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Abstract The present paper investigates the tailor-

ing of bimaterial microstructures minimizing their local

stress field exploiting shape optimization. The prob-

lem formulation relies on the extended finite element

method (XFEM) combined with a level set representa-

tion of the geometry, to deal with complex microstruc-

tures and handle large shape modifications while work-

ing on fixed meshes. The homogenization theory, allow-

ing extracting the behavior of periodic materials built

from the repetition of a representative volume element

(RVE), is applied to impose macroscopic strain fields

and periodic boundary conditions to the RVE. Classical

numerical homogenization techniques are adapted to

the selected XFEM-level set framework. Following pre-

vious works on analytical sensitivity analysis [31], the

scope of the developed approach is extended to tackle
the problem of stress objective or constraint functions.

Finally, the method is illustrated by revisiting 2D clas-

sical shape optimization examples: finding the optimal

shapes of single or multiple inclusions in a microstruc-

ture while minimizing its local stress field.
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1 Introduction

Nowadays, there is a huge demand for highly efficient

materials to fulfill some particular requirements, even

contradictory ones. In fact, with the development of

the automotive, transport, space. . . industries, the in-

terest in new materials exhibiting extreme properties is

greater than ever. Therefore, many research works are

devoted to the tailoring of material suited for specific

applications. The macroscopic behavior of materials is

related to their microstructures. It follows that design-

ing material at their microstructural level allows ob-

taining prescribed behaviors at the macroscopic level.

In the 1970s, the homogenization theory was devel-

oped to bind the local and global behaviors of materials.

In general, periodic materials are studied, i.e. materials
built from the periodic repetition of a representative

volume element (RVE) in the two (resp. three) direc-

tions of space. Effective macroscopic properties can be

extracted starting from the microstructural specificities

assuming that the RVE scale is very small compared

to the macroscopic one, i.e. there is a clear separation

between these two scales. The theory of homogeniza-

tion is detailed by several authors as Bensoussan et al.

[7], Sanchez-Palencia [35], Suquet [40] or Torquato [43].

Later on, to tackle bigger and more complex microstruc-

tural problems, numerical homogenization methods, re-

sorting to the finite element method (FEM), were de-

veloped. The latter methods are described by Guedes

and Kikuchi [15] or more recently by Andreassen and

Andreasen [3].

Homogenization plays a key role in many engineer-

ing problems. In particular, interaction between homog-

enization theory and topology optimization is rather

important. This interaction is bidirectional. In their

seminal work, Bendsøe and Kikuchi [4] developed an
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approach to provide optimal structural topologies by

searching for an appropriate material distribution over

a given design domain. To circumvent the combinato-

rial problem of presence/absence of material at a point,

they relaxed the problem by introducing porous mate-

rials in the formulation. The effective properties of the

porous periodic microstructure were evaluated using

the homogenization theory. The approach was further

extended by several authors such as Suzuki and Kikuchi

[41] for bending problems or Diaz and Kikuchi [10] for

eigenfrequency maximization. Several microstructural

geometries have been considered for instance square

holes in Bendsøe and Kikuchi [4], rank-N materials in

Bendsøe [6] or Allaire and Kohn [2]. Even if optimal

stiffness properties are obtained as for rank-N materi-

als, there is no consideration of the local stress field

in the microstructures and so no consideration of the

strength of microstructured materials. Reentrant cor-

ners in square holed microstructures and connections

between layers in rank-2 materials, as shown in Fig.(1),

clearly exhibit infinite stresses.

(a) Square holed
microstructure.

(b) Rank-2 mi-
crostructure.

Fig. 1 Microstructures optimized for stiffness and exhibiting
infinite stresses at reentrant corners (1(a)) or at connections
between material layers (1(b)).

On the other way around, optimization has been ex-

tensively used to design material microstructural lay-

outs exhibiting some prescribed macroscopic proper-

ties. The material design problem, known as material

tailoring or inverse homogenization, can be solved ef-

ficiently by resorting to topology optimization tools as

shown by Sigmund [37], [38]. This initial work was later

followed by numerous others considering various objec-

tives: extreme thermal expansion as in Sigmund and

Torquato [39], maximized stiffness as in Guest and Pre-

vost [16] or Weihong et al. [51], extremal bulk modulus

as in Gibiansky and Sigmund [13] or Andreasen et al.

[36]. A review of homogenization and topology opti-

mization is given by Hassani and Hinton [18], [19], [20].

Shape optimization was also exploited to design mate-

rials assuming given parametric geometrical shapes as,

for example, in Zhou et al. [52] or Procházka and Válek

[33] where the optimal shapes of short fibers maximiz-

ing the bearing capacity of composites were studied.

Extending topology optimization scope to account

for local stress constraints, Duysinx and Bendsøe [12]

assumed that stress constraints could be considered at

the microstructural level by detecting the first point

exceeding the limit resistance of the material. After in-

vestigating the stress level in rank-2 microstructures,

a macroscopic failure model for porous microstructures

was assumed. The corollary of the latter approach is

to investigate layouts and geometries able to minimize

the local stress state in a microstructure for a given

macroscopic stress or strain state. However, despite the

growing number of works on microstructural designs,

local and global stress are scarcely used as objective or

constraint functions.

Early works by Vigdergauz [47], [49], [48] provide

some analytical and numerical solutions for the design

of microstructures of maximal stiffness. Later on, these

results were extended by Grabovsky and Kohn [14] show-

ing that the Vigdergauz microstructure was actually

minimizing the stress concentrations. More recently, Lip-

ton [22] and Lipton and Stuebner [23], [24] provided

some analytical and numerical results for functionally

graded composites and for composite structures under-

going stress constraints. They proposed an inverse ho-

mogenization approach based on the minimization of

some modulation functions connecting the macroscopic

stress to the local stress fluctuations at microscale. More

recently, Najafi et al. [30] also proposed an inverse ho-

mogenization problem to design particulate composites

considering a potential damage in the inclusions using

a NURBS-based shape optimization scheme. They seek

for an appropriate layout of the composite which mini-

mizes the area between the effective stress-strain curve

and a prescribed non linear curve corresponding to a

particular behavior.

The present work aims at contributing to restart

an investigation of the stress state at microstructural

level. In this initial work, we adopt a numerical shape

optimization approach to design bimaterial microstruc-

tures minimizing their local stress fields under given

macroscopic strain state. The level set method is used

to represent the microstructure geometry allowing us

to deal with complex shapes as well as with large shape

modifications. To avoid difficulties related to classical

shape optimization as frequent remeshing operations,

the analysis is carried out on a fixed mesh resorting

to the extended finite element method (XFEM). The

method can handle discontinuities across material in-

terfaces within the elements by adding some enriched

shape functions to the classical FEM approximations.

Exploiting this XFEM-level set framework provides an
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accurate knowledge of the local stress field around the

interfaces and thus a fine control on the local stress. The

sensitivity analysis is performed through an analytical

approach previously developed by Noël et al. [31] and

extended to the evaluation of stress derivatives.

The paper is organized as follow. Section 2 is de-

voted to the optimization framework used through the

paper. The basics of the level set description of the ge-

ometry and the XFEM are recalled. Then, the proce-

dure to evaluate the stress fields is explained. The ho-

mogenization method is briefly exposed in Section 3.

The attention is drawn to the modification in the nu-

merical procedure due to the use of XFEM. The discrete

analytical approach developed to perform the sensitiv-

ity analysis is recalled in Section 4 and the computation

of the stress derivatives is detailed. Finally, Section 5 il-

lustrates the developed methodology on 2D microstruc-

tural designs: finding the optimal shapes and locations

of a single or multiple inclusions in a microstructure

under various loadings.

2 Optimization framework

The objective of this work is to design periodic mi-

crostructures minimizing their local stress field. Two

phase microstructural design problems in two dimen-

sions are considered. A general description of the prob-

lem is given in Fig.(2). Two materials are distributed

over a given RVE, Ω. An interface ΓAB defines the non-

overlapping subdomains ΩA and ΩB filled with mate-

rial A and B respectively. Periodic boundary conditions

are imposed on the RVE as periodic materials are con-

sidered. The RVE is submitted to some equivalent loads

deduced from prescribed macroscopic strain fields.

ΩA

ΩB

Ω

ΓAB

Fig. 2 Description of the microstructural optimization prob-
lem.

A bound on the volume V of material phase A or

B is prescribed to avoid trivial solutions. Some extra

constraints gj with j = 1, . . . ,m can also be imposed.

The resulting general optimization problem is for-

mulated as follow:

min
s

max
e=1,...,ne

{σVM

e (s)}

s.t. V (s)− Vmax = 0

gj(s) ≤ 0, j = 1, . . . ,m

si ≤ si ≤ si, i = 1, . . . , n

(1)

where s is a vector collecting the n optimization vari-

ables, σVM
e is the Von Mises stress associated to the eth

element of the mesh.

This problem can be reformulated so as to treat the

minimization of the maximum Von Mises stress as sev-

eral stress constraints:

min
s

z

s.t. σVMe (s) ≤ z, e = 1, . . . , ne

V (s)− Vmax = 0

gj(s) ≤ 0, j = 1, . . . ,m

si ≤ si ≤ si, i = 1, . . . , n

z ≥ 0

(2)

The optimization problem, proposed in this work,

does not fall into the category of inverse homogeniza-

tion problems. In fact, the homogenization procedure,

as exposed in Section 3, is only exploited to impose pe-

riodic boundary conditions on the RVE and to evaluate

equivalent loads to some prescribed macroscopic strain

fields. The full procedure allowing the extraction of the

effective properties of a given RVE, is only used as a

post-processing operation on the optimization results.

2.1 Level set description of the geometry

In 1988, Osher and Sethian [32] introduced the level

set method to track moving interfaces efficiently. The

method allows the representation of interfaces or dis-

continuities resorting to an implicit function φ of di-

mension n+ 1, while working in a n dimensional space.

An iso-level of this function, generally the iso-zero one,

is chosen to draw the interface or discontinuity and thus

separates the domain between the different materials in

presence. The function φ, known as the level set func-

tion, can be given as a function of the spatial coordi-

nates x and some design parameters s:
φ(x, s) > 0, ∀x ∈ ΩA
φ(x, s) = 0, ∀x ∈ ΓAB
φ(x, s) < 0, ∀x ∈ ΩB

. (3)
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where ΩA is the subdomain filled with material A, ΩB
the subdomain filled with material B and ΓAB the in-

terface between the materials A and B.

Implementing FEM on discrete meshes, the level set

function φ is represented by its nodal values φi inter-

polated using classical finite element shape functions

Ni(x):

φh(x, s) =
∑
i

Ni(x)φi. (4)

In this paper, level set functions are parametrized

using a single or a combination of parametrized geomet-

ric shapes, as circles, ellipses or superellipses. Instead

of evolving the level set function by solving Hamilton-

Jacobi type equations as in Allaire et al. [1] or Wang et

al. [50], the level set function is here expressed as a func-

tion of the design parameters s and is modified through

mathematical programming algorithms. For more de-

tails, the interested reader can refer to van Dijk et al.

[11].

2.2 Extended finite element method

The XFEM was originally developed by Moës et al.

[27] to model crack propagation without remeshing.

The method allows representing singular or discontinu-

ous behaviors within a mesh element by adding specific

shape functions to classical finite element approxima-

tion fields:

uh(x) =
∑
i∈I

Ni(x) ui +
∑
i∈I?

N?
i (x) ai, (5)

where I is the set of all the mesh nodes, Ni(x) are the

standard finite element shape functions, ui are the de-

grees of freedom (dof) associated to the standard shape

functions Ni(x), I? is the set of enriched nodes, N?
i (x)

are the enriched shape functions and ai are the addi-

tional unknowns related to the enrichment.

The desired enrichment is introduced in the approx-

imations resorting to an enrichment function ψ. For

a particular application, the choice of the enrichment

function ψ depends on the singularities or discontinu-

ities that are to be taken into account. In this work,

we focus on interfaces between two materials A and B

characterized by a continuous displacement field, but

a discontinuous strain field. A commonly used enrich-

ment function to represent material interfaces is the

ridge function developed by Moës [26] and given as:

ψ(x) =
∑
i

Ni(x) |φi| −
∣∣∣∣∣∑
i

Ni(x) φi

∣∣∣∣∣ . (6)

The additional enriched shape functions N?
i (x) are then

built by multiplying the classical finite element shape

functions Ni(x) and the enrichment function ψ(x):

N?
i (x) = Ni(x) ψ(x). (7)

Since enriched elements are filled with two differ-

ent materials and present a discontinuity in their strain

field, they have to be treated with special care. The

different techniques implemented to perform the sub-

division and the integration on enriched elements are

briefly recalled hereunder.

2.2.1 XFEM subdivision

The subdivision of the enriched elements is performed

taking advantage of the level set description of the ge-

ometry. The level set function φ is approximated by

a straight line for the sake of simplicity. The intersec-

tions (ξ?, η?) of the iso-zero level curve and the elements

edges are computed, in the 2D case, from the nodal co-

ordinates (ξ1, η1) and (ξ2, η2) and the nodal level set

values φ1 and φ2, as shown in Fig.(3):

ξ? = tξ2 + (1− t)ξ1,
η? = tη2 + (1− t)η1,

with t =
|φ1|

|φ1|+ |φ2|
. (8)

1

2

(ξ1, η1)

(ξ2, η2)

(ξ?, η?)

φ exact

φ approximated

φ1

φ2

Fig. 3 Subdivision of the enriched elements: intersections of
the iso-zero level set and the edge of an element in 2D.

2.2.2 XFEM integration

To capture the discontinuous strain behavior through

the enriched elements, the integration can no longer be

performed using a classical Gauss quadrature. To ob-

tain accurate results, an integration background mesh

is introduced on the enriched elements. As illustrated

in Figure 4, Gauss points are brought back from a sec-

ond parametric space (m, l) to the first one (ξ, η) where

the classical Gauss quadrature integration is carried out

on each subpart of the parent element independently.

In particular, this procedure is applied to compute the

stiffness matrix K. The elemental stiffness matrix is
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x

y

1

2

3

4

J1 ξ

η

1 2

34

J2

l

m

Fig. 4 Integration procedure for enriched elements: the el-
ement is mapped to a parent reference element using a first
mapping J1. The subdomains of this element are mapped to
a second reference space resorting to a set of mappings J2.
Gauss points are brought back from the second to the first ref-
erence space, where classical Gauss quadrature is performed.

evaluated by adding the contribution of each Gauss

point:

Ke =

∫
Ωe

[
BT
u

BT
a

]
H
[
Bu Ba

]
dΩe,

'
∑
gp

wgp

[
BT
u

BT
a

]
gp

Hgp

[
Bu Ba

]
gp
|J1|gp |J2|gp ,

(9)

where Ωe is the element domain,
∑
gp is the sum over

all the element Gauss points, Bu is the part of the B

matrix of the derived shape functions related to the

classical dof ui, Ba is the part of the B matrix of the

derived shape functions related to the additional dof

ai, H is the Hooke’s matrix, |J1| is the determinant

of the first Jacobian mapping, |J2| is the determinant

of the second Jacobian mapping, wgp are the weights

associated to Gauss points.

2.2.3 Evaluation of the stress

As the objective of this work is to take into account the

stress fields within the microstructures, the procedure

to evaluate the stress values is detailed hereunder. For

each Gauss point, the stress tensor is evaluated through:

σgp = Hgp Bgp ue, (10)

where ue is a vector containing the dof of the element

where the considered Gauss point is located.

The Gauss points stress tensors are then arranged as

a mean by element or by node. If an element is crossed

by the interface and is filled with two different materi-

als, the stress tensors at the Gauss points are treated

differently. Working with a mean by element strategy, a

mean stress tensors is evaluated for each subpart of the

parent element. Working with a mean by node strategy,

additional stress tensors are evaluated at the intersec-

tions between the interface and the element edges. In

this work, the mean by element strategy is adopted as it

is straightforward and provides rather accurate results.

As indicated in Van Miegroet and Duysinx [46], on

an enriched element, as the area dedicated to one ma-

terial becomes smaller, the stress value on this vanish-

ing area subpart can be highly overestimated. Several

strategies of pre- and post-processing are proposed in

the literature to overcome these difficulties and obtain

a smooth stress field. Among those, one can cite:

– moving the node on the interface to remove the

small subpart and the corresponding overestimated

stress. However, this pre-processing procedure im-

plies working with a moving mesh, which is contra-

dictory to the reason invoked to use the XFEM, i.e.

working on fixed meshes.

– moving the interface to the closest node to remove

the small subpart and the corresponding overesti-

mated stress. This pre-processing strategy, known

as fit-to-vertex, was proposed by Moës et al. [28].

– evaluating nodal stresses using recovery techniques

based on finite element error estimation. These post-

processing stress recovery procedures are widely used,

as they allow to rebuild more accurate nodal values

of the stress from the finite element solution. A sur-

vey of different techniques is given by Krizek and

Neittaanmaki [21]. For example, Zienkenwick and

Zhu [53] proposed a superconvergent patch recov-

ery technique that uses a polynomial function to

describe the stress on an element patch surround-

ing the treated node. So far, these techniques were

mainly applied with XFEM to recover a consistent

stress field around cracks as in Bordas and Duflot

[8] and in Ródenas et al. [34].

– smoothing the stress on small element subparts by

an area weighted sum over the element and its neigh-

bors, as proposed by Van Miegroet and Duysinx in

[46]. This post-processing strategy requires to build

the mesh topology so that each element is associ-

ated to its neighbors. Nevertheless, as the mesh is

fixed, only one evaluation of the mesh topology is

necessary.

Although not being the most accurate approach, the

latter strategy is simple and straightforward. The ap-

proach can not ensure that no overestimated stress value

will appear but it provides rather good results in many

cases as shown by Van Miegroet [45]. It is therefore

adopted in this article and detailed hereunder.

The smoothed stress tensor σS associated to a given

subelement is given as:

σS =

∑
e∈N Aeσe∑
e∈N Ae

, (11)

whereN is a set of the treated subelement and its neigh-

bors as shown in Fig.(5), Ae is the area of element e,

σe is the stress tensor on element e.
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Subelement

Neighborhood

Fig. 5 Smoothing the stress field while working with XFEM:
neighborhood of a given subelement.

3 Homogenization

As the layout of materials at the microscopic level can

be extremely complex, it is not possible to study these

as a whole. To overcome this difficulty, the theory of ho-

mogenization was developed in the 1970s and allows ex-

tracting effective homogenized properties at the macro-

scopic level. Initial works on homogenization were pro-

vided by Bensoussan et al. [7] and Sanchez-Palencia

[35]. They studied periodic materials built from the rep-

etition of RVEs in two or three dimensions.

In this paper, we focus on orthotropic macroscopic

materials. Their constituent materials are considered as

linear elastic and isotropic. Therefore, the constitutive

equations, at the microscopic scale, are given as follow:

σ = H ε, (12)

where σ is the stress vector, ε the strain vector and H

the Hooke’s matrix.

The homogenized properties of a periodic material

can be deduced from its microstructure as the strain

energy evaluated at the macroscopic level in terms of

macroscopic strains should be equal to the strain energy

calculated from the microscopic strain field. Working
in 2D, the homogenized coefficients HH

ij are obtained

applying three independent unit strain fields εi0:

HH
ij =

1

Y

∫
Y

(
εi0 − εi

)T
H
(
εj0 − εj

)T
dY,

i, j = 1, . . . , 3,

(13)

where Y is the volume of the RVE, εi0 are the three

prescribed macroscopic strain field (in 2D ε10 = [1 0 0]T ,

ε20 = [0 1 0]T and ε30 = [0 0 1]T ), εi are the local varying

strain fields in the RVE when the latter is submitted to

the unit strain field εi0.

The chosen XFEM-level set framework is used to

extract the equivalent macroscopic properties from the

microstructures, performing numerical homogenization.

The procedure followed in this paper, inspired by works

by Mlejnek and Schirrmacher [25] or more recent similar

works by Andreassen and Andreasen [3], is adapted to

the particular framework.

First, the periodic boundary conditions are applied

through the elimination of redundant dofs. Two corre-

sponding nodes are associated and share the same dofs,

as described in Fig.(6).

u1, v1 u1, v1

u1, v1 u1, v1

u4, v4

u4, v4

u5, v5

u5, v5

u2, v2 u2, v2

u3, v3 u3, v3

Fig. 6 Applying periodic boundary conditions on 2D square
RVE via the elimination of redundant dofs. The nodes are
associated to their corresponding ones: the four corners of the
cell are associated and each left (resp. bottom) white (resp.
black) node is paired with its corresponding right (resp. top)
one. Then, associated nodes share the same dofs.

Then, the displacement field ui, induced in the RVE

by the imposition of the unit strain field εi0, has to be

evaluated. It is done by solving the following equations:

Kui = f i0, i = 1, . . . , 3, (14)

where K is the stiffness matrix of the RVE, ui is the dis-

placement field induced by prescribing the unit strain

field εi0 on the RVE and f i0 is the load vector equivalent

to the application of the unit strain field εi0 on the RVE.

In an XFEM framework, as explained in section

2.2.3, the classical Gauss quadrature can no longer be

applied. The stiffness matrix is then evaluated as in

Eq.(9). The equivalent load vectors f i0 are evaluated as:

f i0 =

∫
Y

BT H εi0 dY,

'
∑
gp

wgp BT
gp Hgp εi0 |J1|gp |J2|gp ,

i = 1, . . . , 3.

(15)

Finally, the homogenized coefficients HH
ij are evalu-

ated through:

HH
ij =

1

Y

∫
Y

(
ui0 − ui

)T
BTH B

(
uj0 − uj

)
dY,

=
1

Y

(
ui0 − ui

)T
K
(
uj0 − uj

)
,

i, j = 1, . . . , 3.

(16)

where ui0 is the displacement field equivalent to the pre-

scribed unit strain field εi0 and ui is the displacement

field induced by the imposition of the unit strain field

εi0 on the RVE.
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4 Sensitivity analysis

This section focuses on the approach developed to per-

form the sensitivity analysis as proposed in Noël et

al. [31]. Working within an XFEM-level set framework,

performing the sensitivity analysis by finite difference

or a semi-analytical approach can lead to problems and

inaccuracies in the derivatives values. In fact, the per-

turbation of the interface or discontinuity can imply

a change in the status of the elements from enriched

to not enriched and vice versa, resulting in a modifi-

cation of the approximation/discretization fields used

since new shape functions are introduced or retrieved.

Therefore, as suggested in [31], an analytical approach

to the sensitivity analysis can be successfully applied.

4.1 Sensitivity and homogenization

Continuing along previous works, the developed ana-

lytical sensitivity analysis, adapted to the XFEM-level

set framework, is used to evaluate the requested deriva-

tives. Some important features for further developments

are recalled.

Starting from the discretized equations of the linear

elasticity Ku = f , where K is the stiffness matrix, u

the displacements vector and f the vector of the exter-

nal forces, the equations are derived with respect to a

design parameter s, it results:

∂K

∂s
u + K

du

ds
=
df

ds
⇔ du

ds
= −K−1

[
∂K

∂s
u− df

ds

]
. (17)

Thus, knowing the derivatives of the stiffness matrix K

and of the vector of the external forces f , the sensitivity

of the displacements vector u can be readily evaluated.

The stiffness matrix derivative is evaluated starting

from its discretized equation and deriving it with re-

spect to a particular design parameter s. Working with

an XFEM-level set framework, one gets:

∂K

∂s
=
∑
gp

w
∂BT

∂s
H B |J1| |J2|

+
∑
gp

w BT H
∂B

∂s
|J1| |J2|

+
∑
gp

w BT H B |J1|
∂ |J2|
∂s

.

(18)

The equivalent load vector f0 is dependent on the

design parameters and its derivative is obtained follow-

ing the same procedure. Its discretized expression, given

in Eq.(15) is derived with respect to a particular design

parameter s:

∂f0
∂s

=
∑
gp

w
∂BT

∂s
H ε0 |J1| |J2|

+
∑
gp

w BT H ε0 |J1|
∂ |J2|
∂s

,

i = 1, . . . , 3.

(19)

The derivative of the stiffness matrix, as well as the

derivative of the equivalent load vector, require to eval-

uate the derivatives of the B matrix and of the determi-

nant of the second Jacobian mapping J2 with respect

to the design parameter s.

The B matrix is made of two parts: Bu, related to

the classical dof ui, contains the derivatives of the clas-

sical shape function Ni(x) with respect to (ξ, η) the

coordinates of the first reference space and Ba, related

to the enrichment additional dof ai, contains the deriva-

tives of the enriched shape functionsN?
i (x) with respect

to (ξ, η) the coordinates of the first reference space.

The derivative of the Bu matrix with respect to a

design parameter s is built using the following terms:

∂

∂s

 ∂Ni
∂x

∂Ni
∂y

 = J−11

 ∂2Ni
∂ξ2

∂ξ
∂s + ∂2Ni

∂ξ∂η
∂η
∂s

∂2Ni
∂η∂ξ

∂ξ
∂s + ∂2Ni

∂η2
∂η
∂s

 . (20)

The derivative of the Ba matrix with respect to a

design parameter s is built using the following terms:

∂
∂s


∂N?i
∂x

∂N?i
∂y

 = J−11

 ∂2Ni
∂ξ2

∂ξ
∂s + ∂2Ni

∂ξ∂η
∂η
∂s

∂2Ni
∂η2

∂η
∂s + ∂2Ni

∂η∂ξ
∂ξ
∂s

ψ
+

 ∂Ni
∂ξ

∂Ni
∂η

 ∂ψ
∂s + ∂

∂s

 ∂ψ
∂ξ

∂ψ
∂η

Ni
+

 ∂ψ
∂ξ

∂ψ
∂η

(∂Ni
∂ξ

∂ξ
∂s + ∂Ni

∂η
∂η
∂s

) .

(21)

The derivative of the determinant of the second Ja-

cobian mapping J2 with respect to a design parameter

s is given as:

∂|J2|
∂s =

(∑
i
∂Ni
∂l

∂ξi
∂s

) (∑
i
∂Ni
∂m ηi

)
+
(∑

i
∂Ni
∂l ξi

) (∑
i
∂Ni
∂m

∂ηi
∂s

)
−
(∑

i
∂Ni
∂m

∂ξi
∂s

) (∑
i
∂Ni
∂l ηi

)
−
(∑

i
∂Ni
∂m ξi

) (∑
i
∂Ni
∂l

∂ηi
∂s

)
.

(22)

As in classical shape optimization, the evaluation of

these derivatives requires the definition and the com-

putation of a velocity field appearing in the equations
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through the following terms: dξ/ds, dη/ds. In classical

shape optimization, the velocity field describes the per-

turbation of the nodal positions with respect to mod-

ifications of the boundaries and has to be evaluated

over the entire design domain. Resorting to an XFEM-

level set framework, a fixed mesh is used and the ve-

locity field describes the material flow through the in-

tersected elements. Therefore, its evaluation is advan-

tageously limited to enriched elements. All the details

about the derivatives involved in these computations

are explained in [31] and the interested reader can refer

to the latter paper to find any additional information.

4.2 Sensitivity of the stresses

The developed analytical sensitivity analysis is also used

to evaluate the derivatives of the stress field.

Starting from Eq.(10) and deriving it with respect

to a design parameter s, one gets:

dσgp
ds

= Hgp
∂Bgp

∂s
ue + HgpBgp

due
ds

, (23)

which only requires the derivatives of the B matrix

given in Eq.(20), Eq.(21) and of the displacements vec-

tor given by Eq.(17).

As pointed out, these derivatives are evaluated di-

rectly from the values extracted during the analysis

and a very small subpart in an element crossed by

the interface can be associated with a highly overes-

timated stress derivative. The latter can lead to con-

vergence problems through the optimization process.

Therefore, the same pre- and post-processing strategies

mentioned in 2.2.3 can be applied. By proceeding this

way, smoothed stress derivative values can be recovered.

5 Applications

The developed approach is illustrated on 2D examples.

It is first validated on a classical shape optimization

problem: a single inclusion in a microstructure under-

going different loadings. In particular, the Vigdergauz

microstructures are investigated as they can achieve ex-

tremal elastic behavior while exhibiting a rather simple

geometry. Later on, the case of microstructures rein-

forced by several stiff inclusions is investigated to illus-

trate that the approach is able to generate more com-

plex microstructural designs.

Optimization problems are formulated as detailed in

Section 2 and solved resorting to mathematical pro-

gramming schemes, as the Method of Moving Asymp-

totes (MMA) of Svanberg [42].

5.1 Single inclusion microstructures under hydrostatic

and shear loadings

As a first example, single inclusion microstructures are

investigated. The design problem aims at finding the

optimal shape of a hole minimizing the surrounding Von

Mises stresses in a square RVE. The material behav-

iors are considered linear elastic and isotropic. Working

with given microscopic material properties and assum-

ing perfect bonding in the case of two-phase composite,

the shape of the hole is the only parameter to deter-

mine the stress field in the microstructure. Therefore,

this problem is well-suited to evaluate the accuracy and

the efficiency of the developed approach. Two loading

cases are considered: a hydrostatic and a pure shear

loading.

5.1.1 Hydrostatic loading

First, a hydrostatic loading is considered: εhydro = [−1−
1 0]T . This hydrostatic loading was used as trial loading

while seeking to maximize the effective bulk modulus

of the microstructure and to saturate the correspond-

ing Hashin-Shtrikman bounds [17]. Under hydrostatic

loading and satisfying the traction-free condition on the

hole, Vigdergauz [48] was able to identify the optimal

contour of the hole minimizing the strain energy analyt-

ically. A family of elliptical shapes, evolving from circles

for low hole volume to squares with rounded corners for

higher hole volume, are maximizing the effective bulk

moduli of the material. These shapes also satisfy the

equi-stress principle, i.e. the non zero stresses along the

hole are uniform. Later on, Grabovsky and Kohn [14]

demonstrated that minimizing the strain energy was

equivalent to minimizing the stress concentration in the

case of a single inclusion microstructure undergoing a

single macroscopic load case.

In the following numerical investigations, two dif-

ferent objectives are then pursued and compared: min-

imizing the strain energy C and minimizing the lo-

cal Von Mises stresses σVM. In both cases, the optimal

shape of a hole in a square RVE is sought. The hole is

represented by a superellipse with a prescribed target

volume Vmax. The superelliptical hole is characterized

by two geometric features used as design parameters:

a, its semi-axis length and ξ, its exponent. The hole is

modeled by a very soft material, i.e. Esolid/Esoft = 106.

Proceeding this way, the chosen XFEM approximation

for material interface can be applied directly without

constraining the dofs within the void regions. Both ma-

terials have an isotropic and linear elastic behavior. A
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plane stress state is assumed. The optimization prob-

lems to solve are formulated as follow:

Strain energy: Von Mises stress:

min
s

C

s.t. Vhole = Vmax

s ≤ s ≤ s

min
s

max
e=1,...,ne

{σVM

e }

s.t. Vhole = Vmax

s ≤ s ≤ s

(24)

The stress design problem is reformulated as de-

tailed in Eq.(2). The stopping criteria are the relative

variations of the design parameters that have to be

smaller than 10−3. The initial configuration, the im-

posed boundary conditions and the mesh are presented

in Fig.(7). All the parameters used through the opti-

mization process are given in Table 1.

E2

E1

εhydro = [−1 − 1 0]T

Fig. 7 Single inclusion microstructure under hydrostatic
loading: description of the problem.

Table 1 Single inclusion microstructure under hydrostatic
loading: parameters.

Dimensions [m] c = 10, t = 1

Elastic moduli [N/m2] E1 = 1, E2 = 10−6

Poisson’s ratio [−] ν1 = ν2 = 0.3

Hydrostatic loading [−] εhydro = [−1 − 1 0]T

Bound on Vhole [m3] Vmax = 20, 40, 60, 80

Bounds on design variables [m] 0 ≤ a ≤ 4.9

[−] 1 ≤ ξ ≤ 20

Level set function φ(x, s) =
(
x
a

)ξ
+
(
y
a

)ξ − 1

Gauss points per subelement ngp = 7

Convergence criteria ∆a,∆ξ ≤ 10−3

Mesh 100× 100 bilinear Q4

The optimized shapes found for target hole volumes

of 20, 40, 60 and 80 m3 for both objectives are shown

in Fig.(8). As expected, both formulations lead to very

similar results. Moreover, the obtained results are in

good agreement with Vigdergauz numerical results, as

presented in [48]. For growing target hole volumes, ex-

pected behavior is recovered, i.e. optimized shapes evolve

roughly from circular shapes to squares with rounded

corners. Although the local Von Mises stresses are mini-

mized instead of the stress concentration, Fig.(9) shows

that the stress fields around the holes are rather smooth

and that stress concentrations are avoided.
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(a) Strain energy.
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(b) Von Mises stress.

Fig. 8 Single inclusion microstructure under hydrostatic
loading: optimized geometries for target volumes of 20, 40,
60 and 80 m3.

(a) Vhole = 20 m3. (b) Vhole = 40 m3.

(c) Vhole = 60 m3. (d) Vhole = 80 m3.

Fig. 9 Single inclusion microstructure under hydrostatic
loading: smoothed Von Mises stress fields [N/m2] in the sense
of Eq.(11) around the optimized holes for target volumes of
20, 40, 60 and 80 m3.

To further validate the numerical results, the ef-

fective bulk modulus κH is evaluated for the different

hole volumes. They are compared against the Hashin-

Shtrikman bounds. As the results are very similar for

the strain energy and the stress formulation, only the
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stress designs are considered here. Theoretically, the op-

timized microstructures should maximize the bulk mod-

ulus and saturate the Hashin-Shtrikman upper bound.

In plane elasticity, the effective bulk modulus κH can

be recollected from the homogenized coefficients HH
ij

and is given as:

κH =
EH

2 (1− νH)
. (25)

For two-phase materials, in the case of plane elastic-

ity and one material being void, the Hashin-Shtrikman

bounds are given as a function of the microstructure

density ρ, the bulk and the shear modulus of the solid

phase κsolid and µsolid [44], [5]:

0 ≤ κHS ≤ ρ κsolid µsolid

(1− ρ) κsolid + µsolid

. (26)

The comparison is summarized in Fig.(10). It clearly

shows that the optimized stress designs are effectively

able to saturate the Hashin-Shtrikman upper bound.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Density ρ

B
u
lk
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u
lu
s
κ

κHS

κH

Fig. 10 Single inclusion microstructure under hydrostatic
loading: comparison of the bulk modulus obtained numeri-
cally κH with the Hashin-Shtrikman bounds κHS .

To emphasize the choice of an initial superelliptical

shape, the performance of the optimized designs is eval-

uated in terms of maximal Von Mises stress achieved

for various initial shapes. In particular, a circle and an

ellipse are considered. For growing hole volumes, the

maximum Von Mises stress for each initial shape is pre-

sented in Table 2. No results are provided for the circle

and the ellipse for a target hole volume of 80 m3 as

such a high volume can not be reached while remain-

ing inside the RVE. For low hole volume, the maximum

Von Mises stress is very similar regardless of the initial

shape. This was expected as the optimal shape is, in

this case, close to a circle. For higher hole volume, the

maximum Von Mises stress is lower when a superellipse

is used as the optimal shape is a square with rounded

corners.

Table 2 Single inclusion microstructure under hydrostatic
loading: influence of the initial shape on the maximum Von
Mises stress achieved.

σVM
max [N/m2] for \ Vmax [m3] 20 40 60 80

Circle 1.871 1.744 1.796 /

Ellipse 1.870 1.744 1.796 /

Superellipse 1.823 1.550 1.374 1.326

5.1.2 Shear loading

In this second case, a pure shear loading is considered:

εshear = [−1 1 0]T . This pure shear loading was used

as trial loading while seeking to maximize the effec-

tive shear modulus of the microstructure and to satu-

rate the corresponding Hashin-Shtrikman bounds. Un-

der pure shear loading, the equi-stress principle is not

applicable anymore. Vigdergauz [48] was only able to

identify an energy minimizing contour of the hole pre-

senting several angular points. The latter allows the non

zero stresses along the hole to change sign while keep-

ing a constant value, i.e. they satisfy the modular equi-

stress principle. These suboptimal shapes correspond to

squares with sharp corners and slightly rounded sides.

As for the hydrostatic loading, two objectives are

pursued and compared: minimizing the strain energy C

and minimizing the local Von Mises stresses σVM. The

optimal shape of a hole in a square RVE is sought, but

the hole is now represented by the intersection of two

superellipses. Six geometric features are used as design

parameters: ai, the horizontal semi-axis lengths, bi the

vertical semi-axis lengths and ξi, the exponents with

i = 1, 2. The hole is modeled by a very soft material, i.e.

Esolid/Esoft = 106. Both materials have an isotropic and

linear elastic behavior. A plane stress state is assumed.

The two optimization problems to solve are formulated

as in Eq.(24). The stress design problem is reformulated

as detailed in Eq.(2). The stopping criteria are the rel-

ative variations of the design parameters that have to

be smaller than 10−3. The initial configuration, the im-

posed boundary conditions and the mesh are presented

in Fig.(11). All the parameters used through the opti-

mization process are given in Table 3.

The optimized shapes found for target hole volumes

of 20, 40, 60 and 80 m3 for both objectives are shown

in Fig.(12). Anew both formulations in strain energy

and stress lead to very similar solutions. The obtained

results are in good agreement with Vigdergauz numeri-

cal results, as exposed in [48]. Figure 13 shows that the
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E2

E1

εshear = [−1 1 0]T

Fig. 11 Single inclusion microstructure under pure shear
loading: description of the problem.

Table 3 Single inclusion microstructure under pure shear
loading: parameters.

Dimensions [m] c = 10, t = 1

Elastic moduli [N/m2] E1 = 1, E2 = 10−6

Poisson’s ratio [−] ν1 = ν2 = 0.3

Hydrostatic loading [−] εshear = [−1 1 0]T

Bound on Vhole [m3] Vmax = 20, 40, 60, 80

Bounds on design variables [m] 0 ≤ ai ≤ 4.9

[m] 0 ≤ bi ≤ 4.9

[−] 1 ≤ ξi ≤ 20

Level set function φ1(x, s1) =
(
x
a1

)ξ1 +
(
y
b1

)ξ1 − 1

φ2(x, s2) =
(
x
a2

)ξ2 +
(
y
b2

)ξ2 − 1

φglobal(x, s) = φ1(x, s1) ∪ φ2(x, s2)

Gauss points per subelement ngp = 7

Convergence criteria ∆ai,∆bi,∆ξi ≤ 10−3

Mesh 100× 100 bilinear Q4

Von Mises stress fields for the different target volumes

are quite smooth, avoiding stress concentration in the

microstructure.
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(a) Strain energy.
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(b) Von Mises stress.

Fig. 12 Single inclusion microstructure under pure shear
loading: optimized geometries for target volumes of 20, 40,
60 and 80 m3.

As explained previously, these contours are only sub-

optimal and are unable to saturate the Hashin-Shtrikman

bounds on the shear modulus. Nevertheless, the effec-

tive shear modulus µH is evaluated for the different

(a) Vhole = 20 m3. (b) Vhole = 40 m3.

(c) Vhole = 60 m3. (d) Vhole = 80 m3.

Fig. 13 Single inclusion microstructure under pure shear
loading: smoothed Von Mises stress fields [N/m2] in the sense
of Eq.(11) around the optimized holes for target volumes of
20, 40, 60 and 80 m3 with the objective of minimizing the
local Von Mises stress.

hole volumes. They are compared against the Hashin-

Shtrikman bounds. Only the stress designs are consid-

ered here. In plane elasticity, the effective shear modu-

lus µH can be recollected from the homogenized coeffi-

cients HH
ij and is given as:

µH =
EH

2 (1 + νH)
. (27)

For two-phase materials, in the case of plane elastic-

ity and one material being void, the Hashin-Shtrikman

bounds are given as a function of the microstructure

density ρ, the bulk and the shear modulus of the solid

phase κsolid and µsolid [44], [5]:

0 ≤ µH ≤ ρ κsolid µsolid

(1− ρ) (κsolid + 2µsolid) + κsolid

. (28)

The comparison is summarized in Fig.(14). It shows

that the optimized stress designs are suboptimal and so

unable to saturate the Hashin-Shtrikman upper bound.

To further validate the choice of an initial combi-

nation of two superellipses, the performance of the op-

timized designs is evaluated in terms of maximal Von

Mises stress achieved for different initial shapes. As in

the previous example, a circle and an ellipse are con-

sidered. For growing hole volume, the maximum Von

Mises stress for each initial shape is presented in Table

4. No results are provided for the circle and the ellipse

for a target hole volume of 80 m3 as such a high volume

can not be reached while remaining inside the RVE. As
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Fig. 14 Single inclusion microstructure under pure shear
loading: comparison of the shear modulus obtained numer-
ically µH with the Hashin-Shtrikman bounds µHS .

expected, the maximum Von Mises stress is lower when

the combination of two superellipses is used as the op-

timized shape is, in this case, a square with rounded

sides.

Table 4 Single inclusion microstructure under pure shear
loading: influence of the initial shape on the maximum Von
Mises stress achieved.

σVM
max [N/m2] for \ Vmax [m3] 20 40 60 80

Circle 1.203 1.232 1.262 /

Ellipse 1.203 1.232 1.262 /

2 Superellipses 0.798 0.763 0.755 0.767

5.2 Microstructures reinforced by stiff inclusions

In this second example, microstructures reinforced by

several stiff inclusions are investigated. Optimized shapes

and locations of the inclusions are sought to minimize

the local Von Mises stress in the microstructure. This

problem is inspired from the work by Najafi et al. [29].

The inclusions are represented by circular shapes.

Their radii Ri, as well as their locations (Xci, Yci) in the

RVE, are used as design parameters. Overlapping of the

inclusions is prohibited through the imposition of non

penetrating constraints. Several initial configurations of

the microstructure are considered. The inclusions are

embedded in a soft matrix, i.e. Eincl/Ematrix = 100. The

RVE is loaded through a prescribed macroscopic strain

field ε = [2 1 0]T . Both materials are characterized by

an isotropic and linear elastic behavior. A plane stress

state is assumed. The optimization problem to solve,

for nincl inclusions, is formulated as follow:

min
s

max
e=1,...,ne

{σVM

e }

s.t.
∑nincl

j=1 Vj − Vmax = 0

Rk +Rl + 0.3− dkl ≤ 0, k, l = 1, . . . , nincl

si ≤ si ≤ si, i = 1, . . . , n

(29)

where dkl is the distance between the kth and the lth

inclusions.

This design problem is reformulated as detailed in

Eq.(2). The stopping criteria are the relative variations

of the design parameters and of the maximum Von

Mises stress that have to be smaller than 10−3. All the

parameters used through the optimization process are

given in Table 5.

Table 5 Multiple stiff inclusions microstructure: parameters.

Dimensions [m] c = 10, t = 1

Elastic moduli [N/m2] Ematrix = 1, Eincl = 100

Poisson’s ratio [−] νmatrix = νincl = 0.3

Hydrostatic loading [−] εshear = [2 1 0]T

Bound on Vincl [m2] Vmax = 20

Bounds on design variables [m] 0.3 ≤ Ri ≤ 2

[m] 2 ≤ Xci, Yci ≤ 8

Gauss points per subelement ngp = 7

Convergence criterion ∆Ri,∆Xci, ∆Yci ≤ 10−3

∆σVM
max ≤ 10−3

Mesh 100× 100 bilinear Q4

The inclusions are considered very stiff compared

to the matrix, i.e. Eincl/Ematrix = 100. Figure 15 shows

the stress field in a microstructure made of five inclu-

sions embedded in a soft matrix. The inclusions are

highly stressed and their inner stress field is rather uni-

form. It results that the variations of the stress field

within the inclusions are small and can be recollected

with accuracy only resorting to very fine meshes. As

the stress field within the inclusions is rather uniform

and as failure is most likely to appear first in the soft

matrix phase, we choose not to consider the stress field

within the inclusions in the optimization process and

the problem aims at minimizing the local Von Mises

stress in the matrix. Therefore, the location of the in-

clusions is driven by the stress concentrations within

the soft matrix.

The Von Mises stress fields for the initial and op-

timized designs around the inclusions are exposed in

Fig.(16). One may remark that the maximum stress

value is lower in the initial design; this is due to the

fact that the initial configurations violate the constraint

imposed on the inclusions volume.

Starting from several initial configurations, the re-

sulting optimized designs can differ. For configurations
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(a) Microstructure stress field.

(b) Matrix stress field. (c) Inclusions stress field.

Fig. 15 Multiple stiff inclusions microstructure: Smoothed
Von Mises stress fields [N/m2] for Eincl/Ematrix = 100 and
ε = [2 1 0]T on a fine 300× 300 Q4 mesh.

1 and 3, where no inclusion initially lies in the cen-

ter of the RVE, final designs are rather similar. For

configurations 2 and 3, where an inclusion initially lies

in the center of the RVE, final designs are also very

close. These designs are different and lead to different

maximal Von Mises stress values. The non penetrating

constraints induce a certain repulsion force between the

inclusions. For designs 1 and 3, this repulsion prevents

the displacement of the inclusions towards the center of

the RVE. For designs 2 and 4, the inclusion lying in the

center of the RVE limits the displacements of the other

inclusions. They only move around the central one.

The convergence of the optimization process in terms

of maximal Von Mises stress is given in Fig.(17) for

the different initial configurations. The performance in

terms of maximal Von Mises stress varies according

to the initial configurations. One should remark that

the objective function value oscillates. This happens as

the objective is very sensitive to slight modifications of

the interface, as small element subparts can be created.

This sensitivity is related to the XFEM approximation

and will be further investigated in future works.

After exhibiting these results, some important re-

marks have to be made:

– the symmetry of the initial configuration has a huge

influence on the optimized designs. Starting from

symmetric initial designs, it is more difficult for the

optimization scheme to modify the position of the

inclusions and so to break the symmetry.

(a) Initial design 1. (b) Optimized design 1.

(c) Initial design 2. (d) Optimized design 2.

(e) Initial design 3. (f) Optimized design 3.

(g) Initial design 4. (h) Optimized design 4.

Fig. 16 Multiple stiff inclusions microstructure: smoothed
Von Mises stress fields [N/m2] in the sense of Eq.(11)
for initial and optimized designs around the inclusions, for
Eincl/Ematrix = 100 and ε = [2 1 0]T .

– the ratio between the stiffnesses of the inclusions

and the matrix, Eincl/Ematrix, also plays a role. If

this ratio is high, the inclusions are highly stressed

and present a rather constant stress field. The move-

ments of the inclusions through the optimization

process are mainly driven by the stress field in the

matrix. If the ratio is low, the magnitude of the

stress field within the inclusions is rather close to the
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Fig. 17 Multiple stiff inclusions microstructure: convergence
in terms of maximal Von Mises stress for the different initial
configurations for Eincl/Ematrix = 100 and ε = [2 1 0]T .

one existing in the matrix. This is shown in Fig.(18)

where the same configuration as in Fig.(15) is con-

sidered but for Eincl/Ematrix = 2. The stress field

within the inclusions might then have a larger influ-

ence on their optimal locations.

(a) Microstructure stress field.

(b) Matrix stress field. (c) Inclusions stress field.

Fig. 18 Multiple stiff inclusions microstructure: smoothed
Von Mises stress fields [N/m2] for Eincl/Ematrix = 2 and ε =
[2 1 0]T on a fine 300× 300 Q4 mesh.

– the symmetry of the loading also influences the op-

timized designs. A symmetric load case combined

with an initial symmetric microstructure can pre-

vent the modifications and movements of the inclu-

sions in the RVE.

Finally, a more general remark is formulated on the

evaluation of the local stress field resorting to homog-

enization procedures. Performing the optimization of

microstructures while considering stress constraints, it

is critical to know whether the chosen homogenization

procedure provides an accurate indication of the strength

of the composite in practice. This issue was recently ad-

dressed by Coelho et al. [9] who investigate whether ho-

mogenization local stress predictions are in agreement

with numerical stress evaluations in composites build

from the repetition of the unit cell in the three direc-

tions of space. Their study suggests that a low scale

factor, i.e. a low number of repetition of the unit cell, is

sufficient to replace the non-homogeneous composite by

the equivalent homogeneous materials. While beyond

the scope of this paper, this issue is of significant im-

portance and should be further investigated in future

works.

6 Conclusions

The present work has provided a flexible and robust

approach to perform shape optimization of bimaterial

microstructures minimizing their local stress field. The

approach is based on a level set representation of the ge-

ometry and an XFEM discretization. While the level set

representation allowed dealing with complex geometries

and handling large shape modifications, the XFEM was

chosen to avoid heavy remeshing operations inherent to

classical shape optimization. Considering periodic ma-

terials built from the repetition of a RVE, the homoge-

nization theory is applied to impose macroscopic strain

fields and periodic boundary conditions to the consid-

ered RVE. Numerical homogenization techniques were

adapted to fit the selected XFEM-level set framework.

To perform shape optimization with stress objectives or

constraints, the scope of the analytical approach to the

sensitivity analysis, developed in previous work by the

authors [31], was extended. The derivatives of the stress

values were evaluated analytically starting from their

discretized expressions and deriving them with respect

to the design parameters. The different terms involved

in the sensitivities were detailed.

Working with geometric features as design param-

eters, the developed approach is illustrated on some

classical 2D shape optimization problems. The shape

of holed microstructures is optimized to minimize the

Von Mises stress field induced by hydrostatic or pure

shear loadings. Results obtained are very similar to the
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Vigdergauz microstructure. The developed approach is

able to tackle multiple inclusions problems to find the

optimal design of a bimaterial microstructure minimiz-

ing its Von Mises stress field.

Ongoing work aims on the one hand, at consider-

ing other strategies to control the local stress field. In

particular, the minimization of stress ratios can be con-

sidered resorting to different failure stresses so as to

simultaneously deal with the stress in the matrix and

in the inclusions. On the other hand, the optimization

problem can be modified to combine the local stress

field control with some restriction on the stiffness. The

design problem would then focus on maximizing the

stiffness while minimizing the local stress field within

the microstructure. To allow a greater freedom in the

design, nodal level set values could be used as design pa-

rameters. Finally, the work should be further extended

to tackle some non linear behaviors of materials within

the microstructure.
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34. Ródenas, J.J., González-Estrada, O.A., Tarancón, J.E.,
Fuenmayor, F.J.: A recovery-type error estimator for
the extended finite element method based on singu-
lar+smooth stress field splitting. International Jour-
nal for Numerical Methods in Engineering 76, 545–571
(2008)

35. Sanchez-Palencia, E.: Homogenization method for the
study of composite media. In: F. Verhulst (ed.) Asymp-
totic Analysis II, Lecture Notes in Mathematics, vol. 985,
pp. 192–214. Springer Berlin Heidelberg (1983)

36. