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Abstract. The study of drainage network response to uplift is important not only for understanding 5 
river system dynamics and associated channel properties and fluvial landforms, but also for 6 
identifying the nature of crustal deformation and its history. In recent decades, geomorphic analysis 7 
of rivers has proved powerful in elucidating the tectonic evolution of actively uplifting and eroding 8 
orogens. Here, we review the main recent developments that have improved and expanded 9 
qualitative and quantitative information about vertical tectonic motions (the effects of horizontal 10 
deformation are not addressed). Channel long profiles have received considerable attention in the 11 
literature, and we briefly introduce basic aspects of the behaviour of bedrock rivers from field and 12 
numerical modelling perspectives, before describing the various metrics that have been proposed to 13 
identify the information on crustal deformation contained within their steady state characteristics. 14 
Then, we review the literature dealing with the transient response of rivers to tectonic perturbation, 15 
through the production of knickpoints propagating through the drainage network. Inverse modelling 16 
of river profiles for uplift in time and space is also shown to be very effective in reconstructing 17 
regional tectonic histories. Finally, we present a synthetic morphometric approach for deducing the 18 
tectonic record of fluvial landscapes.  19 

As well as the erosional imprint of tectonic forcing, sedimentary deposits, such as fluvial terrace 20 
staircases, are also considered as a classical component of tectonic geomorphology. We show that 21 
these studies have recently benefited from rapid advances in dating techniques, allowing more 22 
reliable reconstruction of incision histories and estimation of incision rates. The combination of 23 
progress in the understanding of transient river profiles and larger, more rigorous data sets of terrace 24 
ages has led to improved understanding of river erosion and the implications for terrace profile 25 
correlation, i.e., extrapolation of local data to entire profiles. Finally, planform changes in fluvial 26 
systems are considered at the channel scale in alluvial rivers and regional level in terms of drainage 27 
reorganisation. Examples are given of how numerical modelling can efficiently combine with 28 
topographic data to shed new light on the (dis)equilibrium state of drainage systems across regional 29 
drainage divides. 30 
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1 Introduction 33 

Alongside climate, uplift, and associated crustal deformation, exerts a strong control on the 34 
behaviour and evolution of fluvial systems. This is mainly through its impact on local or regional 35 
relative base-level changes and slope variations. Whilst it has long been acknowledged that fluvial 36 
landscapes hold a detailed record of past crustal deformation (e.g., Davis, 1899), isolating the 37 
causative component within this record is often complicated because of the interplay with many 38 
other controls (for example climate, lithology) and feedback mechanisms (e.g., isostatic rebound of 39 
erosional origin). Therefore, although understanding and modelling of multiple controls on fluvial 40 
evolution have rapidly improved in recent years (e.g., Roe et al., 2002; Lague et al., 2005; Stark, 2006; 41 
Turowski et al., 2007, 2008; Lague, 2010), inferences about tectonic forcing often rely on an 42 
extensive set of simplifications regarding boundary conditions (uniform rainfall depth and bedrock 43 
erodibility, constant and uniform uplift rate, sediment load) and free variables (such as channel 44 
geometry). Typical hydraulic scaling of channel width is for instance implicitly accepted in the wide 45 
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use of the simplest form of the stream power incision model (e.g., Berlin and Anderson, 2007; 46 
Beckers et al., 2015). The fact that inferences about crustal deformation are nevertheless generally 47 
consistent with independent information underlines its significance in shaping fluvial landscapes and 48 
demonstrates how powerful the geomorphological approach can be (e.g., Kirby and Whipple, 2001, 49 
2012; Anthony and Granger, 2007; Cook et al., 2009). 50 

The rapidly growing body of data of increasing quality and resolution published from Quaternary 51 
fluvial archives, in which the interdisciplinary group FLAG has played a significant role (see Cordier et 52 
al. this volume), combined with worldwide research on modern analogues (e.g., Lane et al., 2003; 53 
Wohl, 2010, 2014; Church et al., 2012) has enhanced our understanding of how fluvial systems 54 
respond to environmental perturbations. Combined with recent developments in numerical 55 
modelling of river evolution (e.g., Veldkamp et al., this volume), it has also shed much light on the 56 
sedimentary, hydrologic, and geomorphic responses of fluvial systems to crustal deformation (e.g., 57 
Schumm et al., 2000; Whipple, 2004; Crosby et al., 2007; Kirby and Whipple, 2012; Whittaker and 58 
Boulton, 2012). Meanwhile, the inverse use of the response characteristics recorded in these 59 
archives has enabled the tracing back of deformation events in a variety of active settings (e.g., 60 
Westaway et al., 2002; Westaway, 2007; Cook et al., 2009; Schildgen et al., 2009; Roberts and White, 61 
2010; Kirby and Ouimet, 2011). Fluvial archives can basically be considered as being made of two 62 
main types, namely the morphology of fluvial landforms and landscapes and the sedimentary 63 
deposits produced in response to a tectonic or climatic driver. Uplift information is both embedded 64 
within erosional fluvial features such as river profiles or reconstructed terrace staircases, and 65 
recorded in the characteristics of fluvial depositional sequences (e.g., texture, thickness, architecture, 66 
provenance). However, as mountainous landscapes typically associated with tectonically active 67 
regions are often dominated by incision, most geomorphic studies of active tectonics have been 68 
overwhelmingly focussed on erosional topography and the forms sculpted by the incising rivers. 69 
Importantly, however, these studies are not limited to active mountain belts and the study of river 70 
incision and terrace sequences is also powerful in unravelling the history and modalities of more 71 
moderate tectonic activity (e.g., Krzyszkowski et al., 2000; Abou Romieh et al., 2009) and epeirogenic 72 
deformation driven by far-field stresses (e.g., Cloetingh et al., 2002, 2005; Bourgeois et al., 2007), 73 
deep crustal processes (e.g., Ritter et al., 2001) or isostasy (e.g., Westaway, 2001) in intraplate areas. 74 

Investigating the relationships between crustal deformation and drainage system evolution may be 75 
envisioned as a means to gain understanding of the river processes in response to the deformation 76 
(e.g., Ouchi, 1985; Holbrook and Schumm, 1999; Bianchi et al., 2015 in alluvial systems; Whipple and 77 
Tucker, 1999; Whittaker et al., 2007a; Finnegan, 2013; Cook et al. 2013, 2014 for bedrock rivers). 78 
However, since the pioneering work of Hack (1957, 1973), a large proportion of studies have 79 
conversely focussed on using fluvial archives and landscapes (catchment morphometry, terrace 80 
staircases, river profiles, knickpoints) as tools to gain insight into the spatial and temporal variations 81 
of uplift and crustal deformation patterns  (e.g., Snyder et al., 2000; Berlin and Anderson, 2007; 82 
Bridgland and Westaway, 2008, 2014; Pérez-Peña et al., 2009, 2010; Roberts et al., 2012; Demoulin 83 
et al., 2013, 2015; Boulton et al., 2014; Goren et al., 2014; Viveen et al., 2014; Geach et al., 2015a). 84 
These studies cover a wide range of time scales, from very short term (100-101 years) coseismic 85 
knickpoint propagation along modern river profiles (Yanites et al., 2010; Cook et al., 2013; Huang et 86 
al., 2013) to very long term (107 years) mantle upwelling and dynamic uplift effects (Roberts and 87 
White, 2010; Barnett-Moore et al., 2014; Czarnota et al., 2014). There is also a corresponding variety 88 
of spatial scale (from individual faults to continental-scale river or terrace profile inversion) and 89 
contrasting structural settings, from rapidly uplifting mountain ranges (e.g., Lavé and Avouac, 2001; 90 
Fuchs et al., 2014) through moderately active intraplate areas (e.g., Demoulin and Hallot, 2009; 91 
Larue, 2011) to cratonic areas with long histories of extremely low deformation rates (e.g., Westaway 92 
et al., 2003; Roberts and White, 2010). 93 

This renewed interest in the use of fluvial archives and river morphometry in tectonic studies has 94 
been strongly fostered by major recent advances in geochronological techniques, including 95 



continuous improvements in established dating methods such as luminescence dating and 96 
exponential developments in the exploitation of terrestrial cosmogenic nuclides (Brocard et al., 2003; 97 
Cordier et al., 2010, 2014; Rixhon et al., 2011, 2016). Age estimates have added much value to the 98 
huge quantity of field data carefully collected in river valleys over the last century, enabling the 99 
calibration and validation of models that simulate the drainage system response to crustal 100 
deformation. This revival was invigorated by the availability of digital elevation models (DEM) of 101 
ever-increasing resolution and accuracy and the parallel explosion in computing power and 102 
capabilities of spatial analysis softwares. Our goal in this paper is to embrace the interdisciplinary 103 
nature of FLAG by bringing together research on fluvial archives spanning the Quaternary fluvial 104 
terrace literature together with sedimentological and river profile studies to provide an overview of 105 
the wide spectrum of mainly post-2000 advances in fluvial geomorphology that shed light over 106 
Quaternary histories of vertical crustal deformation. We will use these examples to highlight the 107 
main challenges ahead for the fluvial archives community with a focus mainly on the evolution of 108 
drainage systems in erosional terrains responding to vertical crustal deformation. 109 

2 Decoding river long profiles 110 

We first describe the shape a river longitudinal profile evolves towards with time under constant 111 
boundary conditions and briefly review how this shape has been expressed mathematically and how 112 
it can similarly be derived from the relation between river incision and stream power. Then, we 113 
examine various metrics used to characterize river profiles and discuss the indications they provide 114 
about the crustal deformation underlying the drainage system evolution. 115 

2.1 The graded profile: observation and theory 116 

Topography and river long profiles in particular are a potentially rich archive of the time-variable 117 
factors that governed their evolution. In a general way, rivers adjusting to constant controls tend to 118 
establish a graded profile that, according to Mackin (1948), corresponds to a dynamic equilibrium 119 
between channel slope and geometry, discharge, and sediment load (Fig. 1). As underlined by 120 
Mackin, this shouldn't be misunderstood as a situation in which, transport capacity and sediment 121 
load being equal, the river has no energy left for incision. Rather, this subtle equilibrium considers 122 
the energy used for channel bottom erosion as part of that energy expended in the transport of 123 
sediments acting as a tool for erosion. In the case of uplift, for instance, increased slopes will 124 
essentially be equilibrated by increased sediment transport, which is itself allowed in the first 125 
instance by channel erosion. Therefore, the steady state to which the graded profile refers may be 126 
viewed as a topographic steady state sensu Willett and Brandon (2002) in which removal of material 127 
by river erosion balances influx of rock by uplift, so that the topography of the valley network does 128 
not change with time. Conversely, as long as the response of the fluvial system to a perturbation 129 
resulting (in this article) from crustal deformation is ongoing, the river is said to be in a transient 130 
state. 131 

Several authors have proposed a variety of empirical mathematical formulations to describe the 132 
concave upward graded profile of a river. Hack's (1957) seminal paper contributed to the spread of 133 
the idea that the graded profile is best expressed by elevation z decreasing logarithmically with 134 
distance x from the source 135 

z = C – klln(x)      (1) 136 

(with kl = constant), a function that he derived from the observed linear relationship between 137 

channel slope and distance. However, as also argued recently by Goldrick and Bishop (2007), Hack 138 
noted that the graded profile could also follow a power law in the form  139 

z = C – kpx      (2) 140 



with 0<<1 and kp = constant. Considering the usual values of the involved exponents (Whipple and 141 

Tucker, 1999, their dimensionless equation 21a), the widely used equilibrium long profile formulation 142 
derived from the stream power model of river incision (see below) 143 

z = zout + K (1 – x


)     (3) 144 

(with zout = catchment outlet elevation and K = constant) implicitly acknowledges this power law 145 
relationship. Anecdotally, exponential (Snow and Slingerland, 1987; Morris and Williams, 1997; Rice 146 
and Church, 2001) and quadratic expressions of the graded profile (Rice and Church, 2001) have also 147 
been mentioned in specific circumstances such as simple alluvial systems without significant water or 148 
sediment inputs by tributaries, in which the effect of downstream comminution of bed load particles 149 
dominates (Rice and Church, 2001). 150 

Another way to describe how rivers achieve their graded profile is numerical modelling of river 151 
incision. A review of the huge literature that deals with this field of research is beyond the scope of 152 
this paper. We therefore summarize briefly the basics of such models in order to highlight the 153 
relationships they allow us to explore between the respective characteristics of river long profiles 154 
and tectonic history. Models are differently expressed in detachment-limited conditions, where 155 
channel erosion is first controlled by the river's ability to detach particles from its bed, and transport-156 
limited conditions, where the channel's evolution depends primarily on the transport capacity of the 157 
river. While alluvial rivers are obviously transport-limited, detachment-limited conditions are typical 158 
of bedrock rivers in steeper areas. Noting that stream power can be thought of as energy dissipation 159 
per unit channel area, many variants among the widely acclaimed family of stream power incision 160 
models (SPIM) postulate that channel incision (E) of bedrock rivers is a function of unit stream power 161 

