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Abstract: 
The recent disclosure of new and innovative home battery systems has been seen by many as a catalyser 
for a solar energy revolution, and has created high expectations in the sector. Many observers have 
predicted an uptake of combined PV/Battery units, which, could ultimately disconnect from the grid and lead 
to autonomous homes or mini-grids. However, most of the comments originating from social media, blogs or 
press articles lack proper cost evaluation and realistic simulations. This work aims at bridging this gap by 
simulating self-consumption in different EU countries, for different household profiles with or without battery. 
Results indicate that (1) Although decreasing at a fast pace, the cost of domestic Li-Ion storage is most likely 
still too high for a large-scale market uptake in Europe; (2) PV incentives based on net metering are not 
favourable to home batteries; (3) Home battery profitability and future uptake mainly depend on the indirect 
self-consumption subsidies provided by the structure of the retail prices; (4) These systems do not allow 
residential consumers to go off-grid. They only allow for a maximum self-sufficiency ratio close to  
70% 
 

Keywords: 

Battery ,PV ,Self-Consumption ,Prosumer ,Household. 

 

The views expressed are purely those of the authors and may not in any circumstances be regarded 

as stating an official position of the European Commission. 

1. Introduction 
The recent development and market entry of new home battery systems, together with significant 

price reductions, has been seen by many as a catalyser for a solar energy revolution, and has created 

high expectations in the sector. Many observers have predicted an uptake of combined PV/Battery 

units, which, according to them, could ultimately disconnect from the grid and lead to autonomous 

homes or microgrids. 

A common mistaken assumption when evaluating the profitability of home battery systems is to 

assume a constant number of cycles over the battery life. This allows easily calculating the levelized 

cost of stored energy: if the battery lifetime is 10 year, a number of 3650 full cycles can be 

expected, which, once divided multiplied by the battery capacity and divided by the investment, can 

provide the levelized cost per stored kWh. 

As shown later in this paper, this approach is erroneous because the number of full equivalent 

cycles is lower than one per day, and because it highly depends on the battery capacity: a small 

battery tends to perform almost one full cycle every day, while a large battery presents much more 

limited charge/discharge cycles. 

This paper aims at providing solid indicators regarding the amount of self-consumption induced by 

solar home battery systems, by means of a high number of realistic simulations. 



 

Fig. 1. Conceptual scheme of the considered DC-coupled system. Adapted from [1] 

In a first step, a database of household 15-min electricity consumption profiles is gathered for the 

following countries: Belgium, Spain, Germany, Denmark, Hungary, Italy, Romania, France and 

United Kingdom. These consumption profiles are simulated in conjunction with a PV generation 

model and a simple battery model including degradation. Irradiation and temperature profiles are 

obtained from the typical meteorological year datasets. 

In a second step, the amount of self-consumption is derived as a function of the relative sizes of the 

yearly demand, PV generation and battery capacity. This analysis is carried out for all household 

profiles, whose number is deemed sufficient to derive statistically significant values for the self-

consumption and self-sufficiency rates. 

The third part of the work evaluates the economic profitability of the systems as a function of the 

PV system and battery sizes, taking a particular regulatory framework into account. An 

optimization model is set up to maximize the system profitability from a user perspective, and 

sensitivity analyses are carried out to determine the influence of the battery cost. 

2. Household consumption profiles 
To properly evaluate the potential for self-consumption and the levelized cost of a home battery 

storage system, realistic time series of both the domestic electricity demand and PV production 

throughout the year should be used. This is necessary to account for the match or the mismatch 

between solar generation and household consumption at any moment of the day. This analysis 

should moreover distinguish several geographical areas since the different load patterns between 

coutries impact the amount of self-consumption: warmer climates are associated with a higher 

cooling loads, and therefore present a better match between solar insolation and electricity 

consumption. This effect will be detailed in the next sections. 

Given the stochasticity of consumption and production profiles, a reliable value of the self-

consumption indicators can only be computed from a statistical analysis taking a large number of 

consumption/production profiles into account. The main challenge is the lack of easily accessible 

data for household consumption profiles in different EU countries. Most of the published data is 

aggregated over a large number of households (standard load profiles) and therefore smooths out 

the variability of the individual profiles. To achieve results that are scientifically sound, a 

significant number of monitored consumption profiles has been gathered, and some additional 

stochastic profiles have been generated where data was missing. 

