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I. PROBLEMES DE CINEMATIQUE

1. Donner l'expression du champ de déplacements représentant

la rotation autour de 1l'axe 0z du plan x Oy.

Vérifier que

les mesures de déformation de GREEN et JAUMANN sont nulles

pour un tel champ. Montrer que ce n'est pas le cas pour

le champ de rotations linéarisé& u = - ay,

v =

ax

4

Aprés rotation, l'angle 6 est devenu (

g = rcos (6+a) = rcosh cosg -
n = rsin (8+0) = rsine éosu +

Les déplacements sont donc donnés par
u = g-x = x(coso — 1) - y sing
v = n-y = xsing + y (cosqg-1)

b) La matrice jacobienne s'écrit

D(x,y) sina cosa

= D(E,n) - Fosa - sinaJ

Elle est orthonormale, ce qui entraine

2G

1]
Cy
G

1
-

[
o

forme:
X = r
y = r

8+a) .

rsing

rcosé

cosH

sing

sina

sina

a) On peut mettre les coordon-

nées d'un point sous la

onc

X cosg - ¥y Sing

xsing + y cosqo .



I1 en est évidemment de m@me de la mesure de JAUMANN, car on peut

écrire, du fait que J est orthonormale,

J = U(I+H) , avec U=J, H=0

¢) Linéarisons les

coso —- 1
= u
On a alors

déplacements ci-dessus

2 .
= 0(a”) sina = o
= e 'ya s v o= x(x
- v A
o . 3% o ’ ay 0 y

ce qui entraine l'expression suivante du tenseur de GREEN

= 94
gxx 3%
g =

yy - 8y
du

2 2 ea—
gxy oy

2

1 Ju,2 1 3vi2 _ o

2 G 7GR T3

1 ,9v,2 1 ,d5u,2 az

+ = (= + = (o = e

2 (ay 2 (ay 2
+§l+.§_‘£§.‘£+§.‘l§_v_=_a+a=o

X ax 3y 3X 3y

La figure ci-contre montre en

effet que les fibres s'allongent

lors de la "rotation". La mesure

de JAUMANN aura la forme

M o

0 h

ot h est donné par la relation

h2 + 2h = 2¢g



soit
h=-13% /To7g = -1 % Ji-4?

ol il faut choisir le signe positif pour que h=0 lorsque g=0.

d) Montrons enfin que la mesure linéarisée de déformation ne

s'annule pas pour une rotation finie

u .
€ = 2 . cosa—-1 W
XX 29X
v . . '
£ = e = CcOSO-1 -seul le cisaillement s'annule.
yy 3y .
Les déformations € VE ne s'annulent

- du , 3v =-ging+sin u'au premier ordre. Y

ny 3y dx ¢ 4 P '

2,a) Donner la mesure de déformation de GREEN pour le champ de

déplacements u = ay, v = 0
_ Qdu 1l ,du,?2 1 ,3v,2 _
On a 8xx ~3x T3 5 3 (57 =0
2g =.§_u_+_a.‘l+_a_._.a_‘_l.+.§_‘{..§l=a
Xy 9y X 9y 9x y 9y
' 2
v 1 3u,2 1 3v,2 @
==t = (=) = (=) == .
Byy T oy T 3 ( 5 5 ( y) 5
4Y On remarque que, contrairement

au cas linéaire, il existe

une déformation g .
Yy

e
\‘\‘

e
b) Quel champ v faut-il ajouter pour obtenir un tenseur de GREEN

réduit au cisaillement pur?

Il faut que les relations suivantes soient vérifiées :



L@y, o v
gxx ) (ax) =0 > 3x 0
0V du 3u avV 93V
= F e e—— — —— ot T
ngy T 3% 3y 8x * dy 29X @
=3, 1 (2v,2 .9‘..2. = 0
8yy "%y T 7 3y 2 ’
solt v o - 1 : l~a2
oy
4
- 7 Seul le signe
/ 1'on veut que
/ I1 vient donc
TPTTTT777 777777777 07T o
u = oy , v o= ( l—az - 1)y
Posant o = sin ¢, on observe que v = (cos¢ - 1)y:

décrit un arc de cercle. Pour a=1l, ¢$=90° , et le

(+) convient, si

v=0 pour a=0.

le point 1

corps est aplati.

c) La mesure de JAUMANN se réduit—elle aussi 8 du cisaillement

pur?

Supposons que ce soit le cas : on aurait

12 12 12
2 -+
hy, O hy, O hy, O
soit
2
2gy1y = by,
2819 212112



Le cisaillement pur au sens de la mesure de JAUMANN et le
cisaillement pur au sens de la mesure de GREEN sont donec
deux notions différentes., Cherchons un champ de cisaillement
pur au sens de JAUMANN , de la forme

u = oy, v = Bx

I1 vient

2
= &
€22 2
La solution correspond au cas B = a .
ad
— L —"

Y
ﬂV

;

y’: tvutfgol

3. Non~commutativité des rotations finies

Considérons une rotation selon 1l'axe x : il y correspond

la matrice de rotation

1 0 0
U = 0 coso - sina

0 sino coso,



Soit alors une rotation selon l'axe y : il y correspond la matrice
cosB 0 sinp
U = 0 1 0
y
-sinB 0 cospB

La matrice jacobienne correspondant 3 la succession des opérations

(Rot y, Rot x) sera donc

JVvU U I =10T_ T
y X y

1 x?
soit
1 0 0 cosf O sinf cosB - 0 sing
Jl= 0 cosa -sino 0 1 0 =| sinasinp cosa -sinocosf|;
0 sino cosa -sinf O cosp ~sinfcosa sina cosocosB

| —

si les rotations sont effectuées dans l'ordre inverse

(Rot x , Rot y) , on aura

J, = U U
soit
cosB O sinB 1 0 0 cosf sinosinf sinBcosa
J2= 0 1 0 0 cosa =—sinal| = o cosa -sino
sinB O cosB 0 sino coso ~sinf sinoacosB cosoccosB

On constate que Jl # J2 » (ce qui ne fait d'ailleurs que traduire
la non-commutativité du produit matriciel), c'est-d-dire que deux
rotations autour d'axes orthogonaux ne peuvent &tre effectuées dans

l'ordre inverse.

Dans le cadre de la linéarisation géométrique, on néglige

tout terme du second ordre en les angles de rotations. Par conséquent



cosq = 1, cosf =
et
0 0
ﬁ = 0 1 - R ﬁ =
X y
o

sing =
0 B
1 0
0 1

Les matrices de rotations prennent donc la forme

avec la condition

T

qui se linéarise en

R+RT=O (antisymétrique)

T

UTU = (I+RY) (I+R) = I => R+R +R R=0,

O

La commutativité a lieu si 1'on convient de négliger tout terme

du second ordre apparaissant dans les calculs :

U1 U2 = (I+R1)(I+R2) = I + Rl

U2 Ul = (I+R2)(I+R1) = I + R2
Ainsi dans notre cas ,

1 0 B 1

3 = aB 1 -Q I 0

+ R

- O



et
ofB B8 1 0 B
Y = 0 -al = |0 1
9= ol = o
- o 1 -8 o 1

4, Champ de déplacements dans une poutre

Le champ de déplacements se décompose en
&% - Translation : (u,v)
- rotatiaon: (-ysina,y(cosa-1))

Au total, on a donc

u - y sina

[=
i

v + y(coso - 1)

v
[~
1]

Les déformations de Green s'écrivent alors

-ou du du,

&11° aikff;f%;l)2+‘% 3;1 z?ﬁ**YCosdal+'%(ul—yCOSaa}j+ %-(u';-ysinoaoc'l)2
= u + % u' + % v!2 - y(cosa(l+u')+v'sina)u' + % y2 alz
899= 2:2 + %(§;£)2+ %(;;2) =(cosa—-1)+ %(cosa—1)2+ % sinza =
cosog -1 + % cosza - cosq + % + % sinza = 0
S - i ——

—(d'—ycosaat)sinu +(v|—ysinaa£)(cosa -1)

- Alv '
= = gino(l+u ' )+v cosa .



Cherchons la condition d'absence de cisaillement : il faut que

tga = -

l+u

Dans ce cas, on a

. . 2
vI sing = (1+ul) %%%EQ , d'ol
I
]
(l+u )cosa + Vlsina = i%%%al
[} ] d
o, _ - d .
Toss  cosa cosa 5= (tga)
cos a
E— v.
_ Vl (l+u‘) _ u”Vj'
1
((1+u' )24y 2T (140
Enfin,
L} 11 i i i
Lo o _ v (l+u )-u v
@ cosa (cosa) B 2

((1+u')%+v' 2y

ce qui méne finalement 3 1l'expression

[ ' [ [ ' irov 2
ot 12 1 2 v. (l+u )=u v 2 (v (1l4u )-u v )
CI0 el S S y 2 2 172 Y T2, 12,2
((L+u )"+v ) ((1+u ) "+v )
Dans le cas oii 1'on impose u = 0, il vient
. _ 1 V{Z -y v " + L g2 v”2
11 2 (1+VL2)1/2 2 (1+Vl2)1/2



IT. DIFFERENTES TENSIONS

1. Soit une barre tendue. On suppose que la section  devient ',

et que la barre prend 1 allongement e= 2

a) Tensions eulé&riennes

— P
1)
.1
%11 T 97
b)
Pl
Fp = B @ 11 T o
c) Tensions_de K.T.
> > -+
P = T, 8 g1 (l+e)e,
P
=> ] l T = 1) ]
1 l+e 1 1 711
11 Q(l+e)
Montrons que le travail virtuel reste le méme
P. ¢ 8% = tllkﬂDldul t11QRGE= P126e = P16u
Pl
K.T. : &%= 511926 811 = TT+e) L(8etede) = Pllse = Pl su
. e\ t ot
E : §¥= oy, @'2" 9, Suy
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_ 9 1 3
Or a1 T o9k’ l+e 3x
Donc
_ 1 du _
8§ = Pl L(1l+e) Toe 1T = P1 Su

2. L'extrémité d'une poutre est soumise & une charge morte P

uniformément répartie., Sous

l'effet de cette charge, elle

tourne d'un angle o.Donner les

équations régissant les diffé-

rentes tensions 3 l'extrémité

si la section Q reste inchangée,

OO NSO I

et si la fibre de la poutre ne

s'est pas allongée.

. > - >
a) Piola : P = P e, n = e
0 = (mytyy * my £5)0 P = gty + my £5,)8
v tl]_Q tlzﬂ
b) Kirchhoff - Trefft:z
E’ P4 2. cos 2. sin
=g a= g o
< +1A 1, . 2 -
da e, = g, sina + g, cosa
- P = P sina gy * Pcosa Ez
5 &
. _ _ _ ,Psina
+ P sing = Q(n1 $11 + n, 812) = 8119 $11 = +-§——
- . - . Pcosa
P cosuo Q(n1 S51 + n, 522) 5219 S5 —a
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¢) Eulériennes

> -> + . >

vV = CcOoS0 e1 sino e2

P = ( + )EY) = + i -k
= \)10'21 \)20'22 0'21 cCosqg 022 sS1ino )

0 = vl 011 + v2 012 011 cosa + 012 sino = 0

3. a) Déterminer les tensions de PIOLA, les tensions eulériennes

et les tensions de KIRCHHOFF~-TREFFTZ dans un bloc &étiré

et écrasé d'épaisseur invariante h.

b) Vérifier que la variation de 1'énergie de déformation est

identique dans les trois descriptions, pour

- A - - -
Sul (a yx, 6u2 (b 1) v

a) Expression des tensions

@

‘ = E_ - -9
RERRARITIN L BIOLA vy, = fp t,, = -
s ' = . 1
s —— o = -> _a - . - E~ ->
¥ o< (s - KI. 8 "3 %1% 8 5§ %
il e = a - _ -+
=1 B P =P -7 g 6—Qb'gz
EREF R
Q’ s =!'_...P-a_.-.. s =-.].‘....QP_..
2 11 bh a' 22 ah b!
- a’ -
. EULERIENNES
o = % P o = -1




b) Calcul de 1la

donné
. PIOLA SW
. K.T. = &W
6811
8899
SW

. EULERIENNES

§W

variation de 1'énergie pour le déplacement

P(a'=-a)

- Q.
1 ﬁul = D, 6ué]
bi
-1 DZ 6u2 = E——- -1
(a - a) - qQ (b - b)
- Q b
$811 " 2m B ngi]
al a'
191 Dy 6ul = (— - 1)(1+ — -
a a
¥
- Q (b" - b)
' P -
b [og 9 Sup - 3f B Suyd
= a_ 2l _ I S
Dl 5ul = PU (a 1) al (a
(b'-b)
- Q(b'-b)

i !
S Sy
D= -13
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4, Soit un rectangle de cOtés a et b et d'épaisseur h.

