentrations does not require appropriate training of 

the veterinarian and point-of-care tests are becoming readily available at an affordable price. Any 

information offered by point-of-care tests of cTn or NT-proBNP would be immediately available to any 

general practitioner. Both cTn and NT-proBNP are important markers of myocardial hibernation in 

humans, and concentrations of these biomarkers give prognostic information. The kinetics of these 

cardiac biomarkers however appears to be different depending on the underlying cause of SIRS and/or 

sepsis. The third objective of this PhD was to evaluate the concentrations of cardiac troponin T 

(cTnT) and NT-proBNP in dogs presented to the emergency department with a clinical diagnosis of 

SIRS. We measured concentrations at presentation and at several time-points thereafter to obtain a better 

insight into the kinetics of these biomarkers and identify interesting time-points for further research. 

Additionally, we evaluated whether changes in concentrations of cTnT or NT-proBNP are 

associated with prognosis. Our hypothesis was that dogs presented to an emergency department with 

a clinical diagnosis of SIRS would develop detectable concentrations of cTnT and increased 

concentrations of NT-proBNP. Moreover, we hypothesized that cTnT and NT-proBNP would be 

associated with prognosis of these patients.  

Based on these three studies, we want to demonstrate that biochemical evidence of systemic 

inflammation and initiation of the acute phase reaction can be identified in canine emergencies with a 

clinical diagnosis of SIRS. In these dogs, we hope to demonstrate cardiac effects of SIRS either by 

echocardiography performed at the bedside by non-cardiologists, or by the measurement of cardiac 

biomarkers which are available to any general practitioner. Finally we also wish to investigate whether 

the changes in the evaluated parameters are associated with the prognosis of these patients. 
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4. SCIENTIFIC SYNOPSIS 

4.1 GENERAL DESIGN OF THE STUDIES 

All dogs presented to the university veterinary emergency room between January and August 2010 were 

eligible for inclusion. Dogs were considered eligible to enter the study if a clinical diagnosis of SIRS 

was made based on the suspicion of an underlying disease process known to trigger the systemic 

inflammatory response and finding 2 or more abnormalities of the following clinical (temperature, heart 

rate and respiratory rate) and basic laboratory parameters (abnormal leukocyte counts). The cut-off 

values for white blood cell counts were modified from the original paper to adhere with the reference 

ranges of our own clinical laboratory (Table 1) and the limits of normal body temperature were set at 38 

to 39°C. Owners signed an informed 

consent form prior to inclusion of the 

patient. The study protocol received 

approval (letter #1709) of the 

institutional ethical committee. 

Dogs weighing less than 5 kilograms 

were excluded to avoid negative 

consequences of blood sampling. The 

case veterinarian could exclude the dog 

if they considered the dog too unstable 

to sustain additional stress or the 

procedure to be too time-consuming for 

the patient.  

Dogs underwent further investigations and received treatment according to their underlying condition, 

at the discretion of the attending veterinarian. Final diagnoses were classified into 7 disease categories 

for statistical comparison. These disease categories were infection (I), neoplasia (N), trauma (T), gastric-

dilation and volvulus (GDV), other gastrointestinal (GI), renal (R) and miscellaneous (M) diseases.  

Baseline parameters (T0) were assessed prior to beginning treatment and according to the study blood 

sampling and echocardiography were repeated after 6 hours (T6), 12 hours (T12), 24 hours (T24) and 

then every other day (T72, T120, …) until the dog was discharged or died. Owners of discharged dogs 

were asked to return for a follow up assessment one month after discharge to collect additional samples 

(T1m). The flow diagrams of patients in both studies are presented hereunder in Table 2 and 3. 

  

Parameter Limit Unit 

Heart rate > 120 bpm 

Respiratory rate > 20 rpm 

Temperature < 38 or > 39 °C 

Leucocytosis/leucopenia > 16000 or < 5000 /µL 

Left shift on blood smear > 3% bands % 

Table 1: Applied SIRS Criteria 
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Table 2. Flow diagram of patients entering the study on inflammatory and cardiac biomarkers 

 

D=deceased; P=Euthanized for prognostic reasons; F=Euthanized for Financial reasons; U=Euthanized 

for unspecified reasons; R=Died more than one month after discharge but prior to the control visit; 

L=Lost to follow-up. 

 

Table 3. Flow diagram of patients entering the echocardiography study 

  

D=deceased; P=Euthanized for prognostic reasons; F=Euthanized for Financial reasons; R=Died more 

than one month after discharge but prior to the control visit; L=Lost to follow-up.  
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4.2 INFLAMMATORY CYTOKINES AND C-REACTIVE PROTEIN IN CANINE SIRS 

Concentrations of inflammatory cytokines increase dramatically during inflammation, and therefore 

statistical evaluation is usually performed using logarithmic concentrations. Logarithmic transformation 

of the residues of the data resulted in a distribution (near to) normal for the tested inflammatory cytokines 

and CRP, allowing the use of a logistic procedure to evaluate the effect of biomarker concentrations on 

survival to discharge. Logarithmic IL-6 concentrations changed significantly over time (p <0.0001), and 

were significantly higher at T0, T6, T12 and T24 compared to values observed at T72, T120 and the 

control visit (p <0.05).  Median concentrations and range of IL-6 decreased from 780 (53 - 90225) 

IU/mL at T0 to 453 (56-1901) IU/mL at T72). At the follow-up visit, median IL-6 concentrations and 

range was 287 (46-574) IU/mL.  

Only 29.0% of dogs had detectable plasma TNF-α at any time point during hospitalization, and although 

the chance of detecting TNF-α was higher for dogs with acute conditions such as GDV (45%) and trauma 

(50%), there was no significant effect of disease group on concentrations (p 0.232). TNF-α 

concentrations changed significantly over time (p 0.032) throughout hospitalization with concentrations 

observed at T6, T12 and T24 being significantly different from values at T72 and the control visit (p 

<0.05). None of the dogs had plasma concentrations of TNF-α above the lower detection limit of the 

assay at the time of their follow-up visit. 

CRP was increased in the majority of dogs (73.1%) at presentation, and only 6% never displayed an 

increase in CRP (reference interval 0-14.9 mg/L) throughout hospitalization. Concentrations of CRP 

changed significantly over time (p <0.001) and CRP concentrations at the control visit were significantly 

lower than concentrations at all time points during hospitalization (p <0.001). Median concentrations 

and range of CRP at presentation were 58.3 (0.1 – 665) mg/L, 76.1 (1.6 - 481) mg/L at T24, and 47.9 

(4.4 - 402) mg/L at T72. In contrast, at the moment of their follow-up visit median and range of CRP 

concentrations were 0.7 (0.1 – 18.2) mg/L and 95% of dogs had within reference interval  (0 – 14.9 

mg/L).  

In conclusion, the vast majority of dogs presented with a clinical diagnosis of SIRS to a university 

emergency department demonstrate evidence of activation of pro-inflammatory cytokines by increased 

levels of IL-6, and TNF-α. Moreover, nearly all patients displayed increased CRP concentrations during 

hospitalization. Logarithmic concentrations of CRP and IL-6 were significantly correlated (p <0.001 with 

r 0.605). As IL-6 is the main cytokine involved in the production of CRP, such a correlation was 

expected. Unfortunately, none of the inflammatory cytokines, neither CRP was associated with disease 

category or outcome. Therefore, the performance of cumbersome bioassays to measure the biologically 

active concentrations of pro-inflammatory cytokines does not appear to offer large benefits in a clinical 

context. Whether CRP should be considered as an additional criterion for the clinical diagnosis of SIRS 

would require a larger study including all dogs presented to an emergency department and was not the 
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scope of this study. Based on this study, CRP does not seem to add prognostic information, when 

evaluating a heterogenous population of dogs with a clinical diagnosis of SIRS. Further studies in 

specific populations suffering from a single disease might demonstrate CRP can be useful in such a 

context. 
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Objective – To evaluate C- reactive protein (CRP), interleukin 6 (IL-6) and tumor necrosis factor alpha 

(TNF-α) kinetics in emergency dogs with a systemic inflammatory response syndrome (SIRS). We 

hypothesized CRP concentrations would (1) increase, and vary during hospitalization, (2) correlate with 

IL-6 and TNF-α concentrations, (3) vary in magnitude according to the underlying etiology, and (4) 

serve as a prognostic marker. 

Design – Prospective, observational, clinical study. 

Setting – University emergency department. 

Animals – Canine emergencies weighing over 5kg with SIRS. Dogs were not sampled if blood 

collection was deemed unduly stressful. 

Interventions – Serum and plasma were collected (and stored at -80°C) at presentation (T0), after 6 

(T6), 12 (T12), 24 (T24) and 72 (T72) hours, and at a follow-up visit (T1m) at least one month after 

discharge. Disease categories were infection (I), neoplasia (N), trauma (T), gastric-dilation and volvulus 

(GDV), other gastrointestinal (GI), renal (R) and miscellaneous (M) disease. 

Measurements and Main Results – Serum CRP was measured using a dog-specific 

immunoturbidimetric assay. Biologically active plasma IL-6 and TNF-α concentrations were assessed 

using bioassays.  Sixty-nine dogs were included. Forty-four dogs survived, eight died and seventeen 

were euthanized. Nineteen dogs had follow-up visits. CRP was increased in 73.1% (49/67) of dogs at 

presentation, and remained within the reference interval (0-14.9 mg/L) throughout hospitalization in 6% 

(4/67). CRP concentrations were significantly higher at all time points between T0 (92.7±113.7 mg/L) 

and T24 (95.2±90.2 mg/L) before decreasing at T72 (71.1±76.6 mg/L). At follow-up CRP measurements 

were within reference interval (2.4±4.5 mg/L) in 95% (18/19) of dogs. Logarithmic concentrations of 

CRP and IL-6 were significantly correlated (p <0.001 with r 0.479). None of the parameters were 

associated with disease category or outcome.  

Conclusions – CRP is elevated in canine emergencies with SIRS, and decreases during treatment and 

hospitalization. CRP, IL-6 and TNF-α cannot predict underlying disease or outcome in dogs with SIRS. 
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Introduction 

The systemic inflammatory response syndrome (SIRS) describes the systemic repercussions seen with 

a generalized state of inflammation that can occur secondary to an infectious or non-infectious 

inflammatory challenge. A diverse range of underlying conditions including infection, trauma and sterile 

inflammatory conditions such as pancreatitis may provoke SIRS.1 The clinical diagnosis of SIRS, is 

based on defined changes in clinical (body temperature, heart rate and respiratory rate) and hematologic 

(leucocyte counts, presence of a left shift) variables (Table 1). Diagnosing a patient with SIRS 

recognizes the presence of clinical signs compatible with systemic inflammation, but the previously 

described SIRS criteria are considered overly sensitive and poorly specific.2,3 

SIRS is largely mediated by proinflammatory cytokines, and a SIRS-like clinical picture can be induced 

within a couple of hours by injection of proinflammatory cytokines such as TNF-α.4 Infusion of 

lipopolysaccharide in dogs causes a rapid increase in TNF-α concentrations that peaks within three hours 

of the start of administration.5 In man, serum concentrations of proinflammatory cytokines such as TNF-

α have been shown to correlate with morbidity and mortality in certain inflammatory diseases.6    

Interleukin (IL)-6 is another major proinflammatory cytokine, with upregulated transcription and 

production by monocytes, macrophages and fibroblasts in response to TNF-α, pathogen- and damage-

associated molecular pattern molecules.7,8 IL-6 concentrations display a greater and more sustained 

increase compared to TNF-α, making it a more interesting parameter for the diagnosis and follow-up of 

human SIRS patients.9 Indeed, some human studies have identified IL-6 as a good diagnostic and 

prognostic marker of SIRS10,11, and this has also been confirmed in a canine study on SIRS.12 

Systemic inflammation due to any immune-mediated, neoplastic, infectious or traumatic challenge can 

prompt a reaction from the host’s innate immune system: the APR.13 The APR has been shown to be 

associated with markedly increased serum concentrations of IL-6 in dogs.14 Serum concentrations of 

Acute Phase Proteins (APP)s can be used to assess the systemic APR.13,15,16 APPs are usually 

glycoproteins, predominantly synthesized by hepatocytes in response to IL-6, TNF-α, and other pro-

inflammatory cytokines.13 APPs can have both pro- and anti-inflammatory effects, and, therefore, act to 

regulate the immune response, control inflammation or protect and repair tissues.13  

APPs are divided into major, moderate and minor APPs, (major: 100-1000 fold increased concentration 

within 24-48h; moderate: 5-10 fold within 2-3 days and minor: 1.5-2 fold within a few days) reflecting 

the magnitude of the increase in serum concentrations and the speed at which this increase occurs.17 C-

reactive protein (CRP) is a major APP in dogs that received its name for its ability to bind the C-

polysaccharide of Pneumococcus (Streptococcus pneumoniae). The main functions of CRP are thought 

to be promotion of complement binding to facilitate phagocytosis of bacteria, induction of cytokines, 

inhibitory effects on chemotaxis, and modulation of neutrophil function.15,18 CRP concentration is 
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usually less than 5mg/L in healthy dogs and reference ranges vary from 0.22 to 16.4mg/L.19-22 CRP 

displays a rapid increase in serum concentration from <1mg/L to >100mg/L in response to tissue 

destruction or inflammatory stimulation23 secondary to a variety of infectious13,17, neoplastic24, immune 

mediated17,24,25 and other inflammatory26 conditions. 

In comparison with other APPs such as haptoglobin, CRP concentration increases more rapidly resulting 

in an earlier serum peak (1-2 days versus 3-7 days for haptoglobin).13,22 CRP has a short half-life in the 

dog26 and serum CRP concentrations are not affected by glucocorticoid administration.22 The 

administration of placebo or short term administration of non-steroidal anti-inflammatory drugs 

(NSAIDs) does not alter CRP concentrations likely because NSAIDs do not suppress IL-6 production - 

the major stimulus for CRP production.27,28 Moreover, CRP concentrations do not have a circadian 

rhythm in dogs and are not affected by sex, age, or repeated venous blood sampling.19,21,29,30 

Taking all of these facts into consideration, CRP could serve as a useful clinical marker for systemic 

inflammatory activity in various diseases in dogs.31 CRP may represent a perfect parameter to evaluate 

the severity of any ongoing inflammatory disease and to monitor disease progression and the response 

to treatment. These characteristics have already been confirmed in several human medicine studies32,33 

and some evidence exists in veterinary studies evaluating canine pancreatitis, Ehrlichiosis, 

Leishmaniosis and steroid responsive meningitis-arteritis.17,34-38 The kinetics and prognostic value of 

CRP in a cohort of dogs presenting to a veterinary emergency room with clinical SIRS has however 

never been evaluated. 

We measured CRP, IL-6 and TNF-α kinetics in dogs presenting to the emergency room with a clinical 

diagnosis of SIRS. We hypothesized that CRP (1) would increase in dogs with a clinical SIRS-diagnosis 

and would vary throughout hospitalization (2) would correlate with IL-6 and TNF-α concentrations, (3) 

would be influenced by the underlying etiology, and (4) would serve as a reliable prognostic marker for 

patient survival. 

 

Materials and Methods 

Dog selection 

All dogs presented to the university veterinary emergency room between January and August 2010 were 

eligible for inclusion in the study. A clinical diagnosis of SIRS was based on clinical criteria and white 

blood cell total and differential counts. As previously established, a dog with at least two of the 

diagnostic criteria (Table 1) was considered to have SIRS2 and was included in the study once informed 

consent was obtained from the owner. The study protocol received approval (letter #1709) of the 

institutional ethical committee. 
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Dogs weighing less than 5 kilograms were excluded to avoid negative consequences of iatrogenic blood 

removal. Finally, the case veterinarian could exclude the dog from the study if they considered the dog 

too unstable to sustain the additional stress provoked by blood collection.  

Dogs underwent further investigations and received treatment according to their underlying condition, 

at the discretion of the attending veterinarian. Final diagnoses were classified into 7 disease categories 

for statistical comparison. These disease categories were infection (I), neoplasia (N), trauma (T), gastric-

dilation and volvulus (GDV), other gastrointestinal (GI), renal (R) and miscellaneous (M) diseases.  

Data collection 

Baseline parameters (T0) were assessed prior to beginning treatment. Blood was taken again after 6 

hours (T6), 12 hours (T12), 24 hours (T24) and then every other day (T72, T120, …) until the dog was 

discharged or died. Owners of discharged dogs were asked to return for a follow up assessment one 

month to one year after discharge to collect additional samples (T1m).  

At each time point, 6 mL of blood were taken and divided into EDTA (4mL) and serum tubes (2mL). 

Blood was taken from the jugular vein unless a coagulopathy was suspected (in which case cephalic 

vein collection was preferred). Samples were centrifuged within 15 minutes at 1500g for 10 minutes and 

plasma and serum were immediately separated and stored at -80°C. Transportation to the laboratory was 

performed by one of the authors on dry ice in cooled containers after which all analyses were 

immediately performed simultaneously. 

Analyses  

Serum CRP was measured according to the manufacturer’s instructions with a previously validateda 

dog-specific immunoturbidimetric CRP assayb on a fully automated clinical chemistry analyzerc. In 

summary, the main reagent is a polyclonal chicken anti-canine CRP antibody, resulting in increased 

turbidity upon reaction with canine CRP, which is eventually measured spectrophotometrically.39 

Calibration of the assay was performed with canine CRPd. Serum samples were semiquantitavely 

assessed for presence of hemolysis, hyperbilirubinemia and hyperlipemia. Samples with CRP 

concentrations >300mg/L were diluted 1:5 with 0.9% NaCl and re-analyzed. Two canine control 

samplese,f were analyzed each day when analysis was performed. CRP samples were not run in duplicate.   

Previously described bioassays were used to measure biologically active plasma IL-6 and TNF-α 

cytokine concentrations.40 Both assays have repeatedly been used and reported in dogs, in experimental 

as well as in clinical studies.41,42 Determination of TNF-α concentration was achieved by a cell-kill 

bioassay based on the cytotoxic effect of TNF-α on the mouse fibrosarcoma cell line, WEHI 164 

subclone 13.43 This assay detects only bioactive TNF-α , in contrast to immunoassays depending on 

antibodies to recognize an epitope of the TNF-α molecule, which may not be biologically active.44 
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Another advantage of this assay is its very high sensitivity.45  The assay was performed in sterile, 96-

well microtiter plates. Serial dilutions of biological samples, which were run in duplicate, or different 

concentrations of a murine TNF-α standardg were incubated for 24 hours in wells that had been seeded 

with 50 000 actinomycin D-treated WEHI cells. The number of surviving cells after 24 hours was 

measured by use of the dimethylthiazol-diphenyl tetrazolium bromide (MTT) colorimetric assay.46 

Plasma samples were prediluted in order to obtain parallel serial dilutions of samples and standard 

dilution curves. The detection limit of the assay, after considering the dilution of samples into the assays, 

was 6ng/L.  