Historical household consumption data is scarce in the open-scientific literature or in open-data 

portals. Some source are available from the field of machine learning and Non Intrusive Load 



Monitoring (NILM): open datasets are released to test and train the models, and provide household 

consumption profiles with a high time resolution.   

Household consumption profiles are available for a different EU Countries as a result of the 

REMODECE EU project . This dataset is particularly interesting because of the large number of 

monitored households (> 850). Its main drawback, however, is that the provided load profiles are 

hourly profiles for one typical day in the month: as a result of the aggregation into average days, the 

fast stochastic variations are lost, which might impact the evaluation of self-consumption. Therefore 

in this paper, stochastic noise is added on top of the typical daily profiles.  

Each household consumption profile is simulated with typical irradiation profiles for the country 

they correspond to. To that end, a simple PV model is used, assuming a south orientation and a tilt 

angle of 35°. The annual output is corrected by a linear scaling to match the annual capacity factor 

number provided by the JRC PVGIS information system [8]. 

Table 1. Historical household consumption profiles 

Dataset Location ��������	 Period  Ref. 

UKDA UK 22 2008-2009  [3,4]  

FR France 1 2006-2010  [2] 

SustData Portugal 13 2010-2011  [5] 

REMODECE EU 850 2006-2008  [6] 

2. PV and battery dispatch model 
The dispatch of the storage capacity is performed in such a way to maximize self-consumption; the 

battery is charged when the PV power is higher than the load and as long as it is not fully charged. 

It is discharged as soon as the PV power is lower than the load and as long as it is not fully 

discharged. The losses that are taken into account are the battery round-trip efficiency and the 

inverter efficiency. It is also assumed that demand is not responsive. 

At each timestep, the following simple dispatch algorithm is executed: The maximum battery 

discharge power is calculated by: 
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And the maximum charging power by: 
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The actual battery discharge is computed by comparing the PV generation with the load: 
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The actual battery charging power is calculated in a similar manner: 
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The energy balance is finally written: 
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Figure 2 illustrates the results of the dispatch algorithm for a typical week of July and a French 

historical consumption profile. Battery charging and feeding to the grid are indicated as negative 

values. 



 

Fig. 2. Results of the battery dispatch  

3. Yearly simulations 
Combining the PV generation model, the demand profiles and the battery dispatch algorithm, it is 

straightforward to simulate a whole year of operation and generate time vectors of the battery state 

of charge or of the power bought and sold to the grid. The different models and data processing are 

implemented in the Python language. The dispatch algorithm is compiled using Cython to improve 

the computational efficiency of the yearly simulation. The different scripts developed in the present 

work are provided as electronic annexes of this paper.  

3.2. Yearly energy flows 
When performing a yearly simulation, the main variable of interest is the total amount of self-

consumption. This variable is commonly expressed as a Self-Sufficiency Rate (SSR) or a Self-

Consumption Rate (SCR) [9]  (also referred to as solar fraction or load fraction by other authors 

[10]). In this work, the self-sufficiency rate is defined as the ratio between the self-consumed 

energy and the total yearly energy demand: 
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where 6 refers to an annual energy flow and 
 to an instantanous Power. N is the number of time 

steps in one year and 
7/,./,:,� is the DC PV generation directly self-consumed (i.e. without passing 

through the battery).   

The self-consumption rate is defined in a similar manner. Note that the reference is the annual 

energy produced by the PV array on the DC bus (i.e. before the inverter): 
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A summary of the relevant yearly energy flows is shown is Figure 3. Interestingly, each of these 

values can be deducted from the yearly demand 6���� and from the value of ��5 computed with or 

without battery. 

To demonstrate this, the value self-sufficiency without battery must be defined. This is achieved 

through the ��5: variable, defined as: 
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Fig 3. Energy Flows on a yearly basis 

The relative PV system and battery sizes are defined as inputs of the simulation since they influence 

the different energy flows and the amount of self-consumption. They are normalised to the annual 

electricity demand: 

5��� � �#
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where �#
��� is the accessible battery capacity (i.e. the total battery capacity multiplied by the 

maximum depth of discharge).  