Le champ de déplacements a la forme

X+a2y

X+a4y

et les tensions de PIOLA y sont supposées constantes. Exprimer

1'équilibre de rotation et calculer les tensions de K.T., par

l'équivalence énergétique. Interpréter .

‘itw
L5 @4 A. Les tensions de Piola ont
P l'interprétation suivante:
"2 ~, = .
b - la charge sur un cOté vertical
Hﬁz est donnée par le vecteur
! : (Pl’PZ) , avec
AE & . S P.=t,.bh ; P, =t bh
1 711 * T2 712 :

tandis que la charge sur

un cd0té horizontal est donnée par le vecteur (Ql’QZ)’ avec
Q]. = t21 Qh H Qz = t22 ah .

Lorsque le champ de tensions de PIOLA est constant, les &quations

d'équilibre de translation sont automatiquement satisfaites. En
effet,



v
rt
+
o
ot
HI
o
-

o
(a4
+
o
ot
[HH]

0.

Quant 3 1'équilibre de rotation, on l'obtient en exprimant que
1'énergie de déformation ne s'accroit pas lors d'une rotation

aprés déformation. Les coordonnées spatiales sont alors

]

£ = X+u (1+a1) X + o,y

]

y+v o

=
]

3% * (1+a4)y.

si bien qu'une petite rotation & partir de cette position

correspond &

§u = = n 6§ ¢
v = & 8§ ¢
soit
§u = = ay x 8¢= (l+a,)y 8¢

§v = (1+a1) x 8¢t o, ¥ 8¢

ce qui entraine

D, 8u = = ag8¢ ; D, su = = (l+a,)&¢
si bien que 1l'on obtient la condition
§W = abh [Ttyja3 = ty; (I*a)*ty,(1va))*ey50,] 69 = O,

soit



—tlla3 + t22a2 + t12(1+a1) - t21 (1+a4) = 0 (1)

Passant 3 l'interprétation en termes d'efforts, on obtient

a+}
ot

Q P Q
2 2 -1 =
¢ * IR (1+u1) ah (l+a4) O.'

h %3 * Zh

=

Cette condition se simplifie si 1'on fait les hypothéses suivantes:

1) Les déformations sont faibles, si bien que la partie essentielle

du déplacement provient de la rotation ("petites déformations'")

Dés lors, il existe un angle Y tel que l'on puisse &crire

sans grande erreur

@, = (cosy -1) , G, = - siny
oy, = sin a, = (cosy -1)
La relation (1) devient alors
(tll + t22) siny + (t12 - t21) cosy = O,
soit, en termes des charges,
P, Q P, Q
- (=L s 22y 2 .1 =
5h * FR)siny *+ (g - gg) cosv 0
AR Q
Q4 3
e "




Effectivement, l'@quation d'équilibre du moment s'écrit

P. ah siny + Q2 bh siny - P, ah cosy + Ql bh cosy = 0

1 2

2) Les rotations sont, elles aussi, faibles("petits déplacements").

Dés lors, a, << 1, o

E12 7 Eyp = 0

c'est-&-dire l1'équation classique de 1'élasticité& linéaire.

B. Les déformations de Green ont pour variation

6g11 = D, 6u, + D, u. D, Su, + D

p Sup * Dy vy Dy Suy # Dy upBduy = (l#ay)Dy ugt agDyduy
6g22 = D2 Suz + D2u2 D26u2 + D2 uy DZGu1 (l+a4)D26u2 * oy D26u1,
26g¥2= Dléu2 + D26u1 + Dlu1D26u1+D2u1D16ul + Dlu2D26u2+D2u2D16u2

= (1+0,)D 8u, + (l+a;)D,6u; + a,D,8u; + a,D, Su,

Il vient donec

SW = tllD16u1+t12Dl6u2+t21D26u1+t22D26u2
= sll(1+al)D16u1+slla3D16u2+s22(1+a4)D26u2+522a2D26u1
+ 812(1+a4)D16u2+slz(1+ul)D26u1+s a.D.Su,+s. ,a,D,8u

12727171 "127372""2?

d'oi l'om tire par identification



t11 © Sv11(1+°‘1)+312°‘2
E1p = Sppogtsyy(ltay)
Eyp = Sppup*sy,(ltay)
Eyp = Spp(l*a,)+s 504,

c'est-3d-dire le systé&me

(I+ay) oy 0 511 €1

oy (1+a,) 0 12 €12

0 (1+ay) %y S92 ta1
L a

0 og (1+a,) 99

- ’ - . -

Ce systéme n'est compatible que s'il existe une combinaison
y P

linéaire nulle des lignes :

Ay (T+a ) +2,0,=0 (2)
Apagti, (I+a, ) +A,(1+a ) +X, ay=0 (3)
Agagtd, (1+a,) (4)

Les équations (2) et (4) sont vérifiées si

>
w
ll
e~
~
ot
ES
Q
£
~r
>
£
ll
I
™w
e
b



soit B = 0,

1 %3

On obtient ainsi la condition

c'est-a-dire

tire alors

c'est~d~dire

s Az = “(1+051)’

A

3=

- (l+a1)(1+a4) + B(1+a4)(l+a1)

~Boa, ag= 0,

(l+a4) 3 A = -

typ o3 7 (I¥agdty, + ty) (I+ay) = oy £y =0

on retrouve la condition (1).

Examinons ce que valent les tensions de K.T,

déplacement différe peu d'une rotation (petites dé&f.)

lto, =

1 cosy ap= = siny ;
Il vient
tj1 < sllcosw = 81, siny
ltlz = sllsinw * 84, cosy
thy =»— S59 siny + Sy, COSY
thyg = S,y cosy + s, siny
(5) et (6)—» t;q cosy *+ tiy siny
£ cosy = t11 siny

%3

1

si le

= siny ; (1+u4) = cosy

11

12

(5)

(6)

(7)

(8)

19.



(7) et (8) ~» t cosy + t

21 siny

[}
7]

22 12

t cosyp = t siny

22 21 s

22°

L'équilibre de rotation s'exprime alors par
- 1 = = L3
t]_2 cosy t11 siny s12 t21 cosy t

soit

(tlz-tZl) cosy - (tll+t22) sinp = O

22

siny,

20.
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ITII. DISLOCATION DE VOLTERRA

.z%% 72 Le caisson ci-contre est composé
S Z2Z de deux &léments de longueur a,
! de deux é€léments de longueur b,
et de quatre coins, carrés
b parfaitement rigides,
On repére un point du cadre par
11 Jmm) ¥ - la coordonnée s, longueur de
;é%LZ 5 k(a0 %Zé poutre parcourue
I -~ la coordonnée normale n.
<€ & - Le champ de déformations est de la
forme
Egg = e(s) + n a(s) ; €gp = 05 €, % 0 (déf. plamne)

a) Le champ ci~dessus est—-il compatible localement?

b) Quelles sont les conditions de fermeture ?

Solution

a) Le champ de d&formations doit vérifier les équations de
compatibilité de SAINT-VENANT

Ty =0

Ty1 = Dgp 33 * D33 g5y = 2 Dyg €4

Tgy = Dgg €99 * Dy €55 = 2 Dyy €4y

T3y = Dyy €99 * Dy €19 = 2 Dy £y

Tyg = = Dpg egp + Dy (Dy egp + Dy gy = Dy £yq)
T3y = = D3y €pp * Dy ((Dyegy + Dy eyg = Dy eqy)



Tia = 7 Dyp e33 * D3(Dy ep3 * Dy €37 = Dy £15)

Nous obtenons (§ = 1, n = 2)
Tll = 0 -+ D33 € = 0 trivial
T22 =0 7 Dy ®nn * Dnness -2 Dsn €sn 0
T23 = 0 - trivial
T31 = 0 - trivial
le = 0 =+ trivial

Dans notre cas,
Dnn €ss Os

car e__ est linéaire en n. D&s lors, puisque €p = 0s g, =0,

les déformations sont localement compatibles.

b) Considé&rons une section de référence . Il faut que, aprés
avoir fait le tour du caisson,

on retrouve le méme déplacement

- — —— —— 17 qu'au départ, soit, sur courbe

T

1 : quelconque :

| ! Jdu

| P s

- — ds = 0
: : ol @ ou
| |
i 1) = +

AR ? c'est—-da-dire

-
J [e(s) + n a(s)] ds = 0.
‘e

En suivant deux courbes n = cte , on obtient les deux conditions

Le E(s) ds = 0 Le a(s) ds = 0
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IV. PRINCIPES VARIATIONNELS

Introduction

Les principes variationnels constituent l'outil de base pour

les approximations en théorie des structures., Leur utilisation

présente les avantages sulivants :

- les hypothéses doivent @tre formulées explicitement

- les conséquences de ces hypoth&ses peuvent €tre mises en

évidence

- les conditions aux limites résultant de l'application du

principe ne sont jamais surabondantes.

Les différents principes que nous utiliserons sont :

a) Le principe de variation des déplacements (P.V.D.)
f W(Du)dv - J f, u, dv - [ t. u. dS min
v vy + i g i i
2 utl ,

U étant l'espace des déplacements cinématiquement admissibles,

c'est-a-dire :

1) Il faut que: W(Du) dV ait un sens mathématique, ce qui
implique que v les €53 soient de carrés sommables.

Cette condition est vérifiée si

u, £ c® (V)

et

us continliment dérivable par morceaux.
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2) Les conditions

doivent 8tre vérifiées.

b) Le principe de variation des tensions (P.V.T.)

&(o) dV - J - .
JV S ti u. dS min

ot ,

I étant l'espace des tensions statiquement admissibles, c'est-a-
dire : |
1) Il faut que f ®(o) dV existe, ce qui implique que les

. .’V ~
tensions soient de carrés sommables.

2) I1 faut que l'équilibre soit vérifié. Lorsque les tensions
ne sont que continiiment dérivables par morceaux, cela
implique : |

1

. D.o., + £, =0 dans les ensembles oid 0., € C
joii i ji

+ - . . . ., -

» n,(0.. = 0..) = 0 sur les lignes de discontinuité
J 3z Ji
A ce sujet, il convient de se détacher de 1'idée que
les tensions sont toujours continues. Ainsi, & la jonction
de deux matériaux différents, les conditions de passage
sont (Etat plan de contrainte)
L(2)_ (1)
11 11
(Equilibre)

(2)_ (1)
41%2 %2

(2)__(1) e
€yn =€9, (Compatibialité)




On a donc

Eég) B %; (053)" V2 U(ii) = €§;)= %{ (°§;) V1 °£1))’
soit
T U R
E2 El E2 El 11
3) Enfin, 1l convient que
nJoji = El sur 82 .
¢) Le principe de Hellinger~Reissner (p.C.)

o(g) dV - J t. u. ds - j f.u.dV
S i 1 Vll

1
[Vcij 5 (Diuj+Djui)dV - J
2

v

max min
oL utl ;

oli u est 1l'espace des fonctions cinématiquement admissibles,
tandis que £ est l'espace des tensions telles que les intégrales

ci-dessus aient un sens.

Approximations

Les approximations consistent toujours 3 faire des hypothéses
sur les déplacements ou sur les tensions. Il s'agit donc d'umne

restriction des espaces U, I ou £ et U.
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Or, 3 chaque fonction de U, £, ou £ est associée une condition.

Ces conditions portent

- sur les &quations d'équilibre dans le P.V.D.
- sur la compatibilité dans le P.V.T.
_ e e

sur 1'é&quilibre pour U } dans le P.C.
la compatibilité pour £

Par conséquent, restreindre les possibilités de variation, c'est

perdre des conditions.

Ainsi, la théorie de BARRE de SAINT~VENANT des poutres
est la solution exacte de 1l'élasticité& dans le cadre des

hypothéses

On constate que cette théorie implique la constance de l'effort
tranchant., L'application de ces mémes conditions dans le principe

canonique méne & la suppression des termes

( u Vv 2u ERY
— — e s e —
Jv ’x 3x °y 3y = 'xy (By BX)J v

ce qui signifie que les équations

¢ _ au ¢ . av ¢ _ 3u + v
b H
Box 9X acy 3y BTxy y X

ne seront plus assurées. En particulier, les équations

de la théorie de St-Venant, qui sont responsables des déformations
anticlastiques, ne sont pas nécessalrement vérifides. C'est i
l'utilisateur du principe qu'il incombe de spécifier ce que seront
Ex® Ey» ny' Bien entendu, il est tré&s délicat de faire un choix
convenable, ce qui dte une grande partie de son intér@t au principe

canonique,



1. Approche statiquement admissible pour une poutre console

en double T.

La poutre en double T repré-

‘P sentée ci-contre est idéalisée
- 4
7 t T P .
J de la maniére suivante: les
e b semelles sont supposées parfaite-

ment souples en flexion, et on

"%n'y considére donc que 1l'effort

normal de résultante N; quant a

1'ame, on admet qu'elle ne

<t

AR

i résiste qu'au cisaillement.

Calculer le déplacement d'extrémité

sous une charge P.

-
.3

4

a) Etudions d'abord 1'équilibre dans 1'dme: comme la seule tension

est par hypothése Txy, on a donc
acx arxy aTxy
5% oy 3y =0
T 9o 9T
Xy, _y Xy - o
9x 3y X !

ce qui permet de considérer 1 = T,, COmme une constante. L'énergie

de déformation de 1'3Ame vaut

% 2
J ht dx = +—— hot
0

N~
(] B

2G

b) Passons & la jonction dme-semelle pour la semelle supérieure.

La semelle &tant caractérisée par sa seule tension d'extension,

il faut déterminer l'équation de jonction de la mani&re suivante:

le schéma ci-contre conduit

VR ‘ N:dhl directement & l'équation
d'équilibre élémentaire

Tt dz

dN + tt dx = 0,
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soit

%% = - Tt => N(x) = N(o) - ttx
Enfin, comme 3 l'extrémité de la poutre, N(&) = O,
on a

N(o) = ttg ,
d'od

N(x) = tt(2~%)

L'énergie de déformation de la semelle s'€crit donc

2EA dx = 537

Jz 22 (pmx) 2 2,2

)
W] W

c) La semelle inférieure subit, au signe prés, la méme sollicitation

que la semelle supérieure: son énergie vaut donc également

2?53

2EA 3

d) Au total, on a donc une énergie (complémentaire) de déformation

donnée par

12 thg 2t2£3

¢ =3 ¢ 3EA

Considérons alors un déplacement v imposé& & l'extrémité, Le terme

correspondant d'éneérgie potentielle s'écrit :

h/2 _
- ¥ v t dy = - tht v
-h/2

oli v est le déplacement moyen conjugué au cisaillement I :

- 1 [ B/2
v = '1:1? f vt dy
~-h/2
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En termes de la charge totale P = tht, qui doit €tre uniformément

répartie pour respecter les hypothéses du modéle, l'énergie

potentielle s'écrit encore ( - P v).

. . . . ) t - .
Le principe de variation des tensions s écrit alors

li [thl + 2t2£3 -vht min
2 @ 3EA T .
La solution est donc donnée par :
2,3
= _ ht t" 2
vhit=1l[ — 2 = 1
2 2 3 3
= tht [= + £ t& _ L2 ty
¢ 3y -rlgt 3
d'od
';; £ __2_ PQ’B -+ ..I.)_&__
3 EAh2 Ght

Le premier terme correspond 4 la déformation de flexion, le second
d la déformation due 3 l'effort tranchant. On peut mettre la solution

sous la forme classique

- pid  py
Vet ow
G

ce qui conduit &

h Qﬁi - ht

e) Soulignons en passant les incompatibilités que peut entralner
l'utilisation d'un modéle &quilibre. Si 1'on veut intégrer le

champ de déplacements dans 1'dme, on peut utiliser la relation

+ 40,

-
i
[ep]
PanY
gz



et y ajouter les conditions

Ju v _
X 0 dy °
correspondant aux hypothéses o, = o, Uy = 0. On a donc

u = u(y), v = v(x)

et

du ¥v _ % => u = q

y 9x G b
v = Bx ,
avec o, B = ctes. D&s lors, comme u = 0 & l'encastrement, on a
partout
T
u=0, v = ra X .

Remarquons que dans le cas général, méme cette intégrabilité
locale n'est pas garantie! Passons aux semelles: on a

dx EA dx i

d'oi u = - Ttx ., On constate donc que le déplacement est fortement
discontinu &8 la jonction dme-semelle, comme le montre le dessin

ci~dessous:

NSNS NS

m~



2. Approche cinématiquement admissible d'une poutre en double T,

On considé&re la méme poutre en double T que dans l'exercice

précédent. On néglige toujours la raideur en flexion des semelles;

on admet que dans 1'dme, les déplacements ont la forme

u = og(x)y , v = v(x) ;

on considére en outre que l'dme est en &tat plan de tension.

Les déplacements sont supposé&s continus, si bien que les semelles,

d'épaisseur trés faible, ont les déplacements

u = qa(x) % s v = v(x) .

Calculer le déplacement sous une charge P d'extrémité.

a) Calcul de 1l'énergie d'une semelle en un point x:

2 2
€2 = ..];. EA
XX 2

1 12
W, = 5 E A o

1

J-\lﬂ‘
-L\l.'ﬂ‘

b) Calcul de l1'énergie de 1'3ame :

]
E = o
XX y

Y =.§.E+ﬂ=u+v'

xy 9y X

L'état plan de tension est caracté@risé& par une énergie de la

forme

1 E A 2 - 1 2
2 l__\)2 |:l‘c:xx * €yy T 2voey Eyy-l IR i

ce qui donne donc

( h/2 h/2
-h/2 1l=v ~h/2 ’
1 E th3 12 0y 2
=5 [- 5 15— o ~ + Gth(a+v') ]



¢) Au total, on a donc

3 2
W= oW+ W, = % E o'’ (——33——7— + 2A %-) + % ¢ th(a+v')?>
12(1=-v7)
=Llp 1 %2+ Llgo® (erun?,
2 7
avec
3 2
I:___t.:—tl_i..-}- 2A%—-
12(1-v7)
o* = che,

ce qui permet d'écrire le principe de variation des déplacements

sous la forme
1 (* 2 % 'y 2 .
5 [?Ia + G @ (a+v') ] dx - Pv(R) min
o o,V
Les variations de o et v conduisent aux systémes suivants :
So. - - EIg" + G Q* (a+v'}l = 0 dans ]O,ﬂ[;

a(0) =0

EIag'(2) = 0

x f
Sv - - G Q7 (a+v")
v(0) = O
¢ o* (atv') | =P
x=4%

On a donc d'une part :

2

P
Lok -,

ET

P
a' = 5T a' = L (x=2) => qa=

en tenant compte des conditions aux limites;



- d'autre part

P 1 1 X
v' = —=— - a =P [ + == (2x - =) | ,
Gﬂx GQX EI 2
d'otd
2 3
X 1 2x X
N o S T S S
GQX ETI 2. 6
et, en particulier

3
L L
v(®) =2 [=5 + 557 ]
GR
C'ést la méme expression que dans l'exercice précédent, mais le

moment d'inertie I a changé: 3 présent ,

.2 3 2
_ h th h
I = 2 A 3 + > 2A A

12 (1-v?%)

d) Montromns qu'il existe un déséquilibre & la jonction Zme-semelle

dans 1'ame

= v = B P = b
Txy G(a+v?) o* ht g t Txy h
Dans les semelles ,
-1 v R _ b, AD
N = E A o 5 P 5T (x=2)
et
dN _ PAh _ PAh _ P 1
dx 21 3 ~ h E ]
b 4 oan? 1+ e B
6(Ll-v) A

6(1—v2)

Le déséquilibre se manifeste par le facteur

th

1 + 3
2A(1-v"7)

th .
“+ est petit.

qui est d'autant plus proche de 1 que T



e

3. Flexion d'une poutre 3 section symétrique par rapport au

plan xOy

3.1. HYPOTHESES

On fait les hypothé&ses suivantes :
a) b(y) est lipschitzienne, de fagon

que %% soit définie presque partout

8012
B) 0y, = 0py (k) (5= = O)

My
C) 011 T_

d) on postule l'&quilibre sur la surface latérale: par conséquent,

919 n2 + O19 n3 = 0,
c'est-3d-dire que le vecteur (012, 013) est multiple du vecteur
tangent cte (1 L EE) => =+ 1db
& 7 dy 13|, 4 Z dy 12
a="- 7

=z db
13 % dy Y12
L'interprétation de cette condition est donnée & la figure ci-contre.

A 1l'intérieur, on interpole lin&airement par o

On considérera, pour fixer les idées,
une poutre console chargée en bout par
une distribution de charges

t = (ty,,tz) de résultante P selomn
l'axe y. La forme nécessaire de la
distribution sera précisée plus loin.

Ecrivons le principe de REISSNER

oV z db du ow
* %) "5 Ey 12 G5z * 5] 40
z db, 2

dq —J t_ v(a)+t_w(Q)
2G QEY 2]

stat.
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3.2. VARIATIONS

1. La variation du moment M fournit 1'&quation (moments—-rot.)

e J 2 49 - == =0 soit M = EIqg', (L)
Q

e e

avec o = J uy dQ (2)
Q

2, La variation du déplacement u est particuli&rement instructive;

elle conduit en effet & 1l'équation

g

_ o.M _ %912 1 4p _ v
Y I —35— T Iy 915 0 34 1l'intérieur, (3)

1'équation de surface &tant résolue a priori. Ré&solvons cette

derniére é&quation. L'&quation homogéne en 999 s'écrit
90
3y b dy “12
soit
3012 db
012 b

elle admet donc la solution

Ln 019 = an b + n C(x) ,

soit

O12 b . (4)

On obtient aisément une solution particulidre de (3) par la méthode

de variation des constantes, substituant (4) dans (3), on obtient

aC
en s sant -— 0
upposan 5y # 0,

138 _¢ db  C db _ _ y dM
b 3y Z dy 7 dy I dx



3C

oy

o
mlm
%=

2y
I

dont une solution est

= - 1
¢ = T

a1m
Hi=

y
J b(n)n dn
by

On constate que cette solution convient parfaitement, car

C(x,hl) = 0 (trivial)
h2
- - 1 dM - - 1lau =
C(x,hz) T ax I b(n)n dn = T dx I y d@ 0.
hl Q

si 1'on a choisi l'origine au centre de gravité de la section.
En particulier, la section peut se

terminer par un plat en hl et h car

2’

on aura de toute fagon o = 0 en ces

12
points. Selon 1l'usage, nous écrirons

b

= - dM _S(y)
912 7 7 dx Ib(g) ° (5)
l avec
| ey L[ |
(y) =3 b(n) dn (6)
| by

(moment statique de la partie [El’i]
de la section)

3. La variation du déplacement v entraine

8012

9x

= 0 &4 1l'intérieur (constance de l'effort tranchant)

G19 = ty a4 1l'extrémité. D&s lors, ty doit avoir la forme
(5) , soit :



v,

S(
- cte . ——(—-—)I

4., La variation du déplacement w fournit 1'équation

g
- z2db 12 0 34 1'int. (constance de l'effort tranchant).
b dy x
z db _ s a1 e
919 % v = tz d l'extrémiteé

On constate que le mode de chargement doit @tre assez particulier!

5. Varions Ulz(x,y)

b/2 . g+ ~b
du 3V z db ,au oW = P12 1 db2
f—b/Z [(ay Y vy Gt eyl 42 g [ (P
i
A\

8 (déformation équivalente)

3.3. Cisalllement moyen et section de cisaillement

Ju v z db ,3u aw
l. On a JQ 0'12 [("é'; + 3}{) + -E- -a—}-,— (-a—z )] dQ

-+

_ M S(¥) Ju v z db ,3u v
- I IQ b [(3y ax) "B dy (az * axz] do

= - M y y = cisaillement E&quivalent
h
2 b/2
- 1 5(y) du, dvy , z db du . ow
Yo 3 J b [K Y 3x> ¥ b dy (az * ax)] dz
hy -b/2 .
2. 2 2
o + 0 2 2 2
12 2
JQ"‘”_EE—li dg = X 5 J §§ [1+% db 1 de
2GI 2 b
=M!2
260*
2

o~ * . . .
oi f, section de cisaillement =

2
[ [}+ E— d; 2] de



o - I
h
db, 2
J Dﬁ.ii.dy 1 dy
h
1
3.4, Exemple Cercle
vy = R cos ¢ dy = - R sin¢ d¢
b =2 R sing
Yy
) S(y) = = J 2Rsin¢ Rcos¢ Rsing d¢
/ h
! 6
¢ / = —2R3 j sin2¢cos¢ d¢=
. )
_ 2R3 [sin3¢]e - _2R3sin39
3 3
h
2 L2 i
S _ R'sin 6 . _ 2 6 [m _. 6 _ 5m .6
. Jh T dy = 2 [ SRS 1n® Rsinfd8 = ) R J sin 6d8= 7 R
o )
1
db _ _ 2Rcos¢dd - - cosd
" dy Rsing d¢ sing¢
h -
(% s? avy2 ek (T 4l a0 ar®
’ Jh b ‘dy y 9 st ¢o 18
)
1
6,5 1 _ 16 6 _ 2 .6
Total = R(F3 * 13.715) = 716 " = 27 "R
I = ﬂR4
A
== Qx = 2R8.27 = Q 2—.7.. = Q
16.2.1rR6 2 1,185

L4



4., Torsion d'une poutre i section rectangulaire

On fait les hypohté&ses suivantes :

o] xx.= o, ny = 0, Txy = 0
/.,-‘/; u = — ey
i 4
/5 7Z
x// - :;ﬁ? . v = 6x
7 2z
/’ w = k xy,
y

ce dernier champ servant & modéliser

le gauchissement de torsion. On a

donc
sz = %% + %% = kx +6'x = (k+8') x

Dé&s lors, l'énergie d'extension s'écrit, pour l'unité de longueur

1 2 2 2 1
5 IQE k x"y" dQ = 5 EIXIy k ’

tandis que l'énergie de cisaillement vaut

1 _ary2 2 1422 _ 1 _a1y2, 1 'y 2
2c;JQ[(ke) y© o+ (k+81)%x7] 49 = 7 6T (k=8") "+ 5 GI_(k+e')

Considérons le cas d'un moment d'extrémité: on obtient

-;—J (& x y k'? 4 g I (k-8" )2+ GIy(k+6')2] dz - M8 (L) stat

Varions séparément k et 6 : il vient
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EI I

Sk > - —gF K"+ GI_ (k-0') + GIy (k+e') = 0

dans ]Q,Iﬂ: (1)

et aux limites :

L ‘
EI I k' 8k =0 2
[Br, I, 1 (2)
8§86 > - GIX (6'—k)l - Gly (6'+k)l = 0 dans JQ,L[: (3)
8 = 0 du z = 0 (4)

| ' = =
[ I (o k) + GIy (8 +k)]' M en z L (5)

Pour les conditions aux limites sur le gauchissement, nous

ferons deux hypothéses:

4,1, Le gauchissement est libre en z = O

On a donc EIx Iy k' = 0 en z =0 et z = L
Montrons qu'il existe une solution telle que k" 0: en effet,

on déduit alors de (1)
.t v -
I, (k-0') + Iy(k+e ) 0,
soit
+ - ! - : =
k(Ix Iy) e (IX Iy) 0
c'est-a-dire
I -1
X

= ' y
k o' T (6)
X vy

I1 vient alors



= ' 1
M G IX (8'~k) + GIy (g'+k)

G(I +I )8' + G(I -1 k
( x y) ( . )

X
2
(Ix—Iy) :
= + " e Omntama—
G [}Ix Iy) Ix+Iy 1 e
Ii +2 LI+ Ii - 1% 4 21 1 - Ii
P ]
= ¢ [ T ¥ T 1 e
b y
41T
— |
= G . T":Tl 8 _ (7
x 7y

On remarquera que :

a) selon la présente théorie, le gauchissement s'annule si

b) le gauchissement a pour effet de diminuer la raideur en

torsion :

c) Pour les sections minces, I_ << I ,

et

I
M= 46 —L— o' = 46T o
R
I

X

ce qui correspond & la formule classique des sections minces
(% chbl).

Comparaison avec d'autres solutions

soit : Iy le petit moment d'inertie . On a

4G1

I
I

d

M
C:—e-'=

2

1+

L]
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On a

I 3
TX = bhb_ (%) = lf avec n = % (>1)
x n

bh3

Il vient alors

1
C = 4GI
, ]

1
1+--2"
n
La solution de COULOMB donne
I
1+ == 2
C(Cb) = G(I_+I) = 4GI_ . 14] = 467 . B*1
y x y b= y 4

et celle des sections minces

Cc(sM) = 4GT
y
Posant
_ C
€1 = %e1
y

€, = - T
3(1 + —3)
o3
3
_ n +1
Cl(Cb) 17
1
Cl(SM) 3

Le tableau suivant donne la comparaison de ces diverses solutions

avec la solution exacte de LEVY-ESTANAVE




c, 0,167 | 0,266 | 0,300| 0,314 | 0,320 | 0,333
¢, (sM) 0,333 | 0,333 | 0,333 0,333 | 0,333 | 0,333
¢, (Cb) 0,167 | 0,416 | 0,833 | 1,375 | 2,167 %

c,(L.E.) 0,141 | 0,229 | 0,263 | 0,281 | 0,292 [ 0,333

§€a
o 3
v
D,
9,
LY
/ SECTIONS MINCES
0,5 / AL

% u
52 |
‘ﬁém e

N > 3 4 5
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La raideur est surestim@e, comme il fallait s'y attendre. Mais
les résultats sont trés valables, compte tenu de la simplicité

de la théorie.

4,2, Le gauchissement est bloqué en z = 0 (encastrement parfait)

Des équations (3) et (5), on déduit

! — =
G (I + Iy) 8' + G (I Iy) k = M,

soit
ot = M . 1,71
G(L +I1 ) T +1
X vy x vy
Réintroduisons cette valeur dans (l) : il vient successivement

I I
- E 22X k" 4+ G(I +I )k + G(I_-I )8'= 0
2 X 'y y X

IxI . (IX-—Iy)2 I —IX
— 1" - S —————e, 23
E —-—-—XQ k" o+ G(IX + Iy) k Gk T %7 + M T 3T 0
X 'y Yy X
Iny 4IXI Iy-Ix
- " 2 =
E =3 KD+ G g—g= * M 757 0
X 'y y X
QC(I -1
B T R L s
E(LI +1 ) E(I +I )I I
x ¥y X ¥y x5
Posant
2 G Q
82 = 4

= e,
E(IX Iy)

on obtient la solution générale

ko = A ch Bx + B sh Bx

pour l'équation homogéne; une solution particuliére de 1l'équation

compléte est



M(I_-I_)

k= + 2
p 4 ¢ IT
Xy

La solution générale de l'équation est donc

M(IX‘I )
=3 + = o4
k ko kp ZET“T‘X" + A ch Bz B sh Bz
Xy
La condition k(o) = 0 entraine
pm o T
4G 1. 1 ?
Xy
la condition k'(L) = 0O conduit &
B = - A th BL

I1 vient donc finalement

M(IX-I )

k=Zﬁ—T—L— D."'ChBZ'*‘thBLShBZl
Xy

On remarquera que, pour BL >> , et Bz suffisamment grand,

th BL = 1, ch Bz = sh Bz ,

et on converge vers le gauchissement du cas précédent (libre).

La torsion 6#' est alors donnée par

I -1
e' = .-....—EL_.___ + k X z
G(I_+I ) T +1
¥ X 'y
M (IX—I )2
= sraTy [t —f— (1 - ch Bz + th gL sh Bz)]
X 'y ; y ;
(L +1 ) (I - 1)
M X 'y _ % _
G(I_+I ) EaI I 41 1 (chBz thpL sh Bz)]
M X + Iy (Ix"Iy)z
= E [41 T - (L +1 )L T (chBRz - th BAL sh BZ)]
X Y x "y Txy

~ v \

It . \s : s
gauch.lib, correction
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Enfin, l'angle 6 vaut

y I +I (1 -1 )2
o= M x Ty x 'y

1
T LT T 2 I T eTY 3 (shgz - thpL chpz + thsL)]
Xy Xy X ¥y

En particulier,

2
I +I (1 -1.)
_ ML X X 'y
o) -5 T
¥y

_ thBL ]
AIny(Ix+Iy) gL

On constate que la correction est sensiblement proportionnelle &

1

(gi)
Quel est 1l'ordre de grandeur de R?

o2 - 46 _@_ _ 4G __ bh _ 486 1

E Ix+Iy E bh3 . hb3 E b2+h2
12 12
_ /2h 1 L . T 7
B = Ty I d = diagonale de la section = /% +h

D'autre part

2 2

(1, - 1) LI (I,-10) L

4IXIy(Ix+Iy) 4Iny (Ix+1y)2 4IXIy (thSth)Z
Ol (m2ap?y?
4Iny (h2+b2)2

On a donc
2
I +1 1T+v (hzabz)w - 24z _ 24 L..q 24 oz
8(z) = %.TET;X - lz - 24 43 [shV 135 7“1 aleh T35 3
X ¥

]

8 (L)

I +1 / ' 2 ,2,2 -
ML X 'y [1 _J 1+v (h“-b"7) i th ( + v E)]
G IXIy 24 d4 L 24 d

1]



5. TORSION DES SECTIONS MINCES OUVERTES

Les coordonnées sont mises sous la

forme
x(s,n) = g(s,n) ~ n E%
- d—
y(s,n) = ¥(s,n) + n =

On a alors

- 2 - -—
_ dx d7y - dy
dx = (E-E n Z)dS a—s— dn
ds
w-— 2... -
_ ,dy d " x, . dx
dy = (35 + n dsz)ds * 55 dg,

si bien que 1'élément de wvolume

vaut
dx a%y dy dy i’z ax
dx A dy = [(55 - n ——%)ds - E% dn] A [33%-+ n —3)ds + E—Zdé]
ds ds s

ol A représente un opérateur de multiplication des différentielles

dont les régles sont

ds A dn = - dn A ds
ds A ds = O o ds A B dn = gB ds A dn
dn A dn = 0O
I1 vient donc
d%. 2 i’y dx 472 a’% a5
dxpdy =[G -nFFZ+r G+ 05 Fldsadn
ds ds
d’% a7 _ 4%y 4%
=[1+n( 2-&-;""—'-2’5-5')] ds A dn
\ds ds ,
courbure 9¢
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Nous supposerons dans la suite que l'épaisseur du profil est trés
faible devant son rayon de courbure. Les vecteurs de base

> -+
e, et e ont alors pour composantes

dx _ 4y
ds ds
- <>
e = s e =
s - n _
dy dx
ds ds

Cela étant, les déplacements sont de la forme

- - - - a(3- - ax
u = 8 (y yT) 6 (y yT) . Ts
v = 0(x-x,) = e(§ - x.) - 8 éi
T T n ds
w = w(s,n,2z) : inconnu

Nous nous réservons la possibilité de choisir le centre de

torsion (XT,yT). On a alors

—

oo, 4x dy _ SR S A dxq
P FE A Y 0 [Ge-xp) g5 - 0 = vp) T %n
= e(rT - n)
ot la variable
- - v _ s dx
rp = (X - xg) 33 (v = vp) 735

n'est autre que la distance du centre de torsion & la tangente au

feuillet moyen du profil. Dans la suite, nous utiliserons é&galement

la variable

=y dy o5 dx
ds Y Ts e
liée 3 la premiére par la relation
o dy dx
Tp =% T X 3s T V7 T5



Quant au déplacement normal au profil,

Nous sommes &

w
3z

a)

ZZ
du
s
92z
ou
n
9z

"

b) sz

c)

nz

Dans le cas d'un profil mince, on simplifie nettement le probléme

dx

ds

(=N
<1

|

+ v

[
n

présent a

ds 9s
on on
A
on

il est donné par

= ) dy (x - x

8[t§ A ds

méme de calculer les déformations :

-i»(a.'(rT - n)
- dy - dx
vo' [Goyp g3+ (&= - xp) FHl
1 d - 2 - 2
+ 5 0' 33 [KY'YT) + (X‘XT)‘l

en faisant 1l'hypoth&se de Kirchhoff:

oW
on

ce qui entraln

w(s,n)

Il vient alors

w _ dw _
98 9s

si bien que

sz

5.1. Considérons d'abord le cas de la torsion uniforme (oz

dw .
(33 + 8 r

o' [ -y L+ - oxp)

e
Q(s) - n
el

2

)

dx
=1

’

&

ol

o' [-yp) g3 + (x-xp)

2 8'n

0).

Le principe variationnel correspondant s'écrit (poutre console)

c L

2

Jo <= ]

0

as

L
[h
o

3
' 2 12 h™ _ .
+ 0 rT) + 49 5 ]ds Mo (L) min.



Visiblement,

le champ w optimum est celui qui annule

ow .
BS+6rT’
c'est—~a~dire
ds o ryp 6" r *+ 6% T " Y1 g5
Posant
s
p(s) = J r(g)dg ,
)
on obtient
wo= - 8'y + e'xT§ -0' ¥ X +w o,
d'ol
w=-9' [@*x § + ¥ x + n(y - Vo) ii + n(x - x.) ig:j - w
T S y T/ ds T/ ds .
: 1 _da ,=2 . =2 - dx
e Al — ———— ' e
- o' [v + 7 " s (x" + y9H] Xp 6 vy + 1 35
- v (x - .‘ﬁ-}-_
Yo o' (x o ds) wo
On choisit alors %o s Xps Yo de facon & assurer le découplage

de la torsion vis—&-vis de l'extension et la flexion, soit

J wdQ = 0 , J wxdQ = 0 , I wydQ = 0.

Q Q 2
On obtient ainsi, en premant le centre de gravité pour origine et
en se placant dans les axes principaux : .