IL-6 concentrations were determined by a bioassay based on the dose-dependent growth stimulation of 

IL-6 on the B9 hybridoma cell line.47 This cell line requires IL-6 for survival and proliferation. The 

advantages of the B9 assay are its extreme sensitivity and its feature that only bioactive molecules are 

measured48. The assay was performed in sterile, 96-well microtiter plates. In each well, 5000 B9 cells 

were incubated for 72 h with serial dilutions of biological samples which were run in duplicate, or with 

different concentrations of a human IL-6 standardh. Plasma samples were prediluted so that serial 

dilutions of samples and standard dilution curves were parallel. The number of cells in each well was 

measured by use of the MTT assay (see above). The detection limit of the assay, after considering the 

dilution of samples into the assays, was set at 3 international units (I.U.) /mL. 

Statistical analysis 

Statistical analysis was performed using SASi. Unmeasurable samples were attributed the value of the 

lower detection limit. A Shapiro-Wilk and Kolmogorov-Smirnov test (univariate procedure) and 

normality QQplots were performed to assess for normal distribution of the data. As the distribution of 

CRP and cytokines was skewed, a logarithmic transformation of these parameters was performed prior 

to statistical analysis. A mixed procedure on a generalized linear model was used to assess the effect of 

time, age, sex, reproductive status and disease category on the logarithmic concentrations of CRP, IL-6 

and TNF-α simultaneously. A mixed procedure was applied to evaluate whether hemolysis, 

hyperbilirubinemia or hyperlipemia had an effect on logarithmic CRP concentrations. As the data were 

taken repeatedly over time on the same animals, there is a correlation between successive data. This 

correlation structure is reflected in the linear mixed model used (MIXED procedure, repeated by time 

which was treated as a categorical variable). Correlation between different biomarkers was performed 

(CORR procedure). A logistic analysis (LOGISTIC procedure) was performed in order to evaluate the 

effect of biomarker concentrations on survival to discharge. Only dogs that survived, died of natural 

causes or were euthanized for prognostic reasons were included for the assessment of prognostic value 

of the evaluated parameters. Statistical significance was reached at a p value < 0.05. 
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Results 

Dogs 

Fifty-eight pure bred and 11 mixed-breed dogs (69 dogs in total) were included in the study. The most 

commonly represented breeds were Bernese mountain dog (n=8), German shepherd (n=6), Great Dane 

(n=4), Jack Russell terrier (n=4) and Belgian shepherd (n=3). There were 38 male (29 intact and 9 

castrated) and 31 female (17 intact and 14 neutered) dogs with a median age of 6.5 years (ranged between 

7 months and 15.2 years) and with a median weight of 30.3kg (ranging from 5.5 to 75kg). Dogs were 

grouped into disease category (N=13; I=12; GDV=11; GI=5; T=6; R=3; and M=19). Forty-four of 69 

dogs were discharged (63.8%), 8/69 (11.6%) died during hospitalization while 17/69 (24.6%) dogs were 

euthanized (8/17 for prognostic, 7/17 for financial reasons and 2 for reasons not specified). Thirty-four 

of 69 dogs were confirmed to be alive and considered healthy at least one month after discharge (5 died 

from related causes such as continued GI signs in 2 dogs, aspiration pneumonia secondary to a 

megaesophagus, worsening hepatocutaneous syndrome and tumor recurrence with secondary 

hemoabdomen and 5 were lost to follow-up). Nineteen of 34 returned for a follow-up visit. Sex, 

reproductive status and age did not have a significant effect on CRP, IL-6, TNF-α and prognosis 

(p>0.05). 

CRP analysis 

CRP concentrations were significantly increased (p <0.0001) during hospitalization compared to values 

from the follow-up visit (Figure 1a). CRP concentrations were above the upper limit of the reference 

range (14.9mg/L) in 73.1% (49/67) of dogs at presentation with a mean concentration of 92.7±113.7 

mg/L. CRP was only assessed in 67/69 patients at presentation as two samples contained insufficient 

amounts of serum for analysis. CRP concentrations remained similarly elevated during the first 24 hours 

(T24: 95.2±90.2 mg/L), only decreasing at T72 (71.1±76.6 mg/L). A similar pattern was detected when 

only dogs that survived to discharge were considered (Figure 1b). Of 11 dogs with GDV, CRP was 

within reference range in 6, 2, 1 and 0 dogs at T0, T6, T12 and T24, respectively, while in dogs with 

trauma (n=6), CRP was within reference range in 4, 1 and 0 dogs at T0, T6 and T12, respectively. CRP 

concentrations remained within reference range (0-14.9 mg/L) throughout hospitalization in 4/67 (6.0%) 

dogs. Diagnoses for these four dogs included wound dehiscence following elective ovariohysterectomy, 

acute paralysis due to suspected fibrocartilaginous embolism, status epilepticus, and GDV. 

Concentrations of CRP were within reference range at T1m (2.4±4.5 mg/L) in 18/19 dogs. The only 

increased value (18.2 mg/L), was the dog with normal CRP concentrations during hospitalization with 

wound dehiscence after ovariohysterectomy. This dog had no other abnormalities detected and remained 

clinically fine after the visit. Hemolysis, hyperlipemia and hyperbilirubinemia was detected in 85, 50 

and 18 serum samples respectively, and was considered severe in 22, 3 and 0 of these samples, 
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respectively. Presence of hemoglobinemia, hyperlipemia and hyperbilirubinemia did not significantly 

influence CRP concentrations (p>0.05). 

IL-6 analysis 

Although there were no significant differences in IL-6 concentrations in between different time points 

during the study (Figure 2), logarithmic IL-6 concentrations decreased significantly between initial 

presentation and the follow-up visit (p <0.0001). Mean IL-6 concentrations at T0 were 3758 (±11395) 

IU/mL and decreased to 508 (±430) IU/mL at T72. At the follow-up visit, mean IL-6 concentrations had 

dropped to 274 (±135) IU/mL.  

TNF-α analysis 

Logarithmic TNF-α concentrations did not change significantly (p 0.167) throughout hospitalization 

(Figure 3) with a mean TNF-α concentration of 64 (±188) ng/L. Only 20 out of 69 dogs (29.0%) had 

detectable plasma TNF-α at any time point. TNF-α was detectable in 5/11 (45%) dogs with GDV and 

3/6 (50%) dogs presented for trauma. TNF-α was detectable in 2 dogs on day 3 after presentation and 1 

dog on day 5 (T72 384 and 478ng/L, T120 422ng/L). None of the dogs that presented for their follow-

up visit had detectable plasma concentrations of TNF-α. Twelve of the 20 (60%) dogs that had detectable 

TNF-α concentrations survived to discharge, 5 were euthanized for prognostic reasons and 3 died during 

hospitalization. 

Correlation of biomarkers 

Logarithmic concentrations of CRP and IL-6 were weakly but significantly correlated (p <0.001 with r 

0.479). Logarithmic TNF-α were however not correlated with the logarithmic concentrations of CRP (p 

0.126 with r -0.093) or IL-6 (p 0.739 with r -0.020). Statistical analysis failed to identify any significant 

influence of the underlying disease category on CRP, IL-6 and TNF-α. Although not significantly 

different, CRP concentrations at presentation were highest in dogs with SIRS due to an infectious cause 

(mean 196.4±188.0 mg/L) compared to the other disease groups combined (mean 69.7±76.0 mg/L) (p 

0.120). 

Prognostic value 

Finally, CRP, IL-6 and TNF-α concentrations in survivors did not significantly differ from 

concentrations in non survivors at any time during hospitalization (Figure 4), and hence were not 

associated with outcome.  
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Discussion 

CRP analysis 

The systemic inflammatory response syndrome frequently accompanies diseases requiring emergency 

treatment in dogs.  The present study demonstrates that the majority of dogs presenting on an emergency 

basis with SIRS have, or will soon develop, increased CRP concentrations. Since high CRP denotes an 

APR, this study indicates that the clinical diagnosis of SIRS in an emergency service might not be as 

unspecific as commonly assumed.2 Similarly, the majority of this cohort of dogs presented to the 

emergency room with a clinical diagnosis of SIRS also displayed additional indicators of an active 

inflammatory process (i.e. increased concentrations of pro-inflammatory cytokines).  

The focus of our study was to evaluate the prognostic value and kinetics of CRP and major 

proinflammatory cytokines. Emergency cases that did not fulfil the SIRS criteria were excluded and we 

can therefore not comment on the sensitivity of the SIRS criteria to identify dogs with increased CRP, 

nor on the agreement between a clinical diagnosis of SIRS and CRP testing. Previous studies in dogs 

with pyometra do however demonstrate that CRP appears to be associated with SIRS.49 Identification 

of SIRS in a dog presenting as an emergency suggests the presence of systemic inflammation, and 

justifies CRP measurement.50 

Only 71.2% of dogs had increased CRP at presentation. The absence of an increased CRP at presentation 

may, at least in part, be explained by the kinetics of APPs. Typically major APPs increase before the 

onset of clinical signs;13 in experimental studies CRP has been found to increase within 4 to 6 hours of 

stimulation and peak after 36 hours.51 In this study some dogs were presented for hyperacute conditions 

such as GDV and trauma. In both groups CRP tended to rise during the initial hours of hospitalization 

but was often within normal limits at initial presentation. It is interesting to note that presence of SIRS 

may precede changes in APPs in dogs presenting to the emergency room.    

IL-6 and TNF-α analysis 

Reference ranges for IL-6 have not been established in dogs. IL-6 is one of the few cytokines that is 

detectable in the plasma of healthy dogs, unlike TNF-α.42 A previous study did not detect significant 

differences between healthy control dogs and dogs suffering from pyometra.49 Experimental models 

demonstrated that plasma IL-6 and TNF-α concentrations can rapidly rise exponentially in dogs with 

sepsis.42 Therefore, similar to previous studies12, absolute values of cytokines were not normally 

distributed and logarithmic values were used for statistical analysis. In our study we did detect 

significantly higher logarithmic IL-6 concentrations at presentation compared to the follow-up visit.  

In this study TNF-α was only detected in 20/69 dogs (29.0%) throughout hospitalization. It has 

previously been established in a homogenous group of dogs with pyometra that TNF-α concentrations 
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are not related to SIRS.49 Several factors can explain this low proportion of detectable TNF-α 

concentrations. In experimental models, TNF-α peaks within 2 hours but often becomes unmeasurable 

within 6 hours and rarely remains present for longer than 24 hours, although sustained increases have 

been described in sepsis.42,52 Most of the dogs presenting with detectable TNF-α concentrations indeed 

suffered from hyperacute disease such as GDV and trauma. TNF-α concentrations decrease rapidly due 

to inhibitory effects of IL-6 on TNF-α production via negative feedback.53 In agreement with these 

findings, only 2/69 dogs in the present study had measurable TNF-α concentrations for longer than 24 

hours. It is possible that a rise in TNF-α occurred in some of the other dogs prior to presentation and 

thus was missed. Furthermore, TNF-α does not typically rise following elective surgery or accidental 

injury, and increases in TNF-α may be relatively mild in localized inflammation in man and dogs.14,54 It 

is therefore possible that some of the dogs had disease conditions that failed to provoke an increase in 

TNF-α despite signs of SIRS and increases in IL-6 and CRP. Other studies in dogs with SIRS and sepsis 

identified a higher proportion of dogs with detectable TNF-α concentrations.49,55 These difference can 

be explained by differences in assay methodologies and variations in the enrolled cohort of dogs. ELISA 

techniques measure all the TNF-α present in the sample including the portion that is clinically 

inactivated by TNF-α soluble receptors, while bioassays only measure the active TNF-α.53  Besides 

variations between assays, differences in studied population probably play an important role. Another 

study using a (different) bioassay found measurable TNF-α concentrations in 39/42 dogs with SIRS or 

sepsis.55 This study however studied dogs at admission to an intensive care unit, regardless of the 

presenting signs and previous history, and can therefore not be easily compared with this cohort of 

emergency patients. Additionally, this latter study did not perform kinetic studies of TNF-α and we can 

therefore not evaluate the speed at which TNF-α became undetectable again.  

Correlation and Prognostic value of biomarkers 

Although logarithmic concentrations of CRP, IL-6 and TNF-α were correlated, none of the evaluated 

parameters in this study were associated with the underlying disease category, or with prognosis. The 

large proportion of enrolled dogs with non-detectable concentrations of biologically active TNF-α 

concentrations probably explains the lack of correlation between logarithmic concentrations of TNF-α 

and IL-6 and CRP. APPs are highly sensitive markers of inflammation but lack specificity regarding the 

underlying disease process.17 The magnitude of the increase in CRP depends on multiple factors 

including the initiating cause, disease severity and the extent of tissue damage.13,19,36 Highest CRP values 

may occur at different time points depending on the type of insult26,36. The inclusion criteria of this study 

imply that dogs may have suffered from a great variety of initiating causes of SIRS, and may have been 

presented at different points in the disease process.  

CRP concentrations at presentation tended to be higher in dogs with SIRS due to an infectious cause, 

but the difference was not significant. The use of CRP to discriminate septic from non-septic SIRS 
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patients in human medicine has met with variable results, and has generally been superseded by 

procalcitonin which also confers prognostic value.56-61  

Our finding that CRP was not predictive of prognosis contradicts with several previous studies on APP-

kinetics and prognosis in canine SIRS.24,62,63 When evaluating a single disease entity such as pyometra, 

CRP may predict disease severity.50 However, for conditions such as canine leptospirosis, with a more 

variable clinical presentation, CRP was not found to be useful to predict prognosis.64 A previous study 

on CRP in canine SIRS found that while initial CRP concentrations were unhelpful, the 3-day change 

in CRP predicted survival with survivors experiencing a bigger drop in CRP concentrations.62 The utility 

of CRP as a monitoring tool for treatment evaluation in the acute phase appears limited based on the 

findings of this study. CRP concentrations remained elevated during the initial 24 hours and were only 

mildly decreased by day 3 in survivors, and therefore do not appear to be very informative to evaluate 

treatment efficacy.  

In humans with SIRS, concentrations of some proinflammatory cytokines have been demonstrated to 

correlate better with prognosis than CRP concentrations.65 The role of TNF-α as an early mediator of 

the APR with rapid downregulation makes it a poor diagnostic and prognostic tool in critical care 

patients.42,52,66-68 In the present  study, IL-6 was not related to outcome either. Mean IL-6 values for 

survivors were not significantly higher at presentation compared to non survivors, and were not 

significantly lower from T6 onwards. These findings are in agreement with two other clinical studies on 

dogs that also failed to detect significant differences in IL-6 and TNF-α related to outcome.55,69 Research 

in human medicine and a canine clinical study in SIRS and sepsis, does however suggest prognostic 

value of IL-6 concentrations.9,12,70 The clinical study on dogs did however include dogs that were 

hospitalized and dogs with chronic conditions (mean sign of illness 6.7 days, range 1 to 65 days) and 

lacked trauma cases or dogs with GDV. Population characteristics therefore differed significantly from 

the emergency SIRS-population evaluated here.12 

Study limitations 

The inherent characteristics of a veterinary clinical study, may account for some of the differences in 

our findings. Allowing the case veterinarian to exclude dogs considered too unstable for blood sampling 

was an important ethical consideration. However this could introduce an important bias to this study, as 

the most severely affected animals may be more likely to be excluded. In order to avoid an effect of 

financial considerations on the evaluation of prognostic information, all dogs that were euthanized for 

financial or unspecified reasons were removed for prognostic analysis. Including dogs that were 

euthanized for prognostic reasons might still have had an influence our findings, however all these dogs 

had a deteriorating clinical condition that did not respond to appropriate treatment or suffered life-

threatening complications. Placing clinical cases in specified disease categories is sometimes 

complicated, resulting in a high proportion of animals in the miscellaneous group, and low numbers of 
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dogs in each separate disease category. Therefore findings of this study should ideally be tested in larger, 

multicenter studies, in order to confirm our findings.  

A previous study demonstrated that age can have a significant effect on the immune response7, with 

mature animals expressing a higher TNF-α production. We did not identify any effect of age on our 

findings, but such an effect could have been missed as we had few immature dogs and did not attempt 

to arbitrarily subdivide patients into immature, mature and geriatric dogs based on body weight. 

Samples were stored at -80°C for 1 year prior to analysis. It has been shown that CRP, IL-6 and TNF-α 

remain stable at temperatures below -70°C.71,72 Hemolysis, lipemia and hyperbilirubinemia can 

influence CRP measurements73 but we did not find a significant effect of these factors on CRP 

measurements. According to previously reported data, interference would indeed only be expecteda at 

very high concentrations of hemoglobin (5g/L), intralipid (10g/L), and bilirubin (800mg/L).  

 

Conclusion 

CRP is often increased in dogs presenting to the emergency room with SIRS, and is positively correlated 

with increased concentrations of proinflammatory biomarkers IL- 6 and TNF-α. However, neither CRP, 

IL-6 nor TNF-α concentrations helped identify the underlying disease or predict outcome in this cohort 

of dogs . 

 

Footnotes 

a Klenner S, Zielinsky S, Kneier N, et al. Validation of a new canine species-specific C-reactive protein 

assay on the Pentra 400. Abstract at the European Society of Veterinary Clinical Pathology (ESVCP)/ 

European College of Veterinary Clinical Pathology (ECVCP) 15th Annual Congress. Veterinary 

Clinical Pathology 2013:29. 

b Gentian cCRP; Gentian AS, Moss, Norway. 

c ABX Pentra 400; Horiba ABX SAS, Montpellier, France. 

d cCRP calibrator; Gentian AS, Moss, Norway. 

e cCRP low control; Gentian AS, Moss, Norway. 

f cCRP high control; Gentian AS, Moss, Norway. 

g code 88/532; National Institute for Biological Standards and Control, South Mimms, UK. 
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h code 89-548; National Institute for Biological Standards and Control, South Mimms, UK.  

i SAS; Statistical Analysis Software, Cary, United States. 
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Table 1: Clinical criteria for the diagnosis of SIRS  

 

 

 

 

 

 

 

 

  

Parameter Limit Unit 

Heart rate > 120 bpm 

Respiratory rate > 20 rpm 

Temperature < 38 or > 39 °C 

Leucocytosis/leucopenia > 16000 or < 5000 /µL 

Left shift on blood smear > 3% bands % 
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Figure 1a: Box plots displaying the median and range of CRP concentrations (mg/L) in canine 

SIRS patients at different time points during hospitalization.  

 

The central line of the box plot indicates the median value, the upper and lower line of the box plot 

illustrate the range of the 25% and 75% of the values, the outer lines at the end of the vertical lines 

indicate the 95% and 5% range of the recorded values. 
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Figure 1b: Box plots displaying the median, and range of CRP concentrations (mg/L) in canine 

SIRS patients that survived until discharge at different time points during hospitalization.  

 

The central line of the box plot indicates the median value, the upper and lower line of the box plot 

illustrate the range of the 25% and 75% of the values, the outer lines at the end of the vertical lines 

indicate the 95% and 5% range of the recorded values.  
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Figure 2: Box plots displaying the median and range of IL-6 concentrations (IU/mL) in canine 

SIRS patients at different time points during hospitalization.  

The central line of the box plot indicates the median value, the upper and lower line of the box plot 

illustrate the range of the 25% and 75% of the values, the outer lines at the end of the vertical lines 

indicate the 95% and 5% range of the recorded values.  
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Figure 3: Scatterplot displaying the median and range of TNF-α concentrations (ng/L) in canine 

SIRS patients at different time points during hospitalization.  