The relative PV size is defined using the annual generation of the PV array on the DC bus (i.e. 

before inverter): 

5,- � 6,-,./6���� � 
,-,���C ⋅ ��*+ ⋅ �D,-6����  2?@A
?@A3 

where 
,-,���C is the peak power (in kWp) of the PV system in the standard conditions and �D,- is 

the capacity factor of the PV installation for the given location, in kWh/kWp. SCR can be deducted 

from SSR and the PV system capacity: 

��5 � ��5
5,-  

The total amount of energy provided by the battery is the self-consumption minus the self-

consumption in the case without battery: 

6E���F�� � 67/,./ $ 67/,./,: � 67/ $ 67/,:��*+  

The amount of electricity sold to the grid is what remains from the PV production after removing 

the self-consumed energy flows: 

6G�H��� � ��*+ �⋅ 6,-,./ $ 67/,./,: $ 6E���F������   

From the above equations, it appears that the most important indicator is SSR, all the other ones 

being deducted from it. Therefore, the next paragraphs will focus on the influence of the different 

operating parameters on its value. 

3.2. Direct self-consumption 

This section focuses on the case of household self-consumption with a PV system but without 

battery. One of the goals of this analysis is to cross-check the very common hypothesis of a 30% 

self-sufficiency rate. To that aim, the entire database of synthetic and historical profiles is simulated 

using the algorithm described above. For these simulation, it is assumed that 5,- � 1. The 

simulation time step is 15 min and the total number of simulated profiles is 929. The results of the 

simulations are shown in Figure 4. 



 

Fig 4. Box plot of the Self-sufficiency rate for each country (PV/demand ratio: 1) 

The following conclusions can be drawn from Figure 4: 

• The standard deviation is high. The self-consumption can therefore be only evaluated in a 

probabilistic way for a given household. 

• The assumption ��5: � 30% seems to slightly understimate the actual numbers obtained in 

this analysis. It can therefore be considered as a conservative hypothesis. 

• Southern countries tend to present a slightly higher self-consumption rate, probably due to the 

good correlation between cooling demand and solar irradiation. 

• The average difference between countries is however much smaller than the standard deviation 

within a country. 

3.2. Influence of the battery capacity 

Adding a battery to the system allows increasing the self-consumption. However, each additional 

storage unit within the system presents an utilization rate lower than the previous one. This effect is 

illustrated by performing the same simulation as above and varying the battery size (Figure 5). As 

expected, the curve seems to present a horizontal asymptote: after a certain quantity, any additional 

kWh of battery storage only increases marginally the SSR value: at high capacity, the battery 

storage starts to balance longer variations than daily variations (e.g. weekly or seasonal variations), 

which occur less frequently and therefore contribute less to increase the Self-sufficiency rate. 

 

Fig 5. Influence of the battery size on the self-sufficiency rate for each country (PV/demand ratio: 1) 



The following conclusions can be drawn from Figure 5: 

• The difference between countries 5��� � 0 seems to increase with the battery capacity. 

• Interestingly, the only country for which both synthetic and historical profiles are available 

(Portugal) shows a good agreement between both curves, which tends to indicate that the 

generated stochastic profiles are suitable for such simulation. 

4. Bivariate regression 
The main goal of this section is to provide a tool for the prediction of the self-sufficiency rate as a 

function the PV system and battery sizes. This kind of tool is particularly useful when evaluating 

the profitability of such systems because it allows calculating the amount of energy self-consumed, 

sold to the grid and bought from the grid. It should be simple to implement, accurate and 

computationally efficient. 

As in the monovariate analysis, the dispatch algorithm is first run for all the household profiles and 

for an array of 5,- and 5��� values. The SSR surfaces are then averaged for one geographical area 

or for the whole set of profiles. Figure 6 shows the result of this procedure in the case including all 

profiles. 