(, yielding the fundamental equation 162 

E = kawgQS/W     (4) 163 

where ka = constant, w = water density, g = gravitational acceleration, Q = water discharge, S and W 164 
= channel slope and width, respectively. Empirical static relationships expressing Q and W as powers 165 
of drainage area (A) and Q, respectively, allow the rewriting of equation (4) as (Whipple and Tucker, 166 
1999) 167 

E = KAmSn      (5) 168 

(K = erosivity coefficient), i.e., in a form easily accessed with the use of digital elevation models. If we 169 

allow the dependence of E on  to be linear, the slope exponent n = 1 in equation (5). Moreover, 170 
based on the observed values of 0.8-1 and 0.4-0.5 for the exponents of the Q = f(A) and W = f(Q) 171 

power law functions (e.g., Bravard and Petit, 1997), we obtain m  0.5. Relating E to stream power  172 

or to bed shear stress  instead of  simply changes the values of m and n in the operational 173 

equation (5). In the first case, m = n = 1, in the second, m  1/3 and n  2/3. It should however be 174 
noted that these equations include no direct consideration of the actual erosion processes at the 175 
channel bottom. Whipple et al. (2000) provided field and theoretical evidence showing for example 176 
that, while n conforms with the above values if plucking is the dominant process, it rises to values 177 
around 5/3 when abrasion prevails. Although field studies have shown that observed bedrock river 178 
erosion is broadly consistent with n ~ 1 in many cases (e.g., Berlin and Anderson, 2007; Whittaker et 179 
al., 2007a; Whittaker and Boulton, 2012), this assumption has been challenged by theoretical and 180 
field work emphasizing a non-linear relation between E and S, implying n >1 when other controls on 181 
erosion are included in the modelling, such as an erosion threshold and a stochastic distribution of 182 
erosive flood events (Snyder et al., 2003; Lague et al., 2005; DiBiase et al., 2010; Lague, 2014), the 183 
scaling of channel width as a function of slope (Finnegan et al., 2005), or temporal variations in 184 
precipitations (Braun et al., 2015).  185 

The decision on the most appropriate n value illustrates how many controls on incision are difficult to 186 
apprehend in the most basic SPIM expression provided by equation (5). One further major control 187 



hidden in the erosivity coefficient K is that of sediment load. Much theoretical and experimental 188 
work has been devoted to it, highlighting the role of sediment flux, grain size, relative rock strength 189 
of load particles and channel bottom and grain protrusion (Sklar and Dietrich, 1998, 2001; Stark et 190 
al., 2009; Yager et al., 2012), and underlining how the sediment load control results from the balance 191 
between the antagonistic tool and cover effects of the sediments (Sklar and Dietrich, 2004, 2006; 192 
Turowski et al., 2007; Lague, 2010). Other important controls embedded in K include rock resistance, 193 
climate, erosion process, hydraulic geometry and the return period of the effective discharge 194 
(Anderson and Anderson, 2010). Although the assumption of constant K is often made in case 195 
studies, the interpretation of river profiles focused on surface deformation should thus always keep 196 
in mind not to underestimate the potential role of these hidden controls. 197 

The principle of conservation of mass implies that, at any point, profile elevation change with time 198 
must be the result of a difference between uplift rate U and river incision rate E. As steady state is 199 
attained when erosion and uplift balance, unchanging elevations of the equilibrium profile are 200 
expressed by 201 

U = KAmSn      (6) 202 

from which we derive the equation of profile equilibrium slope 203 

S = (U/K)1/nA-m/n     (7) 204 

Using Hack's (1957) law, which states that A is a power of x, to substitute drainage area A with along-205 
stream distance x, equation (7) may in turn be integrated to yield equation (3) as the mathematical 206 
expression of the graded profile, where  207 

 = 1 – hm/n      (8) 208 

h being the exponent on x in Hack's law and taking values in the order of 5/3. 209 

To summarize, observation and numerical modelling agree on the power law representation of the 210 
graded profile of most bedrock rivers that incise uplifting areas and equation (7) implies that uplift 211 
rate U contributes to determining this profile. Profile characteristics thus record vertical crustal 212 
deformation in some way. However, limitations arise because of the excessive use of the steady state 213 
assumption and its easily manageable profile equations, although steady state is probably much less 214 
often achieved than generally thought (Willett et al., 2001; Phillips, 2011). However, the above 215 
equations are strongly affected by transient conditions. To take only one example, the static 216 
relationship between channel width and discharge becomes invalid under such conditions and should 217 
be substituted with a dynamic expression of width entailing a slope-width dependence (Whittaker et 218 
al., 2007b; Attal et al., 2008; Turowski et al., 2009) that effectively makes n > 1, highlighting the 219 
transient strongly non-linear dependence of erosion rate on channel gradient. 220 

2.2 River profile analysis 221 

2.2.1 Characterizing a profile 222 

The analysis of real long profiles, either graded or in transient state, requires the definition of metrics 223 
that capture their tectonic content in an identifiable way. Several such metrics have been devised 224 
over time with various purposes. One, the stream-gradient index SL, was first applied to profile 225 
analysis by Hack (1957, 1973). By differentiating equation (1) as the best approximation of long 226 
profile curves at the local scale (Hack, 1957), he obtained the channel slope equation 227 

|S| = klx
-1 or kl = |S|x     (9) 228 

and renamed the kl coefficient stream-gradient index SL. This index may be calculated for any point 229 
or reach of the profile as the product of local gradient and distance from the source to the reach's 230 
midpoint and, as such, should be constant over the length of a perfectly graded (logarithmic) profile 231 
(Fig. 2). Basically, Hack (1973) was more interested in tracking along-stream variations of SL 232 
indicative of local perturbations of any origin (tectonic, but also lithologic or hydrologic) than 233 



comparing river average index values, and all studies dealing with the still much used SL index 234 
continue to follow Hack's logic, measuring SL for a specified reach length over entire drainage 235 
systems and analysing its along-stream changes (e.g., Seeber and Gornitz, 1983; Brookfield, 1998; 236 
Mather and Hartley, 2006) or interpolating SL maps (e.g., Keller, 1986; Troiani and Della Seta, 2008; 237 
Troiani et al., 2014). Recent advances in this domain revolved around purpose-oriented scales of 238 
reach length over which SL is optimally calculated (Pérez-Peña et al., 2009; Troiani et al., 2014) and 239 
normalization of SL in an SLk index weighted by the SLg value calculated as  240 

SLg = (zsource – zoutlet)/ln(xtot)    (10) 241 

over the entire length xtot of the stream under consideration (Seeber and Gornitz, 1983; Chen et al., 242 
2003; Pérez-Peña et al., 2004, 2009; Azañón et al., 2012). Moreover, Goldrick and Bishop (2007) 243 
proposed a generalized form SLequiv of the stream gradient index by extracting it from the power law 244 
expression of long profiles in equation (2), thus getting 245 

|S| = kpx
-1

 or kp = SLequiv = |S|x1-
    (11) 246 

Interestingly, beyond this new metric for stream gradient, Goldrick and Bishop (2007) also introduce 247 
the notion of profile concavity (in the geometric sense, based on the distance-elevation relation), 248 

corresponding to the exponent  (which they note as  in their paper). Instead of this mathematical 249 
expression of concavity, Demoulin (1998) used a pragmatic and more readable (especially in the case 250 
of disequilibrium profiles) way to measure profile concavity through two complementary metrics Er 251 
and Eq measured on normalized long profiles (Fig. 3). 252 

The concept of profile concavity brings us to the second major family of profile metrics which are 253 

closely related to stream gradient index and concavity . Arguing that channel gradient is related to 254 
discharge more readily through drainage area than distance from the source, this second approach 255 
also takes advantage of the widespread availability of DEMs for spatial analysis to exploit the slope-256 
drainage area relation that emerges from the stream power equations (e.g., Wobus et al., 2006). This 257 
relation, first stated by Flint (1974) and given by equation (7) for a river profile at steady state is 258 
more simply written as 259 

S = ksA
-     (12) 260 

where  = m/n is the concavity index and the coefficient ks = (U/K)1/n is called the profile steepness. 261 
The log-log representation of the slope-drainage area relation is known as a S-A plot, where a graded 262 

profile plots as a straight line whose slope is – and y intercept (A being expressed in m2) is log10(ks) 263 

(Fig. 1). While the similarity between concavity measures  and  is obvious, the similar affinity 264 
between stream gradient SL and steepness ks has received much less notice. Essentially, however, 265 
the only difference between these related metrics lies in the relation of S with either x or A and is in 266 
fact easily erased by Hack's law (Fig. 4). 267 

The S-A plots of figure 1 evidence the high degree of correlation between steepness and concavity, 268 

which has led to the need for a normalized form of ks. Based on the observation that  varies within a 269 
narrow range centred on 0.5, the normalization method most widely used defines a reference 270 

concavity ref (often taken as the regional average concavity or 0.5, although other fixed values are 271 
acceptable) to calculate normalized steepness ksn through 272 

S = ksnA-ref or ksn = ksAc
-(-ref)    (13) 273 

with Ac being the geometric mean of the drainage area values at both ends of an investigated reach 274 
(Wobus et al., 2006). Another approach was suggested by Sklar and Dietrich (1998), who normalized 275 
steepness through drainage area normalization, thus describing the relative steepness by the 276 
gradient Sr associated to the reference drainage area Ar 277 

Sr = ksAr
-      (14) 278 



Finally, a third way to dispose of the dependence of steepness on concavity, proposed by Demoulin 279 
et al. (2013), simply consists of taking the residuals of the regression of steepness on concavity as an 280 
expression of relative steepness. This approach has proved to be slightly more efficient than others in 281 
separating areas of distinct steepness (Demoulin et al., 2013). 282 

Two additional comments on the use of S-A plots should be made. First, although they are related to 283 
the stream power equations of detachment-limited settings and their use should thus be restricted 284 
to bedrock rivers (Snyder et al., 2000), the steady state equations derived for transport-limited 285 
conditions yield a similar power dependence of channel slope on drainage area (Whipple and Tucker, 286 
2002). Therefore, as far as equilibrium profiles are concerned, no change in steady state profile form 287 
is expected at the transition from the bedrock to the alluvial part of a river and S-A analysis may be 288 
safely performed over entire rivers, at least as far as other controls (uplift rate, rock type) are 289 
uniform over their whole length. Second, while the original use of S-A plots was more dedicated to 290 
the analysis of whole profile steepness (Snyder et al., 2000; Wobus et al., 2006), the calculation of 291 
local ksn values per reaches of specified length or separated by prominent profile discontinuities 292 
allows the production of ksn maps (Harkins et al., 2007; Ouimet et al., 2009; DiBiase et al 2010) very 293 
similar to SL(k) maps (Fig. 4). In such maps, differences in ksn reflect deviations from what a SPIM 294 

would predict for a river with concavity ref, uniform bedrock lithology, and under uniform uplift rate 295 
conditions. These maps should be interpreted with due care in terms of rock type variations, 296 
differential uplift, abrupt changes in sediment load, e.g., at confluences, or, only in the case in which 297 
steady state cannot be safely assumed, transient indicators of temporal change in U. 298 

The quality of concavity and steepness estimates from S-A plots also suffers from the significant 299 
noise affecting slope data obtained by differentiation of DEM elevation data, and the question of 300 
how to bin effectively slope data in drainage area space. Moreover, beyond the resulting vertical 301 
scatter of data points in the plot, the statistical meaning of the regression may also be perturbed by 302 
their horizontal clustering due to large jumps in A at tributary confluences. To overcome this 303 
limitation, Perron and Royden (2013) developed a new approach allowing estimation of the profile 304 
metrics based on elevation rather than slope data. They simply integrate equation (7) rewritten as 305 

dz = (U/K)1/nA-m/ndx     (15) 306 

to obtain, under assumption of constant U and K, 307 

z(x) = z(x0) + (U/(KAm
ref))

1/n
    (16) 308 

where x0 = river outlet, Aref = reference drainage area, introduced to give a dimension of length to , 309 

and 310 

dx
xA

A
n

mx

x

ref
)

)(
(

0

      (17) 311 

The new variable , after which the new profile graph is called a chi plot (Fig. 5A), is such that 312 
elevation depends linearly on it and a perfectly graded profile appears as a straight line. Profile 313 
concavity, corresponding to the exponent of the integrand in equation (17), will now be obtained as 314 

the m/n value that yields either the best linear fit of a single z = f() profile or the best collinearity 315 

between profiles of a main stem and its tributaries. Once the best m/n and thus the  scale have 316 

been determined, steepness, which appears as the coefficient of  in equation (16), simply 317 
corresponds to the slope of the linear fit. 318 

