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ABSTRACT

We present a new algorithm having a time complexity of O (N logN) and designed
to retrieve the phase at which an input signal and a set of not necessarily orthogonal
templates match at best in a weighted chi-squared sense. The proposed implementation
is based on an orthogonalization algorithm and thus also benefits from a high numerical
stability. We successfully apply this method to the redshift determination of quasars
from the twelfth Sloan Digital Sky Survey (SDSS) quasar catalog and derive the proper
spectral reduction and redshift selection methods. Also provided are the derivations of
the redshift uncertainty and of the associated confidence. Results of this application
are comparable to the performances of the SDSS pipeline while not having a quadratic
time dependency.
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1 INTRODUCTION

The advent of extremely large spectroscopic surveys like the
Sloan Digital Sky Survey (SDSS) that includes more than
2 × 106 high resolution spectra over 5200 deg2 of the sky
(Alam et al. 2015) or the Gaia space mission that will pro-
vide, by the end of 2018, 150 × 106 low resolution spectra
(de Bruijne 2012) provide us with unique opportunities to
have a statistical view on the kind of objects present in the
universe along with some of their fundamental character-
istics. These play a key role in the answer to some of the
currently most important astrophysical questions like the
evolution scenarios of the galaxy; of the universe or its ac-
celerated expansion (Aubourg et al. 2014; Perryman et al.
2001).

Along with these large surveys comes an impressive con-
tinuous flow of data that has to be treated right on time
through huge dedicated processing centers. One of the most
important tasks amongst the spectral reduction processes
stands in the objects classification and in their astrophys-
ical parameters (APs) determination. More specifically, in
the case of extragalactic objects, these informations criti-
cally depend on the availability of reliable redshift estimates.

Redshift determination, even if apparently straightfor-
ward, is in practice a challenging problem for which numer-
ous solutions have been proposed:

(i) Visual inspection procedures: a skilled observer can
efficiently guess the APs of any object and can deal with
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any unexpected cases like corrupted/missing emission lines;
spectra superposition or non-physical solutions. Obviously,
this choice is unbearable for large surveys though the anal-
ysis of any sufficiently large subset is invaluable as it can
serve as input to sophisticated computer algorithms that
will try to mimic this human expertise. This is the solution
undertaken by Pâris et al. (2016) regarding the redshift of
quasars and accordingly, it will be used along this paper as
the default quasar spectral library.

(ii) Matching of spectral lines: this method consists
in extracting some significant patterns out of the input
spectra and then trying to match them to known emis-
sion/absorption lines. This procedure has been used for a
long time but has been shown to be restricted to relatively
high signal-to-noise ratio spectra (Machado 2013).

(iii) Computer learning methods: the goal is here to
make the algorithm guess the relations that exist between
some characteristics of already-reduced objects (e.g. ob-
served wavelengths and fluxes), and the parameters of in-
terest (e.g. redshift coming from a visual inspection proce-
dure). The aim being then to apply these relations to the
case of objects whose parameters are still unknown. Inter-
ested readers may find in Bishop (2006) the descriptions of
many such algorithms. Note that, depending on its com-
plexity, the guessed relation may be non-physical and hard
to interpret leading to suboptimal or potentially unrealistic
predictions. This is the reason why these should preferably
be used for the case of highly non-linear problems for which
no other–fast–solution exists.

(iv) Phase correlation: the idea is here to find the opti-
mal correlation of a given observation against one or more
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templates in order to determine its redshift. Based upon the
ability of these templates to match the observations; from
the physical nature of this solution and from the shortcom-
ings of the previously mentioned alternatives, we will con-
sider it to be the most trustworthy automated procedure for
redshift determination.

Based on the work of Brault & White (1971), Simkin
(1974) first suggested the use of the Fast Fourier Transform
(FFT) as an efficient way of finding the redshift of galax-
ies based on their cross-correlation with a single template.
Tonry & Davis (1979) later derived the formulation associ-
ated with the resulting redshift uncertainties, that were fur-
ther refined by Heavens (1993). Finally, Glazebrook (1997)
generalized the cross-correlation technique to the case of
templates coming from the principal components analysis
(PCA) decomposition of spectral libraries. Although being
currently the most widespread technique for redshift deter-
mination, the latter actually suffers from some well-known
drawbacks (see section 3.2.1). The solution to these prob-
lems comes from the use of a weighting scheme associated
with the observed spectrum as implemented in Bolton et al.
(2012). Unfortunately, this solution has a quadratic time de-
pendency that makes it fairly time consuming.

The method proposed in the present work overcomes
this high numerical complexity and was developed in the
framework of the Gaia astrophysical parameters infer-
ence system (Bailer-Jones et al. 2013) and more specifically
within the field of the quasar classification module (QSOC)
whose goal is to find the APs associated with the quasars
that Gaia will detect. In this domain, the time constraints
imposed by the Gaia mission restricted us to the use of com-
puter learning methods but in the end, the advent of this
new method will allow us to predict fair and fast redshift
estimates for the upcoming Gaia data releases.

Section 2 explains the conventions used along this pa-
per. Section 3 makes a brief review of the phase correlation
and PCA techniques aimed at better understanding their
main limitations. We have developed a fast solution to the
problem of the weighted phase correlation in Section 4. Tests
against real cases are then performed within Section 5 while
extensions of the presented algorithm are discussed in Sec-
tion 6. Finally, we conclude in Section 7.