 

Fig 6. Influence of the PV system and battery sizes on the Self-Sufficiency Rate 

The challenge is to fit a 2-dimensional function to the SSR surface that presents the following 

characteristics: 

• Good overall accuracy between the model and the original values 

• Exact number for ��5: with 5,- � 1 since this value is very commonly used 

• Excellent accuracy for the prediction of SSR versus 5,- with 5��� � 0 since it corresponds to 

the common case of the absence of battery 

• Excellent accuracy for the prediction of SSR versus 5��� with 5,- � 1 since this is a also a 

common case 

• ��5 → 100% for 5,- → ∞ or 5��� → 4∞ 

• ��5 → 0 if 5,- → 0 

The shape of the univariate curves SSR vs 5,- (Figure 7) or SSR vs 5��� (Figure 5) is nearly 

asymptotical at SSR=100%. It can be fairly well approximated by a hyperbolic tangent function 

(also presenting an horizontal asymptote) combined with a linear term. 



 

Fig 7. ��5: as a function of the PV size fitted with a hyperbolic function 

Since the SSR data points (Figure 7) don’t present the same importance, a 3-steps regression 

methodology is proposed:  

First, a reference value of SSR is obtained directly from the data and imposed to the further steps: 

��5:,� � ��5NOPQ=:,NRS=� 

Then, the univariate curves at 5,- � 1 and 5��� � 0 are fitted using the following analytical 

expressions: 
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where &� and X� are the coefficients determined by minimizing the Root Mean Square Error 

(RMSE) between the function and the data. These coefficients should remain positive to ensure that 

SSR grows monotonously with 5��� and 5,-.  

Finally, the 2D regression is performed by imposing the two univariate curves (coefficients &�→W  

and XY→\) and by fitting additional coefficients ^_→�Z. In order to increase the accuracy, the 

regression procedure is split in two (5,- `� 1 and 5,- a 1). The final expression of the regression 

is given by: 

If 5,- `� 1: 
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If 5,- a 1: 
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where W is a weighting function given by: 

@ � minb1,maxT0, 5���Vc 
A total of 15 empirical coefficients is necessary to ensure that the regression fulfils the 

requirements. These coefficients are provided in Table 2 for three different cases representative of 

the results obtained in this study: a southern European country (Portugal), the average for all 

countries and a northern European country (Denmark). The quality of the regression can be 

evaluated using the coefficient of determination, leading to 5U � 99.84% for the overall average, 5U � 99.87% for Portugal and 5U � 99.91% for Denmark, which is deemed acceptable. 



Table 2. Coefficients of the fSSR function 

 Average Portugal Denmark 

��5:,� 32.603 33.438 32.184 

&� 38.220 47.093 30.685 

&U 0.854 0.715 0.844 

&W 1.019 0.081 0.968 

XY 13.268 15.802 11.238 

XZ 2.092 2.496 2.120 

X[ -4.760 -4.463 -5.381 

X\ 24.589 22.350 26.751 

^_ 8.998 9.459 10.694 

^g 1.742 1.245 1.516 

^�: 1.379 1.347 0.841 

^�� 1.221 0.954 1.854 

^�U 34.320 22.511 67.400 

^�W 1.459 2.676 0.782 

^�Y 0.373 0.282 0.441 

^�Z 15.027 16.318 8.756 

 

The implementation of the final function can be cross-checked with the following values (in the 

“Average” case): 

��5NOPQ=:._,NRS=:._ � 51.76131% 

��5NOPQ=�.U,NRS=�.U � 66.55241% 

5. Economic evaluation 
This section illustrates how the analytical expression derived above can be used to optimize and 

evaluate the profitability of PV/battery home system, taking into account the benefits of self-

consumption.  

Figure 8 describes the rationale behind the maximization of the self-sufficiency rate for a prosumer. 

Germany is taken as an example because its tariff structure is usually seen as favourable to solar 

home batteries: the price difference between buying electricity (at the retail price) and selling 

electricity (at the feed-in-price) is high, which can justify investing into self-consumption. 

In such a context, households optimize their solar home battery investment by comparing the 

levelized cost of storage and of the PV installation to the residential electricity tariff that includes 

network tariffs, taxes, levies and other surcharges that can be avoided when consuming self-

produced PV electricity instead of purchasing electricity from the grid. This can be seen as an 

indirect financial incentive to self-consumption originating from the tariff structure. 

It should be noted that, in a scenario in which such systems undergo a significant uptake, this 

mechanism is unsustainable since it generates revenue shortfalls for government, municipalities and 

system operators. These losses of revenues need to be somehow compensated, either by increasing 

the network tariffs or by changing the tariff structure, e.g. switching from a volume (i.e. per kWh) 

remuneration to a fixed or to a capacity remuneration for the grid connection. Interestingly, this 

modification of the tariff structure is already ongoing in various EU countries [11]. 