 

Black dots represent obtained values for TNF-α. The red line indicates the median value (which always 

equals 0ng/L). The three red dots at the top of the scale represent extreme values that fell of the presented 

scale (respectively 2438 for T6, and 6368 and 1601ng/L for T12). 
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Figure 4a: Scatter plots displaying the median value and range of CRP concentrations (mg/L) in 

survivors and non survivors (deceased or euthanized for prognostic reasons) at different time 

points during hospitalization. 

 

The red line indicates the median value of the recorded values. S indicates survivors, NS non survivors 
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Figure 4b: Scatter plots displaying the median value and range of IL-6 concentrations (IU/mL) in 

survivors and non survivors (deceased or euthanized for prognostic reasons) at different time 

points during hospitalization. 

 

The red line indicates the median value of the recorded values. S indicates survivors, NS non survivors.  
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Figure 4c: Scatter plots displaying the median value, and distribution of TNF-α concentrations 

(ng/L) in survivors and non survivors (deceased or euthanized for prognostic reasons) at different 

time points during hospitalization. 

 

Black dots represent obtained values for TNF-α. The red line indicates the median value (which always 

equals 0ng/L). S indicates survivors, NS non survivors. The three red dots at the top of the scale represent 

extreme values that fell of the presented scale (respectively 2438 for T6 NS, 1601ng/L for T12S and 

6368 for T12 NS) 
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4.3 CARDIAC FINDINGS IN CANINE EMERGENCIES WITH A CLINICAL DIAGNOSIS 

OF SYSTEMIC INFLAMMATORY RESPONSE SYNDROME WITHOUT 

HYPOTENSION 

In this cohort of dogs with a clinical diagnosis of SIRS, heart rate changed significantly over time (p 

0.002). During hospitalization heart rate decreased significantly, with values at presentation [147 (66 - 

193] significantly higher than at T6 [120 (68 – 169)], T12 [112 (67 – 197)], T24 [107 (54 – 169)] and 

T72 [99 (55 -156)] (p <0.05). However, values at presentation were not significantly different (p 0.340) 

from those at the control visit [132 (83 – 162)], which were significantly higher than heart rates observed 

at T24 and T72. Systolic blood pressure did not significantly change over time (p 0.208), but dogs with 

severe hypotension were unfortunately rejected from this part of the study by the attending clinicians, 

limiting our findings. 

LA/Ao-ratios changed significantly over time (p 0.007). During hospitalization a significant increase in 

the LA/Ao-ratio (from 1.05 (0.76-1.45) at presentation to 1.18 (0.8-1.54) after 3 days of hospitalization) 

(p <0.001) was noticed . Moreover, LA/Ao at the control visit was similar [1.15 (0.92-1.59)] to values 

observed after 3 days of hospitalization (p 0.938), and significantly higher than values observed at 

presentation (p 0.003).  

nLVIDd similarly changed significantly over time (p 0.001). nLVIDd increased significantly during 

hospitalization with values observed at presentation [1.29 (0.89-1.92)] significantly (p <0.001) lower 

than at T72 [1.54 (1.05-1.99)]. However, concentrations at the control visit [1.34 (1.2-1.52)] did not 

significantly differ from values at presentation (p 0.872) yet were significantly lower than values 

observed at T72 (p 0.001). Finally, FS did not significantly change over time (p 0.300) with values 

observed at presentation [39 (19-53)%] being similar to those observed at T72 [37 (16-64)%] and at the 

control visit [42 (15-52)%].  

Heart rate (p 0.002), yet none of the echographic parameters (LA/Ao, nLVIDd and FS) neither SAP was 

significantly associated with survival to discharge (p-values for LA/Ao, nLVIDd, FS and SAP 0.176; 

0.223; 0.079; and 0.057 respectively). Median heart rate was higher in non survivors compared to 

survivors from presentation up to T24. Despite not reaching significance, median LA/Ao-ratios were 

higher in survivors [at T0 1.05 (0.78-1.45)] compared to values observed in non survivors [at T0 0.95 

(0.76-1.22)], and similarly median nLVIDd was higher in survivors [at T0 1.31 (0.89 – 1.92)] compared 

to values observed in non survivors [at T0 1.22 (0.89 – 1.52)] at all time points during the initial 24 

hours. Although not statistically significant, median FS was lower in survivors [at T0 36% (19-47)] 

compared to non survivors [at T0 43% (40-48)] from presentation up to T24. Finally, median SAP in 

survivors and non survivors failed to demonstrate an obvious trend during hospitalization. 

None of the parameters was significantly correlated (p>0.05) with the underlying disease category, 

however group sizes were very small. 
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The findings of this study can be interpreted in very different ways. A first, and likely explanation is 

that the higher median heart rate (explained by stress, pain, inflammation or other factors than 

hypovolemia) at presentation, is responsible for the lower median LA/Ao and nLVIDd values at 

presentation compared to findings later during hospitalisation. An increased heart rate decreases the 

filling time of the heart, leading to a lower end-diastolic volume. However, according to the Frank 

Starling principle, this should also lead to a decreased ejection volume and FS. However, if the increased 

heart rate is explained by factors such as stress and an increased sympathetic tone, this could result in 

an increase of FS. The higher median heart rates of dogs at the control visit, when they were clinically 

doing well, compared to values later during hospitalization definitely indicates an effect of stress on our 

findings. Moreover, heart rate was significantly correlated with LA/A, nLVIDd and with FS (p values 

<0.001 for a correlation coefficient of -0.332; -0.320; and 0.301), suggesting that many of the observed 

changes in the echocardiographic parameters may be explained by changes in heart rate. As median 

values for FS and nLVIDd were not different between presentation and the control visit, this further 

supports the hypothesis that changes in heart rate rather than a change in volume status might be 

responsible for most of the echocardiographic findings.  

However, the decreased LA/Ao and nLVIDd as well as the increased heart rate could also indicate that 

many of our dogs with a clinical diagnosis of SIRS suffered from a degree of hypovolemia at 

presentation. LA/Ao and nLVIDd are considered indicators of volume status in dogs. The decreasing 

heart rate, together with the increasing LA/Ao and nLVIDd could also reflect the improved volume 

status of these patients following instauration of appropriate treatment. LA/Ao during the control visit 

indeed remained significantly higher than at presentation, yet similar to values at the end of 

hospitalization. This finding does suggest a change in volume status in these patients may be 

accountable, at least partially, for the observations.  

Unfortunately none of the dogs in this cohort were hypotensive at presentation. More severely affected 

dogs with a clinical diagnosis of SIRS were excluded from this part of the study by the attending 

clinician. As the dogs that were excluded were generally more severely ill (as demonstrated by their 

higher mortality rates), it is likely that findings would have been more convincing, and possibly easier 

to explain, if all dogs would have been included. 

Although only higher heart rates in this study were significantly associated with a higher risk of 

mortality, survivors in this study also had higher median LA/Ao and nLVIDd values and lower median 

FS values from presentation until T24 compared to non survivors. Myocardial hibernation in human 

beings is characterized by a decreased systolic function, and an increased end diastolic left ventricular 

volume. Whether the tendency towards lower FS and higher nLVIDd are early signs of myocardial 

hibernation, consequences of the change in heart rate and sympathetic tone, or explained by changes in 

volume status, can unfortunately not be determined in this study. As mentioned previously, findings of 
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this study should be interpreted cautiously, as more severely affected patients were excluded by the 

attending clinician. The lower LA/Ao ratios at presentation and higher median values of LA/Ao in 

survivors could perhaps be an illustration of the importance of volume status and efficient volume 

resuscitation. The association of lower median FS with survival might be another indication of 

myocardial hibernation and is an encouraging finding to further explore the concept of myocardial 

hibernation in canine SIRS. 
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Objectives - To evaluate basic echocardiographic parameters reflecting preload [left atrium to aorta 

ratio (LA/Ao), normalized left ventricular internal diameter in diastole (nLVIDd)] and systolic 

performance [fractional shortening (FS)] at presentation and during hospitalization in dogs with a 

clinical diagnosis of systemic inflammatory response syndrome (SIRS) and to evaluate correlation of 

these parameters with prognosis. 

Design – Prospective clinical observational study. 

Setting – University teaching hospital. 

Animals – Thirty-eight client-owned dogs with SIRS without evidence of primary cardiac disease 

presented to the emergency department. 

Interventions – Echocardiography was performed at presentation (T0), after 6 (T6), 12 (T12), 24 (T24), 

72 (T72), 120 (T120) hours, and at a recheck exam one month following discharge (T1m). Statistical 

analysis was performed using univariate analysis to assess normal distribution. A mixed procedure and 

a logistic procedure were performed (p <0.05). 

Results – Heart rate decreased significantly (p <0.001) during hospitalization but values at T1m were 

similar to T0 (p 0.339). LA/Ao and nLVIDd increased significantly during hospitalization (p <0.05), 

and LA/Ao was significantly higher at T1m compared to T0 (p 0.003). FS did not change over time (p 

0.300). Heart rate was significantly lower in survivors compared to non survivors (p 0.002). Survivors 

displayed higher median LA/Ao and nLVIDd and lower median FS values than non survivors from T0 

until T24. 

Conclusions – Heart rate, LA/Ao and nLVIDd changed significantly. Lower heart rates were associated 

with survival. Changes in LA/Ao, nLVIDd and heart rate probably were explained by changes in fluid 

status, stress hormone levels or sympathetic tone. These observations and the trend in higher LA/Ao and 

nLVIDd and lower FS in survivors merits further investigation in a larger cohort of more severely 

affected dogs.  
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Introduction 

Intravascular volume assessment of the critically ill patient remains a challenge, both in humans and 

companion animals. Clinical and invasive parameters (heart rate, capillary refill time, blood pressure, 

central venous pressure) lack sensitivity and/or specificity to predict intravascular volume status and 

responsiveness to fluid resuscitation in human medicine.1,2 Echocardiography provides a better index of 

left ventricular (LV) preload than invasive monitoring and is increasingly used in human medicine to 

evaluate and monitor preload and guide initial hemodynamic therapy.3-5  

Dogs presented to an emergency department are rapidly triaged to determine which patients require 

immediate attention. The clinical diagnosis of a systemic inflammatory response syndrome (SIRS) has 

been developed to rapidly identify patients with systemic inflammation, as these patients are at risk of 

hemodynamic instability.6 Current veterinary guidelines advise providing cardiovascular support to 

patients presented to the emergency department with signs of hypoperfusion in a step-wise fashion.7 

Besides canine patients presenting with overt cardiogenic shock, canine emergencies presenting with 

SIRS with or without evidence of sepsis, often receive large volumes of isotonic crystalloids for initial 

cardiovascular support. The administration of these large volumes of fluids are guided by clinical 

parameters and monitoring of arterial blood pressure, but rarely assessed with echography as described 

in human medicine. Indeed, with the increasing availability of echography machines, the incorporation 

of echo training into emergency and critical care fellowships is recommended in human medicine.8 

However, these techniques have not yet found their way into companion animal medicine. 

Echocardiography in human critical care is mainly used for the assessment of volume status and left and 

right ventricular function.9 Besides for the guidance of hemodynamic care, echocardiography offers the 

benefits of direct visualization of the heart, allowing for real-time assessment of cardiovascular structure 

and function.8 In human medicine, SIRS and sepsis are reported to cause cardiovascular and 

hemodynamic impairment4,10-13 in up to 44% of normotensive patients.12-15 The inclusion of cardiac 

dysfunction (low cardiac index (CI) or echocardiographic evidence of cardiac dysfunction) in previous 

consensus definitions of severe sepsis in humans highlights the importance of myocardial depression in 

sepsis.16,17 Septic shock is typically described as a “hyperdynamic” state of low systemic vascular 

resistance due to an abnormal vascular tone with a high CI or cardiac output (CO).18 The identification 

of a low CO in these patients was historically attributed to absolute or relative hypovolemia,19 and 

adequate fluid resuscitation is often required to prevent hemodynamic collapse.10,20 Later research 

indicated that 35 to 50% of septic patients have a low CO that is unresponsive to fluid resuscitation in 

association with LV hypokinesis.4,5,12 Myocardial depression/dysfunction during SIRS and sepsis 

usually implies LV hypokinesis or systolic dysfunction, but can also include LV diastolic, right 

ventricular (RV) systolic and RV diastolic dysfunction or ventricular dilation.5,12,21-23  



140 
 

Regardless of the exact presentation, myocardial dysfunction secondary to SIRS in humans and 

experimental studies appears to be reversible within 10 days to 4 weeks.4,5,12,24 Myocardial dysfunction 

might be an adaptive response, decreasing oxygen and ATP requirements, preventing initiation of cell 

death pathways and preserving cell viability.25,26 However, myocardial dysfunction has been found to 

be a positive12 and a negative27 prognostic finding in humans with SIRS. 

Initial studies on myocardial dysfunction applied invasive tubes (central venous lines and pulmonary 

catheters), which are impractical, expensive, associated with severe complications, and provide 

questionable information.28 Meanwhile technical improvements increased the interest in 

echocardiography for clinical hemodynamic assessment in human intensive care units (ICUs).9,29 

Despite the vast amount of scientific evidence in the human field, little is known about the clinical 

prevalence myocardial dysfunction in canine SIRS. Most of the available information is derived from 

animal experiments, describing a picture similar to human SIRS (i.e. ventricular dilation after fluid 

resuscitation normalizing preload, with a high CO resulting from a simultaneously decreased systemic 

vascular resistance, or normal to subnormal CO complicated by myocardial (systolic and diastolic) 

dysfunction).30-34 The major contribution of these canine experimental studies is that changes were 

observed without treatment, confirming that myocardial depression is a result of the disease, not of any 

therapy.32  

In sharp contrast, limited literature on myocardial dysfunction in dogs in the clinical setting is available. 

A retrospective study identified 16 dogs with cardiovascular dysfunction associated with infectious 

(septic) and non-infectious (neoplastic and other disease) critical illness.35 A clinical study looking into 

myocardial dysfunction in canine ehrlichiosis, detected echocardiographic abnormalities in one third of 

dogs, a prevalence similar to a control group with other systemic disease, making it difficult to know if 

systemic inflammation was responsible for any observed changes.36 A case report also described 

reversible myocardial systolic dysfunction, and ventricular dilation in a canine septic patient.37  

Echocardiography in dogs is complicated by breed-variations, which lead to the development of ratios 

to replace conventional canine weight-based indices.38 The present study evaluated basic, one-

dimensional echocardiographic parameters reflecting preload (left atrium to aorta ratio (LA/Ao) and the 

normalized left ventricular internal diameter in diastole (nLVIDd)),39 and systolic function (fractional 

shortening (FS)) in dogs presenting to the emergency service with a clinical diagnosis of SIRS. We 

investigated these parameters at presentation, during hospitalization and at a recheck visit. Our 

hypotheses were that in dogs with a clinical diagnosis of SIRS (1) changes in LA/Ao, nLVIDd and FS 

are observed during hospitalization and compared to the control visit, and that changes in these indices 

would be (2) indicative of myocardial dysfunction in canine SIRS and (3) correlated with prognosis. 
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Materials and methods 

All dogs presenting to the emergency service of the Companion Animal section of the Veterinary 

Teaching Hospital of the University of Liège during a nine-month period were considered for inclusion. 

The protocol was approved by the local ethical committee of the institution (letter 1709). Dogs were 

eligible for inclusion if there was a suspicion of an underlying disease process known to trigger the 

systemic inflammatory response and 2 or more abnormalities were identified on the following clinical 

(temperature, heart rate and respiratory rate) and basic laboratory parameters (abnormal leukocyte 

counts) which were previously reported for the clinical diagnosis of SIRS.40 The cut-off values for white 

blood cell counts were modified from the original paper to adhere with the reference ranges of our own 

clinical laboratory (Table Based on the primary clinicians ) and the limits of normal body temperature 

were set at 38 to 39°C. Based on the primary clinicians assessment, the animal needed to be considered 

sufficiently stable to sustain the stress and treatment delay as a result of echocardiography. Owner 

consent was required for inclusion in the study. Dogs presenting to any other service, having known 

cardiac disease, or weighing less than 5kg were excluded. Systolic blood pressure was assessed in all 

dogs at presentation using a Doppler device. Patients were categorized according to the underlying 

disease process. Firstly, animals were divided between septic and non-infectious SIRS patients based 

on cytological findings, cultures and final diagnosis. Non-infectious SIRS patients were further grouped 

into 6 different disease categories: patients with neoplastic disease, gastric-dilation and volvulus, other 

gastrointestinal disease, trauma, renal disease, and miscellaneous/undetermined causes. 

Echocardiography was performed at presentation (T0), after 6 (T6), 12 (T12), 24 (T24), 72 (T72), 120 

(T120) hours of hospitalization and at during a recheck one month after discharge (T1m). Heart rate on 

simultaneous ECG-readings during echocardiography, systolic arterial blood pressure (SAP) and 

standard short axis echocardiographic views of the heart were recorded for all dogs enrolled in the study. 

LA/Ao was measured on a right parasternal short axis view at the level of the aortic valves (Figure 1). 

nLVIDd and FS were assessed on an M-mode of the short axis view of the left ventricle at the level of 

the chordae tendinae and indexed to body weight (Figure 2).39 Veterinarians participating in the study 

received several weeks of echocardiography training from a board certified veterinary cardiologist prior 

to starting the study. Competence of veterinarians to perform basic echocardiography was confirmed in 

a small reproducibility and repeatability test on a group of control dogs on which LA/Ao, nLVIDd and 

FS were recorded on consecutive days. Measurement of LA/Ao, nLVIDd and FS on all recorded videos 

was performed by a cardiologist who was blinded from the rest of the study. Survival was defined as the 

patient surviving to discharge, and all survivors were invited to a recheck visit one month after discharge. 

Statistical methods 

Statistical analysis was performed using SASi. Univariate analysis and QQplots were used to assess 

normal distribution. All data were expressed using median and range. As the data were taken repeatedly 
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over time on the same animals, there was a possible correlation between successive data. This correlation 

structure was reflected in the linear mixed model used (MIXED procedure, repeated by time which was 

treated as a categorical variable). A logistic analysis (LOGISTIC procedure) was performed in order to 

evaluate the effect of echocardiographic findings on survival to discharge. Only dogs that survived, died 

of natural causes or were euthanized for prognostic reasons were included for the assessment of 

prognostic value of the evaluated parameters. Dogs euthanized for financial reasons were removed from 

this analysis. Statistical significance was reached at a p value <0.05.  

Results 

Thirty-eight (11 female intact, 6 female spayed, 16 male intact and 5 male neutered) dogs were included 

in the study, including 5 Bernese Mountain dogs, 4 German Shepherd dogs, 3 Jack Russel Terriers, 2 

American Staffordshire Terriers, 2 Great Danes, 2 Maltese dogs and 1 of the following breeds 

(Bloodhound, Beauceron, Border Collie, Cavalier King Charles Spaniel, American and English Cocker 

Spaniel, Dogue de Bordeaux, Labrador retriever, Newfoundland, Pug, Pyrenean Mastiff, Rottweiler, 

Shih-Tzu and Wirehaired Pointing Griffon), as well as 6 mixed breed dogs. Dogs weighed 5.5 to 60 kg 

(median 26.4 kg) and were 8 months to 15 years old (median 7.5 years old) at presentation.  