2 J phds
- = at - v O

a) L he 6 EJ q)hds:] -> LS 6 T

e}



1 _d =2 =2 - _ _dy _ -
> JQE‘“z“ds(X*Y)](X nggldt Ty I, =0
% % - = - 3 L
= -~ dx d - ,dy,2 h -
Yo IX = I Yx h ds - I X == E% + y (E%) :] 17 ds =J Yxhds
) ) o
1 oo
Yp = T J Yx h ds
x o
t - dx | - dy - dx
c) Jg[@+ n (x Is + vy EEX] [y + n s do + X 1'.y = 0
L L - -, 3
- - ,dx,2 - dx dy h _
*p ty ¥ JowhdS*L @ty asd 174800
ce qui entralne
1 [* -
X 2 - T J Py h ds .
y )
Les coordonnées (xT,yT) définissent le centre de torsion. La
raideur est alors donnée par application du principe
L 2
3¢ f dz J 20’ ds) 0% - we) ain
o )

M=GJ@eo',
avec

J=%—[ h3ds.
b



5.2. Torsion non uniforme

Pour traiter le plus simplement possible le cas de la torsion

non uniforme, nous ferons les hypothé&ses suivantes :

. 0, = oz(s,z),

c'est-d~dire que les tensions longitudinales ne varient pas selon
1'épaisseur. Cette hypothé&se est d'autant plus valable que l'épais-

seur est faible
. w(s) = k W (s)

ol W(s) est le gauchissement de la torsion uniforme pour 8' = 1 .
Pour la dépendance de w vis—ad-vis de la normale, on maintiendra

1'hypothése

solt

Wy o G- vy Wy (Fexy 427 2
5n 0 [(y yT) ds * (x xT) ds ] =0

ce qui entraine
dy

w(s,n,2) = k(z) W(s) - n 6' [G-yy) $L+ G-xp) £ .

Enfin, on pose

. 0_ =0
n

. =0
ss

. v... =0



Les hypothé&ses ci-dessus portent aussi bien sur les tensions que
sur les déplacements: nous utiliserons donc le principe de

HELLINGER-REISSNER. Mais auparavant, il convient de calculer les

déformations
-_-.-_:.5_‘.‘7_: ' - ] _— _d_;:_ - é_;i
e, = 5z = K'W - ne" [(y-yp) gF+ (x=xp) g
= ow s - 4W _ 1 ' Sev Y24 (Fex )2 _s
Yoy = 55 T 32 k5o -5 n 6 - [y "+ Gmx ) 7] +
= .C}E 1 1 - = ﬂ 1 _
k 5o T 6 n+ 6 (rT n)= k st © (rT 2n) ,

en négligeant les termes de courbure. Le principe de HELLINGER-

REISSNER s'écrit alors (poutre console)

JR dz J ds Jhlz {o [?'W - ng" «§—YT)%i+(£ XT ds ﬂ
o b -h/2 % s

dw
T, Lk gz * o' (rp - 2n)]

2 2
g, Tey 2 —~
- 5z T } dn -~ Jo md ds - M6 (L) stat.

D'emblée, on constate que pour o, ne dépendant que de s et z,

le terme

h/2 - -
" - - fi_____ -
I—h/z g, n 8" ((y yT) TS + (x X ) ds) dz

est nul. On peut alors éliminer g, et T

SZ
h/2 o h/2
. 80 (s,2) [I k' de-—% J dn] = 0 ,
-h/2 -h/2
ag
soit kk'W=="h => ¢ =E k' W.
E z



meae— ! — -
. 8 (s,2,n) k 3=+ 8' (rg 2.)

Sz

soit

dw Ts

— dw T —
Tex - © [ as = ¢ (rT an] ?

ce qui conduit au principe

1 (¥ h/2
-2— J dz f ds J
o b -h/2

(o}

Si 1'on note que

h/2
J dn = h ,.

-h/2

h/2

J ndn = O

-h/2

h/2 9 h3
ndn=-i—2—

-h/2

{E x'% W

b

2 dw

£
- I m§ ds - Mo () min

on obtient aisément 1'expression

%
1 ‘2 ' 2
> J [Ec, & ° + ¢ Jo
o
avec
C1 = J h W2 ds
b
J = % f h3 ds
b
_ 2
IT = [ r

+ G IT(B'—k)%] dz - j

L

e}

2
1 — 1
+ G(k g5 Fe'ry 29 n) ldn

me dz - Me(2),



puisque

par construction de W

Cherchons les équations d'Euler par variation de k et 6 .

2
Sk~ J Dﬂ Clk'ﬁk' + GIT(k~6')6g] dz
)

2 L
[Ecy k' k] + J (-EC,k"+ GI,(k-0')) 8k dz = 0,
(o] o

ce qui donne

k(o) = O (1)
K'(L) = 0O (2)
EC, k" + GI, (o' - k) = 0 (3)

) 3 _
§6 J (GJe's8' + G IT(e'—k)Gef) dz - J méodz - MEO(Q) =
o o

[(cJe' + GIT(e'—k))66:]£ - Jz (GJe'+GIT(e'—k))'ae - jz ms o
(o] o] o
- M s0(2) ,
ce qui conduit au systéme
(o) = 0 (4)
GJe' + GIL(8'-k) - M =0 en z = 2 (5)
(GJe' + GIT (6'—k))l+m'= 0 dan§ ]O,R[ (6)



5.3. Forme générale de la solution

Définissons d'abord le moment
- £
M =M - j m dz .
zZ
Les équations (5) et (6) se combinent alors pour
GJ '+ GI, (8 - k) =N,

d'od l'on déduit

' o=
C(I, + I) 6 Mo+ GIy k
M K M K
e' = -+ = o+
G(Lp+J) 1+%~ CIy(1+ 3-) 1+%—
T T T

On en déduilt

o' - k= ——e— 4k [ - 1]
T T

= T -k —
GI(1+5) 1+ &~

T T

L'équation (3) donne alors

EC, k" + MJ -k Gj = 0,
1+T— 1+T—
T T
soit
ECl k" - GJJ k = = ? »
1+5— 1+5—

donner

(7

54.



ou encore

- —8 - - 1

J
EC1(1+——) ECl(1+

Iy

Posons alors

2 GJ
ECl(1+::[—-)
T
Il vient
K" - g2 k= - u(z2)

55.

La solution générale de l'équation homogéne s'écrit

ko = A ch Bz + B sh BZ.

Limitons-nous, pour simplifier,

Une solution particulié&re est

k = A ch Bz + B sh Bz + X
o

Les conditions aux limites sont
k(0) =0 » A= - H
) B2

k'(2) = 0 - PBA sh BR + BB

soit B =-A th BR

au cas M

1

ch B%

0,

cte (moment d'extrémité)



On obtient ainsi

2

Kk = £ [1 + ¢ch Bz + th B& sh Bz] = [l - chBz+thpe shszj
B .

Il reste & calculer 8, ce qui se fait aisément & partir de (7) :

o' = Tyt — g [yt gy(imenseren pashes)]
CIp(1+i-)  1e- 1+ Oy
T T T
g' = _______MJ___ E%_- + 1 - ch Bz + th B&sh Bz:l
GJ(l+-i—-) T
T
_ M _ 1 _
- = [1 s— (chpz - th B2sh 8z) ]
1+T
-T
Il vient alors, en tenant compte du fait que 9(0) = 0

E4
8(z) = J o' dg = o= [z - ——— (shgz - th gL(chpz-1))]
o B(L+3—)

T

Le premier terme correspond & la solution & gauchissement libre;

le deuxiéme est la correction due au gauchissement.

5.4. Théorie de WAGNER

Si le profil est suffisamment mince, on a

J << 1
T
Dés lors, la raideur associée au terme (k-9') est tré&s grande
vis-a-vis de la raideur éen torsion, ce qui suggére d'écrire

a priori :

=
]

e'



L'équation (7) donnant

e':-...._?.q___.__+ k :....I\L-Q-k
GIT(1+%—) 1+%~ GLy
T T

on constate que cette approximation revient en outre & négliger
le terme de COULOMB M/GIT .

Notre principe variationnel devient alors

L

2
EC e"z + GJ6'2 dz - md dz — M 68(L2) min
) 1 o

Nof =

A l1l'encastrement, la condition de nullité du gauchissement s'écrit

8' =0

si bien que 1l'on obtient, par variation de 6:

3 2 _
J [?cl e" 86" + GJ o' s07] dz - J m§e dz - M §6(L) = O.
o o
Intégrant deux fois par parties, on obtient successivement
% % 3 _
" [] . ey 1 y 1 ' — —
[Ec, o" so' | + [ [- Ec,6"' se' + GJ6's0"] dz _J méedz-Ms6 (L)
o ) : 0
=0
L L 2
Mopt - - ney 1y ", "
[Ecle se'] [(Ecle GJe')se] + J (EC,0"-GJe") 56 dz
) 0 )
L -
- J més dz =- M§e(L) = O,
)
ce qui conduit au probléme aux limites
8(0) =0 (8)
6'(0) =0 (9)
GJo' - EC,0"' =M en z =2 (10)
ECle" = 0 en z = 0 (11)
- v =
GJa" ECle + m 0 dans ]O,x[: (12)



A nouveau, (10) et (12) se recombinent en

GJg' - EC8"' =M dans 0,8 (13)

M ayant la méme définition que ci-dessus. Cette équation s'@crit

encore
GJ M
6"' — e' = e
ECl ECl
soit
2
nmy o LA,
6 BO 6 Ho
ol

Par conséquent, la solution générale est

U
6 = A+ B ch Bz + C sh B z + 2 z
o o B2
o
Les conditions 6(0) = 0 et 8'(0) = 0 entrafnent respectivement
A+ B =0 == A = - B
[ W
B C+——=0 => C=-—= .
o) 2 3
B B
o o
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Enfin, la condition d'extrémité s'écrit

2 2 _
B B ch B & + 8. Cshg 2 =0,
soit
Yo
B=-CthB 2t =— th B 2
0 B3 o
o

Il vient donc

i

8 = g% [} - El (shBOz - thBol (chBoz~l))]
o © :
= M - L - -
= 53 [z 3 (shBoz thg & (chBOz )] .

(o}

5.5. Solution asymptotique loin de l'encastrement

Pour ¢ 2 3, on a
07995 € th & £ 1.

Nous diromns qu'une poutre est longue si £& 2 3. Dans ce cas,
on peut écrire sans grande erreur
-8z
shBz — th BLchBz = sh Bz — ch Bz = - e s

si biten que

it

6 = [z - —2— (1-e7F%))

G J
J B(l+f—)
. 1 T 2 z selon ‘la théorie adoptée
a].- -[Z - -é—o- (1"‘6 o] ):l
Bz }
Pour Boz 23, on a en outre 1
J
M 8(1+T—)
6 = -63 (Z-ZO) , ZO E T



En d'autres termes, loin de l'encastrement, tout se passe comme

si 1'on avait un encastrement & gauchissement libre en z.

6

P

3o . ¥
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V. PROBLEMES NON LINEATIRES

1. Etudier la réponse d'un systéme composé de deux barres symétriques

obliques, et chargées & leur noeud de fonction, par une charge

verticale 2P, en tenant compte de la grandeur des rotations.

Etant donné la symétrie du systéme,
on peut se limiter & étudier une
seule des deux barres. La longueur

initiale de la barre est donnée par

et sa longueur aprés déformation,

par

2% = a2 4 (b-x)2

Dés lors, la mesure de GREEN de la déformation est

3 2'2 - 22 _ a2+b2-2bx+x2—a2-b2 1 xz
& = 2 = 2 = =5 (=bx+y—)
’ 287 ¢« 28 2
L'énergie de déformation s'écrit donc
2 2
_ 1 1 _ x (2 _ 1 E@ - x" 2.
U = 5 EQL zé(bx+—2——)-—2——-—23(b}{+2)

Quant & l'énergie potentielle de la force, elle vaut tout

simplement (- Px) pour chaque barre (puisque chacune reprend.
la moitid de 2P).