2 NOTATION

This paper uses the following notations: vectors are in bold
italic, x; xi being the element i of the vector x. Matrices are
in uppercase boldface or are explicitly stated; i.e. X from
which the ith column will be denoted by X

col
i and the ele-

ment at row i, column j will be denoted by Xij . In the fol-
lowing, we will consider the problem of finding the optimal
offset between an observed spectrum composed of Ns sam-
ples and NT templates of size Np by probing various shift
estimate, Z. By considering the zero-padding necessary in
order for these to be properly used within the Fourier do-
main, we will have that the template matrices, P and T, will
be of size (N ×NT) with N = Ns + Np. Similarly, we will
have that the observation vector, s, will be of size N as well.
Note that in order for the redshift to turn into a simple off-
set, we will have to consider a logarithmic wavelength scale.
If not stated otherwise, matrices and vectors having a tilde

on top of them (e.g. T̃) will be specific to a given shift try,
Z ∈ 0 · · ·N − 1. Amongst commonly used operators, a · b
denotes the inner-product of a and b; a ⊗ b, their outer-
product; ‖a‖, the Euclidian norm of a and a∗ its complex
conjugate. Finally, F [x] and F−[x] respectively corresponds
to the discrete Fourier transform (hereafter DFT) and in-
verse DFT of x.

3 PHASE CORRELATION USING PCA

As already stated, the most commonly used technique for
QSO redshift determination consists in finding the best cor-
relation of an observed spectrum against templates coming
from the PCA decomposition of a restframe spectral library.
More specifically, these are based on spectra sampled on a
uniform logarithmic wavelength scale such that the observed
wavelength, λobs, can be related to the restframe wavelength,
λrest, through the QSO redshift, z, as a simple offset:

log λobs = log λrest + log(z + 1). (1)

In the following, we make a brief review of the two
above-mentioned techniques that should provide the reader
insights about their way of working and aimed at better
understanding their main limitations regarding the redshift
estimation of QSOs.

3.1 Principal components analysis

PCA is a well-known technique designed to extract a set
of templates –the principal components– from a typically
huge set of data while keeping most of its variance (Pearson
1901). These principal components will then be those that
are the best suited in order to highlight the most important
patterns out of the input data set.

Mathematically, the goal of the PCA is to find a de-
composition of an input matrix X, from which we have sub-
tracted the mean observation, into

X = PC, (2)

such that

D = P
T
XX

T
P = P

T
σ

2
P (3)

is diagonal and for which

Di > Dj ; ∀i < j. (4)

P, the matrix of the eigenvectors of σ2, is then called the
matrix of principal components; C is the associated matrix
of principal coefficients and Di’s are the eigenvalues of the
covariance matrix, σ2. Note that according to the spectral
theorem1, P will be orthonormal such that we have

C = P
T
X. (5)

From this orthonormality and from equation 4, we will have
that the linear combination of the first principal components
of P with the associated principal coefficients of C will con-
stitute the best linear combination in order to fit X in a least
squares sense.

1 Any real symmetric matrix is diagonalized by a matrix of its
eigenvectors.
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Figure 1. Restframe mean observation and first principal com-
ponents coming from the PCA decomposition of TypeI/II SDSS
DR12 quasars spectra having 2.3 6 z 6 2.4 (24939 spectra).

An illustrative example of PCA decomposition is given
in figure 1. The latter is based on spectra covering the rest-
frame wavelength range 1100–2000Å coming from the SDSS
DR12 quasar catalog (Pâris et al. 2016). Notice how the
main QSOs emission lines are modelled by the various com-
ponents as a way to grab the variance coming from the great
diversity of shapes encountered within the spectral library.
Readers willing more information on the PCA decomposi-
tion are invited to read Jolliffe (2002) for a deep analysis of
the technique or Schlens (2014) for an accessible tutorial.

The application of this technique to the analysis of
QSO spectra was first covered by Francis et al. (1992);
Yip et al. (2004) later adapted it to the case of the SDSS
DR1 quasars classification and redshift determination while
Cabanac et al. (2002) did a similar work based upon spec-
tra coming from the Large Zenith Telescope survey whose
spectral resolution (λ/∆λ ∼ 40) is in the same order of mag-
nitude as the one of the red and blue photometers of Gaia
(Bailer-Jones et al. 2013).

3.1.1 Weighted PCA

One of the main limitations of the classical PCA method
is that it does not make any distinction between variance
coming from noise and variance coming from a genuine sig-
nal. Furthermore, in its naive form, it does not know how to
deal with missing data. This last point is particularly cru-

cial in the field of high-redshift surveys where the observed
wavelength ranges may not overlap from object to object.

A straightforward approach so as to avoid these short-
comings stands in the use of a weighting scheme that allows
each flux within each spectrum to come along with its own
uncertainty while performing the PCA decomposition. Such
a fully-weighted PCA (WPCA) method was first described
in the astronomical literature by Tsalmantza & Hogg (2012)
and was later refined by Bailey (2012). In the field of the
present study, we will use the implementation described in
Delchambre (2015), this choice mainly comes from its high
numerical stability. This method is based on the diagonaliza-
tion of the weighted variance-covariance matrix as defined
by

σ
2 =

(X ◦W) (X ◦W)T

WW
T

, (6)

where ◦ represents the element-wise product of two matrices
and where X is supposed to have a weighted mean observa-
tion of zero. The decomposition of σ2 into a diagonal ma-
trix of eigenvalues, D, and a matrix of orthonormal principal
components, P, being then performed using either a combi-
nation of two spectral decomposition methods, namely the
power iteration method followed by the Rayleigh quotient
iteration one, or by the use of the singular value decomposi-
tion (SVD). This technique allows us to retrieve the fairest
components (i.e. those for which uncertainties are taken into
account) without having to worry about missing data: this
case being the limiting case of weights equal to zero. Con-
sequently, this method will be used through the rest of this
document as the default process in order to retrieve the prin-
cipal components.

3.2 Phase correlation

The goal of the phase correlation algorithm is to find the op-
timal shift between a set of orthonormal templates –or a sole
unit-length template–, P, and a given observation, s, that
has been shifted relatively to P. The way to proceed is to
compute for each potential shift, Z, the linear least-squares
solution of the shifted templates, P̃ij ≡ P(i+Z)j , against the
observation such as to find the offset having the minimal re-
sulting chi-square. More concisely, this is equivalent to find
the minimal shift-dependent chi-square as defined by

χ2(Z) =
∥

∥

∥s− P̃a(Z)
∥

∥

∥

2

, (7)

where a(Z) contains the optimal linear coefficients in order
to fit s based on P̃.