None of the dogs was hypotensive (defined as a blood pressure below 80mmHg)41 at presentation, with 

systolic blood pressures ranging from 85 to 200 mmHg (median 130 mmHg). None of the dogs were 

noted to have any complications secondary to echocardiography, and echocardiography only required 

mild physical restraint for a couple of minutes in all patients. Twenty-nine (75.7%) dogs survived until 

discharge, 3 dogs died during hospitalization, and 6 were euthanized (4 for prognostic reasons and 

deteriorating clinical condition, and 2 for financial reasons). Of the 29 survivors, 12 dogs had a recheck 

one month following discharge. 

Heart rate changed significantly over time (p 0.002). During hospitalization heart rate (Figure 3) 

decreased significantly (p <0.05) from presentation [147 (66-193)] until T72 [99 (55-156)]. However, 

values at presentation were not significantly different (p 0.339) from those at the control visit [132 (83-

162)], which were significantly higher than heart rates observed at T24 and T72. SAP (Figure 4) did not 

significantly change over time (p 0.208). 

LA/Ao (Figure 5) changed significantly over time (p 0.007). During hospitalization a significant 

increase in LA/o (from 1.05 (0.76-1.45) at presentation to 1.18 (0.8-1.54) after 3 days of hospitalization) 

(p <0.001) was noticed. Moreover, the LA/Ao at T1m was similar [1.15 (0.92-1.59)] to values observed 

at T72 (p 0.934), and significantly higher than values observed at T0 (p 0.003). 

nLVIDd (Figure 6) similarly changed significantly over time (p 0.001). nLVIDd increased during 

hospitalization with values observed at T0 [1.29 (0.89-1.92)] significantly lower than at T72 [1.54 (1.05-

1.99)]. However, values at T1m [1.34 (1.2-1.52)] did not significantly differ from values at T0 (p 0.872) 
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yet were significantly lower than values observed at T72 (p 0.001). Finally, FS (Figure 7) did not 

significantly change over time (p 0.300) with values observed at T0 [39 (19-53)%] being similar to those 

observed at T72 [37 (16-64)%] and at T1m [42 (15-52)%].  

Heart rate (p 0.002), yet none of the echocardiographic parameters (LA/Ao, nLVIDd and FS) neither 

SAP was significantly associated with survival to discharge (p-values for LA/Ao, nLVIDd, FS and SAP 

0.176; 0.223; 0.079; and 0.057 respectively). Median heart rate was higher in non survivors compared 

to survivors from T0 up to T24 (Figure 8). Despite not reaching significance, median LA/Ao-ratios 

(Figure 9) were higher in survivors [at T0 1.05 (0.78-1.45)] compared to values observed in non 

survivors [at T0 0.95 (0.76-1.22)], and similarly median nLVIDd (Figure 10) was higher in survivors 

[at T0 1.31 (0.89 – 1.92)] compared to values observed in non survivors [at T0 1.22 (0.89 – 1.52)] at all 

time points during the initial 24 hours. Again, although not statistically significant, median FS (Figure 

11) was lower in survivors [at T0 36% (19-47)] compared to non survivors [at T0 43% (40-48)] from 

presentation up to T24. Finally, median SAP (Figure 12) in survivors and non survivors failed to 

demonstrate an obvious trend during hospitalization. 

Six dogs had septic disease based on cytology and culture results, while 31 patients were presented with 

a clinical diagnosis of SIRS due to non-infectious causes including neoplasia (n=4), trauma (n = 4), 

gastric dilation and volvulus (n=4), other gastrointestinal disease (n=3), acute renal failure (n=2), or 

miscellaneous or undetermined disease (n=14). The small subgroups and the large quantity of patients 

with miscellaneous causes prevents any further meaningful analysis. Therefore, results are only 

statistically analysed comparing septic versus non-septic SIRS patients. Observations in septic and non-

septic patients were not significantly different, with p-values of 0.0934 for heart rate, 0.7622 for LA/Ao, 

0.922 for nLVIDd, 0.9493 for FS, and 0.3942 for SAP respectively. 

Heart rate was significantly and negatively correlated with LA/Ao-ratios (p <0.001; r -0.332), and 

nLVIDd (p <0.001; r -0.320) and significantly and positively correlated with FS (p <0.001; r 0.301), yet 

was not significantly correlated with SAP (p 0.115). nLVIDd was significantly and positively correlated 

with LA/Ao (p <0.001; r 0.328) but negatively correlated with FS (p <0.001; r -0.418). SAP was 

significantly but only mildly correlated with LA/Ao (p 0.012; r 0.207). 

Discussion 

The present study describes echocardiographic findings in a cohort of dogs presented to a university 

emergency department with a clinical diagnosis of SIRS, and compares these findings with observations 

obtained one month after discharge. 

Dogs with a clinical diagnosis of SIRS had a higher heart rate at presentation which significantly 

decreased during hospitalization. However, heart rate at the control visit was not significantly different 

from heart rate at presentation. The lack of difference between the control visit and the heart rate at 
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presentation might be explained by the stress of the patient positioning and restraint during 

echocardiography. The lower heart rate during hospitalization can be explained by an improved 

cardiovascular status, or by decreased stress provoked by repeated echocardiography.  

nLVIDd increased significantly during hospitalization, yet values at the control visit were not 

significantly different from those at presentation. LA/Ao displayed lower median ratios at presentation, 

which increased during hospitalization and remained significantly higher at the control visit. The 

increase of nLVIDd and LA/Ao during hospitalization could be explained by the decreasing heart rate 

(mediated by decreasing stress, pain relief, anti-inflammatory treatment or any other factor than 

hypovolemia). Higher heart rates decrease the filling time of the heart, leading to a lower end-diastolic 

volume. The negative correlation of heart rate with nLVIDd support this hypothesis. Moreover, if high 

heart rates are explained by increased sympathetic tone or adrenergic substances, this could positively 

impact FS. The higher median heart rates at the control visit, compared to values later during 

hospitalization are most likely explained by stress associated with the echocardiography and control 

visit to the hospital in an otherwise healthy patient. 

On the other hand, the lower median LA/Ao and nLVIDd and the higher median heart rate at 

presentation can also indicate a mild degree of hypovolemia in these patients, inducing decreased filling 

and increased heart rate. The mild positive correlation between LA/Ao and SAP does support this 

finding. LA/Ao and nLVIDd are considered valuable indicators of volume status in dogs. The decreasing 

heart rate during hospitalization, observed simultaneously with an increase of LA/Ao and nLVIDd could 

thus reflect improved volume status following instauration of appropriate treatment. LA/Ao during the 

control visit was indeed significantly higher than at presentation, yet similar to values at the end of 

hospitalization. This suggests a change in volume status in these patients may be accountable, at least 

partially, for the observations. LA/Ao [1.05 (0.76-1.45)] and nLVIDd [1.29 (0.89-1.92)] at T0 both were 

often in the lower end of canine reference ranges (0.86-1.57 and 1.27-1.85 respectively)40,48. As both 

parameters increased significantly during hospitalization, it is however surprising that this better preload 

did not result in a significant increase in FS during hospitalization.   

nLVIDd was significantly correlated with LA/Ao yet negatively correlated with FS. In other words, a 

higher LA/Ao ratio was associated with a higher nLVIDd, a logical finding as both parameters are 

indicative of an increased preload. However, an increased left ventricular preload appeared to be 

correlated with a decreased FS, which is in conflict with the Frank Starling principle, dictating an 

increased systolic function with increased preload. At the same time heart rate was significantly and 

positively correlated with FS. Adrenergic and sympathetic effects might have positively impacted heart 

rate and systolic function at presentation. Simultaneous improved preload together with a decreased 

sympathetic tone and adrenergic effects may explain why changes in FS were not observed. 
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Although only higher heart rates in this study were significantly associated with a higher risk of 

mortality, survivors in this study tended to have higher median LA/Ao and nLVIDd values and lower 

median FS values compared to non survivors from T0 until T24. Myocardial hibernation in human 

beings is characterized by a decreased systolic function, and an increased end diastolic left ventricular 

volume. Myocardial dysfunction is considered an adaptive mechanism of the myocardium to decrease 

energy consumption during SIRS, and several papers described more severely depressed systolic 

function in survivors compared to non-survivors in human studies.4,5,12,42,43 Whether the trend towards 

lower FS and higher nLVIDd in survivors observed in this study are consequences of changing heart 

rates and sympathetic tone, explained by changes in volume status, or early signs of myocardial 

hibernation, can unfortunately not be determined in this study. 

The assessment of LV volume by cardiologists is usually performed via bi-dimensional calculations on 

a perfect longitudinal view of the left ventricle, and is considered a more complicated parameter to 

assess than calculation of nLVIDd via M-mode of a transverse LV view. Therefore, this study was 

limited to the interpretation of systolic function via FS and the assessment of preload via calculation of 

nLVIDd and LA/Ao-ratios. In canine cardiology, LV systolic dysfunction is defined as a FS<26%, 

although these percentiles depend on breed size, with a FS of 26% considered worse in small compared 

to large breed dogs.35 Only three dogs in the present study had a FS below 26%, and all these were 

medium to large breed dogs (22.6, 31.8 and 56 kg). Therefore, even if these low values are considered 

indicative of ventricular dysfunction, the incidence of ventricular systolic dysfunction in this study 

should be considered low. Few papers have discussed systolic dysfunction in canine critical care 

patients. A previous retrospective study described 16 dogs with cardiovascular dysfunction associated 

with infectious (septic) and non-infectious (neoplastic and other disease) critical illness.35 Unfortunately, 

that study was not blinded, and underlying disease and the identification of myocardial dysfunction 

might have influenced treatment decisions and prognosis.35 

Reports on the use of echocardiography in human emergency and intensive care settings, the fact that 

none of our patients experienced any complications, and echocardiography only requiring short and mild 

physical restraint, should encourage the use of echocardiography in canine emergency and critical care. 

Human ICUs have already applied echocardiography for several decades in the initial management of 

emergency patients with circulatory failure.4,44 Specific training programs of as little as 10 hours have 

been developed for human non-cardiologists, allowing for efficient interpretation of LV function and 

size, as well as volume status by ICU residents.45,46 Such training courses and the use of 

echocardiography have resulted in the adaptation of initial treatment protocols in 37% of human patients, 

which again illustrates the massive impact of echocardiography on patient management in the human 

ICU.45  
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The main limitation of the current study is that dogs were only included after the primary clinician 

assessed the patient as sufficiently stable to support an echocardiographic evaluation, which was in 

accordance with ethics approval. The high survival rate in this cohort of dogs (75.7%), compared to 

previous studies on clinical canine SIRS patients also confirms this.47,48 Subsequently, it is not surprising 

that none of the dogs in the current study were markedly hypotensive, as this would be a major 

motivation for the primary clinician not to allow dogs to be enrolled. During the same timeline as the 

current study, several hypotensive dogs that were not allowed to enter the study were enrolled in a study 

evaluating cardiac biomarkers in canine SIRS (article submitted). It is therefore very likely that studies 

including all dogs with a clinical diagnosis of SIRS regardless of blood pressure would have resulted in 

more significant findings. In analogy, severity of myocardial depression in human medicine is correlated 

with concentrations of cardiac biomarkers such as cardiac troponins and brain natriuretic peptide,49 

which are also correlated with the clinical condition,50 degree of hypotension,51 and clinical scores of 

these patients.43,50,52 Poorer clinical scores and condition, and worse hypotension should inversely be 

expected to be correlated with worse myocardial depression. 

Another limitation of this paper is that it only focused on LV dysfunction evaluated via FS and preload 

as estimated via nLVIDd and LA/Ao. Right ventricular dysfunction and left and right ventricular 

diastolic dysfunction have all been described in human myocardial depression and experimental canine 

studies.32,34,53,54 However, such parameters are harder to assess, and we therefore focused on these one-

dimensional parameters that can be assessed on standard windows, to improve performance of the 

trainees.42  

A third major limitation is the low number of patients, especially in each disease category, the small 

number of non survivors, and the low amount of survivors that was available for a recheck visit. The 

lack of significant differences between survivors and non-survivors for the echocardiographic 

parameters despite a trend observed at all time points from T0 until T24 and the lack of significant 

differences between septic and non-septic patients should therefore not be over interpreted. Taking all 

these limitations into account, findings of this paper should be confirmed or infirmed in a larger study 

including all dogs with a clinical diagnosis of SIRS regardless of their clinical condition, and with data 

available at the recheck visit for all survivors. 

 

Conclusion  

Canine patients presenting to an emergency department with a clinical diagnosis of SIRS in the absence 

of marked hypotension had higher heart rate and lower LA/Ao and nLVIDd at presentation. Higher heart 

rates were associated with poor prognosis. Assessment of preload and myocardial function via fast 
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echocardiography merit further investigation in larger cohorts in canine emergency and critical care, 

regardless of the initial clinical condition. 
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Table 1: Clinical criteria for the diagnosis of SIRS  

 

 

 

 

 

 

 

  

Parameter Limit Unit 

Heart rate > 120 bpm 

Respiratory rate > 20 rpm 

Temperature < 38 or > 39 °C 

Leucocytosis/leucopenia > 16000 or < 5000 /µL 

Left shift on blood smear > 3% bands % 
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Figure 1. LA/Ao-ratio in dogs is calculated on a right parasternal short axis view as a ratio of the 

left atrial size (left lower arrow) to the size of the aorta (right upper arrow). 
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Figure 2. nLVIDd and FS in dogs are calculated on an M-mode of a short axis view of the left 

ventricle. nLVIDd is calculated according to the following formula [nLVIDd =LVIDd(cm)/body 

weight(kg)^0,294]. FS is calculated as  left ventricular diameter in diastole (LVIDd) and the left 

ventricular diameter in systole (LVIDs) with [FS = (LVIDd – LVIDs)/LVIDd x 100]. 
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Figure 3. Boxplots of the heart rate at different time points in dogs with a clinical diagnosis of 

SIRS. 

 

The central line of the box plot indicates the median value, the upper and lower line of the box plot 

illustrate the range of the 25% and 75% of the values, the outer lines at the end of the vertical lines 

indicate the 95% and 5% range of the recorded values.  
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Figure 4. Boxplots of the systolic arterial pressure at different time points in dogs with a clinical 

diagnosis of SIRS. 

 

The central line of the box plot indicates the median value, the upper and lower line of the box plot 

illustrate the range of the 25% and 75% of the values, the outer lines at the end of the vertical lines 

indicate the 95% and 5% range of the recorded values.  
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Figure 5. Boxplots of the left atrium to aortic (LA/Ao) ratio at different time points in dogs with 

a clinical diagnosis of SIRS. 

 

The central line of the box plot indicates the median value, the upper and lower line of the box plot 

illustrate the range of the 25% and 75% of the values, the outer lines at the end of the vertical lines 

indicate the 95% and 5% range of the recorded values.  
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Figure 6. Boxplots of the normalized left ventricular internal dimension in diastole (nLVIDd) at 

different time points in dogs with a clinical diagnosis of SIRS. 

 

The central line of the box plot indicates the median value, the upper and lower line of the box plot 

illustrate the range of the 25% and 75% of the values, the outer lines at the end of the vertical lines 

indicate the 95% and 5% range of the recorded values.  



158 
 

Figure 7. Boxplots of the fractional shortening (FS) at different time points in dogs with a 

clinical diagnosis of SIRS. 

 

The central line of the box plot indicates the median value, the upper and lower line of the box plot 

illustrate the range of the 25% and 75% of the values, the outer lines at the end of the vertical lines 

indicate the 95% and 5% range of the recorded values.  
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Figure 8. Scatter plots of the heart rate at different time points in survivors and non survivors of 

dogs with a clinical diagnosis of SIRS. 

 

S = Survivor, NS = Non Survivors. The red line indicates the median value.  
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Figure 9. Scatter plots of the left atrium to aortic (LA/Ao) ratio at different time points in 

survivors and non survivors of dogs with a clinical diagnosis of SIRS. 

 

S = Survivors, NS = Non Survivors. The red line indicates the median value.  
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Figure 10. Scatter plots of the normalized left ventricular internal dimension in diastole 

(nLVIDd) at different time points in survivors and non survivors of dogs with a clinical 

diagnosis of SIRS. 

 

S = Survivors, NS = Non Survivors. The red line indicates the median value.  
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Figure 11. Scatter plots of the fractional shortening (FS) at different time points in survivors and 

non survivors of dogs with a clinical diagnosis of SIRS. 

 

S = Survivors, NS = Non Survivors. The red line indicates the median value.  



163 
 

Figure 12. Scatter plots of the systolic arterial pressure (SAP) at different time points in 

survivors and non survivors of dogs with a clinical diagnosis of SIRS. 

 

S = Survivors, NS = Non Survivors. The red line indicates the median value. 
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4.4 CARDIAC BIOMARKERS IN CANINE EMERGENCIES WITH A CLINICAL 

DIAGNOSIS OF SYSTEMIC INFLAMMATORY RESPONSE SYNDROME 

The paper on cardiac biomarkers mostly confirms previous findings published by Hamacher and by 

Langhorn on cardiac troponins, but gives some interesting information on NT-proBNP as well. First of 

all, cTnT concentrations are supposedly undetectable in healthy dogs, and this was confirmed in our 

study where none of the dogs demonstrated detectable concentrations at their control visit. However, 

40.6% of dogs presented to the emergency department with a clinical diagnosis of SIRS displayed 

detectable concentrations during hospitalization and cTnT changed significantly over time (p <0.0001). 

cTnT concentrations were significantly different at T12, T24 and T72 compared to concentrations at 

presentations and at the control visit (p <0.05). Moreover, the finding of detectable cTnT concentrations 

was a negative prognostic marker in these dogs (p 0.011). 

Our study also demonstrated that NT-proBNP changes significantly over time (p <0.001) in canine 

emergencies with a clinical diagnosis of SIRS during hospitalization. Values at presentation, after 6 and 

12 hours, and during the control visit were all significantly lower than values observed at T24, T72 and 

T120. However, NT-proBNP concentrations were not significantly different between survivors and non 

survivors (p 0.509). Neither cTnT nor NT-proBNP was correlated with the underlying disease category, 

however groups were very small, and these findings should be confirmed in a larger population.  

Despite the finding that NT-proBNP concentrations significantly changed over time, with higher 

concentrations observed from 24 to 120 hours after hospitalization, the clinical value of this finding 

remains unknown. NT-proBNP apparently rises late during hospitalization, and our study failed to 

demonstrate an association of NT-proBNP concentrations with survival. Whether NT-proBNP and cTnT 

serve as indirect markers of myocardial dysfunction should be determined in a larger population 

including all dogs, regardless of their clinical condition, on which cardiac biomarkers and 

echocardiography are assessed simultaneously. 
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Objective - The N-terminal fragment of pro-B-type natriuretic peptides (NT-proBNP) and cardiac 

troponin T (cTnT) are associated with myocardial hibernation and provide prognostic information on 

survival in human systemic inflammatory response syndrome (SIRS). In veterinary medicine little is 

known about these cardiac biomarkers in dogs presented to an emergency department with a clinical 

diagnosis of SIRS. We hypothesized that cTnT and NT-proBNP would (1) increase during 

hospitalization, (2) vary in magnitude according to the underlying etiology, and (3) serve as prognostic 

markers.  