Le principe de variation des déplacements s'écrit alors

2 .
L EQ (- bx + 2—) = Px stat
2 23 2

Variant x, on obtient 1l'é&quation :



L EQ 2(-bx + E—)(x-b) - P = 0
2 3 2
L
soit
- P 1 - -
T = = 5 X (x-b) (x=2Db)

a) On remarquera tout d'abord que cette fonction s'annule en

x=0, x=b, x=2b. Pour l'@tudier plus en détail, cherchons sa

dérivée:
dr _ 1 -b) (x~2b) + -2b -b
o = 5 [(x=b) (x-2b) + x(x-2b) + x(x~b)]
En particulier, pour x = 0, elle vaut
dm 1 2 _ .2

Montrons que cette valeur est précisément celle qu'aurait fourni

l'analyse linéaire, c'est-d~-dire que

En effet, on a

l'2=22+x2—22x cosB =22(l+32)=22+2225+2252
d'oli, en négligeant le second ordre
en x et le second ordre en ¢,
b 2

- 28x cosB = + 287¢ ,

™
i
i
]
0
(o]
0

w
i
I

x 2
2
2



Le principe linéarisé est donc

% EQL — x° - P x min ,
2 X

_ EQb2x . 2

23

b) Etudions le signe de la dérivée de 7

dm
dx

[x2 - 3bx + 2b2 + x> - 2bx + x> - bx]

1
o=

= = DBx® - 6bx + 2b7]

Ce trind®me du second degré a pour racines

+ 2 2
_ 3b- 9b " ~6b" _ + V3
x = 3 = b(1l ~§)

A 1'extérieur de ces racines, il est positif; & l'intérieur, il

est négatif. On a donc le diagramme suivant

¥
vid
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Si 1'on considére une mise en charge croissant progressivement,
on constate que la progression du déplacement est non-linéaire,
malis continue jusqu'au point A. Arrivé i ce point, les deux barres
passent brutalement de l'autre c8té du plan de référence, soit au
point B. Ce phénoméne est une instabilité, que l'on appelle en

anglais snap-through, en allemand durchschlag, et que

MASSONNET a baptisée claquage. Si 1'on augmente encore la charge,
la solution &volue jusqu'au point C. Supposons & présent que l'on
supprime la charge: on passera au point D, qui se situe de

l'autre c8té du plan de référence que le point 0., Il faut alors
tirer sur les deux barres pour passer au point E, subir un nouveau
claquage, mais en sens inverse, et se retrouver en F? Alors, en

reld3chant, on reviendra en O.

Calculons la charge critique : én introduisant la valeur
% (1 - —%) dans l'expression de 7 , on obtient aisément
ro =8 /33 . 1,52 b3 .
cr 9
On remarquera en pafticulier que pour b = 0, les points
0,G et D sont confondus : on obtient simplement
To= o xO
2

c'est-3d-dire que l'énergie crolt trés lentement & l'origine.

Ce fait correspond & la notion de treillis critique des é&tudes

linéaires.



2. Etudier les mémes deux barres, soumises cette fois 3 une

charge horizontale

Les longueurs sont encore données par

pour ce qui est des longueurs
aprés déformation, il faut distinguer

les deux barres

.barre 1:2'2 = (a+u)2 + (b+v)2,

(a*+u) 2+ (brv) 2= (a?+p?)

g -
1 222
1 u2 v2
= -;-2- (au+bv+ Vi + -2——)
barre 2: 2'2 = (a-—u)2 + (b'-v)2
1 u2 v2
gy = —3 (fau + bv + 7= + o)
L
L'énergie de déformation s'@crit donc
2 2 2 2

_ 1 E@ u v .2 u v, 2
U = 5 £3 E(au+bv+ 5 * 5_) + (=au+bv+ 7t 7—) ]

et, en tenant compte de l'identité

2 2

(a+B)2 + (-oa+B)?> 202 + 282,

Hi

2 2
_ EQ 2 2 u v 2
U = 3 [é u’ o+ (7— + 5= *+ bv) ]

Quant a4 1'énergie potentielle des charges, elle s'écrit simplement

(-Pu). Le principe de variation des déplacements s'Ecrit alors

§(U - Pu) = O,



ce qui donne :

EQ u2 v2
A [2Gz— + =5 + bv)(v+b)] = 0,
2
d'oll l'alternative :
v=-o5> v (1)
ou
2 2
55 + X? +bv =0, soit v =-1b = /b2-y?

Dans ce dernier cas, seule la solution

»No
N

v===>0+ Vb~ - v (2)
est admissible, sans quoi v # 0 si u = 0.
2 2
. EQ 2 u- v -
. Su : 3 [2a" u + 2(53= + 5= + bv) u] =P (3)

Etant donné 1l'altermative signalée ci-dessus, la solution a deux

branches

(i) v = - b+ W2 - 2

Alors, le second terme du crochet de (3) s'annule, d'oil

P =2 E% a2 u ,
%
solution linéaire ! (Ce résultat est 3 tout le moins inattendu).
On notera que pour u = b, v = =-b , ce qui signifie que les deux
2.
;;;,xim.
p =223 b
2
(ii) v = -b. Cette solution n'a pas beaucoup de sens: elle

correspond au fait que si 1l'on améne artificiellement les deux

barres dans le prolongement 1'une de 1l'autre, il existe une position



d'équilibre. Alors,

2 2
EQ 2 u b
P ='2—3 Ega u + 2(7"—'2_‘) U:]_

2 2
dP _ EQ 2 u” b 2
H—F[Qa+2(§— 5= ) + 2 u’]
=-§—g— |:3u2+2a2—b2_1

2
P .. . : -2a
Cette dérivée est positive si u 3 Jé—————

En particulier, pour b £ a /E: cette solution est toujours stable.
Considérons enfin le cas particulier b = 0, qui correspond aux
deux barres dans le prolongement 1l'une de 1l'autre. On a alors les

gquations :

EQ u2 v2
Sv "*2;‘3'[:(—2-"'—2-—‘)\71:0 => v = 0
2 2
EQ 2 u v
o x 3 Ratur eyl -,

d'oii, comme £= a,
P=§‘-%[:imzu+u3] ,
%

soit

3}
P
(%)
o

T = =— = u~ 4+ 28" u . (4)

=
o]

On a toujours %% > 0, ce qui exprime la stabilité. Ce résultat est

lié au fait que les deux barres ont la mE€me longueur.

I1 n'est peut-€tre pas inutile d'examiner comment trouver des
approximations successives de la relatiom (4)., Pour cela, on se
base sur la méthode de NEWTON. Soit & trouver le z&ro d'une fonction

f(u). Dans notre cas, on aura

f(u) = u” + 287 u - 1 .
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Soit alors u_ une approximation de ce zé&ro. La méthode de NEWTON
consiste 34 prendre comme meilleure approximation le nombre
1 o '
u
£'(u,)
Rappelons que cette méthode revient & assimiler la courbe 3 sa
tangente.
T f&d Comme le montre la figure ci-contre

il s'agit donc de linéarisations-

successives.

Comme premiére approximation, nous
poserons uo=0 , ce qul nous donnera

pour = u, la solution linéarisée :

comme

£'(u) = 3 u” + 287

‘on a, pour u_ = 0,
) P
u = O + TR em—— .
1 2£2 2EQ

Repartant de u,, on peut alors obtenir une premié&re approximation
non—-linéaire : 3

o 2 T .
+ 247 m—— e
u:u—fﬁi:ﬂ—8£6 22'2
2 1 . 2 ”
f ‘ul) 2% 3 T + 2%
4
4y 9
_T_
4
T 49
=2;52[1—~z 7
20°+3 “4
4y
( P£)2
P 2EQ Pe 1.P 2
- B 1 -2 - bdEp? ]
2EQ 222+3(P2 )2 2EQ 8 'EQ



3. Etudier le comportement de deux barres orthogonales de méme

longueur, soumises & une charge P dans le prolongement de.

1'une d'elles.

Vit Les longueurs aprés déformations
L g > a7
sont respectivement:
barre 1: 2i2= (5L+u)2 + v2
£ ' 2 2 2
D barre 2: f,°= (2=v)" + u” ,
C.
,4' I @ = & ce qui conduit aux valeurs suivantes
%
%l P d'allongements de GREEN
u? v2 u2 w2
. _zu + 5 + 5 . - -0V + ;5 + 7
H
1 22 2 22

Par conséquent, si les deux barres ont un module &lastique

E , l'énergie de déformation vaut

2 2 2 2
_ 1 EQ u v o2 u v, 2
V=323 [owr g e v e e 7]
tandis que l'énergie de la charge P est donnée par (-Pu) . Les

équations d'@quilibre s'obtiennent par variation de u et v :

2 2 2 2

EQ u v u v
Su > Zg [Zzu + 5 + i—)(u+1) + (-2 v + 5 + 7—)u1 = P
EQ u2 v2 u2 vz
Sv '—*;—5 [(SLU + 5 + —2-—-) v + (—v + 7 + T) (V—l):l = 0
Posant
e = E_ = 2 =Y
Eq I A

on peut encore écrire ces &quations sous la forme

3 2 x2 X 2 2
X 4 3 5 + - xy + —%— + x + %_ = g

b
[%3
+
«
+
&
i
Njw
«
+
«
1
N
™
it
(]



On constate que, d&jd pour un probléme aussi simple, les &quations
sont trés compliquées. Pour les résoudre, il faut utiliser une
méthode d'approximations successives. Nous utiliserons la

méthode de NEWTON-RAPHSON, qui généralise celle de NEWTON au

cas de plusieurs variables: on pose

X3 + % x2 + 551 - Xy + E%— + x + %m - £
-
£(x,y)=
2 3 3 2 1 2
Xy vy Xy -5y +ty-gx

La solution est caractérisée par % 0. Soit donc (xo,yo) une

approximation de la solution. On a

Y F

7% bx + 5y by
(x

-
£ (x,y) = E(x oy ) + 0
(Xo:yo)

O3yo)

Ax = x - x Ay =y - ¥

ce qui donne, pour ?(x,y) 0, le systé&me linéaire

Ax
A(Xosyo)

1]

-5
f f(xosyo)
Ay

oll 1'on introduit la matrice

N S ¥4

A(X’Y) 5x ° 9y

Proposons—-nous par exemple d'apporter une premiére correction

a4 la solution linéaire qui est donnée par

comme on s'en convainc facilement. On a donc



3 3 2
e + 5 €
F(x,,y,)=
1 2
-5 e
2 2 x2
3x +3x+xy-—y+g—-—+l CoT -X+xy+y
A (x,y) =
2xy + y=-x x2+3y2+x—3y+1
2
iez + g+l %— - e ]
A (x,y) =
- € e +eg + 1
d'od
_ 5 -
2 >
A l+eg+e et 5
_ 1
- ' 2 2 2,.._ ¢
Ay (1+3e+e”) (L+ete ) +e” (1= =) e 1+3€+3€2
et, en négligeant ¢ devant 1 ,
3 2 - 3 2
AX 1 £ 5 E 5 E
5T 12 | 1 2
Ay £ 1 5 € 5 €

Ceci permet de calculer approximativement le soul&vement du

noeud

1 2
yx'i'es

tandis que 1l'on peut garder l'expression approchée.
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Cette solution correspond au fait
que pour les faibles charges, la
barre 2 ne s'allonge pas: la barre 1
prend un allongement 2x, et cela
entraine un angle ¢ donné par

¢ = x. Dés lors, la barre 2 se
souléve de

2 2
2y = L(l-cos¢)= z%— = 2-}25— .
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VI. STABILITE LINEAIRE

Introduction

Le terme "stabilité linéaire" est en soil impropre, puisque
les phénoménes d'instabilité sont par essence non linéaires
On appelle cependant stabilité linéaire le cas od 1l'état d'équilibre
dont on teste la stabilité peut €tre décrit & partir de la théorie

linéaire de 1'élasticité, c'est-a-dire si
o
[D. u.% << 1,
PiYy
o ~ _ s e
u. représentant 1'état d'équilibre.

Cela étant, on se donne une forme de sollicitation, définie
par des tensions Szj’ et on cherche la charge critique par le
probléme aux valeurs propres
dv + AJ 9. D.,u_D,u_dv stat

y 1 im 7] u

fv Cijke®ij ke
La plus petite valeur propre ) est la premid&re charge critique

P . - s g o )
généralisée : c'est le coefficient multipliant de s;,: » ou de la

charge correspondante, 3 l'instabilité,

Les expressions apparaissant dans la deuxié&me intégrale

sont souvent compliquées. Aussi, on peut les simplifier comme

suit : on pose d'abord

1
. . = .. *+ .. .. B . . - . .
Dl UJ elJ Wy » Wy 5 (Dl uJ DJ ul) s

ce qui permet de r@écrire la dite intégrale de la maniére

suivante :

o _ 0
Jv Sij Di u_ Dj u av jv Sk Di uj Dk qeﬁjl av



o]
JV Sik Sy (Bqg T owgy) ey *ouy,) 4V

= (o]
JV Sik S50CEii%kn Ui SuptEig Ykt Yij Ykel 4V

La deuxiéme é&tape consiste & mnoter qu'au point stationnaire, on

doit avoir 1'équilibre des énergies

o
JV Cijkleij dv = jvk sij Dium dav ,

comme on s'en rend compte en posant Gui = ug. Or, si le matériau

est raide, des valeurs raisonnables sont

_ 4
Cijk2 = 10  hb -+ ordre de grandeur Dﬂ
rsS = 10 hb +~ ordre de grandeur urh] a << 1
ij vl

solit un rapport 103; Dés lors, les Wy doivent €tre Dbeaucoup
plus grands que les Eij' En effet, si [{] et [d] sont les ordres

de grandeur respectifs ,
Jv Ciikg €i3%kg 4V = o([c] . [e:[z. Volume) |
fv Aszk sz (eij + mij)(ekm *wg,) = O(aD{].(Dﬂd— Dﬂ)z.Volume),
ce qui implique
[ [17 = o [0 (erw)?
(e+w)? = —IEI—E => [e + u]= J‘;—f—:-l-
o

o

)= - - 1] % »> [€]



{2

Cette constatation permet de dire que
, 2 -2 2
[e] [w] << [u] [e] << [u]

d'ol la forme simplifiée du problé&me aux valeurs propres

fo)
+ ) .
J Cijkleij Ekz dv AJ Sij mim me av stat
v v
avec
=1 (D, u. - D, u.)
wij 2 i 7] j i

1. Chercher la charge critique de flambement d'une poutre

biappuyée soumise 3 une charge de bout, en négligeant la

déformation due 3 1'effort tranchant

P
7 On fait les hypothéses simples
A §
x u==-v'y
En1 1 { }, état uniaxial de
A N v = v(x) tension,
- )
v ce qui conduit aux relations
TTITT 7T
- 1]
€ x v' y
- 1 ,9v _ duy _
wxy 2 (ax By) M
w = 0
Xz
w = 0
yz
g = - 1/2 (charge unitaire)



Il vient donc, pour une charge P deé-bout,

. 2 )
J EI v"" dx - P J v'® dx stat
0

d'ol les &quations

L

-]

2
[EI v 6v'~1 + J (EIv"' + P v') 6v' dx
-0
e}

L

’ 2
[ET v" sv' ] - [(EI v"' + Pv')sv | + J

(e} o]

Les conditions aux limites sont
. v(0) = 0(2) =0
. EIv"(0) = EI v" (&) = 0,
et 1'équation d'EULER :
IRY "

EI v ' + P v" = 0,

soit, en posant

2 P
B =T °
AR 62 v' =0

La solution générale de cette &quation est

v o= A0 + Al X + A3 cos. Bx + A4 sin Bx

Passons aux conditions aux limites .:

v(0) = AO + A3 = 0

L

(o}

(ET v'V+ Pv") svdx.

(L)
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v(g) = Ao + Alz + A3 cosB + A4 singi= O (2)
" 2 ‘
v'"(0) = -8 A3 = 0 (3)
1" 2 .
v"(2) = -8 (A3 cos BL+ A4 singy) (4)
L'équation (3) entraine B = 0 ou AB = 0. Or, si B= 0, on a
pour seule solution, vu (l) , v = Alx , ce qui contredit (2)i

On ne pourra donc espérer de solution non triviale que pour B#0,

ce qui implique par (3) et (L)

La condition (4) entraline alors

A, sin B2= O,

4
ce qui, réintroduit dans (2), donne Al = 0, Il reste donc deux
possibilités A4 = 0, ou sin BL= 0. Visiblement, seule cette derniére

solution est non triviale, d'oi

B =

nw
nm 0
) n ¢

pour les modes critiques. Le factenr A4 n'est pas déterminé

colime c'est toujours le cas dans les problémes aux valeurs propres
linéaires. Cela étant, la définition de B fournit les charges
critiques d'EULER:

(n)_ nznz EL
pp 0= B

2 s
2
qui correspond aux modes

. nmTx
v = A sin -
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2., Méme probléme, en tenant compte de 1l'effet de l'effort tranchant

On pose & présent,

u; = oy
u, = v,
d'od
€17 = ve'
Vg = ot Vv
Wig ~ % (Dyuy = Dy uy) = % (v = a)
G?l = -3 (charge unitaire)

Le probléme de la stabilité linéaire s'écrit donc

o 2 2 1 (* 2

Jo (EIo'" + GQ (a+v')7)dx - vy P JO (v'=-a)” dx . (L
On pourrait le résoudre de la mé@me mani&re que le précédent. Nous
utiliserons plutdt la méthode de RAYLEIGH~RITZ: il s'agit de choisir
des formes pour le déplacement, affectées de coefficients, et
de chercher le point stationnaire en variant ceux-ci. La charge

critique vaut alors

. 2 2
I [EIa' + GO (a+tv') ]dx
o

2
% J (v'-oc)2 dx
)

Nous utiliserons les développements de FOURIER:



v = 3 Vn si ngx (respecte les conditions v(0)
n ,
o = A + $ A cos ZIX T B sin RTX
n 2
n n
I1 vient donc

LI aw nrx
v i N Vn cos T

' nT . nTx nT nrx

= e —— + flcaliilt

o i T A sin ) i ) B cos 2

Etant donné les relations

£ . !
cos LR cos nrx dx = L )
2 L 2 "mn
o
[2 mux nTx
sin 2 cos % dx = O
o]
2 mix nTx 9
J sin —p= sin =5 dx = % Son
o
2
J dx = &
o

%
J sin BTX dx = 0

L
J cos T dx = 0 ,

6n obtient ais@ment la forme suivante pour (1)

79.
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L now 2 now 2 L 2 2
SEI[ s 25—l + x 22 8-1 + 2 ca[2 A0 + 3 Al + 3 B]
n R n £ n n
nm 2 nzwz 2
+ 4 GQEE = A, V.1 + 5 60 [E ¥ vl

stat
Ao’An’Bn

On remarquera le caract@re découplé des modes de FOURIER. Ceci
est 1ié 3 leur othogonalité. Pour obtenir la solution, on varie les

différentes constantes ce qui donne

P -
sA_ : (GQ 70 A 0 (2)
n2 2 P n P
SA_ % RET =T A + 2GR A+ 260 2L v + 2= 2y - 4= A =0,
! ) n 1 2 n 4 % n 4 “n

soit, en posant

WZEI
P_ = ( charge d'EULER)
E 2
2
2 P P+ nm oA
a % r rea-7] + B+ ] & Vv =0 | (3)
2 Py
68 > B [n Py + GO - il = 0 (4)
nw n2 2 P n2 2 P anw
V. =+ 260 20 A o+ 60 2T v - - 2T vy 4+ = 2L p = 0,
n 2 “n QZ n 4 22 n 4 g n

soilt encore

P . P+ nnrw -
[ea + 7] Ao+ [ea- 7] 7~ v =0 (5)



Les &quations (2) et (4) entrainent AO = 0, Bn = 0, sauf pour
des charges de l'ordre de 4 GfL, ce qui est énorme, en général.

Quant aux équation (3) et (5), elles sont compatibles si

2 P P P2 _
(n PE + G§ Z‘) (G - Z') - (G + Z—) = 0

c'est-d-dire

P,2 P.2 2 P
ca - ) (e + )7 + n” P (Ga - ) =0,
P 2 2 P _

5+ 26 +n” PpGo-n” P, =0,
n Pgy _ 2
P 1+ gggh] = 0" By,
soit finalement
2
P(n) n PE
) n2 PE
* =7 &

Cette charge critique différe peut de la charge d'EULER si

PE << GQ , ce qui a lieu si la poutre est &lancée.



APPENDICE =~ ©NOTE SUR LE CALCUL DES VARIATIONS

1. La présente note a pour but de préciser certaines
techniques qui reviennent constamment en calcul des variations
Pour mieux faire ressortir les idées, nous considérerons un

probléme tré&s simple : il s'agit de minimiser la fonctionnelle

®(0) = % J k D;§ D.o dV - j Q8 dv - f qe ds , (1)
s v S

avec les conditions supplémentaires k > O et

6 = 8 sur Sl . (2)
Dans ces expressions, V est un ensemble ouvert borné&, de frontiére
S, et on impode les conditions suivantes pour que le probléme

soit bien posé:
S =8, UsS,, S N s, =4, S. # ¢ (3

Ce probléme représente par exemple 1'écoulement stationnaire
de la chaleur : 0 est alors la température, Q, une densité de
sources internes, et q; le flux de chaleur sortant par la partie

82 de la surface .

2. Sans entrer dans les détails, disons quelques mots des
conditions pour que la fonctionnelle ¢(8) ait du sens: il faut

que les dérivées premiéres de B8 aient leurs carré intégxrable,

ce que 1l'mn écrit Die £ L2 . l'ensemble de toutes les fonctiomns

[ N

qui sont, avec leurs dérivées jusqu'd l'ordre m, de carré

intégrable, est appelé& espace de SOBOLEV d'ordre m et noté Hm(V).

. . . 1
Dans notre: cas; la fonctionnelle existe si 6 € H (V). Nous

n'insisterons pas sur les propriétés des espaces de SOBOLEV, bien
qu'elles soient remarquables. Nous nous limiterons & citer le

P . m . e
théoréme des traces : toute fonction 6€ H (V) a ses dérivées

jusqu'a l'ordre (m-1) de carré sommable sur S :
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movy = o ¢ u™ L (s) .

8 ¢ H
Ce résultat important suppose certaines conditions de régularité
de la frontiére, qui sont heureusement vérifiées dans les cas
pratiques. Une frontiére, qui sont heureusement vérifiées dans 1
les cas pratiques. Une conséquence de théor@me est que la derniére

intégrale de la fonctionnelle (1) est définie si a € L2 (Sz) .

Dans l'application d'un principe variationnel ol interviennent
les dérivées jusqu'd l'ordre m, il faut vérifier a priori les
conditions aux limites portant sur les dérivées jusqu'a l'ordre

(m-1) . Ces conditions sont dites essentielles.

Lorsqu'elles sont homogénes, l'ensemble des fonctions de 1™ (v) qui

les vérifient est linéaire. C'est l'espace des fonctions admissibles
P

et nous le noterons U. 8i elles ne sont pas homogénes, il faut
considérer une fonction particuliére eo qui les vérifie, et
travailler dans le translaté

+ = 0 = + U} 4
G U {o] 6, + 8,5 6, €U I, (4)
de facon & respecter les conditions aux limites. Le cas homogéne

correspond alors a 60 =0 ,

3. On appelle point stationnaire de la fonctionnelle & une

fonction 6 € 60 + U telle que la variation premiére de 8 soit nulle:

Qy dv - f qp dS = 0 (5)

(¥ ¢y £ U) J k D.6 Dy dV - J
\ S,

v
Si 6 est un point stationnaire, la fonctionmnelle @ y est mini-
mum : en effet, soilt ¢ une fonction de V : (6+y) vérifie toujours

les conditions aux limites (2), et :
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a(p+y) = % J k Di(ew)Di (e+y) dv - J Q(e+y) av - J q(o+p)ds
v .

v S,
= % k D.g D,o dV - J Qe dV - J 46 ds
1 1
v v S
2
+ j k D.8 D,o dV - J Qe dV - J q ¢ ds
1 L
v \ 5,

1

Etant donné la condition de stationnarité (5), on obtient

po] -

a(o+yY) = o(8) + J k Diw‘Divdv 2 5(0) s

A

puisque le deuxiéme terme du second membre est l'intégrale d'un
carré, Le probléme se réduit donc i déterminer les conditions

de stationnarité.

4, Pour établir les conditions de stationnarité, nous utili-
serons deux ré&sultats de la théorie de l'intégration. Tout d'abord,
on appelle D(V) l'ensemble des fonctions indéfiniment continiiment
dérivables, nulles hors d'un compact contenu dans V : si ¢ € D(V)
il existe un compact K tel que ¢ = O
dans V-K, et ¢ € Cm(V), au passage

-~

de K 3 V-K,¢ se raccorde & 0 "de ma-

niére infiniment douce ". On appelle
l,loc (V) 1l'ensemble des

fonctions intégrables sur tout compact
l,10c

encore L

de V. Disons simplement que U €L

(V) . Cela étant, on a le :

Théoréme 1 : Soit V un ensemble ouvert. Si f € Ll’10C (V) et si,
pour tout ¢ € D(V) , on a
£ ¢dV = 0,

v
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alors, £f = O pp dans V.

Le deuxiéme théoréme d'annulation nous servira sur la surface;

2 2

Théoréme 2 : Si £ € L

(Sz) et si, pour tout g £ L (Szl .

on a

J fg dSs = 0 ,
s2
aloxrs £ = 0 pp sur S

2

Ces deux théor&mes vont nous permettre d'obtenir les équations
que la fonction 8 doit vérifier pour 8tre un point stationnaire
Nous devrons cependant supposer que 6 a ses dérivées secondes
de carré& inté@grable (8 *€ HZ(V)).
Partons de la condition de stationnarité&. Le noeud de la
démonstration est le fait que D(V) €U : toute fonction trés
réguliére nulle hors d'un compact de V, a ses dérivées de carré
intégrable. Soit donc ¢ une telle fonction, et introduisons-la dans

1'équation (5) . Puisque ¢ est nulle sur S on a donc simplement

2’
J k D;8 D;¢ dV - J Q ¢ dV = 0 (6)
v * v

On intégre le premier terme par parties (et c'est l& qu'intervient

l'hypothése supplémentaire de régularité sur 6):
f k Die Di¢ dv = J k Die ni¢ ds - J Di(kDi6)¢ dv
v 32 v

et, vu que ¢ = O sur S la premié&re intégrale du second membre

2’
s'annule, si bien que (6) devient

- JV (Dicknie) + Q)¢ dv = o.

Ce raisonnement étant valable pour tout ¢€ D(V) , le théoréme 1

permet d'affirmer que

Di (kDie) + Q =0 dans V (7)
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Cette condition est appelée é€quation d'EULER-LAGRANGE du principe

variationnel., Cela &tant, on repart de la condition de stationnarité
(5) avec, cette fois, une fonction quelconque T de l'espace U.

On intégre & nouveau par parties, ce qui donne & présent

Js (kni D, - qQ)y ds - jv (Di(kDie)+Q)w dv

En vertu de (7), cette €quation se réduit &

[
o

Jsz (kn, D.6 - qQ) v ds (8)

ce qui permet de conclure, & l'aide du théoréme 2, que

kni D;6 = q sur S2 .

Cette équation est appeléé condition naturelle du principe.

En général, un principe variationnel méne ainsi & des
8quations d'EULER~LAGRANGE et des conditions naturelles de surface,
que l'on obtient en intégrant par parties jusqu'd &liminer les

dérivées de la variation :

5. On a remarqué que pour obtenir les équations d'EULER-
LAGRANGE et les conditions naturelles, il faut faire une hypothése.
anormale de régularité. Pour s'en débarasser, on part du fait que
c'est la nullité deila variation premiére qui importe. Aussi, on

dit que les &quations (7) et (8) sont vérifiées faiblement si la

condition (5) de nullité de la variation premiére est vérifiée sans
que les conditions de régularité requises pour écrire (7) et (8)

solent remplies. La solution obtenue est dite solution faible.

Cette notion, bien que rarement définie de maniére explicite
par les ingénieurs, leur est cependant famili&re. Pour illustrer
cette affirmation, considérons le cas simple d'une barre soumise

4 une charge P en x = a.
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Le principe variationnel correspondant

d(.)

L ] " '=
s'écrit ((+) —EE—)

\i&\g\‘_\g\.
T

=

1 (* 2 .
5 EQ u'” dx - P u (a) min. .
0
On remarque tout de suite que la charge n'est pas une fonction de la
variable x, mais une mesure de DIRAC portée par le point x=a.

Pour obtenir la solution, on a recours & un artifice: on note que

2 a L
% I EQ u'? dx = % f EQ u'? dx + % J EQ u'? ax >

a

et on inté&gre séparément les deux termes par parties :

a L a L
[EQ u' 6u] +[EQ u'6u ] - J EQu" §u dx - J EQ u"6u dx
o] a o (o]

- P Su(u) = 0 ,
ce qui conduit aux conditions
§u(0) = 0 (Essentielle)
(Gu(l) + EQu'(R) = 0

4 8u(a) » EQu'(a_) - Eﬂu'(a+) - P =0

l §u(x) + - EQ u" = 0 dans |0,a[ U Ja,a[

De cette maniére, on se raméne i deux ouverts disjoints ]0,a[ et
]a,l[oﬁ la dérivée seconde a du sens. La solution est repré&sentée sur

la figure ci-dessous
| (2)

a - - - —m
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Elle est composée de deux segments rectilignes. C'est ce que 1l'on
appelle en anglais "a broken extremal". En x = a, l'équation
différentielle n'a pas de sens en tant que telle : il s'agit d'une

solution faible.

En régle générale, chaque fois que le second membre n'est
pas une fonction mais une mesure ou une distribution, il y a lieu
de découper de ceux—ci. On obtient ainsi, outre les &quations aux

limites naturelles, les conditions de transition d'un sous-domaine

d l'autre. La méme technique doit également @tre utilisée lorsque
les coefficients sont discontinus [par exemple, dans une barre dont

la section varie brusquement).

7. Dans les modéles statiquement admissibles, les choses

se présentent quelque peu différemment. Le principe de variation

des tensions s'écrit :

1 - .
¥(o) = 3 JV Bijkzgijgkl dv Is meosg Uy ds mzn R 9

le minimum devant €tre pris sur l'ensemble des tensions en
P

équilibre, c'est—ad~dire vérifiant les conditions
D. .. + £, =0 dans V

n, 6,. = t, sur S,.
1 1 i 2
L'existence de la fonctionnelle ¥ ne nécessite a priori que la
condition
2
o.. L (v) .
TREN

Mais comment vérifier 1'équilibre sur des fonctions qui n'ont auwcune
raison d'@tre ne flit-cé que continues? Pour y arriver, il faut
généraliser la notion de dérivée, ce que l'on fait par une démarche

inverse de celle qui a été& suivie pour &tablir 1l'&quation d'EULER-

LAGRANGE du principe de variation des déplacements : si les tensions
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Gij sont suffisamment réguliéres, on a, pour tout déplacement (¢i),

avec ¢i < D(V) ,

f D. G'i¢i dv = - f G'i D. ¢i av
vy 4 3 v 3 J

Or le second membre de cette équation garde un sens si les fonctions
Oij cessent d'@tre régulidres. On peut domnc l'utiliser comme
prolongement de la définition de 1la dérivée. C'est ce que l'on

appelle la dérivée au sens des distributions ou encore, la dérivée

généralisée, On constate d'ailleurs, qu'il ne s'agit en substance

que d'utiliser le principe des travaux virtuels : celui-ci a donc

une portée plus générale que les &quations locales d'équilibre.

Dans beaucoup de cas, notamment dans les éléments finis, les tensions
sont réguli&res dans des sous—-domaines Vk disjoints qul recouvrent

V. Alors, on a , pour ¢i € D(V) ,

A l'intérieur de chaque sous-domaine V., , on retrouvera donc les

k
équations

. 0.. .=
DJ ji + fl 0 dans Vk .
car il suffit d'y appliquer le théoréme 1 avec ¢i € D(Vk) CD(V) .
(puisque si(Pi est npulle hors de K G:Vk, elle est Evidemment nulle
hors de K € V). 11 reste les termes de frontiére des domaines 3Vk.
Les parties de 3Vk communes avec S ne sont pas concernées, car les

¢i y sont nuls . Il ne reste que les interfaces, ol l'on obtient :

yd O..n,+0).n!)¢, ds
b b IJ (51m57°34m50 %1 45
, k, k+1

Vi
m

i
A

%

ce qui donne, vu le théoréme 2,
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nécessitera

0., n, + g., n, =0 (Egalité des tractions de

surface).

On notera que les tensions sont discontinues chaque fois qu'il
existe une charge qui n'est pas une fonction et chaque fois que
les coefficients B, . sont discontinus.
ijke
Le deuxiéme point qu'il convient de noter, c'est que si 1l'on
appelle ¥ l'ensemble des temsions + L2(V) qui vérifient 1l'équilibre
au sens des distributions, l'ensemble des fonctions tensorielles

régulidres nulles hors d'un compact de V n'est pas contenu dans I

3 cause des conditions d'équilibre. En effet, soit $; un champ

de déplacements, avec ¢i € D(V). Le tenseur

1
0;5 =7 (Do * Didy)

est régulier et nul hors du méme compact que les ¢ mais on a

=

J 0., D. ¢, dV = % j (D, 4. + D.¢i)2 dv > 0

vy 1373 : i3 Jy i3 i

(puisque les modes rigides ne sont pas nuls hors d'um compact de

V), ce qui montre que l'Equilibre n'est pas vérifié. En conséquence,

on ne peut pas arriver directement aux équation d'EULER-LAGRANGE

comme dans les modéles cinématiquement admissibles.

D'ailleurs, si on pouvait le faire, on obtiendrait Gij z 0!

8. Terminons par quelques mots sur les multiplicateurs

LAGRANGE. Considérons d'abord le cas ol 1l'on veut minimiser une

fonctionnelle de la forme

2(u) = 3 alu,u) - £(0) , (10)
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ol % a(u,u) est une forme guadratique définie positive, par exemple
l'énergie de déformation, et f£(u) , une forme linéaire, soit le
travail des forces. Le minimum sera cherché dans un espace admissible
U; mais on ajoute une contrainte lin&aire sur les déplacements, de

la forme
g(u) = 0 , (11)

devant €tre vérifiée par la solution. On peut évidemment restreindre
son choix & toutes les fonctions qui vérifient (ll), mais ce n'est
pas toujours aisé. Une autre solution consiste & utiliser umn

multiplicateur de LAGRANGE. Nous en donnerons une explication de type

u

géométrique " . La forme bilinéaire

Y a(u,v) peut 8tre considérée comme un
produit scalaire sur l'espace U .

En particulier, la fonction positive

u - |'u|| = Ya(u,u)

sera appelée norme de u. Ainsi, on
4 peut définir des boules , qui sont

les ensembles

B(r) = {u | ||u||s r}.

Le probléme de recherche du minimum en 1'absence de liaison
revient & chercher 1'&lément u € U, tel gue, pour tout v admissible

on ait
a(u,v) = f(v) . (12)
La solution u est encore appelée représentant de RIESZ de la

fonctionnelle £, ce qui fait allusion & un célébre théoréme de

F. RIESZ disant que, moyennant une condition dite de complé&tude ,
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que nous supposerons toujours vérifiée, le probléme (12) admet

une solution pour toute fonctionnelle bornée f,

Si u_ est la solution du probléme (l2), on a, pour tout
v £ U,

1 1
@(u0+v) =3 (u0+v,uo+v) - f(uo+v) 5 a(uo,uo)"f(uo)

+ a(uo,v)—f(v)+ % a(v,v)

a(v,v)

N

@(uo) +

[vl]? (13)

rof =

o(u +
(u,)
ce qui montre que les surfaces de niveau sont les sphéres

Sr(uo) = {ul u = u + u; s ||u1|| = r }.
Venons—~en d notre probléme d'extremum 1lié. Au lieu de rechercher
le minimum dans U, on le recherche sur un plan défini par
1'équation g(u) = 0 (voir figure). Le théor&me de RIESZ permet
d'affirmer l'existence d'un repré&sentant h de la fonctionnelle

g,ce qui signifie

(¥ v €U) a(h,v) = g(v) | (14)
L'élément h est orthogonal au plan g(v) = 0, puisque
g(v) = 0 => a(h,v) = 0 . ) (15)

Cela étant, montrons que la solution & notre problé&me est le point

de percée u, de la droite partant de u , avec la direction h, dans

le plan g(v) = 0 . En effet, on a vu que
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oCu, + v) = o(u) + = |[v]]® .

Or un point quelconque du plan g(v) a la forme

u = u + (ul—uo) + W
od

u Tl = Ah et g(w) =0
Donc

g(u) = @(uo) + % a(lh+w,xh+w)

]
]
—~
o
o]
N
+
(]

2 2 1 2
AR g Tl T

en vertu de l'orthogonalité (15), Or ceci montre que la valeur
au point u, est minimale , puisque tout w additionnel a une

contribution positive.

Par conséquent, on a u ¢, - rh , et, pour tout v € U,

1
0 = a(uo,v) - f(v) = a(ul,v) - ra(h,v) - £(v)

Par définition de h, cette équation s'éerit encore
(¥ v £ V) a(u1,V) - ag(v) - £(v) = O,

avec la condition
g(u;) =0

Or on constante aisément que ces équations sont les variations

par rapport & u et ) de la fonctionnelle augmentée:

@K (u,2) = a(u,u) - Ag(u) - £(u),
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ce qui signifie qu'il suffit d'ajouter 3 & la condition multipliéde

par le multiplicateur de LAGRANGE A , et de varier la somme par

rapport & u et A . Le multiplicateur X mesure la distance entre

la solution "libre" et la solution "contrainte" : en particulier,

si h est de norme 1, A est exactement cette distance.

Ce raisonnement peut aisément se généraliser au cas de plusieurs

contraintes. Lorsque les contraintes sont locales et non plus

globales comme ci-dessus, on a recours 4 des champs de multiplica-

teurs. Ainsi , pour exprimer la contrainte

div 3 = 0

dans tout V, on ajoutera d@ l'énergie totale le terme
R ->
- f p div u dV
A

oli p est un champ de multiplicateurs. La justification en est moins

aisée. On peut cependant faire les raisonnement suivant 3 sgi

u, ¢ Hl (V) , la divergence du vecteur * LZ(V) . On peut alors
décomposer p en un systéme total de fonctinns orthogomnales Kk de
LZ(V) :

J Bk 52 dv = 0 s P = & Py Bk

v k

1'infinité dénombrable de condition

s

Ceci permet de se ramener
f B div @ dv = 0 ,
v

pour lesquelles on peut utiliser des multiplicateurs P

Visiblement, c'est &quivalent au champ de multiplicateurs P.