 

Fig 8. Average retail tariff structure in Germany (2015) and impact on self-consumption 

From a user perspective the levelized cost of a grid-connected solar home battery system can be 

calculated by considering the grid as a zero-investment generator producing at the retail price. In 

that case, the energy fed to the grid should also be taken into account as a negative cost. 

The investment in the battery and PV systems is taken into account as a constant annuity: 

# � �r,- 4 r��� ∗ 21 4 1
T1 4 �V<OPQ3 ⋅ T�5D 4 �BV 

where A is the annuity, I states for investment and where it is assumed that the there is a second 

investment in the battery after ���� years. OM is the fraction of annual operation and maintenance. 

CRF is the capital recovery factor calculated by: 

�5D � � ⋅ T1 4 �V<RS
T1 4 �V<RS $ 1 

where � is the weighted average cost of capital (WACC) and �,- is the PV system lifetime in years. 

The Levelized Cost of Electricity from a prosumer perspective can be defined as: 

t��6 � # 4 6E���H��� ⋅ 
N����� $ 6G�H��� ⋅ 
G�H���6����  

It is also interesting to isolate the contribution of the battery by calculating the Levelized Cost of 

Storage (LCOS): 

t��� � #���6E���F�� 
where #��� is the part of the annuities linked to the battery investment and re-investment. 

Figure 9 displays the influence of the PV system and battery sizes on the LCOE value for the 

following conditions: 

• @#�� � 4.16% 

• ���� � 10, �,- � 20 

• Fixed and variable costs of the battery system: 300EUR, 200EUR/kWh 

• Variable costs of the PV system: 1500 EUR/kWp 

• Operation and maintenance: 1.5% of investment. 

 



 

Fig 9. LCOE as a function of the PV system and battery sizes 

An optimum clearly appears, both in terms of PV size and battery size: if the battery is oversized, its 

utilization is low, which leads to excessive investment costs. On the other hand, for small batteries, 

the amount of displaced load is low and the impact on the self-consumption is marginal. The same 

is true for the PV system, whose revenues are significantly higher for the self-consumed share of 

the production than for the one fed to the grid. The design of such a system can therefore be 

expressed as Mixed-Integer Non Linear Programming (MINLP) optimization problem.  

6. Conclusions 
The main objective of this work was to evaluate the amount of self-consumption that can be 

expected for a household installing a PV system with or without battery. To be relevant, such 

analysis can only be performed for a large number of different (stochastic) household consumption 

profiles. A database of profiles has therefore been gathered from monitoring data, and a number of 

additional stochastic profiles have been generated. 

The analysis has revealed the following: 

• The inter-household variability of the self-sufficiency rate is high. For a given household, the 

amount of self-consumption can therefore not be predicted in a deterministic way. 

• For an average European household, the self-sufficiency rate in the absence of battery varies 

between 30 and 37%. The value tends to be slightly higher in southern countries. 

• SSR as a function of the PV and Battery sizes is a non-linear, almost asymptotic function. 

Achieving 100% self-consumption (i.e. allowing for full off-grid operation) is not realistic 

without excessively oversizing the PV system and/or the battery. 

• The self-sufficiency rate can be significantly impacted by the maximum charging and 

discharging power of the battery, especially for high battery capacities. 

• The benefits of self-consumption originate from the tariff structure and the difference between 

the buying and selling prices of electricity. They are therefore largely linked to the local 

regulation. A scenario of high penetration of self-consumption solutions might lead to an 

unfair distribution of network charges, taxes and levies since they are not paid for by self-

consumers. 

• Depending on the financial inputs, optimum PV and battery sizes can exist: adding a battery to 

the system can result in a larger optimum PV array size. 

It should finally be noted that the economic analysis presented in this work is for illustrative 

purpose mainly. It does not aim at covering the full spectrum of possible regulations and market 

tariffs. It can therefore not be considered as a comprehensive evaluation of the profitability of home 

batteries. Future works will focus on the exploitation of the self-consumption evaluation tool for 



policy support, in particular to evaluate the impact of the current evolutions in EU regulations on 

self-consumption and on the future deployment of solar home battery systems. 
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