Design – Prospective, observational, clinical study. 

Setting – Emergency department of a university teaching hospital. 

Animals – Sixty-nine dogs presented to the emergency department with a clinical diagnosis of SIRS 

were prospectively studied. Age in these patients ranged from 5 months to 15 years while weight varied 

from 5.5 to 75 kg. Dogs were not sampled if blood collection was deemed unduly stressful. 

Measurements and Main Results - Samples were obtained at presentation and during hospitalization 

until discharge or death and at a control visit (T1m) over one month after discharge. cTnT was measured 

with a validated immunoassay on an automated device, while NT-proBNP was assayed with a 

commercially available canine ELISA-kit. A correlation procedure, mixed procedure on a linear model 

and a logistic procedure were performed (p < 0.05). Forty-four patients survived, 19 of which had control 

visits. cTnT and NT-proBNP both changed significantly over time. cTnT concentrations were 

significantly higher from T12 to T72. In 28 dogs, cTnT was detected during hospitalization, but cTnT 

was never detected at control visits. Higher cTnT were negatively associated with survival, irrespective 

of disease category. NT-proBNP concentrations were significantly higher from T24 to T120, but were 

not associated with survival.  

Conclusions - NT-proBNP and cTnT increased significantly in canine SIRS, regardless of the 

underlying disease process. Non survivors displayed significantly higher cTnT concentrations.  
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Introduction 

The systemic inflammatory response syndrome (SIRS) characterizes the systemic repercussions of a 

generalized state of inflammation and the possible secondarily created organ damage. The list of 

underlying causes of SIRS is diverse, with sepsis, trauma and sterile inflammatory conditions such as 

pancreatitis amongst the most well-known.1 The clinical diagnosis of SIRS is based on defined changes 

in clinical (body temperature, heart rate and respiratory rate) and hematologic (leucocyte counts, 

presence of a left shift) variables (Table 1) and the suspicion of an underlying disease process known to 

trigger the systemic inflammatory response. Diagnosing a patient with SIRS recognizes the presence of 

clinical signs compatible with systemic inflammation, but is overly sensitive and poorly specific.2 

Cardiovascular impairment secondary to systemic inflammation has been reported in human medicine, 

and is also known as myocardial hibernation.3,4 Myocardial hibernation has been reported in human 

critically ill patients and studied in experimental sepsis models in dogs.4-7 It is characterized by increased 

end-diastolic and end-systolic ventricular volumes8, and systolic3 and diastolic7 ventricular dysfunction.5 

Whether myocardial hibernation serves as a protective mechanism of the body during systemic 

inflammation, or whether it is in fact a negative prognostic factor remains a matter of debate.5,9 

Myocardial hibernation has been associated with increased concentrations of cardiac troponins10,11 and 

natriuretic peptides12-14 in human SIRS patients and some studies have found cardiac troponins (cTn) 

and the N-terminal portion of probrain natriuretic peptide (NT-proBNP) to be correlated with the degree 

of cardiac dysfunction and with concentrations of inflammatory cytokines.15,16 However, very little is 

known about myocardial hibernation in canine clinical studies, although the scarce literature appears to 

support its existence.17,18 Recent data from canine clinical studies suggest that cardiac biomarkers may 

also have a role in SIRS patients.19-21 As these cardiac biomarkers may help in the diagnosis of cardiac 

dysfunction and prognosis of human SIRS patients,9,22,23 they might be interesting and accessible tools 

in canine SIRS.  

Cardiac troponins (cTn) are sensitive and specific for the detection of myocardial ischemic necrosis or 

minor myocardial injury and increased cTnT and cTnI concentrations are associated with negative 

prognosis in critically ill human patients.24,25 Research on cTn in veterinary medicine has mainly focused 

on primary cardiac disease, where cTns are early markers of cardiac lesions with a negative prognostic 

value.26 Troponins are however also increased and associated with poor prognosis in many other canine 

disease processes such as gastric dilation and volvulus (GDV)27,28, trauma27,29, infections30-34 and 

SIRS.20,21,35 

Brain natriuretic peptide (BNP) and the N-terminal fragment of the prohormone (NT-proBNP) are 

quantitative markers of ventricular wall stress with high sensitivity and specificity for cardiac insult.12 

Several studies demonstrated elevations of BNP and NT-proBNP in human sepsis and SIRS to be 

associated with myocardial hibernation and poor prognosis.12,13,15,16 In veterinary medicine, papers found 
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increased NT-proBNP concentrations in canine babesiosis and non-cardiac disease such as traumatic, 

neurological and gastrointestinal disease.34,36 

Altogether, cardiac biomarkers might serve as non-invasive markers of myocardial hibernation and 

might serve as prognostic tools in canine SIRS. We hypothesized that cardiac troponin T (cTnT) and the 

N-terminal fragment of pro-BNP (NT-proBNP) would (1) increase during hospitalization, (2) vary in 

magnitude according to the underlying etiology, and (3) serve as a prognostic marker in canine patients 

with SIRS presented to an emergency department. 

Materials and methods 

All dogs presented to the emergency service of the XXX between January and August 2010 were 

considered for inclusion. Dogs entered the study if a clinical diagnosis of SIRS was made based on the 

suspicion of an underlying disease process known to trigger the systemic inflammatory response and 

finding 2 or more abnormalities of the following clinical (temperature, heart rate and respiratory rate) 

and basic laboratory parameters (abnormal leukocyte counts).2 The cut-off values for white blood cell 

counts were modified from the original paper to adhere with the reference ranges of our own clinical 

laboratory (Table 1) and the limits of normal body temperature were set at 38 to 39°C. An informed 

consent was obtained from the owners of each dog and approval was obtained by the ethics committee 

(letter 1709).  All dogs presented to any other service, or dogs weighing less than 5kg were excluded as 

were animals that were considered too unstable by the primary clinician to sustain any 

additional/unnecessary stress. Patients were grouped into 7 different disease categories: patients with 

neoplastic disease (N), infectious disease (I), GDV (GDV), other gastrointestinal disease (GI), traumatic 

disease (T), renal disease (R), and miscellaneous or undetermined causes (M). Since NT-proBNP is 

influenced by renal function, patients with renal insufficiency defined as azotemia or oliguria and anuria 

that was unresponsive to fluid therapy were excluded from the NT-proBNP part of the study.37 Although 

cTn concentrations also can be influenced by renal status, severity of renal failure does not correlate 

with cTn concentrations,38,39 and cTn analysis remains useful in identifying myocardial injury in human 

renal patients.40-42 Similarly, cTn concentrations can identify human patients with worse prognosis 

despite concurrent renal failure and/or hemodialysis.40,43-48 Based on these findings, we did not reject 

patients with renal impairment from the cTnT part of the study. 

Baseline concentrations of cTnT, and NT-proBNP were assessed on blood sampled prior to starting any 

treatment (T0). Other samples were taken after 6 (T6), 12 (T12) and 24 hours (T24) and every other day 

thereafter (T72, T120, …) until discharge or death. Short term survival was defined as the patient leaving 

the hospital, long term survival was defined as the patient being alive one month after discharge from 

the hospitalization. All long term survivors were invited to a free control visit one month to one year 

after discharge. Blood samples were divided into EDTA (4mL) and serum (2mL) tubes which were 

centrifuged and separated within 15 minutes, and stored at -80°C until analysis. 
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A commercial electrochemiluminescence kit (Modular Analytics E®, Roche), with a lower limit of 

detection at 0.010ng/mL, a limit of linearity at 25.00ng/mL, and a coefficient of variation under 5% for 

values above 0.06ng/mL was used to measure cTnT.49 The kit detects 2 epitopes of the central part of 

human cTnT (125-131 and 135-147), which are highly conserved in canine cTnT (one substitution in 

the first epitope and 100% homology in the second), and has previously been used in veterinary 

research.49,50 Reported values in healthy dogs are less than 0.010 ng/mL.29,51 

A commercially available sandwich enzyme immune assay with an upper limit of detection of 3000 

pmol/L (VetSign Canine Cardioscreen Test Kit®, Idexx Laboratories) was used to measure NT-proBNP. 

In short, microtiter plates were provided with capture antibody anti-NT-proBNP bound to the wells in 

which plasma (30 µL) was incubated (5 hours at 20°C) with an immunoaffinity purified sheep detection 

antibody conjugated to horseradish peroxidase in a stabilizer solution (200 µL). Afterwards wells were 

washed (5 x 350 µL), tetramethylbenzidine (200 µL) was added and left for 40 minutes, after which a 

stop solution was added and bound NT-proBNP was quantified by an ELISA plate reader. All plates 

were run with calibration and control solutions, yet for financial reasons only the first plate was run in 

duplicate. 

Statistical methods 

Statistical analysis was performed using SASi. Unmeasurable samples were attributed the value of the 

lower detection limit. A Shapiro-Wilk and Kolmogorov-Smirnov test (univariate procedure) and 

normality QQplots were performed, on the raw data and after logarithmic transformation of the data. 

For both cTnT and NT-proBNP the logarithmically transformed data were used after identification of a 

nearly normal distribution of the residues on the QQplots. A mixed procedure on a generalized linear 

model was used to assess the effect of clinical parameters on cardiac biomarkers. As the data were taken 

repeatedly over time on the same animals, there is a possible correlation between successive data. This 

correlation structure is reflected in the linear mixed model used (MIXED procedure, repeated by time 

which was treated as a categorical variable). Correlation between different biomarkers was tested using 

Spearman correlation (CORR procedure). A logistic analysis (LOGISTIC procedure) was performed in 

order to evaluate the effect of cardiac biomarker concentrations on survival to discharge. Only dogs that 

survived, died of natural causes or were euthanized for prognostic reasons were included for the 

assessment of prognostic value of the evaluated parameters. Statistical significance was reached at a p 

value < 0.05.  

Results 

Dogs 

Fifty-eight pure breed and 11 mixed-breed dogs (69 dogs in total) were included in the study. The most 

commonly represented breeds were Bernese mountain dog (n=8), German shepherd (n=6), Great Dane 
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(n=4), Jack Russell terrier (n=4) and Belgian shepherd (n=3). There were 38 male (29 intact and 9 

castrated) and 31 female (17 intact and 14 neutered) dogs with a median age of 6.5 years (ranging 

between 7 months and 15.2 years) and with a median weight of 30.3kg (ranging from 5.5 to 75kg). 

Patients were included into each disease category (N=13; I=12; GDV=11; GI=5; T=6; R=3; and M=19). 

Outcome and follow-up of our studied population has been represented in a flow diagram (Figure 1). 

Forty-four patients were discharged, 8 died during hospitalization while 17 dogs were euthanized (8 for 

prognostic, 7 for financial reasons and 2 for unspecified reasons). Thirty-four patients were still alive 

more than one month after discharge and were available for a control visit, of which 19 presented for a 

control visit (5 declined, 5 dogs were lost to follow-up and 5 died from related causes before the 

scheduled control visit such as continued GI signs in 2 dogs, aspiration pneumonia secondary to a 

megaesophagus, worsening hepatocutaneous syndrome and tumor recurrence with secondary 

hemoabdomen in one dog each).  

Biomarkers at different time points 

cTnT and NT-proBNP both changed significantly over time (p <0.001), concentrations over time are 

displayed in Figure 2 and 3. Twenty-eight out of 69 dogs had at least one time point during 

hospitalization at which cTnT was detectable, while none of the dogs had measurable cTnT 

concentrations at the control visit. cTnT was significantly higher at T12, T24 and T72 compared to 

concentrations at presentation or at the control visit (Table 2). NT-proBNP concentrations were 

measurable in all dogs at all time points. NT-proBNP concentrations were significantly higher at T24, 

T72 and T120 compared to T0, T6, T12 and T1m. Median concentrations did not differ significantly 

between T24 [661.391 (60.774-3000) pmol/L], T72 [888.806 (76.58-3000) pmol/L] and T120 [737.139 

(0-3000) pmol/L] (Figure 3).  

Association between biomarkers and underlying disease, prognosis and each other 

Statistical analysis did not identify any influence of the underlying disease category on cTnT and NT-

proBNP concentrations (p 0.162 and 0.084 respectively). High cTnT concentrations (p =0.011) were 

however associated with negative prognosis (Figure 4). In contrast NT-proBNP concentrations (p 

=0.509) were not significantly correlated with survival to discharge (Figure 5). Finally, cTnT and NT-

proBNP were significantly and mildly correlated (p <0.001, with r 0.291). 

Discussion 

This study demonstrated changes in cardiac biomarkers during hospitalization in a population of canine 

SIRS patients presented to an emergency department. Troponin concentrations rise within 8 hours after 

an initial insult, and reportedly remain increased for over 50 hours in humans and dogs.10,26,52,53 cTnT 

values in this cohort of dogs with a clinical diagnosis of SIRS presented to an emergency department 

were detectable in 28 dogs during hospitalization, with concentrations significantly higher at T12, T24 
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and T72 compared to concentrations at presentation and at the control visit. Although the clinical nature 

of this study on dogs suffering from different diseases does not allow us to identify the exact timing of 

the insult in the majority of dogs, the timing of the changes in cTnT concentrations appear to agree with 

the rather rapid rise and sustained increase described. In contrast, at their control visit, all dogs had 

undetectable cTnT concentration (<0.01ng/mL). A study in GDV patients described rather similar 

findings, with no significant changes in cTnT concentrations immediately after surgery, but increased 

concentrations on day one and two after presentation.27,28 A study evaluating cTnI concentrations in 

canine SIRS patients identified a higher prevalence of increased cTnI concentrations at presentation 

(35/60 dogs) and during hospitalization, but similarly failed to find significant variations from day to 

day.20  A study comparing cTnT and cTnI in SIRS patients admitted to the ICU found a higher 

prevalence of increased cTnI concentrations. This difference in detection rate can be explained by the 

lower sensitivity of cTnT tests, or by the timing of sampling compared to the start of the disease process 

(as admission to the ICU likely later than admission to an emergency department).21 

The lower sensitivity of cTnT results in cTnI usually being preferred over cTnT. The use of a cTnI assay 

in the present study would probably have resulted in the detection of elevated concentrations in a larger 

proportion of SIRS patients, but cTnT was chosen for financial reasons.28,30 In human medicine, 

continuous test-improvement and increased sensitivity of cTnI assays resulted in lower detection limits. 

These lower detection limits subsequently lead to an increased detection rate of cTnI elevations, which 

are not necessarily attributable to acute processes.54 With different tests available for cTnI measurement, 

it is therefore recommended to apply the 99th percentile as cut-off value, as each assay appears to be 

unique and direct comparison between results is not possible.55-58 Lower cut-off percentiles allow for 

the detection of more chronic cardiac disease, lowering the specificity of a single cTnI measurement to 

screen for acute cardiac conditions.59  

NT-proBNP changed significantly over time, with concentrations at T24, T72 and T120 significantly 

higher than concentrations at T0, T6, T12 and the control visit. As BNP has a very short half-life and is 

technically difficult to measure,60-62 we assessed NT-proBNP, which has got a longer half-life. Most of 

the research performed in veterinary medicine on NT-proBNP has focused on cardiac disease.63-65 A 

recent study evaluating BNP in dogs with non-cardiac disease (e.g. neurological and gastrointestinal 

disease) demonstrated a moderate increase of natriuretic peptides in these patients.36 As our study 

focused on dogs with SIRS presented to an emergency department, and SIRS has a high potential to 

induce cardiac effects as is well described in human medicine, it is not surprising that NT-proBNP 

concentrations in this study were more markedly elevated compared to this previous study.36 Finding 

higher concentrations at T24, 72 and T120 is in agreement with studies on SIRS and sepsis in human 

patients. The optimal timing of NT-proBNP measurement varied across studies in humans, from the day 

of admission to day 2 and day 5 after admission,23,66 which is probably due to the difficulty in 

determining the time of onset of the disease. Nevertheless, peak concentrations are likely to be found 
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more than two days after hospitalization in humans.15,16,22 Unfortunately, the clinical setting of this study 

prevents determination of the exact time the insult triggering SIRS occurred for the majority of dogs. 

The kinetics observed in this cohort do however seem to confirm that NT-proBNP should be expected 

to rise during the first days of hospitalization in dogs presented with a clinical diagnosis of SIRS to an 

emergency department. Elevated levels of NT-proBNP when screening for occult cardiac disease should 

therefore be interpreted carefully in SIRS patients. 

Whether increased cTn and NT-proBNP concentrations are indicative of myocardial hibernation in 

canine emergencies with SIRS cannot be concluded from this paper, but merits further investigation. 

Over the last decades, interest of echocardiography in the ICU has greatly increased in human medicine, 

leading to increased availability of echocardiography.67-69 The performance characteristics of 

echocardiography by non-specialists is largely determined by the hours of training, the quality of the 

device, the patient characteristics and by the definition of a ‘successful examination’.70 Therefore 

performing cardiac ultrasound in an emergency setting necessitates 24h availability of properly trained 

intensivists, and such developments should be greatly encouraged in veterinary medicine.  

An increase of cTnT during hospitalization was associated with poor short term prognosis. Cardiac 

troponin T and I are well-accepted prognostic biomarkers in human intensive care units.10,11,24,71 In 

veterinary medicine, increased concentrations of cardiac troponins have been observed in infectious 

disease patients, trauma patients, GDV patients and patients suffering from systemic diseases27,28,30-

32,62,72-75 and are correlated with poor prognosis in some of these studies.27,28,30,76 Studies evaluating cTnI 

and cTnT in canine SIRS patients already confirmed their prognostic value.20,21,35 These studies similarly 

identified significant differences between survivors and non-survivors.20 However, additional sampling 

to measure cTnI concentrations on day 2 or 3 (or evaluation of concentration changes) did not add 

value.20 Although incidence of increased cTnI concentrations was higher than for cTnT, cTnI and cTnT 

carried rather similar prognostic information.21,35 cTnT concentrations have been established as 

interesting markers to evaluate prognosis of canine SIRS patients, but cut-off limits remain to be 

determined in larger studies.35 As cTnT (and cTnI) can remain increased up to 7 or 10 days after the 

insult, kinetics of cTnT are difficult to evaluate, and they are less useful for evaluation of disease 

progression or treatment response.77,78 

In the present study, NT-proBNP concentrations were not significantly correlated with prognosis. 

Previous studies in dogs tended to evaluate natriuretic peptides at presentation, while higher 

concentrations should be expected later during hospitalization. This delay in the rise of NT-proBNP 

probably also limits its use as a prognostic marker in a clinical veterinary emergency care setting. At 

later time points the group size in this study rapidly decreased, which may have impacted the likelihood 

to identify significant differences between survivors and non survivors. A recently published meta-

analysis in human septic patients describing 12 studies on 1865 cases did conclude that (NT-pro)BNP 
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is significantly associated with risk of mortality.23 This meta-analysis also concluded that elevated (NT-

pro)BNP levels in the presence of SIRS or sepsis do not equal cardiac dysfunction due to low specificity, 

but normal (NT-pro)BNP levels could be used to rule out the need for further cardiac investigation.23 

Therefore the lack of a significant difference in NT-proBNP between survivors and non survivors in this 

study definitely needs to be confirmed in a larger cohort of patients with a clinical diagnosis of SIRS. 

The observed increased NT-proBNP concentrations in this study can not only be explained by 

myocardial dysfunction, but also indirectly via increased wall stress after volume resuscitation,79 after 

lung injury, acute respiratory distress syndrome or thromboembolism.6  

There are several limitations to the present study. Firstly, dogs that were considered too unstable by the 

attending clinician were removed from the study, and therefore more severely ill patients were less likely 

to enter the study. Consequently findings would likely have been more significant if all dogs, regardless 

of their clinical status would have been included. As previously mentioned, sampling times were 

standardized with relation to the moment of presentation to the emergency department. Clinical signs 

may have been present for variable times prior to presentation and this may have altered the kinetics of 

these biomarkers. Unfortunately due to the clinical context, we could not retrieve accurate information 

on the duration of disease for the majority of the patients, which impedes us to draw strong conclusions 

regarding the kinetics of these parameters. Thirdly, a large proportion of our patients were euthanized 

on the owners’ request, rather than based on specific study endpoints, which may have had an impact 

on our findings regarding prognosis. In order to avoid any effect of financial considerations on the 

prognostic evaluation, all dogs that were euthanized for financial or unspecified reasons were removed 

for this analysis. Including dogs that were euthanized for prognostic reasons might still have influenced 

our findings, however all these dogs had a deteriorating clinical condition that did not respond to 

appropriate treatment or suffered life-threatening complications. In the present study, 44 patients 

survived to discharge (64%), which is similar to80, or better than81 previous studies on clinical canine 

SIRS patients.  

Samples with NT-proBNP concentrations above the upper limit of the assay (3000pmol/L) were not 

diluted to measure the exact concentration because of financial restrictions. Therefore, NT-proBNP 

concentration was underestimated in some samples. This did however not prohibit the finding of 

significant changes, and therefore probably even underestimated changes in NT-proBNP.  Similarly, a 

cTnT assay rather than a cTnI assay was used due to financial restrictions. The use of a cTnI assay would 

probably have resulted in a higher detection rate of increased troponin concentrations, however our cTnT 

assay already allowed us to obtain significant results. 

Our study demonstrates that cardiac biomarkers are often elevated in dogs with SIRS presented to the 

emergency department. Whether these increased concentrations are linked with myocardial hibernation 

does however remain to be demonstrated. Additionally, this study confirms that cTn’s carry prognostic 
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value in dogs with SIRS. Our research is however merely observational, and does not allow to explain 

our findings.  Studies investigating the correlation of cardiac biomarkers with echocardiographic 

findings and inflammatory cytokines in canine SIRS patients are therefore warranted. 

Conclusion 

In conclusion, the present study demonstrates increased concentrations of cTnT and NT-proBNP during 

hospitalization of dogs presented to the emergency department with a clinical diagnosis of SIRS. 

Moreover increased cTnT concentrations were associated with poor prognosis to survival in this cohort. 

Further research is warranted to explain these findings, and to assess the potential use of cardiac 

biomarkers to evaluate cardiac damage in SIRS. 

Footnotes 

i SAS; Statistical Analysis Software, Cary, United States. 
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Table 1: Clinical criteria for the diagnosis of SIRS  

 

 

 

 

 

 

 

 

  

Parameter Limit Unit 

Heart frequency > 120 bpm 

Respiratory rate > 20 rpm 

Temperature < 38 or > 39 °C 

Leucocytosis/leucopenia > 16000 or < 5000 /µL 

Left shift on blood smear > 3  % 
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Figure 1: Flow diagram off all patients throughout the study. 

 

D=deceased; P=euthanized for prognostic reasons; F=euthanized for financial reasons; U=euthanized 

for unclear reasons; R=died more than a month after discharge yet before a control visit was 

performed; L=lost to follow-up.  
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Table 2: P-values for cTnT concentrations between different time points in all canine SIRS 

patients. Significant differences are indicated in green. 

 T0 T6 T12 T24 T72 T120 T1m 

T0 1 0.0501 0.0002 0.0004 0.0231 0.8514 0.0866 

T6 0.0501 1 0.0677 0.0748 0.4441 0.368 0.0022 

T12 0.0002 0.0677 1 0.9257 0.514 0.0572 <0.0001 

T24 0.0004 0.0748 0.9257 1 0.4769 0.0536 <0.0001 

T72 0.0231 0.4441 0.514 0.4769 1 0.174 0.001 

T120 0.8514 0.368 0.0572 0.0536 0.174 1 0.1634 

T1m 0.0866 0.0022 <0.0001 <0.0001 0.001 0.1634 1 
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Table 3: P-values for NT-proBNP concentrations between different time points in all canine 

SIRS patients. Significant differences are indicated in green. 

 T0 T6 T12 T24 T72 T120 T1m 

T0 1 0.2712 0.2125 0.008 0.0004 0.005 0.9357 

T6 0.2712 1 0.8849 0.0003 <0.0001 0.0007 0.4015 

T12 0.2125 0.8849 1 0.0002 <0.0001 0.0005 0.3475 

T24 0.008 0.0003 0.0002 1 0.2061 0.2321 0.0626 

T72 0.0004 <0.0001 <0.0001 0.2061 1 0.7928 0.0063 

T120 0.005 0.0007 0.0005 0.2321 0.7928 1 0.0155 

T1m 0.9357 0.4015 0.3475 0.0626 0.0063 0.0155 1 
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Figure 2: Scatter plots of serum concentrations of cTnT at different time points in all canine 

SIRS patients. 

 

The red line indicates the median value. 
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Figure 3: Plasma concentrations of NT-proBNP at different time points in all canine SIRS 

patients. 

 

The central line of the box plot indicates the median value, the upper and lower line of the box plot illustrate the 

range of the 25% and 75% of the values, the outer lines at the end of the vertical lines indicate the 95% and 5% 

range of the recorded values. 
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Figure 4: Scatter plot of serum cardiac troponin T (cTnT) concentrations in survivors and non 

survivors at different time points. 

 

S=survivors; NS=non survivors. The red line indicates the median value. 
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Figure 5: Plasma concentrations of NT-proBNP in survivors and non survivors at different time 

points. 

 

S=survivor; NS=non survivor. The red line indicates the median value. 
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5. DISCUSSION 

The studies performed in this research hope to improve the initial diagnosis and stabilization of dogs 

presented with SIRS. The results demonstrate several interesting points, which have an impact on  

- the interpretation of a clinical diagnosis of SIRS in an emergency setting in dogs 

- the development of echocardiography of SIRS/emergency dogs to evaluate fluid status and 

cardiac function 

- the interpretation of cardiac biomarkers in dogs with a clinical diagnosis of SIRS 

After the brief discussion of the findings identified in the three papers, a closer look will be taken 

between the correlations of the different parameters studied. 

5.1 INFLAMMATORY CYTOKINES AND C-REACTIVE PROTEIN IN CANINE SIRS 

The first study evaluating pro-inflammatory cytokines and CRP in emergency dogs with a clinical 

diagnosis of SIRS demonstrates that the majority of these dogs have, or will soon develop, increased 

CRP concentrations. As explained in the literature review, high CRP concentrations are indicative of an 

acute phase inflammatory response. Therefore this study indicates that the clinical diagnosis of SIRS at 

presentation to a canine emergency service might not be as unspecific as commonly assumed32.  

Similarly, the majority of this cohort of dogs presented to the emergency room with a clinical diagnosis 

of SIRS also displayed additional indicators of an active inflammatory process (i.e. increased 

concentrations of pro-inflammatory cytokines). The main motivation of this study was to validate other 

prospective studies on SIRS in an emergency department in which we would include dogs based on a 

clinical diagnosis of SIRS, and the identification of systemic markers of inflammation in these dogs 

validates this approach and the subsequent studies. 

It should be noted that only 71.2% of dogs had increased CRP concentrations at presentation. Normal 

CRP concentrations at presentation in several dogs is explained by the kinetics of APPs. In experimental 

studies, CRP has been found to increase within 4 to 6 hours of stimulation and peak after 36 hours348. In 

the present study some dogs were presented for hyperacute conditions such as GDV and trauma, and 

thus entered the clinic within the 4 to 6 hour timeframe. In these patients CRP concentrations increased 

during the initial hours of hospitalization, even if it was within normal limits at presentation. It is 

interesting to note that a clinical diagnosis of SIRS may precede changes in APPs in dogs presenting to 

the emergency room. 

Reference ranges for IL-6 have not been established in dogs. IL-6 is one of the few cytokines that is 

detectable in the plasma of healthy dogs, unlike TNF-α37. Similar to previous studies11, absolute values 

of cytokines were not normally distributed and logarithmic values were used for statistical analysis. Our 

study demonstrated significantly higher IL-6 concentrations at the beginning of hospitalization 

compared to the follow-up visit. Opposed to IL-6, TNF-α was detected in only 20/69 dogs (29.0%) 
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throughout hospitalization. Several factors can explain this low prevalence of detectable TNF-α 

concentrations. In the dog, TNF-α peaks within 2 hours but often becomes unmeasurable within 6 hours 

and rarely remains present for longer than 24 hours35,37. The rapid decrease of TNF-α concentrations is 

explained by inhibitory effects of IL-6 on TNF-α production via negative feedback and soluble TNF-α 

receptors rendering the circulating TNF-α biologically inactive135. Most of the dogs in our cohort with 

detectable TNF-α concentrations at presentation suffered from hyperacute disease such as GDV and 

trauma. In agreement with literature, only 2/69 dogs in the present study had measurable TNF-α 

concentrations for longer than 24 hours. It is likely that a rise in TNF-α occurred in other dogs prior to 

presentation. Furthermore, TNF-α does not typically rise following elective surgery or accidental injury, 

and increases in TNF-α may be relatively mild in localized inflammation in humans and dogs173,233. 

Some of the dogs in our study likely failed to provoke an increase in TNF-α despite signs of SIRS and 

increases in IL-6 and CRP. Other studies in dogs with SIRS and sepsis identified a higher proportion of 

dogs with detectable TNF-α concentrations14,255. Such differences can be explained by assay 

methodologies and variations in the enrolled cohort of dogs. ELISA techniques measure all the present 

TNF-α in the sample, including the biologically inactivated TNF-α by TNF-α soluble receptors, while 

bioassays only measure the biologically active TNF-α135.  Besides the assays, differences in studied 

population also may play an important role. Another study using a (different) bioassay found measurable 

TNF-α concentrations in 39/42 dogs with SIRS or sepsis14. That study however looked at dogs at 

admission to an intensive care unit, regardless of the presenting signs and previous history, and can 

therefore not be easily compared with the present cohort of emergency patients. Additionally, the latter 

study did not perform kinetic studies of TNF-α and we can therefore not evaluate the speed at which 

TNF-α became undetectable again.  

CRP, IL-6 and TNF-α were not associated with the underlying disease category, or with prognosis. APPs 

are highly sensitive markers of inflammation but lack specificity regarding the underlying disease 

process353. The magnitude of the increase in CRP depends on multiple factors such as initiating cause, 

disease severity and extent of tissue damage17,23,24. Highest CRP values may occur at different time 

points depending on the type of insult23,511. The clinical nature of the present study implies that dogs had 

a great variety of initiating causes of SIRS, and were presented at different points in the process. Despite 

these factors, CRP concentrations tended to be higher in dogs with SIRS due to an infectious cause at 

presentation. This difference was not significant and should be evaluated in a larger cohort of dogs. The 

use of CRP to discriminate septic from non-septic SIRS patients in human medicine has met with 

variable results, and has generally been superseded by procalcitonin which also confers prognostic 

value, yet unfortunately procalcitonin assays are not available in canine medicine404,405,424,427,442,448. 

Our finding that CRP was not predictive of prognosis contradicts with several previous studies on APP-

kinetics and prognosis in canine SIRS30,503,524. When evaluating a single disease entity such as pyometra, 

CRP may predict disease severity491. However, for conditions such as canine leptospirosis, with a more 
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variable clinical presentation, CRP was not found to be useful to predict prognosis114. A previous study 

on CRP in canine SIRS found that while initial CRP concentrations were unhelpful, the 3-day change 

in CRP predicted survival with survivors experiencing a bigger drop in CRP concentrations30. The utility 

of CRP as a monitoring tool for treatment evaluation in the acute phase appears limited based on the 

findings of this study. CRP concentrations were not significantly different between T6, T12, T24 and 

T72, and therefore do not appear to be very informative to evaluate treatment efficacy. 

The role of TNF-α as an early mediator of the acute phase inflammatory response with rapid 

downregulation makes it a poor diagnostic and prognostic tool in critical care patients34,35,37,38,170. In the 

present study, IL-6 was not related to outcome either. Mean IL-6 values for survivors were not 

significantly higher at presentation compared to non-survivors, and were not significantly lower from 

T6 onwards. These findings are in agreement with two other clinical studies on dogs that also failed to 

detect significant differences in IL-6 and TNF-α related to outcome13,14. Research in human medicine 

and a canine clinical study in SIRS and sepsis do however suggest prognostic value of IL-6 

concentrations11,117,220. The clinical study on dogs included dogs that were hospitalized and dogs with 

chronic conditions (mean sign of illness 6.7 days, range 1 to 65 days) and lacked trauma cases or dogs 

with GDV. Population characteristics therefore differed significantly from our cohort11. It is our belief 

that the short timespan during which TNF-α is detectable, and the cumbersome biological assays 

required to measure biological active concentrations of TNF-α and IL-6, renders the utility of these 

assays in a clinical setting extremely limited. 
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5.2 CARDIAC FINDINGS IN CANINE EMERGENCIES WITH A CLINICAL DIAGNOSIS 

OF SYSTEMIC INFLAMMATORY RESPONSE SYNDROME WITHOUT 

HYPOTENSION 

The second paper of this PhD project evaluated echocardiographic findings in a cohort of dogs with 

SIRS presented to a university emergency department. Dogs that participated in this arm of the PhD had 

higher median heart rate, lower LA/Ao and nLVIDd at presentation. The increase of nLVIDd and LA/Ao 

during hospitalization can either be explained by a decreasing heart rate (mediated by decreasing stress, 

pain relief, anti-inflammatory treatment), or can indicate a mild degree of hypovolemia which improves 

following appropriate treatment.  

nLVIDd was significantly correlated with LA/Ao (p <0.001 and r 0.328) yet negatively correlated with 

FS (p <0.001 and R -0.418). As both LA/Ao and nLVIDd estimate preload, this positive correlation is 

not surprising. However, the negative correlation between nLVIDd and FS is in conflict with the Frank 

Starling principle. As heart rate was positively correlated with FS, it is very likely that adrenergic and 

sympathetic effects explain this correlation.  

Only heart rate in this study was significantly associated with survival. However, median LA/Ao and 

nLVIDd values were higher and median FS values were lower in survivors compared to non survivors 

from T0 until T24. Myocardial hibernation in human beings is characterized by a decreased systolic 

function, and an increased end diastolic left ventricular volume. Whether the trend towards lower FS 

and higher nLVIDd in survivors observed in this study are consequences of changing heart rate and 

sympathetic tone, explained by changes in volume status, or early signs of myocardial hibernation, can 

unfortunately not be determined. In canine cardiology, LV systolic dysfunction is defined as a FS<26%, 

although these percentiles depend on breed size, with a FS of 26% considered worse in small compared 

to large breed dogs36. Only three dogs in the present study had a FS below 26%, and all these were 

medium to large breed dogs (22.6, 31.8 and 56 kg). Therefore, even if these low values are considered 

indicative of ventricular dysfunction, the incidence of ventricular systolic dysfunction in this study 

should be considered low. Few papers have discussed systolic dysfunction in canine critical care 

patients. A previous retrospective study described 16 dogs with cardiovascular dysfunction associated 

with infectious (septic) and non-infectious (neoplastic and other disease) critical illness36. Unfortunately, 

that study was not blinded, and underlying disease and the identification of myocardial dysfunction 

might have influenced treatment decisions and prognosis36.   

None of the dogs included in the present study was reported to experience any complication secondary 

to echocardiography, and echocardiography only requires mild physical restraint during a couple of 

minutes. Based on developments in human ICUs and on the findings of this paper, echocardiography 

therefore should be considered as a relatively safe and promising procedure.  
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5.3 CARDIAC BIOMARKERS IN CANINE EMERGENCIES WITH A CLINICAL 

DIAGNOSIS OF SYSTEMIC INFLAMMATORY RESPONSE SYNDROME 

This study demonstrated changes in cardiac biomarkers during hospitalization in a population of canine 

SIRS patients presented to an emergency department. cTnT values were detectable in 28 dogs during 

hospitalization, with concentrations significantly higher at T12, T24 and T72 compared to 

concentrations at presentation and at the control visit. The timing of the changes in cTnT concentrations 

appear to agree with the rather rapid rise and sustained increase described in the literature review. In 

contrast, at their control visit, all dogs had undetectable cTnT concentration (<0.01ng/mL). A study 

evaluating cTnI concentrations in canine SIRS patients identified a higher prevalence of increased cTnI 

concentrations at presentation (35/60 dogs) and during hospitalization, but similarly failed to find 

significant variations from day to day.74  Another study comparing cTnT and cTnI in SIRS patients 

admitted to the ICU found a higher prevalence of increased cTnI concentrations.75 This difference in 

detection rate can be explained either by the lower sensitivity of cTnT tests, or by the timing of sampling 

compared to the start of the disease process (as admission to the ICU likely later than admission to an 

emergency department).75 

NT-proBNP changed significantly over time, with concentrations at T24, T72 and T120 significantly 

higher than concentrations at T0, T6, T12 and the control visit. Most of the research performed in 

veterinary medicine on NT-proBNP has focused on cardiac disease.1311-1313 A recent study evaluating 

BNP in dogs with non-cardiac disease (e.g. neurological and gastrointestinal disease) demonstrated a 

moderate increase of natriuretic peptides in these patients.97 As our study focused on dogs with SIRS 

presented to an emergency department, and SIRS has a high potential to induce cardiac effects as is well 

described in human medicine, it is not surprising that NT-proBNP concentrations in the present study 

were more markedly elevated compared to that previous study.97 Finding higher concentrations at T24, 

72 and T120 is in agreement with studies on SIRS and sepsis in human patients. The optimal timing of 

NT-proBNP measurement varied across studies in humans, from the day of admission to day 2 and day 

5 after admission168,710,1092,1259,1274 The kinetics observed in this cohort seem to confirm these findings in 

dogs presented with a clinical diagnosis of SIRS to an emergency department. Elevated levels of NT-

proBNP when screening for occult cardiac disease should therefore be interpreted carefully in SIRS 

patients. 

Regarding the association of cardiac biomarkers with prognosis, an increase of cTnT during 

hospitalization was associated with poor short term prognosis. Cardiac troponin T and I are well-

accepted prognostic biomarkers in human intensive care units.62,64,72,1320 In veterinary medicine, 

increased concentrations of cardiac troponins have been observed in patients suffering from infectious 

disease, trauma, GDV or systemic disease93,818,824,825,861,953,1032,1042-1044 and are correlated with poor 

prognosis in some of these studies.114,824,825,861 Studies evaluating cTnI and cTnT in canine SIRS patients 

already confirmed their prognostic value.74-76 These studies similarly identified significant differences 
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between survivors and non-survivors.74 As cTnT (and cTnI) can remain increased up to 7 or 10 days 

after the insult, kinetics of cTnT are difficult to evaluate, and they are less useful for evaluation of disease 

progression or treatment response.58,865 

In the present study, NT-proBNP concentrations were not significantly correlated with prognosis. 

Previous studies in dogs tended to evaluate natriuretic peptides at presentation, while higher 

concentrations should be expected later during hospitalization. This delay in the rise of NT-proBNP 

probably also limits its use as a prognostic marker in a clinical veterinary emergency care setting. At 

later time points the group size in this study rapidly decreased, which may have impacted the likelihood 

to identify significant differences between survivors and non survivors. A recently published meta-

analysis in human septic patients describing 12 studies on 1865 cases did conclude that (NT-pro)BNP 

is significantly associated with risk of mortality.1259 This meta-analysis also concluded that elevated 

(NT-pro)BNP levels in the presence of SIRS or sepsis do not equal cardiac dysfunction due to low 

specificity, but normal (NT-pro)BNP levels could be used to rule out the need for further cardiac 

investigation.1259 Therefore, the lack of a significant difference in NT-proBNP between survivors and 

non survivors observed in the present study definitely needs to be confirmed in a larger cohort of patients 

with a clinical diagnosis of SIRS. The observed increased NT-proBNP concentrations can be explained 

by myocardial dysfunction, but also via increased wall stress after volume resuscitation,1244 lung injury, 

acute respiratory distress syndrome or thromboembolism.67  
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5.4 CORRELATION OF STUDIED MARKERS IN CANINE EMERGENCIES WITH A 

CLINICAL DIAGNOSIS OF SYSTEMIC INFLAMMATORY RESPONSE 

SYNDROME 

As the reader undoubtedly has already understood, the different studies of this defense were all 

performed on the same population, although only a subgroup entered the echocardiography study. The 

hypothesis of our studies were that dogs with a clinical diagnosis of SIRS presented to an emergency 

department would have measurable proof of systemic inflammation via inflammatory cytokines or 

biomarkers. Moreover, we also wanted to investigate whether systemic inflammation does affect the 

heart as it has been shown in human medicine and in experimental animal studies. It is therefore 

particularly interesting to evaluate whether a correlation could be identified between the different 

parameters assessed in the different studies. 

The table 4 which is presented hereunder does allow the reader to visually assess the correlation of 

different parameters, and the exact level of significance and correlation are given in tables 5 and 6. 

Firstly, as already discussed in the separate papers, several parameters were significantly correlated 

within each study. CRP and IL-6 were positively correlated, which was not surprising as IL-6 is the 

major stimulatory cytokine for CRP production. TNF-α however was not significantly correlated with 

both biomarkers, but this can be explained by the short presence of TNF-α in plasma. Regarding the 

cardiac biomarkers, NT-proBNP concentrations were positively correlated with cTnT concentrations. 

This again was expected as such a positive correlation has already been reported in human SIRS patients.  

Regarding echocardiographic parameters, heart rate was negatively correlated with LA/Ao and nLVIDd, 

yet positively correlated with FS, and not correlated with SAP. The lack of a correlation with SAP is 

most likely explained by the bias in study population, with only less severely ill animals being included 

in this study. As explained in the manuscript, the negative correlation with preload parameters is 

explained by the effect of heart rate on cardiac filling. The correlation with FS might be due to 

sympathetic and adrenergic effects. Furthermore, SAP was mildly positively correlated with LA/Ao, 

which itself was positively correlated with nLVIDd. Both correlations may indicate the role of preload 

in the generation of an adequate arterial pressure to maintain tissue perfusion. Finally, and most 

interestingly, an increase in nLVIDd was negatively correlated with FS. This might be a very early sign 

of myocardial dysfunction. However, this one finding in a small and biased study population should not 

be emphasized, yet rather confirmed in a larger study including all SIRS patients. 

Looking at the correlation between inflammatory and cardiac biomarkers, cTnT appears to be positively 

correlated with TNF-α concentrations. This might be an indication of how systemic inflammation affects 

cardiomyocyte integrity and function. However, at the same time, IL-6 concentrations appeared to be 

negatively correlated with NT-proBNP concentrations. Therefore, rather than speculating about the 

significance of these correlations, further research in larger cohorts appears warranted. 
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Heart rate was positively correlated with IL-6 and TNF-α, and SAP was negatively correlated with CRP 

and IL-6. All of these findings support the effect of systemic inflammation on inducing hypotension and 

tachycardia. Similarly, LA/Ao was negatively correlated with IL-6 and TNF-α, again supporting the 

concept of dehydration and (relative) hypovolemia developing in SIRS patients via decreased water 

intake or increased losses via vomiting, diarrhea, or shifting of water from the circulation. However, 

nLVIDd and FS were not correlated with any of the inflammatory markers, although such a lack may 

be explained by the small and biased study group in the echocardiography study. 

Finally when evaluating the correlation of cardiac biomarkers with finding on echocardiography, first 

of all a positive correlation between heart rate and cTnT was demonstrated. Rather than assuming a 

direct link between heart rate and cTnT concentrations, this correlation may merely indirectly confirm 

again that dogs with detectable cTnT concentrations were cardiovascularily more severely affected dogs, 

and thus more likely to suffer from severe inflammatory disease. nLVIDd was mildly positively 

correlated with NT-proBNP, which is not surprising as the main stimulus for NT-proBNP secretion is 

increased ventricular wall stress. The mild correlation might have been more pronounced if more 

severely affected patients were included. More surprisingly, nLVIDd was also positively correlated with 

cTnT. This could be a sign of myocardial hibernation, as this process is characterized both by increased 

ventricular size ad increased cTnT concentrations. However, decreased systolic function is also 

considered a key element of myocardial hibernation, yet FS did not appear to be correlated with any of 

the cardiac biomarkers, and neither was LA/Ao. Therefore, and as indicated before, drawing any 

conclusions based on this small cohort of dogs that were not severely affected would be premature, and 

these findings need to be confirmed in larger cohorts including all patients.  
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Table 4. Correlation table of studied parameters in canine emergencies with a clinical diagnosis 

of systemic inflammatory response syndrome. 

 

This correlation table represents an easily appreciable visual estimation of the correlation between two 

parameters. Blue circles indicate a positive correlation, while red circles indicate a negative correlation. 

The colour intensity is indicative of the value of the correlation coefficient with darker shades indicating 

a value closer to 1. The size of the circle represents the level of significance of the correlation, with 

bigger circles indicative of a lower p-value and thus higher significance. Whenever a black cross is 

present, this indicates that the two parameters are not significantly correlated (p>0.05). As many of the 

parameters that were evaluated were not normally distributed, we have used the Spearman correlation 

for the evaluation of all parameters. 

The exact values of the correlations and the p-values of each correlation are presented in table 5 and 6 

respectively. Whenever the probability (p-value) is lower than 0.05 (5%), the test is significant and both 

parameters are significantly correlated at a level of 5%. 
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Table 5. Spearman correlation of the different parameters studied throughout the different 

papers. Values in green indicate a significant correlation (p <0.05) of the between the two 

parameters. 

 

 

 

 

 

Table 6. Spearman correlation values of the different parameters studied throughout the different 

papers.  
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6. LIMITATIONS OF THE PERFORMED RESEARCH 

6.1 GENERAL LIMITATIONS OF THE STUDIES 

The first conclusion one should take is that we performed observational studies, and did not perform 

any fundamental research. However, the definition of SIRS and its effects on the cardiovascular system 

have been investigated in detail in experimental designs in laboratory animals including dogs, and have 

been observed in human clinical studies. Observational studies were therefore justified. The hypothesis 

of our research was that, in a clinical setting of dogs with SIRS presented to an emergency department, 

cardiac effects could be detected, and our ultimate goal was not to explain such effects.  

For observational studies, the clinical nature of the performed research in our opinion is one of the strong 

points of it, yet simultaneously is one of the biggest limitations. We chose to include privately owned 

dogs presented to the emergency department of a university small animal teaching hospital with a 

clinical diagnosis of SIRS. This implies that we included dogs of different breeds, weights and ages, 

presenting with a large variety of diseases, at different time points in the disease process. Rather than 

developing experimental designs, we preferred to investigate whether cardiac consequences of SIRS can 

be appreciated in a clinical emergency and critical care setting.  

The clinical observational nature of the designs obliged us to perform the first research, evaluating 

whether dogs included based on a clinical diagnosis of SIRS truly present biochemical evidence of 

systemic inflammation. If biochemical findings such as increased inflammatory cytokine and CRP 

concentrations were not substantiating the value of the clinical diagnosis of SIRS as a screening tool in 

an emergency referral setting, this would have obliged us to adapt our designs.  

A second implication of clinical studies is that owners have different levels of motivation, affecting 

decision making and outcome of the dogs included. To limit the influence of this factor, we recorded 

whether patients were euthanized for financial rather than for prognostic reasons, and those euthanized 

for financial reasons were removed for statistical calculations regarding outcome. All dogs that were 

euthanized for prognostic reasons had a deteriorating clinical condition that did not respond to 

appropriate treatment or suffered life-threatening complications. In the presented studies, 64% (in the 

papers on inflammatory cytokines and cardiac biomarkers) and 76% (in the paper on echocardiography) 

of patients survived until discharge, which is comparable to or better than previous studies on clinical 

canine SIRS patients. The higher survival rate in the echocardiography paper indicates that these patients 

were less severely affected, and we will come back to the implications of these findings when discussing 

the limitations of this paper in particular. Moreover, we only managed to convince less than half of 

owners to come back for a control visit of their pet. As dogs were clinically healthy and owners did not 

receive any compensation, many owners declined the control visit. This low percentile of control visits 

also creates an important bias in our control population. 
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A third limitation of clinical studies on a clinical syndrome such as SIRS is that included dogs suffer 

from various disease processes eliciting different pathophysiological responses. Empirically dividing 

clinical cases over different categories is often complicated, resulting in many animals ending in a 

‘miscellaneous’ group, and low numbers in specific disease categories. Therefore, observations in a 

specific disease category should be tested in larger cohorts before drawing strong conclusions. 

Another limitation in the design of our papers is that time points for evaluation were standardized with 

relation to the moment of presentation to the emergency department. Clinical signs were present for 

variable times prior to presentation, and as previously mentioned, different diseases induce different 

responses, and this will have affected our findings. The fixed timing of sampling implied that the timing 

varied with regard to surgical or medical interventions. For the analysis of our findings, the fixed timing 

allowed us to describe the kinetics of cytokines, biomarkers and echocardiographic findings, but it did 

not allow to determine peak concentrations or maximal variations in observations. As SIRS is a 

syndrome, presented secondary to a wide variety of conditions, an exact moment for peak concentrations 

and maximal variations would be unlikely to exist, and limiting our sampling points was considered 

favourable for ethical and financial reasons. Studies to determine peak concentrations and maximal 

variations should be reserved for well-described experimental designs on specific disease, not for 

clinical studies.  

6.2 INFLAMMATORY CYTOKINES AND C-REACTIVE PROTEIN IN CANINE SIRS 

Samples were stored at -80°C prior to analysis of inflammatory cytokines and CRP. All these substances 

remain stable at temperatures below -70°C, although no single publication investigated the maximum 

storage time for these substances at this temperature. As samples were analyzed within a year, which is 

comparable with many publications, we are convinced this did not affect our findings. Moreover, if 

storage would have artificially decreased concentrations of these cytokines and biomarkers, this would 

have resulted in less rather than more significant changes. 

The bioassays applied for the determination of concentrations of TNF-α and IL-6 have been previously 

validated and published. These bioassays allow for the detection of biologically active concentrations 

of cytokines, in contrast to ELISA techniques, which also detect biologically inactive fractions. The 

cumbersome methodology is however not applicable in a clinical setting, but gives a better reflection of 

the clinical situation. Several previous publications in dogs described concentrations assessed using such 

ELISA techniques. Findings from studies applying ELISA techniques should therefore not be compared 

with our findings. From a clinical standpoint, concentrations of biologically active cytokines are more 

relevant than total concentrations, and therefore we considered the technique used in this work 

preferable over ELISA techniques. 

Several samples were displaying signs of hemolysis, hyperbilirubinemia or lipemia, which theoretically 

could interfere with the measurement of CRP. The assay we applied however appears to be fairly 
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insensitive to these effects, and we could not detect any influence of these interfering factors on our 

findings. 

6.3 CARDIAC FINDINGS IN CANINE EMERGENCIES WITH A CLINICAL DIAGNOSIS 

OF SYSTEMIC INFLAMMATORY RESPONSE SYNDROME WITHOUT 

HYPOTENSION 

The ethical concerns raised to submit critical patients to an echocardiography, which was judged to be 

an invasive procedure, was one of the major limitations to this paper. Ethical approval was obtained for 

the study after owners signed an informed consent form, but case veterinarians could withdraw patients 

if they considered them unstable for blood sampling or ultrasonography. None of the dogs was 

withdrawn for blood sampling during the study, but many patients were excluded from the 

echocardiographic part of the study for this reason. Whether a limited, basic echocardiography is more 

demanding than blood sampling however requires to be determined, and this decision was based on the 

perception of the clinician. As bedside echocardiography is a well-accepted procedure in human critical 

care, and is considered harmless, this fear of echocardiography induced complications by attending 

veterinarians seems to be debatable. None of the patients undergoing echocardiography in this study 

demonstrated a complication secondary to the procedure. However, survival rates in this cohort of dogs 

(75.7%) was higher than compared to previous studies on clinical canine SIRS patients11,13 and the two 

other studies of the present thesis, so included patients did appear to be clinically in a better condition. 

As heart rate during echocardiography at the control visit of clinically healthy patients was similar to 

heart rate at presentation, it seems that echocardiography does at least provoke some stress in otherwise 

healthy dogs. Therefore, although cage side echocardiography seems to be safe in a canine critical care 

setting, this still needs to be confirmed in more critical patients.  

The withdrawal of less stable patients may explain why we did not observe clear evidence of myocardial 

hibernation in this clinical setting, as described in experimental canine studies and clinical human 

papers. Myocardial dysfunction in human medicine is more severe and prevalent in human septic shock 

patients and septic patients compared to SIRS patients. The degree of myocardial dysfunction has been 

correlated with concentrations of cardiac troponins and brain natriuretic peptide67, which are also 

correlated with the clinical condition1011, degree of hypotension1014, and clinical scores of these 

patients65,86,1011. A design including all emergency patients with SIRS regardless of their cardiovascular 

status (but excluding dogs with severe dyspnea to prevent complications due to the lateral recumbency) 

is more likely to identify and evaluate myocardial hibernation better. However, if we want to develop 

such studies, we need to have a properly trained staff to perform such short echocardiographies. 

Echocardiographies were also not performed by cardiologists, but by interns previously trained by a 

cardiologist, demonstrating the ability to perform repeatable and comparable echocardiographies in a 

population of research beagles prior to the start of this study. Although ideally all echocardiographies 

would be performed by a single cardiologist, this is not feasible in an emergency setting. As discussed 
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in the literature review, echocardiography in human critical care is also performed by criticalist receiving 

a short training programme. Although the results of this study on echocardiography in SIRS patients did 

not illustrate significant changes in systolic function throughout hospitalization, it did identify 

significant changes in preload during hospitalization, and some interesting trends regarding the 

association of echocardiographic findings and prognosis. This study therefore illustrates the huge need 

for such short training programmes for criticalists in veterinary medicine, as well as continued research 

in this field. As the two involved veterinarians were properly trained and demonstrated to be competent 

in the performance of the short echocardiographic protocol, we believe this did not significantly 

influence our findings. 

Our echocardiography study focused on preload and LV dysfunction.  Right ventricular dysfunction and 

left and right ventricular diastolic dysfunction have also all been described in human myocardial 

dysfunction and experimental canine studies55,56,654,737. However, such parameters are even harder to 

assess, and we therefore consider that echocardiography by non-cardiologists should first focus on one-

dimensional parameters that could be assessed easily on standard windows, to improve performance of 

the trainees88. 

Due to the low amount of included patients based on cautiousness of the attending veterinarian, the study 

was terminated with only low numbers of dogs in each disease category. The findings of this paper 

should therefore not be over interpreted, yet need to be confirmed in larger studies including all dogs 

with a clinical diagnosis of SIRS. 

6.4 CARDIAC BIOMARKERS IN CANINE EMERGENCIES WITH A CLINICAL 

DIAGNOSIS OF SYSTEMIC INFLAMMATORY RESPONSE SYNDROME 

Samples were stored at -80°C prior to analysis of cardiac biomarkers, similarly to inflammatory 

cytokines and CRP. Again, NT-proBNP and cTn are reportedly stable at temperatures below -70°C, 

although the maximum storage time has not been described. These samples were also analyzed within 

one year as reported previously, and if storage would have artificially decreased concentrations of these 

cytokines and biomarkers, this would have resulted in less rather than more significant changes. 

We evaluated cTnT rather than cTnI, as the cTnT assay was readily available. cTnI has received more 

attention in veterinary medicine, as cTnI assays are more sensitive than cTnT to detect cardiac 

involvement824,825. The use of a cTnI assay would probably have resulted in the detection of elevated 

concentrations in a larger proportion of SIRS patients. A recent review however once more concluded 

that cTnT and cTnI are probably equally valuable as prognostic markers.  

The analysis of NT-proBNP concentrations was more costly and labour intensive. Subsequently, due to 

financial restrictions, samples with concentrations above the upper limit of the assay (3000pmol/L) were 

not diluted to measure the exact concentration. Therefore, NT-proBNP concentration was 
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underestimated in a small portion of samples. Similarly to the (unlikely) effects of freezing, such an 

effect did not prohibit us from finding significant changes. If exact concentrations would have been 

measured, our findings would probably have been even more significant.   

7. CONCLUSIONS 

This manuscript allows us to draw several meaningful conclusions regarding dogs presented to an 

emergency department with a clinical diagnosis of SIRS. 

- CRP is elevated in the majority of such cases at presentation, or will increase shortly after 

presentation. This indicates that the clinical diagnosis of SIRS in this setting may be more 

specific than previously considered. Whether CRP may be of additional value as a screening 

and monitoring tool in these patients remains to be determined. 

- Even in the absence of marked hypotension, such dogs have lower median LA/Ao and nLVIDd 

at presentation. A trend was observed towards higher median LA/AO, nLVIDd and lower FS in 

survivors during the initial hours of hospitalization. Whether these observations are valid, and 

whether they represent an early sign of myocardial hibernation in these patients requires to be 

confirmed in larger studies including all dogs with SIRS. Assessment of preload and myocardial 

function via echocardiography merits further investigation in canine emergency and critical 

care. 

- cTn and NT-proBNP are often elevated in these patients and cTnT carries prognostic value in 

dogs with SIRS presented to the emergency department. Whether such increases are linked with 

myocardial hibernation remains to be demonstrated.   

Based on these conclusions, we suggest multiple future perspectives that will be discussed in the next 

chapter.  
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8. FUTURE PERSPECTIVES 

The first ‘validating’ paper on biochemical markers of systemic inflammation mostly re-emphasizes the 

role of APPs in SIRS. With the easy availability of benchtop devices to quantitatively measure CRP 

concentrations in house in dogs, this parameter might be considered part of the minimal database in 

future canine emergencies. Future studies could aim to evaluate CRP in a cohort of emergencies 

regardless of the clinical diagnosis of SIRS. Such a design would allow us to comment on the agreement 

between a clinical diagnosis of SIRS and CRP concentrations. A previous study in dogs with pyometra 

demonstrated that CRP is associated with SIRS in this disease, but this has never been evaluated in a 

cohort of emergency patients255. An increased CRP concentration at presentation gives objective proof 

of systemic inflammation, pushing the veterinarian to investigate, and the owner to accept further work-

up of the emergency patient.  

Moreover, although we did not find a significant association between CRP concentrations and prognosis 

or diagnosis of the underlying disease category, this merits deeper evaluation. With current guidelines 

for the diagnosis of sepsis and septic shock redefined, placing less emphasis on the component of 

systemic inflammation, it would be interesting to investigate the added value of CRP to a simplified 

clinical screening scale (such as the qSAP) regarding the likelihood of morbidity and mortality of these 

patients.  

CRP kinetics could help to evaluate the response to treatment of critical care patients. Evidence in human 

literature demonstrates how CRP could be used to evaluate the efficacy of antibiotic therapy in 

streptococcal meningitis. Similarly, CRP has been applied as a biomarker to evaluate the efficacy of 

immunosuppressive therapy in canine steroid responsive meningitis and arteritis. As discussed in this 

manuscript, CRP kinetics depend on the underlying pathology. Therefore, the use of CRP as a 

monitoring tool should be evaluated in larger groups of dogs affected by a single disease category (e.g. 

septic peritonitis, pneumonia or pancreatitis).  

The most interesting developments might be expected via the development of echocardiography to 

evaluate and monitor fluid status and cardiac function. Our paper on SIRS patients without hypotension 

demonstrated rather low preload of these emergency patients, and although not statistically significant 

suggest a trend towards a correlation between preload and survival. Fluid loading is an important aspect 

of human emergency stabilization, and fluid responsiveness (defined as the potential to increase cardiac 

output in response to a fluid challenge) is evaluated via several echographic parameters in human ECC 

services552.  

In veterinary medicine, the use of echocardiography in a canine emergency and critical care setting still 

largely needs to be developed. Moreover, in order to perform many of the possible studies described 

above, canine ECC departments require trained staff capable of performing such short 

echocardiographic studies. According to the authors, the first step in this process therefore was to 
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develop a short training program, allowing non-cardiologists to record basic echocardiographic views 

and respond to basic questions, as previously demonstrated in humans. The authors have developed and 

tested such a program in association with the cardiology department, and an abstract on the performance 

of repeatable cardiovascular focused assessment via sonography for triage (CV-FAST) after a 6-hour 

training was presented at the ECVIM-CA congress in Goteborg (September 2016) (see appendix 1). 

Findings of this study seem encouraging and the manuscript is in preparation to be submitted for 

publication to the Journal of Emergency and Critical Care. The ability to train the entire veterinary staff 

to perform such a CV-FAST exam should allow for clinical trials including all emergency patients. 

Moreover, as patients in our paper on echocardiography in SIRS did not demonstrate any complications, 

we consider that this should allow for ethical approval to perform such examinations even in patients in 

hypotension. 

Besides a large prospective study on CV-FAST echocardiography in canine emergency and critical care 

cases in general, different common clinical scenarios could be evaluated. For instance, the effects of 

known changes in blood volume (blood donation or blood transfusion) on volume status could be 

evaluated. Volume status and cardiac function via CV-FAST techniques could also be evaluated in 

septic peritonitis cases, or in cardiac patients in the critical care department. Similarly, experimental 

designs could potentially be developed to evaluate CV-FAST findings in canine hypovolemic, septic or 

cardiogenic shock models.  

In human patients, the best echocardiographic parameter for the assessment of fluid responsiveness is 

the change in the patient’s vena cava diameter with respiration, or the evaluation of stroke volume618. 

The utility of inferior vena cava FAST assessment to estimate volume status and fluid responsiveness 

in critically ill humans is well established1321,1322.  Future research evaluating caudal vena cava size and 

collapsibility in dogs to estimate preload and fluid responsiveness should therefore be developed. The 

authors have  received the EVECC - SCIL research grant to perform a study in collaboration with the 

university of Calgary to standardize and evaluate the repeatability of the echographic evaluation of the 

caudal vena cava in healthy dogs via a diaphragmatic, hepatic or the renal view (see appendix 2). Our 

hypothesis is that caudal vena cava size will be related to body weight or metabolic weight, while caudal 

vena cava collapsibility will be an index independent of body size. Results of that study are expected to 

be presented at the next EVECC congress in Dublin, June 2017. 

The paper on cardiac biomarkers also offers very interesting perspectives. At this time, we consider 

cardiac biomarkers mostly indicated to identify patients with a high likelihood of cardiovascular disease 

or complications in an emergency and critical care setting. Semi-quantitative point-of-care tests for NT-

proBNP are available and should be evaluated as screening tools to identify patients with primary or 

secondary cardiovascular disease. It would be interesting to evaluate a larger cohort of emergency 

patients via echocardiography and to test NT-proBNP concentrations in these patients regardless of a 
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clinical SIRS diagnosis. By comparing findings, it would be interesting to evaluate the sensitivity and 

specificity of NT-proBNP to detect (primary versus secondary) cardiovascular disease in these patients. 

As NT-proBNP rises fairly late in the course of the disease, it would be interesting to measure 

concentrations at presentation and after 3 days and to evaluate the impact of the timing of sampling on 

such findings. Due to the late rise, the use of NT-proBNP as an initial marker seems limited. Cardiac 

troponins are probably more interesting as an initial screening tool to identify patients requiring thorough 

cardiovascular evaluation or monitoring, as they rise earlier in the course of disease. Moreover our study 

confirmed previous findings that cTns carry prognostic information in dogs with a clinical diagnosis of 

SIRS. However, their interest as monitoring tools is probably even more limited as troponin 

concentrations decrease very slowly. 

Based on findings in human papers, the increases in NT-proBNP and troponin in SIRS patients may be 

a reflection of and correlated with myocardial hibernation. Larger prospective studies should evaluate 

the correlation between NT-proBNP and echocardiographic findings in emergency patients, recording 

clinical SIRS diagnosis, but not limited to these patients only. It would also be interesting to record 

simplified patient evaluating scores such as shock index, qSAP or APACHE scores, and evaluate their 

correlation with cardiac biomarkers and echographic findings.  

My hope remains that at the end of this journey, we will look back to this day, reassured that we have 

learned to provide more appropriate cardiovascular care for our emergency and critical care patients. If 

this PhD is nothing more than an introduction to this exciting story, then this PhD was worth the hours 

of work behind my desk instead of in clinics…  
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APPENDIX 1: SUMMARY OF ASSESSMENT OF NORMAL DISTRIBUTION 

 

The table (Table 7) hereunder summarizes for each individual studied parameter whether the data, or 

logarithmic transformed data were normally or not-normally distributed. 

LA/Ao Normal distribution of the logarithmic transformed data 

FS Normal distribution of the data  

nLVIDd Normal distribution of the logarithmic transformed data 

HR Normal distribution of the data 

SAP Use of the untransformed data following normal distribution of the residues 

cTNT Use of the logarithmic transformed data following near-normal distribution of the residues 

NT-proBNP Use of the logarithmic transformed data following near-normal distribution of the residues 

CRP Use of the logarithmic transformed data following near-normal distribution of the residues 

IL-6 Use of the logarithmic transformed data following normal distribution of the residues 

TNF-α Use of the logarithmic transformed data following near-normal distribution of the residues 

Table 7. Summary regarding normal distribution of each studied parameter 

The qqplots hereunder allow for visual comparison of the distribution of the residues of respectively the 

untransformed and logarithmically transformed data of the parameters that are not normally distributed. 

The parameters represented are SAAP, cTnT, NT-proBNP, CRP, IL-6 and TNF-α. The distribution of 

residues most closely following the red line is reported in the table above. 
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Although several parameters failed to demonstrate normal distribution, the statistical model that was 

used is considered strong enough to compensate for a moderate lack of perfectly normally distributed 

data. As the QQ-plots demonstrate that residues of these values only diverge from the line at the lower 

and higher extremes, the statistical model applied is therefore considered valid. 

  



272 
 

  



273 
 

APPENDIX 2: CVC DIAMETER AND BASIC ECHOCARDIOGRAPHY BY NON-

CARDIOLOGIST VETERINARIANS FOLLOWING A 6-HOUR TRAINING COURSE 

Elodie Darnis, DMV, University of  Liège, Belgium 

Anne Christine Merveille, DipECVIM-CA (cardiology), PhD,University of  Liège, Belgium 

Loïc Desquilbet, PhD, biostatistics and clinical epidemiology, Ecole nationale veterinaire d’Alfort, 

Maisons-Alfort, France 

Soren Boysen, DVM, DACVECC, University of Calgary, Canada 

Kris Gommeren, DMV, DipECVIM-CA (internal medicine), University of Liège, Belgium 

INTRO: Clinical parameters, including blood pressure, do not reliably predict intravascular volume 

status. In human medicine, assessment of the inferior vena cava diameter (IVCD) and focused 

echocardiographic parameters (La/Ao, LAminor, LVIDd, LVIDs, FS) have been used to rapidly evaluate 

volume status and systolic function in critically ill patients. Recently, focused training courses in 

echocardiography for human criticalists and internists have been described. 

OBJECTIVE: This prospective, observational study aimed to quantify inter-observer (IEO agreements 

between a cardiologist and 2 non-cardiologists who underwent a training course in echocardiography 

for the ultrasonographic IVCD and focused echocardiographic parameters in healthy beagle dogs.  

M&M: Two veterinary internists (one resident and one specialist), novice in echocardiography, 

underwent a 6-hour echocardiography training course. One month later, 15 healthy beagle dogs were 

examined 3 times by the two internists and one cardiologist. IVCD was assessed via a subxiphoid 

window (IVC-SX) and a dorsolateral window (IVC-DL), caudal only to the last rib. Bland-Altman 

analysis was used to assess IEO agreement between two series of clinical measurements; coefficients of 

variation (CV) were calculated to quantify IEO variability.  

RESULTS: The widest 95% limits of agreement (LOA) for LAminor, LVIDd, LVIDs, LA/Ao, and FS 

were 5mm, 9mm, 5mm, 0.68, and 19%, and CV were 6%, 13%, 12%, 8%, and 17%, respectively. 

For IVCD-SX, the 95% LOA for IVCDmin and IVCDmax were  0.68 cm and  0.05 cm with CV of 37% 

respectively. For IVCD-LD, the 95% LOA were  0.34 cm with a CV of 11%. 

DISCUSSION: Based on inter-observer reproducibility, minimal training in EC seems sufficient for 

measurement of standard cardiac parameters. Evaluation of IVC-LD was considered good, based on 
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narrow 95% IOA. However, IVCD-SX was considered unacceptable. This may be due to variation in 

measurements of the IVCD at the IVC-SX, and the effect of the respiratory cycle on the minimal and 

maximal measurements. Standardization of the IVC-SX technique and investigation of the impact of the 

respiratory phase on IVCD in dogs are needed.   

CONCLUSION: A 6-hour training course in echocardiography seems sufficient to train non 

cardiologist veterinarians to measure IVCD-LD and basic echocardiographic parameters in healthy 

beagle dogs. Further studies are needed to determine whether IEO is acceptable with other breeds of 

different body conformation. Values of these measurements to estimate the volume status in clinical 

setting remain to be determined. IVCD-SX measurements require further standardization to allow for 

quantitative analysis. 
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 Applicant:  Ms Elodie Darnis 

 Qualifications:  DVM 

 Position:  Resident in internal medicine 

 Institution:  Liège University 

 Work Address: 

  

  

  

  

  

 Liège University, 

 Clinique des Petits Animaux  

 Quartier VALLEE 2 

 Avenue de Cureghem, 3 
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 Belgium 

 E-mail address:   elo.darnis@gmail.com  

 Tel:  0033645759874   

  

 Title of Project:  Cardiac-FAST 

 Duration: 

(max 12 months) 
 12 months 

  

 Lay Summary 

  Emergency and critical care patients often suffer from low blood pressure. Rapid and correct 

assessment of these patients is required to initiate appropriate treatment and improve outcomes. 

Hypotension has many underlying causes, and although many patients will require large volumes of 

intravenous fluids to improve blood pressure, fluid requirements are not universal across all patients. 

Furthermore end points of resuscitation and the fluid requirements needed to correct hypovolemia are 

difficult to predict. In veterinary medicine, there is currently no readily available non-invasive technique 

to monitor intravascular volume status and the subsequent need for fluid resuscitation. In human medicine, 

measurement of caudal vena cava (CVC) diameter and the change in diameter between inspiration and 

expiration, as well as the size of the left atrium accurately predicts the need for additional fluid therapy. 

Evaluation of left atrial size is rarely performed in veterinary emergency and critical care (ECC), and 

standardization of CVC diameter measurements and its collapsibility in dogs is lacking.  

 The goals of the current research project are to develop a standardized and objective method to 

assess CVC diameter and collapsibility, and to determine reference ranges for different dog breeds and 

sizes. Once a standardized technique and reference intervals have been established, this technique can then 

be used in a clinical setting.  

 Co-applicant 

 name(s) & e-

mail address(es): 

- Kris Gommeren, krisjeg@hotmail.com 

- Soren Boysen,  srboysen@ucalgary.ca  
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 Specific Aims 

 A pilot study was undertaken by two of the primary investigators (internal medicine resident and 

head of the emergency and critical care department). Both investigators were trained by a cardiologist 

in the imaging of the CVC via a subxiphoid transdiaphragmatic and a renal view obtained by placing the 

probe directly caudal to the right costal arch with dogs positioned in right lateral recumbency. This pilot 

study demonstrated good reproducibility and repeatability of imaging of the CVC in a colony of research 

beagles.  

 The current study aims to describe reference ranges for CVC-related parameters such as maximal 

and minimal diameter and collapsibility during inspiration and expiration in in a large variety of 

spontaneously breathing healthy dogs from different breeds, weights, ages and sizes. The investigators 

aim to describe a technique to assess these parameters, will assess intra and interobserver variability and 

perform subgroup analysis to determine if breed or size impacts CVC diameter, or percentage change in 

diameter measurement (the latter will form an index or ratio if it is consistent across different breeds).  

 In order to obtain sufficient data sets, a minimum of 120 healthy dogs will be required according 

to established literature describing methodologies to establish reference intervals; these dogs will be 

recruited at dog clubs and training centers and at dog shows. The investigators will go to central meeting 

points at fixed dates to scan a maximum number of dogs and compare findings. Contact has already been 

established with several dog clubs, training centers and show organizers, and 15 days of data collection 

are anticipated to ensure an adequate number of healthy dogs are enrolled. 

 For the current phase of the study the hypothesis are; 1) that the CVC diameter can be measured 

in dogs with minimal inter or intraobserver variability, 2) that changes in expiratory and inspiratory CVC 

diameter in healthy dogs will be less than 60%, and 3) that although the CVC maximal diameter will 

vary between breeds and size of dogs, the percentage change in CVC diameter at end inspiration and 

expiration will be consistent across healthy dogs of different breeds and sizes.  

  

 Background 

 Echocardiography offers the benefits of direct visualization, allowing for real-time assessment 

of cardiovascular structure and function1. Several human ICUs already have more than 15 years of 

experience guiding the initial management of acute circulatory failure solely based on the use of 

echocardiography, essentially replacing pulmonary artery catheters (PACs)2,3.  

 Over the last decade, interest in applying echocardiography within the ICU has greatly increased 

in human medicine, leading to an increased availability of echography and echocardiography1,4,5, and the 

incorporation of training programs for intensivists into some human ICU fellowships1. 

 Focused goal-oriented ultrasound training for human non-cardiologists involving as little as 3 

hours of theoretical training and 5 hours of hands-on training have been described with positive results6. 

These assessments allow the clinician to categorize the cause of shock and help direct therapy7. In 

summary, echocardiography has found a place in human critical care, with the most common reason for 

requesting an echocardiography being the assessment of volume status and left and/or right ventricular 

function8. New echographic parameters to assess volume status have been developed in human patients. 

Under controlled ventilation respiratory changes in the inferior vena cava (IVC) diameter are considered 

the most useful echocardiographic parameters to assess fluid responsiveness9. Changes in intrathoracic 

pressure throughout the respiratory cycle will impact the amount of blood in the vena cava. Changes in 

the IVC diameter during respiration have been positively correlated with volume responsiveness in septic 

shock10,11. Although spontaneously breathing patients are harder to evaluate, several parameters have 

been suggested to evaluate volume responsiveness in these patients as well. An IVC diameter <1-2cm is 

indicative of a low preload and volume responsiveness in hypotensive human patients12,13. In humans, 
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collapse of more than 50-60 % of the IVC between expiration and inspiration has a strong correlation 

with decreased intravascular volume14,15. Assessment and monitoring of CVC size is however rarely 

performed and lacks standardization in veterinary medicine. 

 How are the results likely to benefit pets?  

 If measurement of the CVC in dogs could be standardized, and similar changes in association 

with respiration could be identified objectively, as has been described in humans, this methodology 

would offer a huge amount of information for ECC-staff to more objectively assess the intravascular 

volume in shock patients and could be tremendously helpful to monitor fluid responsiveness in the 

critical care setting. 

  

 Experimental Design  

 The aim of this study is to define reference values for the evaluation of minimal and maximal 

CVC size and CVC collapsibility during expiration and inspiration in spontaneously breathing healthy 

dogs. The investigators aim to establish a reliable methodology to assess these parameters and compare 

findings regardless of breed or size. If the percentage change in CVC change between expiration and 

expiration is consistent across breeds it will serve to establish a repeatable index or ratio.  

 In order to achieve these goals, veterinarians will assess the CVC in a large variety of healthy dogs 

from different breeds, weights, ages and sizes.  Veterinarians will assess intra- and interobserver 

repeatability by scanning each dog twice by two different investigators (4 scans in total per dog).  In order 

to obtain sufficient data sets, a minimum of 120 healthy dogs will be recruited at dog clubs and training 

centers and at dog shows. Contacts have already been established with different dog training facilities and 

dates are currently being fixed. The investigators will go to several central meeting points at fixed dates 

to scan dogs and compare findings. Ethical approval for this part of the research project has already been 

obtained from the universities ethical committee (14-1749) 

 In order to be included, dogs should be in between 1 and 8 years old, and present no abnormalities 

on physical examination. Dogs will be excluded if they suffer from any known disease or were treated for 

any disease (e.g. vomiting and diarrhea) within the prior month; whenever a murmur, pulse deficit, 

arrhythmia other than sinus arrhythmia or any other abnormality is detected on cardiac examination; 

whenever respiratory abnormalities are detected; or whenever the dog is considered to be severely 

dehydrated on clinical examination. If the work performed in this part of the study has positive results, the 

next phase would be to correlate these findings with those obtained in critically ill dogs.  
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 Has funding been applied for elsewhere?  

 No, the SCIL research grant is the only funding that currently has been applied for. 
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