Chi plots not only reduce uncertainties on concavity and steepness but they also facilitate the 319 
separation of successive profile segments with distinct parameters. For instance, Mudd et al. (2014) 320 
developed a method to identify the statistically most meaningful partition of a chi profile into 321 
segments of different steepness but same concavity. Demoulin et al. (2015) relied on visual 322 
inspection of entire chi profiles to identify their segmentation and recalculate individual concavity 323 



and steepness values (even though normalized steepness still refers to a single reference concavity). 324 
They noted that producing a single plot of the successive segments of a river profile with their 325 

different concavities, and thus also different  scales, makes z offsets appear between successive 326 
segments, which provide valuable information about the type and the magnitude of the profile 327 
discontinuities (Fig. 5B). The versatility of chi plots is further demonstrated by Willett et al. (2014) 328 
who used them to highlight zones of disequilibrium between competing river basins and analyse the 329 

dynamic reorganization of drainage systems. In this example they mapped  along the actual river 330 
courses and examined contrasts in its values across divides. 331 

2.2.2 Meaning of the metrics 332 

The above review of the various metrics available to analyse river profiles underlines their 333 

relatedness, with two emerging profile characteristics, namely concavity (, , chi plot best fit m/n) 334 
and steepness (SL, SLk, Er-Eq, ks, ksn, chi plot slope). We now examine how much these metrics 335 
respond to perturbations from crustal deformation, which properties of the deformation they may 336 
record, and how much other controls interfere to determine their variations. 337 

Identification of concavity with the m/n exponent on drainage area in the SPIM-derived slope 338 
equation (7) provides clues about factors affecting its variations. At steady state and for uniform 339 
uplift rate U, it has been repeatedly stated and verified that it is independent of direct tectonic 340 
control (e.g., Whipple and Tucker, 1999; Snyder et al., 2000; Duvall et al., 2004; Wobus et al., 2006; 341 
DiBiase et al., 2010; Lague, 2014), whereas lithology (Duvall et al., 2004; Boulton et al., 2014) or the 342 
transition from bedrock to alluvial channel may occasionally be responsible for concavity changes. 343 
However, this no longer holds as soon as U systematically varies downstream, and as Kirby and 344 
Whipple (2001) showed, a power law dependence of U on along-stream distance results in concavity 345 
varying with the river orientation with respect to tilt direction. Moreover, variations of a normalized 346 
index of channel width compiled by Lague (2014) from several studies suggest a possible dependence 347 
of m (through the b exponent of the Q – W relation), and thus of concavity, on incision rate E. One 348 
should nevertheless remain cautious not to over-interpret regional variations in concavity in terms of 349 
uplift gradient because similar variations may also be caused by systematic downstream change in 350 
any parameter included in K, such as lithology or sediment load (Sklar and Dietrich, 1998, 2004), or 351 
altering m, such as the orographic effect on rainfall depths and runoff (Roe et al., 2002). The steady 352 
state assumption should also be considered with general suspicion when analysing real profiles. An 353 
easy test of this assumption, which gives at the same time a qualitative hint of the relative youth of 354 
the tectonic perturbation, is provided by regressing concavity values against catchment size (or river 355 
order) (Demoulin et al., 2013). In the same vein, it is sometimes meaningful to search for tectonic 356 
memory especially in the lowest-order streams of a system, which are the most sensitive to external 357 
change. In the Mendocino triple junction area of northern California, while 2nd- and 3rd-order stream 358 
concavity shows no correlation with drainage area (as estimated from data in Snyder et al., 2000), 359 
suggesting quasi steady state profiles that are confirmed by their smoothed shape and the strongly 360 
damped control of uplift rate on their mean channel gradient (Merritt and Vincent, 1989), the mean 361 
gradient of 1st-order streams still faithfully follows the uplift rate variations, but with an estimated 362 
time lag in the order of 105 years (Merritt and Vincent, 1989). Finally, as noted by Whipple (2004), 363 
concavity may vary between successive segments of a single transient river profile. Demoulin et al. 364 
(2015) proposed that the decrease in profile concavity observed downstream of tectonic knickpoints 365 
in rivers of the northern Peloponnese might be partly related to the incompleteness of profile 366 
regrading. 367 

As shown by equation (7), steady state profile steepness should be directly related to uplift rate, of 368 
which it is in fact a main indicator. In the case of non steady state profiles, one readily sees from 369 
equation (5) that steepness can still be related to erosion rate E. The fact that spatial variations in U 370 
or E may also impact profile concavity (Kirby and Whipple, 2001) emphasizes the need for steepness 371 
normalization to a reference concavity in order to analyse the U - ksn relation (e.g., Miller et al., 372 
2007). Theoretically, accepting the usual assumption of n = 1, and all else equal (i.e., K constant), the 373 



normalized steepness ksn should increase linearly with U. Although field evidence seems to support 374 
such a relationship for tributary rivers in the Siwalik Hills (Nepal), in an area undergoing uplift rates in 375 
the range 6-15 mm/yr (Wobus et al., 2006), many case studies (Snyder et al., 2003; Gioia et al., 2014; 376 
Lague, 2014; Harel et al., 2016) point to a non-linear dependence, modelled by including in the SPIM 377 
an erosion threshold (critical bed shear stress) and stochastic effective discharges (Tucker and Bras, 378 

2000). In this case of ksn  Up, with 0<p<1, i.e., n > 1, steepness increases very rapidly for low uplift 379 
rates (<1 mm/yr) before the curve flattens for higher rates (Snyder et al., 2003) (Fig. 6). This would 380 
explain the lower than expected contrast in ksn generally observed between regions of intermediate 381 
and high uplift rates (e.g., Snyder et al., 2000; Troiani and Della Seta, 2011; Molin et al., 2012; 382 
Demoulin et al., 2013; Cyr et al., 2014; see also compilations of worldwide data in Gioia et al., 2014 383 
and Lague, 2014). However, despite the limited influence of large K variations on steepness also 384 
suggested by the limited ksn range, data compiled by Lague (2014) show considerable noise in the ksn 385 
– U relations, especially in the low uplift rate domain (<0.1 mm/yr), and still more significant 386 
differences between the relations calculated for different regions, possibly in part related to 387 
differences in K. Noteworthy is also the observation that, though more limited by the constraining 388 
reference to logarithmic long profiles, SL and SLk indices show barely larger variations than ksn with U 389 
(e.g., Giaconia et al., 2012). 390 

The examination of steepness maps produced from local steepness measurements over river reaches 391 
generally a few 100 metres in length (e.g., DiBiase et al., 2010; Troiani et al., 2014) offers a quite 392 
different view on the incision-triggering tectonic activity. As noted by Wobus et al. (2006), these 393 
maps may suit the identification of tectonic boundaries such as a discrete break in uplift rate, e.g., at 394 
a fault, where higher steepness values will characterize the uplifting wall of the fault. However, 395 
similar spatial patterns often arise from the transient propagation of an erosion wave within the 396 
drainage system as a response to regional uplift. In this case, in which steepness essentially reflects 397 
erosion rate variations, a sharp change in ksn does not necessarily identify a local tectonic feature or 398 
local uplift rate gradient but instead echoes the remote uplift gradient. In a general sense, 399 
interpretation of ksn or SL(k) maps is not straightforward because regional patterns may be obscured 400 
by scattered patches of anomalously high index values that require a careful individual analysis, 401 
being alternatively indicative of permanent "lithologic" knickpoints, landslide dams (Troiani et al., 402 
2014), places of hydrologic changes such as confluence of large tributaries, the migrating front of a 403 
wave of incision (DiBiase et al., 2010), or fixed tectonic structures such as faults and growing 404 
anticlines (Pérez-Peña et al., 2009) (Fig. 2B). 405 

2.3 Transience and knickpoints in river profiles 406 

The existence, timescales and expression of drainage system steady state are often intricate and 407 

unclear. While graded profiles may actually not be in a topographic steady state if E  U, e.g., in post-408 
orogenic landscapes (continued relief decay despite zero uplift), river profiles that do not follow 409 
regular power law curves and display convexities, known as knickpoints or knickzones and easily 410 
identified on S-A plots (Fig. 1), may in fact be in equilibrium if local rates of rock uplift are balanced 411 
by fluvial incision at that point (Whittaker et al., 2007b). Indeed, permanent (immobile) convexities 412 
may appear in such profiles as a local compensation for lithological contrasts, non-uniform uplift rate 413 
or durable change in water discharge – sediment load balance at tributary junctions (e.g., Brocard 414 
and Van der Beek, 2006; Beckers et al., 2015). In intermediate cases, profile discontinuities can also 415 
show some mobility when they cut through valley damming caused by, e.g., landslides or lava flows, 416 
re-establishing equilibrium in locally perturbed profiles (e.g., Korup, 2006). However, many sets of 417 
mobile knickpoints and knickzones may represent large-scale upstream propagation of an erosion 418 
wave through entire drainage systems which are transiently responding to a relative base level 419 
lowering. This lowering may relate to a relatively sudden drop in base level bought about by river 420 
capture (discussed in 5.2) or reflect the margin of uplifting regions or the crossing of active dip-slip 421 
faults. The notion of response to a specific tectonic signal is important: Whittaker et al. (2008) 422 
showed for rivers in the Apennines that only profiles crossing normal faults that underwent an 423 



increase in slip rate within the last ~1 Ma display mobile knickpoints whereas those crossing faults 424 
with slip rates unchanged for several million years have concave-up profiles. 425 

Such transient features may take several forms (Lague, 2014) reflecting different deformation events. 426 
In this respect, beyond extended knickzones that often express spatial variations in uplift rate or, 427 
alternatively, an uplift acceleration slow enough to create only a smooth convexity, one distinguishes 428 
vertical step knickpoints separating segments of similar concavity and steepness, i.e., segments 429 
aligned in S-A plots, from slope-break knickpoints opposing a downstream segment of high steepness 430 
and a less steep upstream segment (Fig. 7). It is easily seen that, while the latter result from a change 431 
in uplift regime toward a permanently increased uplift rate, the former are produced by an uplift 432 
pulse temporarily superimposed on a background uplift rate or, in the shortest term, by a coseismic 433 
scarp across the river profile. Direct evidence has been provided for knickpoint formation and 434 
propagation in response to, e.g., increase in fault slip rate (Whittaker et al., 2007a, 2008), coseismic 435 
surface rupture (Yanites et al., 2010; Huang et al., 2013), and postglacial rebound (Bishop et al., 2005; 436 
Castillo et al., 2013). In addition, a great many studies have mapped sets of tectonic knickpoints 437 
sweeping through drainage systems of uplifting regions all over the world (e.g., Zaprowski et al., 438 
2001; Schoenbohm et al., 2004; Crosby and Whipple, 2006; Berlin and Anderson, 2007; Anthony and 439 
Granger, 2007; Harkins et al., 2007; Cook et al., 2009; Loget and Van den Driessche, 2009; Schildgen 440 
et al., 2010, 2012; Whittaker and Boulton, 2012; Beckers et al., 2015). 441 

Concurrently, the theory of knickpoint migration has been examined in the frame of various incision 442 
models that show knickpoint behaviour ranging from purely advective to essentially diffusive 443 
propagation, depending on the major constraint on incision (Crosby et al., 2007). Rearrangement of 444 
equation (5) yields the migration rate, or celerity, c of the erosion wave in the detachment-limited 445 
setting of bedrock rivers 446 

c = KAmSn-1      (18) 447 

which many studies have simplified to  448 

c = KAm       (19) 449 

(dimension of K: L1-2mT-1) by assuming n to be close to unity (e.g., Crosby and Whipple, 2006; Berlin 450 
and Anderson, 2007; Beckers et al., 2015). While the effective value n may in fact be larger than 1, 451 
this assumption nevertheless allowed these authors to perform successful first-order modelling of 452 
knickpoint propagation. Advected knickpoints retain their shape while migrating upstream at speeds 453 
decreasing in function of a power of A. Therefore, at any moment, knickpoints have travelled variable 454 
distances in the diverse branches of a system, depending on the rapidity with which they approach 455 
their sources. However, Niemann et al. (2001) showed that the vertical velocity of knickpoints is 456 
constant, provided the two river reaches down- and upstream of the knickpoint satisfy the 457 
equilibrium equation (7) relative to the new and former conditions, respectively, and K and U are 458 
spatially uniform. Consequently beyond the lithology-independent geographic distribution of 459 
knickpoints, their altitudinal constancy is thus a testable characteristic of their belonging to a 460 
tectonically-driven erosion wave (e.g., Wobus et al., 2006; Cook et al., 2009). By contrast, under 461 
transport-limited conditions or with a predominant role of the sediment load, with dual tool and 462 
cover effects in bedrock streams, incision models suggest a diffusive or more complex migration of 463 
knickpoints, which may make knickzones undetectable (Crosby et al., 2007). Moreover, the shape of 464 
migrating knickpoints may be altered even in simple detachment-limited conditions in the case 465 
where incision shows a non-linear dependence on channel slope (Tucker and Whipple, 2002; 466 
Finnegan, 2013). Supported by field evidence of channel narrowing at knickpoints (Whipple et al., 467 
2000; Amos and Burbank, 2007; Whittaker et al., 2007b), a recent advance in the understanding of 468 
the transient response of river profiles has been the replacement in the stream power approach of 469 
the static relation between channel width and A, via Q, by an expression that also links it dynamically 470 
with slope (Finnegan et al., 2005; Whittaker et al., 2007b; Attal et al., 2008; Turowski et al., 2009; 471 
Yanites and Tucker, 2010). Integrating several additional variables, Lague (2014) came to the 472 



conclusion that, while following a general rule with n > 1, notably owing to the existence of a 473 
threshold shear stress for erosion and the stochastic occurrence of effective discharge, incision could 474 
locally follow a simpler n = 1 rule at the height of the migrating knickpoint because of the dynamic 475 
relationship between channel narrowing and steepening that prevails there. 476 