Extending the work of Simkin (1974), Glazebrook
(1997) noticed that in the case of orthonormal templates,
like the PCA principal components, equation 7 becomes

χ2(Z) = ‖s‖2 − ‖a(Z)‖2 . (8)

Consequently, equation 7 will be minimal for an associated
maximal ‖a(Z)‖2. Moreover, due to the orthonormality of
P, we will have that

a(Z) = P̃
T
s. (9)

More specifically, regarding the ith linear coefficient, ai(Z),
we will have that

ai(Z) =
∑

j

P(j+Z)isj =
(

P
col
i ⋆ s

)

Z
. (10)
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We recognize equation 10 as being the correlation of the
vector P

col
i with s that can hence be efficiently computed

in the Fourier domain. Interested readers may find in
Brault & White (1971) exhaustive hints about the practi-
calities surrounding the Fourier implementation of equation
10. Let us just point out that both vectors, Pcol

i and s have
to be extended and zero-padded such as to deal with the
periodic nature of the DFT. Note that in the rest of this
document, the curve obtained after evaluating ‖a(Z)‖2 at
each Z will be termed the cross-correlation function (CCF).

A sub-sampling precision on the offset can be gained by
considering the fit of a continuous function in the vicinity
of the maximal peak of the discrete CCF. Simkin (1974)
supposed this peak to be Gaussian profiled, but in the aim
of having a model-independent estimate of Z, we will follow
Tonry & Davis (1979) and use a quadratic curve fitting that
will allow us to take into account potential asymmetries in
the fitted peak.

3.2.1 Practicalities

Some issues highlighted in Glazebrook (1997) are the sub-
traction of the QSO continuum and of the restframe mean
spectrum from the observed spectrum. The first issue was
here solved by the use of a dedicated method that allows us
to fit the QSO continuum in a fast and redshift-independent
way. This method will be further described in section 5.1.
The second issue is often overcome by omitting the subtrac-
tion of the mean spectrum from the input dataset. We have
to note that this omission typically degrades the ability of
the PCA decomposition to extract the most significant pat-
terns out of this input dataset. Another solution would have
been to alter the mean spectrum such as to make it orthonor-
mal to the template components, P, –thanks to the use of a
Gram-Schmidt orthogonalization process (Press et al. 2002)
for example– and to further consider it as being an addi-
tional template. This solution will be adopted here for the
use of the phase correlation algorithm.

Finally, the major drawback of the implementation of
Glazebrook (1997) stands in the fact that the observed spec-
tra typically span only a small part of the template spectra
such that the CCF will be computed over a substantial num-
ber of unknown points. As a consequence, the fit of the input
spectra will be disrupted by the ‘flattening’ of the principal
components over the unobserved wavelengths. Figure 2 il-
lustrates the result of the phase correlation algorithm along
with the best-fit solution associated with the maximal peak
of the CCF. Notice how the solutions are flattened over un-
observed wavelengths. More precisely, considering the obser-
vation of ”SDSS J024008.93-003448.7”, the Lyα, Hα and Hβ
emission lines are strongly damped despite the fact that the
optimal shift was found while for the observation of ”SDSS
J132218.88+365342.0”, this ‘flattening’ has led to an ambi-
guity in the CCF that leads to an erroneous shift estimate.
Additionally, uncertainties about the observed fluxes are of-
ten available and will not be used within this implementa-
tion.

4 WEIGHTED PHASE CORRELATION

With the aim of dealing efficiently with the previously men-
tioned problem of unobserved wavelengths and of neglected
uncertainties, we will use a χ2 formulation similar to equa-
tion 7, but whose fluxes are weighted according to the ob-
served spectrum wavelengths. Also, we will drop the or-
thonormality constraint on the fitted templates since, in any-
way, the previously mentioned weighting will break it down.
We will then have the following objective formula:

χ2(Z) =
∥

∥

∥Ws−WT̃a(Z)
∥

∥

∥

2

=
∥

∥

∥y − X̃a(Z)
∥

∥

∥

2

, (11)

where W is the diagonal matrix of weights associated with s

and T̃ij ≡ T(i+Z)j is the shifted matrix of –not necessarily
orthonormal– template observations. The fastest solution in
order to minimize equation 11 for a given Z stands in the

use of a Cholesky decomposition of the design matrix, X̃
T
X̃,

followed by a forward-backward substitution associated with

the image vector X̃
T
y (Press et al. 2002). We have to note

that this approach is known to suffer from numerical in-
stabilities (Golub & Van Loan 1996; Press et al. 2002) and
is solely provided here as a comparison point regarding its
computational performances. Practically, slower but more
stable methods based on the orthogonalization of X̃ should
be preferred.

In a computational point of view, the evaluation of
equation 11 for each Z will require O

(

N2
)

flops23, the lat-
ter being mainly dedicated to the building of the design ma-
trices. This relatively high complexity constitutes the main
limitation of this implementation and makes it unafford-
able for the tight processing of a large survey like Gaia.
Nonetheless, it has proven to provide fair redshift estimates
and is currently being effectively used in the SDSS-III spec-
tral classification redshift measurement pipeline with a sin-
gular value decomposition (SVD) of X̃ advantageously re-
placing the Cholesky decomposition of the design matrix
(Bolton et al. 2012).

4.1 Orthogonal decomposition approach

The previous section points out the risks encountered while
using a naive approach for solving the normal equations
associated with equation 11. In this optics, let us explore
the effect of the orthogonalization of X̃ on the latter equa-
tion. For this purpose, let us detail the QR decomposition
of X̃ = QR

4, that is such that

Q
T
X̃ = QNT−1 · · ·Q1X̃ = QNT−1 · · ·QiX̃i = R, (12)

where R is an upper triangular matrix of size (N ×NT) and
where each Qi is an Householder reflection matrix designed
to annihilate the elements below the ith row of the ith col-
umn of X̃i (Press et al. 2002). More precisely, given X̃

′

i , the
not-already upper-triangular part of X̃i, we will have

Qi =

(

I 0

0 I− 2vi ⊗ vi/ ‖vi‖2
)

=

(

I 0

0 Q
′

i

)

(13)

2 Floating operations
3 The interested reader may find in Golub & Van Loan (1996)
informations and references about the various algorithmic com-
plexities used along this document.
4 Note that we dropped the upper tilde for clarity purpose
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Figure 2. Examples of cross-correlation functions coming from the phase correlation and weighted phase correlation of two quasar
spectra against the ten first SDSS DR12 principal components plus mean observation (top). The best fit solutions associated with the
maximal peak of the phase correlation (middle) and of the weighted phase correlation (bottom) are also provided.

with

vi = xi ± ‖xi‖ e1; (14)

xi being the first column of X̃
′

i and e1 being the first
row of the identity matrix. For numerical stability reasons,
the choice between subtraction and addition in equation 14
should be matched to the sign of the first element of xi

(Press et al. 2002).
By using such a decomposition, we will have that equa-

tion 11 becomes

χ2(Z) = ‖y −QRa(Z)‖2 = ‖y −Qb(Z)‖2 , (15)

with the last N − NT elements of b(Z) being zeros. The
point is now to recognize equation 15 as being the weighted
counterpart of equation 7 such that the first NT elements
of b(Z) will be equal to the first NT elements of Q

Ty,
whose computation can be efficiently performed by succes-
sive multiplication of each of the Qi with the associated
yi ≡ Qi−1 · · ·Q1y = (b1(Z) · · · bi−1(Z)y′

i), rather than by

explicitly computing the general Q matrix. This efficiency
mainly comes from the fact that:

(i) We do not need to explicitly compute any Q
′

i , since we
will have that the jth column of the product Q

′

i X̃
′

i will be
given by

(

Q
′

i X̃
′

i

)col

j
=

(

X̃
′

i

)col

j
− 2

vi ·
(

X̃
′

i

)col

j

vi · vi

vi, (16)

and similarly,

Q
′

iy
′

i = y
′

i − 2
vi · y′

i

vi · vi

vi. (17)

That is: the computation of Q′

iy
′

i and of any column of the
products Q′

i X̃
′

i is now reduced to a single inner product (the
product vi · vi being common to all multiplications, it can
be pre-computed) and to a single vector subtraction.

(ii) We do not need to compute any Rij . Differently
stated, we do not need to compute the first row nor the
first column of any Q

′

i X̃
′

i .

MNRAS 000, 1–12 (2016)



6 L. Delchambre

This implementation, termed ‘factorized QR algorithm’,
has a total complexity which can compete with the Cholesky
solution of the normal equations while gaining in numerical
stability. But practically it is of low interest for us since it
remains a quadratic problem that is consequently out of the
time processing required by the Gaia tight data reduction.

Let us note that the equation 15 still provides us with
a weighted formulation of the CCF, that is ‖b(Z)‖2, such
that we can already investigate the effects of the weighting
on the best fit solutions at its maximal peak and on the
CCF itself. As illustrated in figure 2, the fitted spectra do
no longer exhibit border flattening and thanks to this, the
maximal peaks are now clearly identified. More particularly,
regarding the observation of ”SDSS J132218.88+365342.0”,
the optimal peak of the CCF turns out to be unambiguously
identified thanks to the use of this weighted formulation of
the phase correlation.

4.1.1 Factorized QR algorithm with lookup tables

The quadratic nature of the factorized QR algorithm comes
from the large amount of inner products involved in the
computation of the first NT elements of each b(Z). More
specifically, by developing each inner product coming from
equations 16 and 17 in the case of the initial reduction X̃2 ≡
Q1X̃ and associated image production y2 ≡ Q1y, we get

v1 · v1 = 2α
(

α+ X̃11

)

, (18)

v1 · y = αy1 + X̃
col
1 · y, (19)

v1 · X̃col
j = αX̃1j + X̃

col
1 · X̃col

j (20)

with α = sgn
(

X̃11

)(

X̃
col
1 · X̃col

1

) 1

2

. At this point, it should

be noted that

X̃
col

i · X̃col

j = w
2 ·

(

T̃
col

i ◦ T̃col

j

)

=
N
∑

k=1

w2
k

(

T
col
i ◦ Tcol

j

)

k+Z

(21)
and that

X̃
col
i · y =

(

w
2 ◦ s

)

· T̃col
i =

N
∑

k=1

w2
kskT(k+Z)i, (22)

with w ≡ diag (W). We can readily see that equations 21
and 22 can be efficiently computed in the Fourier domain. In
order to take benefits from it, let us define the lookup table

of the inner products of X̃ with itself as

L̃ij = X̃
col
i · X̃col

j = F−

[

F
[

T
col
i ◦ Tcol

j

]

∗

◦ F
[

W
2
]

]

Z
, (23)

and the one containing the inner products of X̃ with y as

l̃i = X̃
col
i · y = F−

[

F
[

T
col
i

]

∗

◦ F
[

W
2
s
]

]

Z
. (24)

Note that in the latter equations, F
[

T
col
i ◦ Tcol

j

]

∗

and

F
[

T
col
i

]

∗

are template-specific and can hence be computed
in advance.

Explicitly stated, these lookup tables allow us to have
for any shift estimates, Z, an instantaneous evaluation of
all the inner products associated with the initial reduction
process. Furthermore, thanks to the Q1 orthonormality, we
will have that the lookup tables associated with X̃2 will be

also given by L̃ and l̃. Consequently, we can easily compute
the inner product of X̃′

2 with itself based on L̃ as

(

X̃
′

2

)col

i
·
(

X̃
′

2

)col

j
= L̃ij − R1iR1j ; ∀i, j (25)

and in the same way, we can compute the inner products of
X̃

′

2 with y′

2 based on l̃ as

(

X̃
′

2

)col

i
· y′

2 = l̃i − R1ib1(Z); ∀i. (26)

Equations 25 and 26 will allow us to recursively process each
subsequent X̃

′

i and y′

i in a way similar to the one used to
produce X̃2 and y2 and will be referred to as the lookup

tables update equations. Finally, let us note that once these
lookup tables have been computed, only the first NT rows
of X̃ and y are now needed for the algorithm to run.

If we suppose now that NT ≪ N , then we will have that
most of the computation time will be spent in the build-
ing of the initial values of the lookup tables (equations 23
and 24). More precisely these will crudely correspond to the
DFT of w2 and of w2 ◦ s; their vector multiplication with
each combination of the templates plus the inverse trans-
forms leading to these initial values. Despite the fact that
the previous derivation is a bit coarse, it still assesses the
linearithmic (i.e. O (N logN)) behaviour of the presented
algorithm. Regarding now the specific problem of the QSO
redshift determination within the Gaia mission (expected to
be N = 104, NT = 10), tests performed on a 2,4Ghz CPU
provide execution times of 180.35±6.76 seconds for the nor-
mal equations solution compared to 0.173±0.002 second for
our implementation; these become respectively 4.95 ± 0.19
hours compared to 1.81±0.02 second for the case of N = 105

and NT = 10. Finally, let us note that the proposed algo-
rithm can be easily implemented in parallel given the fact
that the estimation of each χ2(Z) can be separately per-
formed. As a consequence, the execution time can be scaled
by an arbitrary factor that is inversely proportional to the
number of running processes.

5 APPLICATION

Unsurprisingly, the performance of the presented method
was assessed on type I/II QSOs coming from the SDSS DR12
quasar catalog (Pâris et al. 2016). The choice of this cata-
logue comes from the fact that all spectra contained therein
were visually inspected and can hence be considered as be-
ing extremely reliable regarding their redshift. Additionally,
it is also interesting to note that the latter contains a non-
negligible number of 297 301 QSOs that is adequate in order
to derive strong statistics.

Due to time constraints and to the need for the WPCA
algorithm to have a well covered input space of parame-
ters (i.e. numerous observations), we used a two-fold cross-
validation in order to test our method. That is: we split our
input catalog into two randomly drawn parts out of which
we extract the principal components; then we compute the
redshift of spectra belonging to each part based on both the
weighted and classical phase correlation algorithms whose
inputs are the principal components built on the alterna-
tive part. Following is a detailed description of the processes
leading to this cross-validation.
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5.1 Procedure description

Raw spectra are generally not readily exploitable. Rather,
we have to reduce them such as to get rid of most of the
contaminating signals that encompass, for the specific case of
this study: deviant points (amongst which night sky emission
lines and spectrograph edge effects) and QSOs continuum.
Note that since the SDSS DR12 spectra are already sampled
on a uniform logarithmic scale, nothing has to be done in
order for equation 1 to be fulfilled but usually spectra have
to be resampled.

The estimation of the QSO continuum turns out to be a
challenging problem upon which the quality of the principal
components and of the redshift prediction strongly depend
(Machado 2013). Four broad kinds of approaches have been
investigated so far in order to estimate this continuum: (1)
the fit of a ‘damped’ power-law function to the observed
spectra (Ferland 1996); (2) the use of PCA such as to pre-
dict the shape of the Lyα forest continuum based on the red
part of the spectrum (Suzuki et al. 2005; Pâris et al. 2011;
Lee et al. 2012); (3) the modelling of the dependency be-
tween the intrinsic QSO continuum and the absorption that
it encounters as a mean to extrapolate it (Bernardi et al.
2003) and (4) through the use of techniques related to the
multiresolution analysis (Dall’Aglio et al. 2008; Machado
2013). We choose to use this last alternative based on the
fact that we do not require the resulting continuum to have
a physical basis (i.e. the continuum subtraction being rather
used as a normalization) and on the fact that we would like
to have the most empirical estimation of this continuum.
Following Machado (2013), we found that the signature of
the continuum clearly stands within the low frequency com-
ponents of the pyramidal median transform (Starck 1996,
hereafter PMT) of the input spectrum. In practice, the PMT
is computed on a flipped version of the spectrum concate-
nated with the original version and another flipped version
such as to ensure continuity at the border. After taking the
inverse transform through a third degree fitting polynomial,
we enforce the smoothness of the solution by convolving it
with a thousand points-wide Savitzky-Golay filter such as to
provide the final continuum. Besides its accuracy, we have
to note that the PMT, from its pyramidal nature, has an al-
gorithmic complexity of O (N logN) and will consequently
not degrade the performances of the global process.

After having subtracted the derived continuum, we dis-
card border regions for which either λ < 3800Å or λ >
9250Å; we reject 4Å regions around each significant night
sky emission lines and finally we perform a k-sigma clipping
(k = 3, σ = 4) on the two first scales of the PMT such as
to remove extremely deviant points. Finally, we get an esti-
mate of the signal-to-noise ratio (hereafter SNR) of each
continuum-subtracted spectrum through the computation
of a ‘noiseless’ spectrum coming from the hypothesis that
the noise within these spectra is entirely contained within
the five first scales of the biorthogonal spline stationary
wavelet transform of each spectrum (Cohen & Daubechies
1992; Burrus 1997). Practically, a spline of third degree was
used for both analysis and synthesis. Figure 3 illustrates the
result of the initial reduction process.

Spectra having an estimated SNR greater than 1 are
then set on a common logarithmic wavelength scale with a
uniform sampling of ∆ log10 λ = 10−4, equal to the origi-

nal sampling of the spectra. The 116 374 resulting spectra
are then divided into two equal parts –called learning sets–
each of which is being used to produce the principal com-
ponents and mean observations associated with each part
of the cross-validation process. Resulting from this subdivi-
sion, we will have that the input catalogue will be split into
two parts –the test sets– each consisting in 133 860 obser-
vations. Note that given the fact that the broad absorption
line QSOs are discarded, both sets do not sum up to 293 301
QSOs.

We then compute the classical and weighted CCF of
each spectrum contained within the two test sets based on
the mean observation and ten first principal components
coming from the alternative learning set. Out of these CCF
we extract the five most significant peaks –having a sep-
aration of at least 15, 000km s−1– and we fit them with a
second order polynomial such as to gain a sub-sampling pre-
cision on the predicted peak position. Note that we choose
to consider multiple solutions based on the fact that the
most significant peaks may not always lead to a physical ba-
sis. For example, we might have deep absorption lines either
coming from the host galaxy of the quasars or from extra-
galactic objects being located along the line-of-sight during
acquisition and leading to ‘negative’ fitted emission lines.
These can definitely prevent the highest peak –the one with
the associated minimal χ2– from being the effective one. In
order to discriminate between these five selected solutions,
we define two score measures: χ2

r(z), defined as the ratio of
the value of the peak associated with the redshift z to the
value of the maximal peak and Zscore(z), defined as

Zscore(z) =
∏ 1

2

[

1 + erf

(

eλ

σ(eλ)
√
2

)]

, (27)

where eλ are the mean values of the emission lines covered
by the observed spectrum if we consider it to be at redshift z
and where σ(eλ) are the associated uncertainties. Note that
both eλ and σ(eλ) are computed over a range of eleven points
surrounding each emission line. We can recognize each term
of equation 27 as being the cumulative distribution function
of a normal distribution of mean zero and variance σ2(eλ)
evaluated at eλ. The use of equation 27 allows us to have a
numerical estimate of the ability for a given redshift, z, to
grab the following chosen QSO emission lines: Ovi λ1033;
Lyα λ1215; Nv λ1240; Si iv λ1396; C iv λ1549; C iii] λ1908;
Mg ii λ2797; Hγ λ4340; Hβ λ4861 and Hα λ6562Å. Typical
values of Zscore(z) range from ∼ 1 for a solution with a clear
match of all positive emission lines while it voluntarily penal-
izes solutions with a match of at least one ‘negative’ emission
line by giving them a Zscore(z) ∼ 0, values in between often
occur in low SNR spectra or spectra with strongly damped
emission lines. Finally, an error on each estimated peak po-
sition is derived and will be further described in section 6.1.

For each spectra, the selection of the optimal red-
shift out of the five potential ones, z1, · · · , z5 for which
1 = χ2

r(z1) > χ2
r(z2) > · · · > χ2

r(z5) and coming either from
the classical CCF or from the weighted CCF is done in the
following way: if Zscore(z1) > 0.8, then select z1; otherwise
choose the shift having the highest χ2

r and for which both
Zscore(zi) > 1−10−6 and χ2

r(zi) > 0.8; otherwise choose the
shift having the highest Zscore and for which χ2

r(zi) > 0.9.
Note that the previous selection and constants therein are
purely empirical and based on an iterative visual inspection
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SDSS J000221.50+081659.9

SNR=1.72
Continuum

Reduced spectrum + continuum
‘Noiseless’ spectrum + continuum

Deviant points

Figure 3. Result of the initial reduction process designed to decompose any input spectrum into: a continuum spectrum through the
smoothing of the low-frequency components of the PMT; a ‘noiseless’ spectrum through the removal of high-frequency components of the
biorthogonal spline stationary wavelet transform and a set of deviants points through a k-sigma clipping of the first two scales of the PMT
as well as through the removal of night sky emission lines and border regions. Also computed is the SNR of the continuum-subtracted
spectrum. The continuum drop occurring at wavelengths shorter than the Lyα limit can be explained by the absorption induced by the
intergalactic medium –mainly composed of hydrogen atoms– located along the line-of-sight towards the QSO under study (Petitjean et al.
1993).

of misclassified spectrum. This final step provides us with
what we thought to be the most probable redshift estimate
for a given input spectrum along with the associated uncer-
tainty and a warning flag notifying a failure and/or impre-
cision in the CCF computation; in the peak identification or
in the redshift selection (e.g. all fluxes to zero, low Zscore or
less precise uncertainties).

5.2 Results

Figure 4 illustrates the result of the cross-validation process
for both the classical phase correlation and weighted phase
correlation algorithms and further illustrates a comparison
with the redshift predicted by the SDSS-III pipeline. We
can readily see that the performances of the classical phase
correlation algorithm are strongly degraded compared to the
weighted version with a correlation factor of 0.557 compared
to 0.984 and a ratio of observations having |∆z| < 0.05
of 0.838 compared to 0.992, respectively. These differences
mainly come from the previously mentioned problem of bor-
der flattening that translates into frequent emission line mis-
matches and into errors coming from the difficulty that the
algorithm has in order to extrapolate the regions surround-
ing the Lyα and Hα emission lines. This difficulty arise be-
cause of the prominence of these lines as well as because of
the high correlation they have with the other emission lines
(Yip et al. 2004). As a consequence, the algorithm is often
constrained to consider the Lyα or Hα lines to be embedded
within the observed spectra which graphically results in a
gap around 0.4 < z̄ < 2.12. Note that the systematic errors
occurring at z̄ ∼ 0.4 and at z̄ ∼ 2.12 can be attributed to the
fitting of these specific emissions lines to the residual spec-
trograph edge effects –particularly significant within the low

SNR spectra– and that these errors account for ∼ 2% of the
observations having |∆z| > 0.05.

Investigation of the most significant errors coming from
the emission lines mismatch, illustrated in figure 4, shows
that the latter can be modelled as a linear relation between
the predicted redshift and the effective redshift. Indeed, if
we consider an emission line observed at wavelength λ and
falsely considered to stand at a restframe wavelength λf in-
stead of λt, we will have that the predicted redshift, zf , can
be related to the effective redshift, zt, through

zf + 1

zt + 1
=

λt

λf
. (28)

These mismatches do not constitute, in themselves, real
cases of degeneracy regarding our χ2

r and Zscore selection
criteria. Indeed, each of the configuration mentioned within
figure 4 has unconfused emission lines that make the result-
ing redshift unambiguous. Rather, the observed degeneracies
also come from the low SNR of the observed spectra. Figure
5 illustrates the distribution of the SNR of both the obser-
vation having |∆z| > 0.05 and those having |∆z| < 0.05 for
our three cases of study. We notice that for all three cases,
the SNR of the maximal peak of the fair redshifts estimate
is approximately twice the one of the erroneous ones, this
is especially significant in the cases of the weighted phase
correlation and of the SDSS-III pipeline where the errors
come nearly exclusively from this line mismatch problem.
Furthermore, a visual inspection of these degenerated spec-
tra shows both potential redshifts to be undistinguishable
from one another in most of the cases and thus constituting
in fine effective cases of degeneracy. Consequently, some of
the low SNR spectra will unavoidably have ambiguous red-
shift estimates that will stand in well specific regions defined
by equation 28. Nevertheless, these will be easily identified
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Figure 4. Results of the classical phase correlation and weighted
phase correlation algorithms based on the cross-validation of ob-
servations coming from the SDSS DR12Q quasar catalog plus
predictions coming from the SDSS-III pipeline. Provided infor-
mations are the correlation factor between z and z̄ and P(|∆z| <
0.05), the ratio of observations having an absolute error lower
than 0.05 (depicted as black dots). Dotted numbered lines corre-
spond to known mismatches between common emission lines: (1)
Mg ii with Lyα; (2) Mg ii with C iv; (3) Mg ii with C iii] and (4)
C iv with Lyα (see section 5.2).

as having a low Zscore and/or a low redshift confidence (see
section 6.1).

Finally, we may notice that our implementation seems
to have a better tolerance to noise compared to the SDSS-
III implementation (i.e. see within figure 5 the lower peak
of the erroneous curve as well as its globally smaller width).
This higher tolerance does not come from differences in the
algorithms since both implementations are based on the sole
solution to equation 11, but either: (1) from the higher num-
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Figure 5. Histograms of the SNR distribution amongst the ob-
servations having |∆z| < 0.05 and those having |∆z| > 0.05
for the cases of the classical phase correlation; of the weighted
phase correlation and of the SDSS pipeline output. A bin width
of ∆SNR = 0.1 was used in each of these graphs. Also highlighted
is the position of the maximal peak of each histogram.

ber of PCA components we used (11 compared to 4); (2)
from the fact that the components we used were more suit-
able in order to represent the observed spectra or (3) from
the fact that the redshifts coming from the visual inspec-
tion procedure are also subject to errors, especially since we
are concerned with low SNR spectra where degeneracy may
occur.

In order to reject the fact that this higher tolerance
comes from the larger number of components we used, we re-
peat the described cross-validation procedure by using only
three components (plus mean observation) instead of ten.
The results of this configuration lead us to the same conclu-
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sions with a correlation factor of 0.976 (compared to 0.967)
and a ratio of observations having |∆z| < 0.05 of 0.989
(compared to 0.988). Although the differences in the erro-
neous SNR curves are less perceptible, it still remains glob-
ally sharper. Furthermore, we have to mention that within
the SDSS-III pipeline, no more than four principal compo-
nents were used because any larger number of components
would make the error higher. In regard to this point and to
the fact that we succeed in getting good predictions using 11
components, we might suppose, in anyway, that the compo-
nents we used were of higher quality in order to model this
specific dataset. Nevertheless, let us mention that we cannot
totally reject the hypothesis according to which this better
tolerance comes from a fortuitous statistical fluctuation it-
self produced by the degeneracy occurring during the visual
inspection of some low SNR spectra.

6 DISCUSSION

6.1 Redshift confidence & uncertainty estimation

In order for the derived redshift to be effectively used within
subsequent scientific applications it is mandatory for it to
come along with an estimation on its uncertainty and to have
a confidence level that the chosen redshift is indeed in the
vicinity of the real redshift. To make it clear, we may have a
redshift estimation with a reasonable uncertainty (e.g. z =
2.31±10−3) but being degenerated such that we are not sure
that it stands in the neighbourhood of the effective redshift.
Fortunately, the computed CCF offers us simple and efficient
ways to evaluate both the redshift uncertainty as well as the
confidence we can set on it.

Generally speaking, we know that for a sufficiently large
sample of observed points, the χ2 map defined in the param-
eters {a1, · · · , an} can be approximated in the neighbour-
hood of the global minimum, {a⋆

1, · · · , a⋆
n}, as

χ2(ai) ≈
(ai − a⋆

i )
2

σ2(a⋆
i )

+ C, (29)

where C is a function depending on aj , j 6= i and thus con-
sidered here as a constant. In other words, the approxima-
tion of the χ2 map near a global minimum can be evaluated
for each of the parameters independently from the others as
a simple quadratic curve whose curvature depends on the
uncertainty of the varying parameter. As a consequence, if
χ2(ai) increases by one compared to the optimal χ2, then
we will have that σ2(ai) = (ai − a⋆

i )
2. The reader may find

in Bevington & Robinson (2003, section 8.1) more informa-
tions about the variation of the χ2 near the optimum and
more particularly about the derivation of equation 29. Re-
garding the uncertainty on the predicted redshifts, we used
a second order polynomial such as to fit the optimal peak of
the CCF, Z, and derived its associated uncertainty5, σ(Z).
We then use the propagation of the uncertainty such as to
get the error on the estimated redshift

σ(z) = (z + 1)σ(Z)s log b, (30)

5 Beware that the shift value corresponding to the uncertainty
will have an associated decrease by one compared to the maximal
peak of the CCF.

where b is the base of the logarithmic scale we used (in our
case b = 10) and s is the sampling of the spectra on this
logarithmic scale (in our case s = ∆log10 λ = 10−4).

Secondly, we have to evaluate the confidence we can
have on the predicted redshift. First estimators of this con-
fidence are the already mentioned Zscore(z) and χ2

r(z) (see
section 5.1). Indeed, a secure estimate will typically have
Zscore(z) ≈ χ2

r(z) ≈ 1. Unfortunately, these estimators do
not take into account the potential ambiguity that might
be present during the selection of the CCF peak associated
with the predicted redshift. In order to tackle this lack, we
defined the chi-squared difference associated with a redshift
estimate, zi, as

∆χ2
r(zi) = min

∣

∣χ2
r(zi)− χ2

r(zj)
∣

∣ , ∀j 6= i, (31)

where each zj corresponds to a redshift associated with a
peak selected within the CCF. We may notice that any red-
shift being unsure due to the ambiguity in the CCF peak se-
lection will now be marked as having ∆χ2

r(z) ≈ 0. Also note
that compared to Bolton et al. (2012), we use the distance
between all χ2

r and not only those for which χ2
r(zi) > χ2

r(zj)
because we adopt the hypothesis that any solution having
χ2
r(zi) < χ2

r(zj) might have been falsely rejected while being
a valid solution.

6.2 Dealing with zero weights

It commonly happens for the weight matrix, W from equa-
tion 11, to have a lot of successive weights set to zero, this
is especially true if we consider that the observation can be
padded such as either to match the size of the templates or
to deal with the periodic nature of the phase correlation.
Additionally, nothing prevents us from shifting the observa-
tion in a circular way such as to have this set of successive
zeroes being in the first rows of the weights matrix and to
later get rid of this artificial shift by sliding back the CCF.
This is particularly interesting if we have a number of ze-
roed weights equal to –or greater than– the number of com-
ponents we used, NT. In this case, the NT first rows of the
matrix X̃ and of the vector y used within the factorized QR
algorithm with lookup tables will all be equal to zero and as
a consequence, none of the X̃

′

i ’s, as well as none of the y′

i’s
have to be computed. Differently stated, in addition to the
building of the lookup tables and their updates, we solely
have to compute Rij and bi(Z) through equations 16 and
17:

Rij = − L̃ij
√

L̃ii

(32)

and

bi(Z) = − l̃i
√

L̃ii

. (33)

This allows us to greatly simplify our algorithm and leads
to execution times of 0.082 ± 0.001s for the case N = 104,
NT = 10 and of 0.912 ± 0.026s for the case N = 105, NT =
10. A rough comparison shows these execution times to be
twice faster than those presented at the end of section 4.1.1.
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6.3 Templates weighting

Although, the weighting of the observed spectra is the most
important regarding the redshift determination of QSOs, one
might also want to have a template weighting such as, for
example, to highlight some patterns or to reflect the fact
that these templates often come along with their own uncer-
tainties. To this aim, we plug into equation 11, the diagonal
matrix of weights associated with the template observations,
WT, that is

χ2(Z) =
∥

∥

∥
W̃TWs−WW̃TT̃a(Z)

∥

∥

∥

2

=
∥

∥

∥
ỹ − X̃a(Z)

∥

∥

∥

2

.

(34)
After orthogonalization of the matrix X̃ = Q̃R̃, we get to

χ2(Z) = ‖ỹ‖2 − ‖b(Z)‖2 , (35)

with the first NT elements of b(Z) being equal to the first

NT elements of Q̃
T
ỹ. We can already note that since ỹ is

now shift-dependent, the knowledge of b(Z) alone is no more
sufficient in order to find the optimal shift such that χ2(Z)
must be explicitly evaluated through equation 35.

Computation of the first NT elements of b(Z) is
straightforwardly done using the procedure described in sec-
tion 4.1.1 with ỹ replacing y and both lookup tables given
by

L̃ij = F−

[

F
[

WT
2
(

T
col
i ◦ Tcol

j

)]

∗

◦ F
[

W
2]
]

Z
(36)

and

l̃i = F−

[

F
[

WT
2
T

col
i

]

∗

◦ F
[

W
2
s
]

]

Z
. (37)

Finally, we will have that each ‖ỹ‖2 will be given by

‖ỹ‖2 = F−
[

F
[

WT
2
]

◦ F
[

W
2
s
2
]]

Z
. (38)

7 CONCLUSIONS

We have presented a new method for computing the
weighted phase correlation of an observed input signal
against not necessarily orthogonal templates. This method
is found to be the preferred alternative to the classical phase
correlation in the case of input observations having a limited
coverage and/or having very distinct weights. The imple-
mentation of this method is based on a weighted chi-squared
problem solved through a highly modified version of the QR
orthogonalization algorithm designed to take benefit of the
performances of the fast Fourier transform such as to com-
pute the numerous inner products present within the orig-
inal QR algorithm. This implementation provides us with
a numerically stable algorithm having a linearithmic time
complexity that makes it affordable for the tight spectral
processing of QSOs within the Gaia mission.

We have presented a complete application of this
method to the case of the redshift determination of type I/II
QSOs coming from the SDSS DR12 quasar catalog through
a two-fold cross-validation procedure. This application is
based on templates coming from the weighted principal com-
ponents analysis decomposition of independent spectra com-
ing from the same catalog. We described in detail the reduc-
tion of those input spectra as well as the method we used
in order to select the most probable redshift amongst the
set of possible ones. Results of this cross-validation show

our method to be the one of predilection for QSO redshift
determination and is comparable to the SDSS-III pipeline
output while not being a O

(

N2
)

process.
Finally, we showed how we can get both the uncertainty

on the predicted redshift as well as the confidence we can
set on it. We further discuss two extensions of our method,
namely: the time saving we can get if having a sufficient
number of successive zeroed weights and the weighting of
the template observations.

A free implementation of the described al-
gorithm has been released under the GNU Pub-
lic License6 and can be freely downloaded at
https://github.com/ldelchambre/wcorrQRL.
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