There are many studies that have used knickpoint data sets with twofold aims: (1) investigating their 477 
origin and controlling factors of propagation, and (2) testing how much SPIMs are able to explain 478 
their distribution, and calibrating the stream power law (e.g., Crosby and Whipple, 2006; Berlin and 479 
Anderson, 2007; Anthony and Granger, 2007; Cook et al., 2009; Loget and Van den Driessche, 2009; 480 
Beckers et al., 2015). As detachment-limited conditions frequently prevail (or are assumed to prevail) 481 
in uplifting areas, the simple SPIM form of equation (5) has been generally used, and the overall 482 
results confirm that the most simple n = 1 assumption is often acceptable as a first-order 483 
approximation (Van der Beek and Bishop, 2003; Berlin and Anderson, 2007; Whittaker and Boulton, 484 
2012; Beckers et al., 2015). Within this frame, m estimates range from 1.13 for incision through 485 
highly erodible rocks in New Zealand (Crosby and Whipple, 2006) through 0.68 in the Ardenne 486 
(Beckers et al., 2015) to 0.54 for ~8-Ma-old knickpoints in the Colorado (W USA) catchment (Berlin 487 
and Anderson, 2007). Other authors have considered empirical relations between distance travelled 488 
by the knickpoints and catchment size and found a similar power law, whose drainage area exponent 489 
is identical to m if n = 1. Again, values of the exponent range from 1.26 (Bishop et al., 2005) to 0.50 490 
(Loget and Van den Driessche, 2009) and 0.34 (Harkins et al., 2007). Measured or modelled rates of 491 
knickpoint displacement, local or averaged over longer distances, have also been published, 492 
supported in some cases by independent incision rate estimates (e.g., Anthony and Granger, 2007; 493 
Cook et al., 2009; Schildgen et al., 2012; Cyr et al., 2014; DiBiase et al., 2015). Though depending on 494 
catchment size, they are often in the order of a few millimetres to decimetres per year, with values 495 
up to a few m/yr only for major rivers (see a compilation in Loget and Van den Driessche, 2009; 496 
Whittaker and Boulton, 2012; Demoulin et al., 2012). Exceptionally high discharges are capable of 497 
causing much faster but highly episodic knickpoint recession. For example, Baynes et al (2015) 498 
demonstrated that three extreme flood events (glacial outburst floods with peak discharge of several 499 
105 m3/s) caused cumulative knickpoint retreat of more than 2 km in hard columnar basalts during 500 
the Holocene in Iceland. Not surprisingly, snapshot observation of river response to perturbation 501 
tends to record retreat rates higher than those averaged over ky to My periods. Extreme rates of up 502 
to several hundred metres per year have occasionally been recorded over short time scales (~101 503 
years) where bedload material is considerably more resistant than the very erodible channel 504 
bedrock, as exemplified by the knickpoint created in the Da'an River (Taiwan) by the surface rupture 505 
of the Chi Chi 1999 earthquake (Cook et al., 2013). Direct observation has also shown that individual 506 
scour events may cause rapid knickpoint retreat even in strong rocks if they are structurally 507 
preconditioned. For instance, Anton et al. (2015) measured 270 m headward erosion over 6 years 508 
from moderate floods (< 1500 m3 s-1) in fractured granite in NW Spain. However, no clear effect of 509 
lithology has been noted in general on the propagation rate of knickpoints (Roberts and White, 2010; 510 
Whittaker and Boulton, 2012; Beckers et al., 2015). 511 

Profile segments upstream of knickpoints may often reflect a pre-uplift steady state, from which 512 
characteristic incision amounts since the uplift event may then be estimated. Using the relict profile 513 
concavity and steepness, equation (12) allows extrapolating channel gradients for its continuation 514 
down to the point of interest, in general the confluence with the trunk stream, and integration of 515 
these slope data yields the ancient profile elevation and the magnitude of incision since it has been 516 
abandoned (e.g., Schoenbohm et al., 2004; Harkins et al., 2007; Cook et al., 2009). Incision amounts 517 
may also be expressed as incision rates if the timing of knickpoint formation is known and the 518 
erosion wave has not yet reached erosion thresholds causing the stagnation of knickpoints (Crosby 519 
and Whipple, 206; Beckers et al., 2015). 520 

2.4 Profile inversion and uplift history 521 



Pritchard et al. (2009) and Roberts and White (2010) have suggested combining simple forward 522 
modelling of river incision with an inversion algorithm in order to reconstruct long-term regional 523 
uplift histories U(t). Such studies have been performed at the continental (Roberts and White, 2010; 524 
Czarnota et al., 2014) and regional scales (e.g., Roberts et al., 2012; Barnett-Moore et al., 2014). They 525 
have used a simple general incision rule combining an advective term that describes the propagation 526 
of the erosion wave under detachment-limited conditions and a diffusive term accounting for the 527 
transport-limited component of erosion (Roberts and White, 2010; Roberts et al., 2012; Czarnota et 528 
al. 2014) 529 
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where  is a diffusivity coefficient. They make profiles evolve following 531 

   txEtxU
t

z
,, 




     (21) 532 

As river profiles contain only indirect uplift timescale information determined by K, m, n, and , these 533 
parameter values must be chosen with great care. Based on independent data such as, e.g., dated 534 
paleoprofiles (Czarnota et al., 2014), local incision rate estimates (Wilson et al., 2014) or the present-535 
day elevations of dated shallow marine deposits (Barnett-Moore et al., 2014), and on the observation 536 

that uplift history reconstruction is barely sensitive to a large range of  variations (Roberts and 537 
White, 2010), the parameterization of equation (20) may be achieved by systematic search through 538 

the (n,m,K) space with a fixed  value. Best fits generally confirm that the most appropriate value of 539 
n is unity, while a trade-off is required between K and m along the best fit line in the (m,K) plane. 540 
Alternatively, Goren et al. (2014), taking n = 1 and including no diffusive term in the erosion 541 
equation, define m and K from chi plots of present profiles. Once parameters are fixed, the inverse 542 
approach consists in the estimation of a misfit function that both minimizes the difference between 543 
computed and observed profiles and smooths the U(t) curve, by systematically varying U(t) in a 544 
Monte Carlo process (Roberts and White, 2010). Owing to recent improvements of the method, 545 
which now deals with non-zero initial topography (Czarnota et al., 2014), variable reference level 546 
(Barnett-Moore et al., 2014), and non-uniform uplift rates (Goren et al., 2014), remaining major 547 
assumptions chiefly relate to constant K through space and time, the role of variable discharges, and 548 
absence of temporal changes in drainage planform. 549 

Inverse modelling of river profiles has been successfully applied at the continental scale to the 550 
reconstruction of the long-term evolution of dynamic topography in Africa (Roberts and White, 2010) 551 
and Australia (Czarnota et al., 2014), although the regional study of Barnett-Moore et al. (2014) 552 
reconstructs somewhat variable uplift histories in adjacent basins of SW Australia. It has also allowed 553 
a long-term uplift history to be predicted for the Colorado Plateau (Roberts et al., 2012) and the Inyo 554 
Mountains, California (Goren et al., 2014). Strikingly, all profile inversion studies point to weak or 555 
non-existent lithological control on long-term incision and knickpoint migration rates. However some 556 
of the assumptions made by these models, which include the long term erosional dynamics and the 557 
need for drainage network stability over time, mean that these inversion techniques are not 558 
necessarily appropriate in every transient landscape. More widely, the outcomes of such large-scale 559 
analysis of river profiles are probably best seen as producing first-order results on the broad scale, 560 
but do provide one tool to analyse the evolution of continental drainage in time and space in 561 
response to long-wavelength mantle processes.  562 

Another important point raised by profile inversion studies concerns the very long (up to 120 Ma) 563 
uplift histories produced, which correspond to long response times. Roberts and White (2010) noted 564 
however that modifying the trade-off between m and K induces no change in the reconstructed 565 
number and magnitude of uplift events, but larger m produce younger events. Integrating equation 566 

(19) and using Hack's law, response time  is expressed as 567 



 = (L1-hm – x1-hm)/(K (1 – hm))    (22) 568 

with L = river length. Equation (22) shows that response time increases logically with river length but 569 
also with smaller K. Yet, at equal m, say m = 0.25, K values may differ by up to two orders of 570 
magnitude between various areas, ranging from lowest values around 5-15 m0.5Myr-1 (and longest 571 
response times) in Australia (Czarnota et al., 2014; Barnett-Moore et al., 2014) to intermediate 572 
values in Africa (Roberts and White, 2010) and the Colorado Plateau (Berlin and Anderson, 2007; 573 
Roberts et al., 2012), and  largest values in the order of 100-500 m0.5Myr-1 in western Europe and the 574 
Apennines (Whittaker and Boulton, 2012; Beckers et al., 2015). These differences in K may explain 575 
the highly contrasted response times published, of a few million years in the Apennines and Turkey 576 
(Whittaker and Boulton, 2012) and other active areas worldwide (Baldwin et al., 2003; Demoulin, 577 
2012) compared with up to 120 Myr in Australia. While lithology has been observed to have a limited 578 
effect in several studies (e.g., Whittaker and Boulton, 2012; Beckers et al., 2015), climate (through 579 
precipitation amount, ratio of precipitation to infiltration, availability of abrasive tools in the bed 580 
load) and uplift rate might be the main controls on such differences. In line with Whittaker and 581 
Boulton (2012), who have shown that, in the Apennines and SE Turkey, knickpoint migration rates 582 
scale with fault slip (and associated uplift) rates, K variations shown above also scale with uplift rates 583 
that vary from a few 0.01 mm/yr in Australia through 0.1-0.2 mm/yr in Colorado to 0.2-2 mm/yr in 584 
the cited European and Mediterranean case studies. 585 

3 Integrative catchment morphometry: the R/SR approach  586 

Building on the idea that not only individual river profiles but also the fluvial landscape as a whole 587 
keeps track of uplift events, Demoulin (2011) proposed a new approach to uplift age estimation 588 
based on a composite landscape metric that integrates information relating to a range of time scales. 589 
This metric relies on the statistics of incision at nested levels, from individual profiles through 590 
tributary networks to catchment data at the regional scale. Calculable for every catchment with a 591 
more than embryonic network of tributaries, the metric R is the ratio of two-by-two differences 592 
between the normalized hypsometric integrals of the catchment Hb, its drainage network Hn and 593 
trunk stream Hr, referring to the long-, middle-, and short-term components of uplift-triggered 594 
incision, respectively 595 
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where l* is the dimensionless expression of length (for Hr and Hn) or area (for Hb) (Fig. 8A). It provides 597 
a quantitative description of the relative progress stages of trunk stream and tributary incision and 598 
interfluve denudation, which, based on the concept of headward erosion, translates into an estimate 599 
of the time elapsed since the fluvial landscape started responding to the latest perturbation that 600 
induced a relative base-level lowering. However, the intuition that catchment size also determines 601 
the contrast in response rate between trunk stream and tributary network, thus also R, is clearly 602 
evidenced by the generally strong correlation observed between A and R within any region of 603 
homogeneous uplift timing (Fig. 8B). Consequently, uplift age estimates are instead derived from the 604 
slope SR of the linear fit on a semi-logarithmic plot of R against ln(A) (Demoulin, 2011). Indeed, the 605 
theoretical expectation that, following a base-level fall, R and SR first rapidly increase due to swift 606 
propagation of incision in the trunk stream, then gradually diminish in the middle term (104-106 607 
years), in parallel with the migration of the erosion front in an increasing number of tributaries and 608 
sub-tributaries, is fully confirmed by real data from several regions worldwide where uplift age is 609 
independently constrained, allowing Demoulin (2012) to propose a quantified power relation 610 
between SR and uplift time (Fig. 8C). The very existence of such a relationship underlines the fact that 611 
the R metric not only is mostly insensitive to lithology but is also usable across a large range of 612 
climatic settings. The main limitation to meaningful calculation of R lies in the catchment planform 613 
and the related stream network development, whose elongation or systematic irregularity (for 614 



example an imbalance between tributary network of the lower and upper catchment halves) bias R 615 
toward extreme values. Practically, after correction for catchment elongation (Demoulin, 2012; 616 
Demoulin et al., 2013), only few catchments, which are in general discarded as outliers of the R – 617 
ln(A) correlation, cannot be used because of persisting shape-related problems. Another practical 618 
constraint of the method is the extent of the uplifted region, which should be large enough to 619 
encompass a few catchments ≥ 1000 km2 in order to stabilize the R – ln(A) relation. However, 620 
Demoulin et al. (2015) showed that a substitute approach based on producing R long profiles of the 621 
longest available rivers may work for smaller areas, with the further potential for identifying river 622 
segments with different SR if the river flows across differently uplifted blocks. 623 

4 Crustal deformation and terrace staircases 624 

River terraces appearing as stepped morphologies along valley flanks, which can be essentially 625 
aggradational or degradational in nature, have long been used to infer rates of fluvial incision 626 
(Burbank and Anderson 2012). A degradational, or ‘strath’ terrace generally results from lateral 627 
erosion into bedrock and displays bevelled bare rock more or less veneered with gravels 628 
corresponding to the former transiting bedload. By contrast, an aggradational, or ‘fill’, terrace is 629 
characterized by a thicker alluvial cover bearing witness to a longer stage or a higher rate of 630 
sediment accumulation and, often, concomitant larger floodplain widening. In mountainous terrain, 631 
local fill terraces are also frequently found as a result of valley damming by landslides (e.g. Korup et 632 
al., 2006). Terrace formation basically requires that a widened valley floor be formed by lateral 633 
erosion during a stage of vertical (quasi-) stability of the channel before incision resumes, leaving 634 
remnants of the former floodplain above the newly formed valley bottom. Although they are 635 
described in a general context of uplift-driven valley incision, the climatic character of many such 636 
terraces has long been recognized (e.g Bull 1990). In the frame of the stream power model, the 637 
climate control occurs essentially through variations in effective precipitation, which impact directly 638 
effective river discharge and indirectly sediment load (Hancock and Anderson, 2002). Variations in 639 
water discharge and sediment supply in turn may cause high changes in the ratio of lateral to vertical 640 
erosion. We expect in principle that lateral erosion is favoured either by decreased discharge (though 641 
some channel geometries may induce the displacement of peak shear stresses from the axis to the 642 
walls of the channel and increase bank erosion for higher flows; Knight and Sterling, 2000) or by 643 
increased sediment load, leading to aggradation, covering of the channel bottom, and strongly 644 
reduced or stopped channel bedrock incision (Hancock and Anderson, 2002; Finnegan et al., 2007; 645 
Turowski et al., 2008; Johnson and Whipple, 2010; Yanites and Tucker, 2010). Field observation, for 646 
instance in the Liwu River, Taiwan (Hartshorn et al., 2002), suggests that the coupled impact of 647 
changes in discharge and sediment supply is dominated by the latter, promoting lateral erosion 648 
during large floods. This is confirmed by Stark et al. (2010), who note that maximum average 649 
sinuosity of incising rivers is recorded in the typhoon-dominated subtropical area of the western 650 
Pacific where extreme rainfall and flood events are more common, and decreases with the variability 651 
of precipitation on both sides of this latitudinal belt. All this is in line with the common observation in 652 
temperate areas that aggradation and valley widening take place mainly during Quaternary cold 653 
periods, when large snowmelt-driven spring floods occur yearly but still larger sediment fluxes are 654 
delivered by hillslopes and clutter braided floodplains (Bridgland, 2000; Maddy et al., 2001; 655 
Vandenberghe, 2008; Lewin and Gibbard, 2010). A return to lower sediment fluxes may then lead to 656 
incision and terrace formation, especially if high discharges are maintained during the warming 657 
and/or cooling transitions (Bridgland, 2000; Cordier et al., 2006).  658 

Field evidence of Quaternary terrace staircases shows that, considering the interplay of uplift and 659 
climate, it is the uplift that determines the amplitude of the vertical spacing between consecutive 660 
terraces while the intensity of climatic oscillations controls the more or less aggradational or 661 
degradational character of the terraces. As a general rule, information about the timing of incision is 662 
more easily extracted from strath than fill terraces because, in the latter case, duration of 663 
aggradation is an additional unknown to resolve before estimating incision rates (Rixhon et al., 2011; 664 



Burbank and Anderson, 2012). Lagged or complex responses to perturbation may also blur rate 665 
estimates even in dominantly degradational settings (Bull, 1990; Hancock and Anderson, 2002). 666 

While there is now a consensus that the development of terrace flights requires, and their presence 667 
thus attests to, regional uplift (e.g., Maddy, 1997; Bridgland, 2000; Bridgland and Westaway, 2008), 668 
equating the incision rates revealed by such flights with the causative uplift rates is not always 669 
straightforward. Indeed, this assumes that lateral erosion and floodplain development necessary for 670 
later terrace preservation occurred after the incising river had (re)established a steady state profile 671 
indicative of dynamic equilibrium between incision and uplift. However, this might not be true in 672 
many cases where the drainage system response time to a tectonic perturbation is in the order of a 673 
few million years (Whipple, 2001; Whittaker et al., 2007a), much longer than the glacial-interglacial 674 
cycles that control the pace of Quaternary terrace formation. A main requirement for incision rates 675 
being a safe proxy for uplift rates is thus short response time, which is verified chiefly in large rivers 676 
and highly active areas (e.g., Leland et al., 1998; Whittaker and Boulton, 2012; Blöthe et al., 2014). In 677 
the case of climatic perturbation of the incision/uplift dynamic equilibrium, rivers have often been 678 
considered to return rapidly to steady state as soon as the climatic conditions become favourable to 679 
bedrock incision because river profiles may rapidly recover from the small perturbations cold-period 680 
aggradation imposes on them (Bogaart and Van Balen, 2000; Carretier et al., 2006). Based on this 681 
assumption, related to that of parallel terrace profiles, incision rates calculated from terrace age-682 
elevation data have been thought to be a reliable proxy of uplift rates (e.g., Maddy et al., 2000) 683 

4.1 Estimating incision/uplift rates from terrace studies 684 

Estimating regional incision rates from dated remnants of fluvial terraces requires terrace long 685 
profiles to be reliably reconstructed. In this respect, detailed vertical terrace sequences preserved in 686 
valley reaches constitute important anchor points for along-stream correlation (e.g., Juvigné and 687 
Renard, 1992; Van den Berg, 1996; Bridgland, 2010; Viveen et al., 2012; Harmand and Cordier, 2012). 688 
Terrace levels with distinctive characteristics, such as an anomalously large lateral development (e.g., 689 
the main terraces of the middle Rhine: Boenigk and Frechen, 2006; Peters and Van Balen, 2007), 690 
thicker than average alluvium, sudden change in the petrological or mineralogical assemblage of the 691 
sediments (e.g., in the Meuse terrace following the capture of the upper Moselle: Pissart et al., 692 
1997), biostratigraphic markers (e.g., Schreve et al., 2007; Antoine et al., 2007), provide additional 693 
useful constraints, as do soil or duricrust formation and the degree of weathering of pebbles (e.g., 694 
Pazzaglia and Brandon, 2001; Stange et al., 2013). However, profile reconstruction, which should 695 
allow evaluation of the relative elevation of a terrace with respect to the modern floodplain, i.e., 696 
incision amounts, is strongly dependent on the quality and density of terrace data, making it often 697 
more or less speculative (Merritts et al., 1994). This is especially true when additional local terraces 698 
complicate the overall picture. In the case of discontinuous terrace treads, geometric criteria of 699 
correlation may be frequently misleading if employed alone because slope relations between the 700 
terrace and modern river profiles are unknown and the geometrically reconstructed profile may even 701 
be largely independent of the paleo-channel gradient if terrace formation is linked to the 702 
propagation of a wave of incision (Finnegan, 2013).  703 

When effective dating methods of river sediment was not available beyond the last few ten thousand 704 
years, inferences about terrace chronology strongly depended on local circumstances such as the 705 
presence of Palaeolithic artefacts (e.g., Bridgland et al., 2006; Mishra et al., 2007) or dated tephra in 706 
the terrace deposits (e.g., Izett et al., 1992; Berryman et al., 2000; Dethier, 2001; Pastre, 2004; 707 
Suzuki, 2008), interfingering with dated lava flows (e.g., Westaway et al., 2009; Van Gorp et al., 708 
2016), direct relationships with glacial features in the European Alps (e.g., Mandier, 1984), or often 709 
hard-to-handle palaeomagnetic data (e.g., Van den Berg, 1996). Subsequently, growing field 710 
evidence that Quaternary terrace sequences have formed in synchrony with the glacial-interglacial 711 
cycles (e.g., Antoine, 1994) led to the still common habit of complementing often sparse numerical 712 
terrace dating with their systematic reference to marine isotopic stages (MIS) (e.g., Bridgland, 2000; 713 
Cordier et al., 2006), even though this approach could be regarded as overly simplistic in many cases, 714 



as attested by varying MIS assignments of the Meuse terraces (Van den Berg, 1996; Van Balen et al., 715 
2000; Westaway, 2002; Bridgland and Westaway, 2014). Since the 1990s, continuous developments 716 
in the luminescence dating techniques and the explosion of cosmogenic (radio)nuclide (CRN) studies 717 
have fostered the establishment of numerical chronologies of terrace sequences up to ~1 Ma (e.g., 718 
Brocard et al., 2003; Cordier et al., 2006, 2010, 2014; Rixhon et al., 2011; Viveen et al., 2012; Geach 719 
et al., 2015b; Ruszkiczay-Rüdiger et al., 2016). Additionally, the various ways of obtaining CRN ages of 720 
terrace deposits (CRN concentration depth profiles: Braucher et al., 2009; isochron method: Balco 721 
and Rovey II, 2008) has renewed our approach to the exact meaning of the obtained ages, namely 722 
offering opportunities for separating exposure ages (time of terrace abandonment) and aggradation 723 
ages (starting time of terrace sediment accumulation) (Rixhon et al., 2011). 724 

Moreover, while primarily needed for rate calculation, reliable age data has also proved extremely 725 
useful in constraining the correlation of terrace treads and revealed that the usual extrapolation of 726 
local ages to whole profiles under the assumption that incision occurs synchronously along the entire 727 
river course may not always be true (Anthony and Granger, 2007; Rixhon et al., 2011; Baynes et al., 728 
2015). Combined with the study of knickpoints propagating at the expense of the system's main 729 
terrace (Beckers et al., 2015), CRN ages obtained by Rixhon et al. (2011) along the lower Meuse – 730 
tributary lower Ourthe – sub-tributary Amblève drainage line in the Ardenne demonstrate the time-731 
transgressive formation of this terrace (Fig. 9). This diachronous character of terraces formed 732 
through knickpoint propagation had been previously assumed from the very nature of this erosion 733 
process where tectonic knickpoints had been unequivocally identified (e.g., Zaprowski et al., 2001; 734 
Crosby and Whipple, 2006). Investigating the theoretical implications of this mechanism of terrace 735 
formation for the slope of a profile that has to be restored from discontinuous terrace fragments, 736 
Finnegan (2013) showed that this slope is essentially a function of the ratio between the knickpoint 737 
migration rate and the rate of incision of the river upstream of the knickpoint and, as such, is mostly 738 
different from the slope of the paleo-channel. Using the stream power law of river erosion and based 739 
only on geometric considerations in which the elevation of the retreating knickpoint crest defines the 740 
nascent terrace, he derived an expression of the expected terrace slope St 741 

St/Sr = 1 – (Sr/Sk)
n-1     (24) 742 

with Sr = channel slope upstream of the knickpoint and Sk = knickpoint slope, which highlights the 743 
dependence of the terrace slope on n. In the frequently assumed case where n=1, the time-744 
transgressive terrace formed by knickpoint retreat should display zero slope. While the terrace 745 
slopes downstream for n > 1, n < 1 theoretically implies that it has a counterslope gradient (absolute 746 
elevations of the terrace increase downstream). Based on an analysis of waterfalls and knickzones 747 
along rivers of the San Gabriel Mountains, California, DiBiase et al. (2015) further stressed the need 748 
for careful sampling of time-transgressive strath terraces if knickpoint retreat rates are to be 749 
estimated. 750 

4.2 Terrace profile geometry 751 

The many case studies where sound terrace profiles could be reconstructed from relatively 752 
continuous field evidence have shown that terrace flights display three basic patterns: (1) parallel 753 
profiles, (2) upstream diverging profiles, and (3) downstream diverging profiles (e.g, Pazzaglia et al., 754 
1998; Colombo, 2005) (Fig. 10). In any case, the relative profile attitude concurrently depends on 755 
changes in equilibrium slope of the successive channel profiles on the one hand and change with 756 
time of the original terrace slope on the other. Supposed to reflect equilibrium conditions (Bull, 1990; 757 
Pazzaglia and Brandon, 2001), parallel terrace profiles (e.g., Westaway, 2002; Stange et al., 2013) are 758 
generally considered to indicate regions of spatially uniform uplift rate (Pazzaglia et al., 1998) but a 759 
further condition for parallelism is that uplift rate also remains constant through time, so that the 760 
successive channel equilibrium profiles have similar gradients. As for upstream diverging profiles 761 
(e.g., Pierce and Morgan, 1992; Colombo, 2005; Hetzel et al., 2006; Boenigk and Frechen, 2006; 762 
Gabris and Nador, 2007), they are usually interpreted as an indication of higher uplift rates near the 763 



headwaters than in the lower catchment part (Pazzaglia et al., 1998), i.e., downstream directed tilt 764 
(e.g., Pierce and Morgan, 1992). 765 

Conversely, downstream diverging profiles are often thought to reflect higher uplift rates in the 766 
lower course of the river, or upstream directed tilt (Pierce and Morgan, 1992). The more vague 767 
association of such a profile pattern with simple base-level fall (Pazzaglia et al., 1998; Colombo, 2005) 768 
is unlikely as long as no uplift acceleration imposing steeper gradients to the new equilibrium profile 769 
can be established. Only if episodic uplift pulses were superposed on a constant background rate 770 
might a set of parallel terrace profiles converge upstream with a modern transient profile, the lowest 771 
terrace(s) still merging with the present channel profile at the height of knickpoints migrating up the 772 
latter (e.g., Seidl and Dietrich, 1992; Howard et al., 1994; Zaprowski et al., 2001). However, observing 773 
that all middle-sized rivers flowing down the epeirogenetically uplifted Ardenne display downstream 774 
divergent terrace profiles, whatever their orientation, Macar (1957) pointed to an alternative cause 775 
of divergence. According to him, the progressive deepening of valleys through river incision entails a 776 
proportional increase in sediment delivery from lengthened steep valley sides to the channel, which, 777 
for unchanged water discharge, imposes gradually steeper equilibrium channel gradients. 778 

Two other aspects of terrace flights, characterized by warped or vertically offset profiles, are also 779 
encountered and bear witness to more local deformation (Fig. 10). Warped profiles are produced by 780 
the growth of a fold oriented orthogonally or obliquely with respect to the river course. If the river's 781 
power is high enough for it to cope with the rate of fold growth, a situation of antecedence develops, 782 
where the pre-existing river incises across the growing fold. If for any (e.g., climatic) reason, incision 783 
is episodically interrupted by terrace formation, every terrace will display a degree of warping 784 
directly proportional to its age, which evidences the geometry of the surface deformation associated 785 
with the fold growth, thus to some extent the type of folding (Scharer et al., 2006; Hubert-Ferrari et 786 
al., 2007), and allows growth rate estimation. The archetypal example of such an evolution was 787 
described for rivers flowing down the Himalaya and crossing the rising anticline that forms the 788 
Siwaliks Hills above the Main Frontal thrust in central Nepal (Lavé and Avouac, 2001) but similar case 789 
studies have also been published from other regions of active folding worldwide (e.g., Molnar et al., 790 
1994; Haghipour et al., 2012; Veloza et al., 2015). As for vertically offset terrace profiles, though 791 
often obscuring the general profile reconstruction, they may be used for the estimation of 792 
displacement rates on active dip-slip faults crossing a river if tread continuity, age data or other 793 
unambiguous terrace markers allow a reliable terrace correlation (e.g., Rockwell et al., 1984; Peters 794 
and Van Balen, 2007; Abou Romieh et al., 2009; Walker et al., 2010). 795 

4.3 An integrated tectono-climatic model of Quaternary valley incision 796 

Much progress has been achieved in the understanding of Quaternary river incision during the last 797 
two decades. However, distinct research lines were followed within two poorly connected 798 
communities. On the one hand, 'fluvial archive geomorphologists' have performed extensive field 799 
work, analysing and dating predominantly fill terraces from terrace sequences of many alluvial rivers 800 
worldwide (see a recent synthesis in Bridgland and Westaway, 2014). Within the FLAG (Fluvial 801 
Archives Group) framework, river terrace sequences have been mapped, described and, in many 802 
cases, dated in the most varied tectonic settings, from very active mountains (e.g., Tibet: 803 
Vandenberghe et al., 2011; Zhu et al., 2014), through regions of moderate tectonic activity (e.g., 804 
Syria: Demir et al., 2007; Westaway et al., 2009; Turkey: Bridgland et al., 2012; Maddy et al., 2012; 805 
Iberia: Stokes and Mather, 2003; Cunha et al., 2005; Santisteban and Schulte, 2007; Harvey et al., 806 
2014), epeirogenetically uplifted (Rhenish shield: Van den Berg, 1996; Pissart et al., 1997; Boenigk 807 
and Frechen, 2006; Cordier et al., 2009; French Central Massif: Pastre, 2004) and tectonically stable 808 
(Britain: Bridgland, 2010; Bridgland et al., 2015; Paris Basin: Cordier et al., 2006; Antoine et al., 2007; 809 
Despriée et al., 2007) areas of NW Europe, Russian Arctic (Alekseev and Drouchits, 2004; Patyk-Kara 810 
and Postolenko, 2004), to cratonic areas (South Africa: Helgren, 1978; Ukrainian shield: Matoshko et 811 
al., 2004; Australia: Nott, 1992; Nott et al., 2002). Some of this research has highlighted that many 812 
rivers worldwide show a similar temporal pattern of increased incision rate since the early Middle 813 



Pleistocene, and attributed this to the mid-Pleistocene climatic degradation enhancing erosion and, 814 
thus, erosional isostatic rebound of the crust (Westaway et al., 2003; Bridgland and Westaway, 2008, 815 
2014). This would suggest that the part of the total uplift/incision that responds to this climate-816 
driven mechanism in tectonically active areas is more or less systematically superposed on the true 817 
tectonic component of uplift. This may be true in epeirogeneically deformed continental interiors, 818 
where both components are of the same order of magnitude (e.g., Demoulin and Hallot, 2009) but is 819 
also a subject of debate in more active mountains (see, for example., the aneurysm vs fold growth 820 
controversy about the dominant cause of extreme uplift rate in the eastern Himalayan syntaxis; 821 
Zeitler et al., 2001; Seward and Burg, 2008).  822 

On the other hand, process geomorphologists have developed a parallel approach more centred on 823 
numerical modelling of river erosion in uplifting areas and mainly interested in quantifying controls 824 
on incision. A distinctive trait of their research, which has been reviewed mainly in section 2, is the 825 
special interest paid to the transient response of bedrock rivers to tectonic perturbations in active 826 
orogens (recent syntheses in Whipple et al., 2013; Lague, 2014). While modellers have so far made 827 
limited attempts to model terrace formation (e.g., Veldkamp, 1992; Hancock and Anderson, 2002; 828 
Finnegan, 2013; Stange et al., 2014; Norton et al., 2015, Geach et al., 2015a), many fluvial archive 829 
geomorphologists tend to be reluctant to incorporate transient features and their implications, i.e., 830 
knickpoints and time-transgressive terraces, in their reconstructions of terrace sequences (e.g., 831 
Bridgland and Westaway, 2012). Equally, it is also highly debatable whether the systematic global 832 
application of the model proposed by Westaway (e.g., 2002, 2012) to terrace sequences is 833 
meaningful in the many regions where loading gradients of erosional origin are much too small to 834 
cause lower crustal flow. Progress in the understanding of the complex interplay between tectonic 835 
activity and surface processes clearly requires the rapprochement of the two communities (Briant et 836 
al., 2016), both of whom essentially work on the same fundamentals.  837 

Based on detailed terrace studies in the Ardenne where the climatic and tectonic controls narrowly 838 
intermingle, Demoulin et al. (2012) recently proposed a conceptual hybrid model of valley 839 
downcutting that acknowledges the alternation of climatic terrace succession and knickpoint 840 
propagation. The main ingredients of drainage system incision in the Ardenne during the Quaternary 841 
are a pulse of accelerated uplift (~0.3 mm/yr) around 0.7 Ma superposed on a background uplift rate 842 
close to zero prior to 0.7 Ma and very slightly higher (~0.05 mm/yr) after the pulse (Demoulin and 843 
Hallot, 2009; Beckers et al., 2015) interacting with the glacial-interglacial cycles. Demoulin et al. 844 
(2012) oppose a steady state evolution under constant background uplift, which leads to the 845 
formation of climatic terraces evolving simultaneously in the whole drainage system, in agreement 846 
with the classical cyclic model (e.g., Bridgland, 2000; Vandenberghe, 2008), and a transient episode 847 
responding to the uplift pulse by the creation and propagation in the system of knickpoints, whose 848 
displacements caused from 0.7 Ma onwards the formation of one time-transgressive terrace level in 849 
the Ardennian valleys. Evidenced by CRN dating (Rixhon et al., 2011), the diachronic character of this 850 
particular level is easily measured in the Meuse tributaries (A < 4000 km2) but is not resolvable in the 851 

Meuse itself (A  20,000 km2) where the erosion wave migrated much faster. Currently located in the 852 
system's headwaters and reactivated during each climate-dependent episode of incision, the 853 
knickpoints constitute a mobile line of separation between an upstream area where the pre-pulse 854 
steady state still induces very limited incision and a downstream region where younger terraces 855 
more or less parallel to the modern profile illustrate the interplay between climate oscillations and 856 
the current steady state uplift/incision rate (Fig. 9B). In this case study, climate oscillations may have 857 
helped in developing a sharp profile discontinuity from a rather small change in U because high 858 
sediment delivery from hillslopes prevented incision during cold periods, temporarily freezing the 859 
system's response and allowing the accumulation of a large finite base level fall at the edge of the 860 
uplifting area before incision resumed at the next climatic transition (~20-m-high knickpoints 861 
required 65 ky to form from a ~0.3 mm/yr increase in uplift rate). 862 

5 Planform changes in fluvial systems 863 



5.1 Changes in channel form 864 

Active vertical crustal deformation is recorded not only in the vertical evolution of rivers but also in 865 
changes of the planform patterns of alluvial channels. Based on experiments and field evidence, 866 
Ouchi (1985) showed that a meandering river crossing a growing anticline tends to respond first by 867 
increasing its sinuosity on the oversteepened downstream limb of the fold and, conversely, 868 
straightening its course across the fold's upstream half where the valley profile flattens (Fig. 11). 869 
However, in the latter zone, the ponding of the river and the associated aggradation often induce 870 
also the development of reticulate or anabranching channel patterns. In the case of braided rivers, 871 
transverse folding leads to an up-fold transition from braided to meandering-braided pattern. 872 
Downstream the resulting sedimentation and flow concentration forms a straight single channel 873 
incising the fold core before returning to braided channels downstream of the fold. Further examples 874 
of such short-term responses of alluvial rivers have been given by, e.g., Jain and Sinha (2005), 875 
Petrovszki and Timar (2010), Burbank and Anderson (2012). Moreover, Harbor (1998) and Amos and 876 
Burbank (2007) note that the first response of small alluvial rivers to fold growth is by channel 877 
narrowing. Only if the amount of differential uplift increases must channel narrowing be 878 
complemented by gradient steepening, first through channel straightening then knickpoint 879 
formation, in order to maintain antecedence. However, in a study of low-gradient alluvial rivers in SE 880 
Louisiana (USA), Gasparini et al. (2015) are not able to see a clear lead and lag between channel 881 
narrowing and changes in sinuosity in response to small differential uplift rates, nor do they identify 882 
the factors that determine an incisional versus planform response. 883 

Based on observation of the response of the braided Da'an River to 10 m uplift of the Dongshi 884 
anticline during the 1999 Chi-Chi earthquake in Taiwan, Cook et al. (2014) recently introduced the 885 
concept of downstream sweep erosion, responsible for gorge eradication. They note that, after a 886 
gorge had rapidly formed through knickpoint retreat across the uplifted valley reach and had 887 
transiently widened through channel wall undercutting, propagation of the knickzone in the 888 
sediment wedge upstream of the anticline largely removed them over a width of 250 m, causing 889 
aggradation in the gorge and exposing the upstream-facing edge of the anticline. Owing to the 890 
abrupt narrowing of a ~800-m-wide braidplain into a 25-m-wide gorge, channel shifts through 891 
avulsions in the plain drove rapid erosion of parts of the exposed anticline scarp, resulting in its 892 
parallel downstream retreat, consumption of the uplifted topography, bevelling of the valley floor, 893 
and shortening of the gorge length (Fig. 12). Observing that the rate of this process is one order of 894 
magnitude higher than that of gorge widening and that previous coseismic uplifts of the anticline 895 
have left no trace in the topography, Cook et al. (2014) propose that, at least in the case of episodic 896 
uplift, downstream sweep erosion is an efficient mechanism for the erasure of a gorge created 897 
downstream of a broad floodplain. 898 

5.2 Capture and drainage reorganisation 899 

If the uplift rate is too high for river erosion to keep pace with it (depending on the balance between 900 
sediment flux, upstream ponding and river power, see Humphrey and Konrad, 2000) and 901 
antecedence cannot be maintained, stream diversion (sensu Bishop 1995), generated by, e.g., lake 902 
spillover (Hood et al., 2014) or stream piracy, can lead to drainage reorganisation at a range of scales. 903 
Van der Beek et al. (2002) also show that, in the case of drainage transverse to active fault-904 
propagation folding, the axial slope developing at the back of the growing fold for a non-zero dip of 905 
the underlying detachment favours stream deflection toward the propagating fold tip, so that the 906 
spacing of transverse rivers is controlled much more by the characteristic fault segment length than 907 
the ratio between uplift and incision rates. Beyond the drainage system planform geometry, traces of 908 
this process in the landscape are mainly windgaps (Burbank et al., 1996) and the incision response to 909 
redistribution of discharge (e.g., Yanites et al., 2013). River captures determined by differential uplift 910 
occur at all spatial scales, from local to subcontinental. To take one example of the latter, in their 911 
compilation of the drainage history in E and SE Tibet, Clark et al. (2004) document a number of 912 
captures and drainage reversal events by which the lower Yangtze successively diverted to the east 913 



streams that originally gathered in a single major SE-flowing stream from which the modern Red 914 
River represents the subsisting lower course, while other rivers of the ancient Red River catchment, 915 
including the upper Mekong, Salween and, possibly, Tsangpo-Brahmaputra, would have been 916 
diverted to the S and SW (Fig. 13A). Despite lacking age constraints, they argue this large-scale 917 
drainage reorganisation, and especially reversal of the middle Yangtze and capture of the upper 918 
Yangtze, occurred possibly in Oligocene to mid-Miocene times, prior to regional uplift of E Tibet, 919 
which imposed ~2000 m incision since reversal of the flow direction of the middle Yangtze. Based on 920 
mass balancing between eroded and deposited rock volumes and isotopic analysis of sediments from 921 
the Hanoi Basin, Vietnam, Clift et al. (2006) confirm this view of large-scale beheading of the Red 922 
River catchment, possibly including loss of the middle Yangtze, before ~24 Ma. Recently, Kong et al. 923 
(2012) challenged the old age of these events, using detrital zircon U-Pb and cosmogenic 10Be/26Al 924 
burial ages of fluvial sands to conclude that rerouting of the upper Yangtze would instead have been 925 
realised within the last 1.7 Ma, although these conclusions are disputed by other researchers 926 
(Bridgland and Westaway, 2012). 927 

In continental Iberia, river capture has operated on a variety of scales, connecting previously 928 
endorheic continental basins with the Atlantic (e.g., Anton et al., 2012; Martins et al., 2017) and 929 
Mediterranean (e.g., Harvey et al., 2014). These captures, whose drivers have principally been 930 
attributed to differential uplift rates, are associated with rapid and dramatic base-level changes 931 
which stimulate accelerated bedrock erosion in rejuvenated catchments and the development of 932 
transient knickpoints that migrate headward (e.g., Stokes et al., 2002; Mather et al., 2002). One of 933 
the best documented events occurred on a small sedimentary basin scale (capture of 300 km2 of 934 
adjoining drainage) in the Sorbas Basin (SE Spain). The river capture was first reported by Harvey and 935 
Wells (1987). Later work by Mather (2000a, b), Mather et al. (2003), and Stokes et al. (2002) together 936 
with advances in dating techniques applied to the regional fluvial terrace sequence (e.g., Candy et al., 937 
2005; Geach et al., 2015b) enable constraints to be placed on rates and nature of landscape change 938 
relating to the 90 m drop in base-level effected by the capture, and migration of the ensuing wave of 939 
incision (Mather et al., 2002).  The main response was a dominance of vertical incision following 940 
headward knickpoint migration and a change to lower post-capture width/depth ratio of valley 941 
sections, landsliding of the oversteepened slopes being a secondary valley-side response. The 942 
capture event occurred after a terrace was abandoned at ~70 ka and significantly before aggradation 943 
of the next terrace (~30-40 ka). Based on these dates, a minimum sevenfold increase in incision rate 944 
(>1.4m/ka) has been estimated in the diverted stream after the capture event. The head of the 945 
knickzone has now reached some 20 km upstream since the capture, and is still actively migrating 946 
through the system (e.g., Mather and Stokes, 2016). In contrast, the beheaded drainage has limited 947 
incision and localised aggradation. Similar responses have been recorded in other capture events 948 
(e.g., Azañón et al., 2005). 949 

However, stream piracy can also result from a range of non-tectonic causes and the link between 950 
capture and tectonic surface uplift or tilt is often more difficult to isolate and/or to prove. An 951 
instance of this is provided by the Plio-Quaternary captures that made the Aare River successively 952 
belong to the Danube basin, then the Rhône basin (through the paleo-Doubs), and finally to the 953 
modern Rhine basin flowing to the North Sea (Giamboni et al., 2004; Ziegler and Fraefel, 2009; 954 
Schlunegger and Mosar, 2011) (Fig. 13B). There, the main driver of captures was base level falls in 955 
different active grabens much more than moderate uplift in the intervening areas. The first westward 956 
diversion of the Aare from the Danube to the Rhône catchment at ~4.2 Ma was caused by headward 957 
incision of the proto-Doubs, whose base level was constituted by the subsiding Bresse graben, 958 
toward the Aare-Danube, which flowed along the SE margin of the Vosges-Black Forest crustal 959 
arching. Likewise, the diversion of the Aare toward the proto-Rhine basin in the north at 2.9 Ma also 960 
resulted from a large gradient in vertical motion between main resuming subsidence in the southern 961 
part of the graben and subordinate uplift of the Sundgau area. 962 



Whilst quantitative estimates of the impact of captures (of any origin) on incision rates and patterns 963 
and of the corresponding response times have recently been provided for several case studies (e.g., 964 
Mather et al., 2002., Stokes et al., 2002; Prince et al., 2011; Schlunegger and Mosar, 2011; Andrews 965 
et al., 2012; Brocard et al., 2012; Yanites et al., 2013; Aslan et al., 2014, Anton et al., 2014), numerical 966 
modelling of the mechanisms governing divide migration and drainage reorganisation has yielded 967 
insights into other aspects of the dynamics of landscape evolution. Willett et al. (2014) devised a new 968 
way to estimate drainage divide disequilibrium, i.e., the degree of competition between streams 969 
eroding the opposite sides of mountain ridges. They note that, by definition linearly related to 970 

steady-state channel elevation, the values of Perron and Royden's (2013)  variable defined in 971 
equation (17) should be equal across water divides that have reached geometric equilibrium 972 

between steady-state catchments. Therefore,  maps (at constant m/n) of drainage networks and 973 
comparison of the headwater values across divides highlight the zones out of equilibrium, with 974 

drainage divide migration expected in the direction of higher  values. Though employing several 975 
simplifying assumptions (stream power erosion, uniform U, K, precipitation rates) that are also 976 
typically used in formal inversion techniques (section 2.4), this approach identifies the NW migration 977 
of the Blue Ridge in SW United States and suggests unstable second-order divides on the eastern 978 
flank of the Central Range, Taiwan (Willett et al., 2014).  979 

Studying how drainage networks react to a combination of uplift and horizontal shear strain on both 980 
flanks of the Southern Alps of New Zealand, Castelltort et al. (2012) also illustrate how drainage 981 
divide migration conditions different records of the horizontal shear in the river courses on both 982 
sides of the range. Taking into account a transverse gradient in uplift rate (decreasing SE-ward) and 983 
the orographic effect on precipitation, which favours erosion on the western flank, in their modelling 984 
of oblique convergence along the Alpine fault, they show that actively eroding rivers of the NW side 985 
extend their catchment at the expense of those of the other side of the range by gradually pushing 986 
the divide to the SE. Therefore, the NW rivers maintain their course roughly orthogonal to the main 987 
divide through a succession of small drainage reversal and capture events, thus removing the effect 988 
of shear strain from their planform pattern, whereas the less competitive rivers of the SE flank tend 989 
to rotate passively, keeping record of the shear history. Goren et al. (2015) further confirm these 990 
findings in their analysis of rivers draining the western flank of Mount Lebanon, where rotated basins 991 

record distributed horizontal deformation and  differences across secondary divides transverse to 992 
the mount axis image the resulting disequilibrium in divide position. In brief, despite potential 993 
interferences with other controls on drainage network evolution, these studies highlight that crustal 994 
deformation is a primary control on drainage system evolution in active mountains and underline 995 
how powerful numerical modelling is in retrieving the tectonic history from the landscape response 996 
characteristics. However, as shown by laboratory modelling experiments and observations in the 997 
Aconquija Range of NW Argentina (Bonnet and Crave, 2003; Bonnet, 2009), while regional erosion is 998 
prompted by uplift, differential incision and drainage divide shifts may equally result from either 999 
tectonic (uplift gradient) or non-tectonic (e.g., rainfall gradient, lithological contrast) causes. Finally, 1000 
we do not consider here the primary organisation and general characteristics of drainage networks in 1001 
relation to relief creation (e.g., Hovius, 1996; Talling et al., 1997; Castelltort and Simpson, 2006; 1002 
Perron et al., 2009).  1003 

6 Depositional environments: stratigraphy produced by fluvial system deformation 1004 

It is fundamental to appreciate that if fluvial landscapes can respond transiently to tectonic 1005 
perturbations over timescales of millions of years (e.g. Whittaker et al., 2007b; Roberts and White, 1006 
2010), then fluvial stratigraphies, whether preserved in terraces or neighbouring depo-centres, can 1007 
record and preserve the erosional response of landscapes to tectonic forcing over similar periods 1008 
(Allen, 2008; Whittaker et al., 2010; Duller et al., 2012; Michael et al., 2013). In principle, the 1009 
terrestrial sedimentary record therefore provides a “mirror” view of river response to tectonic 1010 
forcing. Such archives are of particular value if their corresponding erosional landscape is no longer 1011 
preserved (Michael et al., 2014), and thus where stratigraphy serves as the only record of mass 1012 



transfer across the surface of the Earth in response to past boundary conditions. While the sensitivity 1013 
and response timescales of erosional-depositional systems to high-frequency, high magnitude 1014 
climate changes remain highly contentious (e.g. Jerolmack and Paola, 2010; Simpson and Castelltort, 1015 
2012; Armitage et al., 2013), field studies provide growing evidence that the response of fluvial 1016 
systems to active faulting and, more generally, crustal deformation is indeed reflected in changes to 1017 
the characteristics of sediment both generated in upland catchments and subsequently preserved in 1018 
down-system archives (e.g Milliman and Sivitksi, 1992; Allen 2008; Whittaker et al., 2010; Parsons et 1019 
al., 2012).   1020 

For instance, Whittaker et al. (2010) showed that for modern catchments crossing active normal 1021 
faults in central Italy, and responding transiently to an increase in slip rate within the last million 1022 
years, the majority of sediment export came from the migrating knickzone upstream of the faults, 1023 
driven by the associated hillslope response to rapid fluvial incision. The upstream propagation of 1024 
these knickzones was likened to the firing of a “sediment gun” which led to the production of greater 1025 
sediment volumes and the export of coarser grain sizes resulting from landsliding into the channel. 1026 
Similar results have been observed for the Feather River catchment, California, in response to a rapid 1027 
drop in base level (Attal et al., 2015), and together these types of study emphasise the close and 1028 
dynamic coupling of hillslope and river processes in generating fluvial sediment fluxes in tectonically 1029 
active areas (cf Allen, 2008). Numerical models also demonstrate clearly the linkages between 1030 
tectonic forcing, river response and sediment supply (e.g., Cowie et al., 2006; Armitage et al., 2011; 1031 
Van de Wiel and Coulthard, 2010; Simpson and Castelltort, 2012, Allen et al., 2013; Forzoni et al., 1032 
2014). Cowie et al. (2006) coupled a fault growth and interaction model to the landscape evolution 1033 
model CASCADE and demonstrated that the volumes and locus of sediment export were controlled, 1034 
with a noticeable time lag, by the growth and linkage of fault segments, and this dynamic evolution 1035 
significantly influenced river long profiles, drainage networks and the points at which sediment was 1036 
fluxed to hanging-wall depo-centres as through-going faults increased their slip rates. Recent work by 1037 
Allen et al. (2015) quantified this grain size supply effect and demonstrated that it exerted a 1038 
fundamental control on depositional stratigraphy.  1039 

Stratigraphic models explicitly linking catchments to their fluvial stratigraphies have also made plain 1040 
the quantitative links between sediment supply characteristics, driven by landscape response to 1041 
active tectonics, and proximal terrestrial sediment archives. Forzoni et al. (2014) show clearly how 1042 
sediment supply and grain size trends in their 1D model are influenced by tectonic forcing using 1043 
catchments in the Italian Apennines as a template, while Armitage et al. (2011, 2013), using a non-1044 
linear diffusion approach, show that changes in tectonic uplift rate produce diagnostic patterns in 1045 
fluvial stratigraphy. Their results indicated that grain size trends in sedimentary basins are 1046 
predictable functions of accommodation space creation and of the degree of tectonic perturbation 1047 
affecting the footwall/hangingwall system (cf Fedele and Paola, 2007; Duller et al., 2010). Moreover, 1048 
an increase in fault slip rate resulted in differing vertical grain size trends through the resulting 1049 
stratigraphy, depending on the distance from the depositional fan apex. This response was 1050 
fundamentally caused by the lag-time between the instantaneous generation of tectonic subsidence 1051 
following an increase in fault slip rate, compared to the slower sediment supply response driven by 1052 
the landscape system. Rohais et al. (2012), using an analogue modelling approach, arrived at similar 1053 
conclusions. In particular, their results suggested that trends in sediment calibre in terrestrial 1054 
stratigraphy recorded a non-linear response of their coupled catchment-depositional systems to 1055 
changes in both tectonic and climatic boundary conditions. The result of these changes included a 1056 
time-dependent disequilibrium between sediment supply and sediment transport capacity in the 1057 
modelled catchment. Overall, these studies all indicate that the transient stratigraphy produced by 1058 
river response to tectonic perturbation, such as a change in fault uplift rate, might initially be seen as 1059 
a contemporaneous fining in proximal deposits, as accommodation space is generated initially, 1060 
followed by a prograding wedge of coarse fluvial gravels, as sediment supply and median grain sizes 1061 
exported from upland catchments increase during the transient landscape response phase (cf 1062 
Whittaker et al., 2010).  Rates of stratigraphic grain size fining are documented to increase for a 1063 



decrease in sediment supply and an increase in accommodation generation, respectively (e.g., 1064 
Parsons et al., 2012). 1065 

It is evident that if fluvial stratigraphy records river response to tectonic forcing, then in principle we 1066 
can exploit, e.g., the nature of a fluvial terrace fill to say something about past tectonic (or 1067 
environmental) forcing. One strategy here is to concentrate on the implied depositional long profile 1068 
gradient of the river channel that deposited the terrace sediments, exploiting grain size analysis of 1069 
the terrace fill. Using a dimensionless shear stress (Shields stress) approximation, where river long 1070 
profile gradients, depths and widths trade off against each other predictably, a number of authors 1071 
have reconstructed palaeo-slopes from fluvial deposits (e.g., Paola and Mohrig, 1996) and thus 1072 
obtained palaeo-long profiles from fluvial stratigraphy. In northern Colorado and Western Nebraska, 1073 
for instance, based on contrasting the apparently differing transport or depositional slopes of Late 1074 
Miocene river sediments with present day long-profile estimates, this approach has led to a lively 1075 
debate as to whether these sediments have been tilted post-depositionally by regional uplift 1076 
processes (McMillan et al., 2002; Duller et al., 2012). Other authors have concentrated on 1077 
constraining stratigraphic grain size fining rates and using this to invert fluvial stratigraphy for both 1078 
sediment fluxes and distribution of tectonic subsidence in areas of active faulting and uplift 1079 
(Whittaker et al., 2011; Paola and Martin, 2012; D’Arcy et al., 2016). Moreover, if the entire down-1080 
system sediment routing system can be constrained, ideally including non-tectonic controls (e.g., 1081 
particle abrasion; Attal and Lavé, 2006, 2009), then the stratigraphy can be used to determine the 1082 
volumes, rates and characteristics of sediment eroded from the uplifting area as a whole (Michael et 1083 
al., 2013, 2014). Such an approach is particularly powerful when combined with techniques such as 1084 
detrital thermochronometry (e.g., Kuhlemann, 2007; Whitchurch et al., 2011). These results 1085 
therefore underline that information about river response to tectonic forcing can and should be 1086 
extracted not just from the morphology of, e.g., a terrace fill or fluvial deposit, but also from the 1087 
sedimentary characteristics themselves, and exploiting this record remains an attractive target for 1088 
future research.  1089 

7 Conclusion: challenges and prospects 1090 

In this review, we illustrate the wealth of information fluvial archives and present-day characteristics 1091 
of rivers and drainage systems contain about vertical crustal deformation and associated landscape 1092 
evolution. However, developments in the study of the fluvial system response to tectonic forcing are 1093 
currently so fast and involve so many different approaches that a review such as this can only touch 1094 
on the wide range of literature addressing these important topics. While this review shows that a 1095 
great deal of progress has been made in understanding how uplift influences both the erosional 1096 
landforms generated by fluvial processes, and their depositional stratigraphy, a number of key 1097 
challenges remain. To conclude, we highlight some of major issues that will have to be addressed in 1098 
future research about the links between crustal deformation and river evolution. In particular we 1099 
need to: 1100 

(1) Reduce uncertainties linked to how the effects of non-tectonic controls on river erosion (lithology, 1101 
hillslope sediment delivery, sediment flux, channel hydraulic geometry, stochasticity of effective 1102 
discharge) affect the river response to tectonic perturbations 1103 

(2) Increase the quantity and quality of integrated data sets that combine field evidence (e.g., fluvial 1104 
terraces, sediment load), erosion and incision rates (CRN, low-T thermochronology), river profile 1105 
analysis, and drainage system morphometry. This would provide a strong support to model 1106 
benchmarking and an improved understanding of the spatio-temporal characteristics of tectonic 1107 
forcing 1108 

(3) Exploit the tectonic information contained in the sediment component of fluvial systems (material 1109 
characteristics and depositional environments) 1110 



(4) Explore all prospects offered by new high-resolution remote sensing products (Lidar DSMs and 1111 
DTMs, three-dimensional scanning, global high-resolution DTMs) 1112 

(5) Bridge the gaps between research communities (e.g., modellers vs field geomorphologists, 1113 
specialists of surface versus deep crustal processes) to increase the consistency of the global picture. 1114 
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Figure captions 1880 

1. Graded (Aisne) versus transient (Hoëgne) river long profiles and their analysis by S-A plots, as 1881 
exemplified by two Ardennian rivers. Note that an abrupt change in bedrock lithology could impose 1882 
the same kind of discontinuity to a steady state profile as that displayed by the transient Hoëgne 1883 
profile. However, the S-A plot would not display this type of ks change. 1884 

2. A. Hack's SL index definition and measurement for three 2-km-long reaches of the Aisne 1885 
(Ardenne): SL variations are small along a graded stream. B. Example of SL mapping: Gallego upper 1886 
catchment (Spanish Pyrenees, UTM zone 30T) (from Troiani et al., 2014, fig. 9). 1887 

3. Metrics of the geometric concavity of a river profile (after Demoulin, 1998). The combination of 1888 
two metrics, namely Eq (normalized distance to source of Hmax) and either Er (light yellow area) or 1889 
Hmax (maximum normalized difference in elevation) completely describes the profile concavity. 1890 

4. SL (A) and ksn (B) maps featuring river profile steepness in the same area of the San Gabriel 1891 
Mountains, California, and showing the overall consistency between both types of measurements (A. 1892 
modified after Keller 1986; B. from DiBiase et al., 2010). 1893 

5. Long profile metrics of the Kerynitis River (northern Peloponnese, Greece). The profile is extracted 1894 
from a 20-m-resolution DEM. A. S-A plot displaying such noisy slope data that concavity and 1895 
steepness estimates are erratic and hardly meaningful and segment separation rather subjective (the 1896 
featured separation is imported from the chi plot in B). B. Segmented chi plot of the same profile. 1897 
Segment separation is performed by visual inspection of the chi plot of the entire stream. Best fit 1898 
m/n represent concavity values; slope of best fits (in brackets) indicates segment steepness. These ks 1899 
steepness values are related to different concavities and thus not directly comparable. Normalized 1900 

steepness values ksn of 0.32 and 0.25 (ref = 0.5) are obtained for example for segments S1 and S2, 1901 
respectively, i.e., in inverse relation with respect to the corresponding ks values. Note that the scale 1902 
of chi axis changes with best fit m/n, resulting in altered relative lengths of the successive segment 1903 
plots. WP. Whole profile. 1904 

6. Relation between steepness index and uplift rate. A. Modelled for streams in the low and high 1905 
uplift zones (LUZ and HUZ, respectively) of the Mendocino triple junction area, northern California 1906 
(from Snyder et al., 2003). Fitting a curve to both points requires either taking into account a 1907 
threshold shear stress (model of Tucker and Bras, 2000) or taking n = 3.8. B. Compilation of published 1908 
data, assuming that the investigated fluvial landscapes are close to or at steady state and, thus, 1909 
denudation, incision, and uplift rates are equal (from Lague, 2014, with references therein). 1910 

7. Types of knickpoint in synthetic stream profiles (left) and their appearance on S-A plots (right). A. 1911 

Vertical step knickpoint separating segments of same  and ksn (e.g., transient knickpoint produced 1912 
by a pulse of uplift; permanent lithologic knickpoint). B. Slope-break knickpoint trailing a new higher-1913 
ksn downstream profile in equilibrium with increased uplift rate; steady-state concavity is unchanged 1914 
after passage of the knickpoint. C. Knickzone pointing to either disequilibrium downstream profile (ks 1915 
meaningless) or steady-state spatial gradient in uplift. S1 and S2: segments upstream and 1916 

downstream of the profile discontinuity, respectively; ks(n) and  are numbered accordingly in the 1917 
right-hand graphs. 1918 

8. A. Description of the R metric components for the Selinous River (northern Peloponnese): l* = l/l0, 1919 
with l0 = length of the river, cumulative length of its drainage network, and basin area respectively for 1920 
Hr, Hn, and Hb; h* = h/h0, with h0 = basin relief. Hb, Hn and Hr: hypsometric curves of the basin, the 1921 
drainage network, and the trunk stream (Hr is therefore simply the trunk stream long profile). E 1922 
describes the basin’s elongation. For the definition of R, see equation (22) in the main text. B. Control 1923 
of drainage area A on R, illustrated in the northern (N), central ('Centre'), and southern (S) parts of 1924 
the Rhenish shield (W Europe). The slope SR of the relation is characteristic of each subregion with a 1925 
distinct age of the tectonic perturbation (tU = age of last uplift pulse) (modified after Demoulin, 1926 
2011). C. Empirical power law dependence of SR on time since the last tectonic perturbation, 1927 



obtained from SR estimates in regions with uplift of known age. RS. Rhenish shield (from Demoulin, 1928 
2012). 1929 

9. A. 10Be/26Al terrace ages (yellow stars, in ka – after Rixhon et al., 2011) of abandonment of the 1930 
time-transgressive "Younger Main Terrace" along the Lower Meuse – lower Ourthe – Amblève 1931 
drainage line (Ardenne, UTM zone 31U). Additional age data come from a buried knickpoint in a 1932 
beheaded valley (red star) and the corresponding knickpoints in modern channels (circled green 1933 
stars). B. Sketch of river incision and terrace pattern associated with the propagation of an erosion 1934 
wave caused by rapid base level fall, showing that, in this case, geometrically reconstructed terraces 1935 
parallel to the modern profile would not catch the actual incision history of the river (after Demoulin 1936 
et al., 2012). 1937 

10. Examples of terrace profile patterns (variable distance and elevation scales). A. Parallel: Segre 1938 
River, Spanish Pyrenees (modified after Stange et al., 2013). B. Upstream diverging: Shiyou He River, 1939 
NE Tibet (modified after Hetzel et al., 2006). C. Downstream diverging: Pakarae River, North Island, 1940 
New Zealand (modified after Litchfield et al., 2010). D. Parallel, diverging from the modern channel 1941 
profile: Rappahannock River, Virginia, USA (modified after Howard et al., 1994). E. Warped: Bagmati 1942 
River, central Nepal (modified after Lavé and Avouac, 2000). MFT Main Frontal Thrust. 1943 

11. Form change as first response of a meandering alluvial channel to a nascent anticlinal fold 1944 
orthogonal to the river (modified after Ouchi, 1985). Sinuosity increases in order to compensate for 1945 
the increased channel gradient on the downstream-dipping limb of the fold. Reduced gradients 1946 
upstream of the fold induce straightening and reticulating of the channel. 1947 

12. Downstream sweep erosion upstream of the Da'an river gorge incised in the anticline which was 1948 
reactivated during the 1999 Chi-Chi earthquake (Taiwan). a. Channel width versus distance along the 1949 
gorge (the gorge reach described in a is located between white arrows in b). Dated vertical lines 1950 
show knickpoint location during gorge growth. b. Evolution with time of gorge edges, downstream 1951 
retreat of the upstream-facing slope scarp of the anticline, and sweeping channel in the broad 1952 
floodplain upstream of the anticline (from Cook et al., 2014). 1953 

13. Examples of captures and drainage reorganisation. A. Margin of E and SE Tibet: progressive 1954 
capture of a large part of the paleo-Red River drainage network (highlighted in yellow) by the lower 1955 
Yangtze (highlighted in white). This evolution probably took place in Miocene times as a consequence 1956 
of the first uplift stages in eastern Tibet. Tentatively numbered red stars locate the successive 1957 
capture events that beheaded the Red River catchment, in parallel with progressive drainage reversal 1958 
along the middle Yangtze. Green stars and arrows suggest that similar events occurred possibly also 1959 
on the other side of the uplifted region, at the benefit of the present Mekong, Salween and, possibly, 1960 
Brahmaputra rivers (modified after Clark et al., 2004 and Clift et al., 2006). B. Aare River, northern 1961 
margin of the Central Alps: timing, in Ma, of the successive captures (red stars, with arrows indicating 1962 
the change in flow direction) that diverted the Aare successively from the Danube to the Rhone (via 1963 
the Doubs) catchment, then from the Rhone to the upper Rhine catchment. A more recent event 1964 
diverted also the Alpine Rhine at the benefit of the upper Rhine catchment. The successive courses of 1965 
the Aare are denoted by wide turquoise, medium-width middle blue, and thin dark blue vectors 1966 
(modified after Ziegler and Fraefel, 2009). 1967 

 1968 
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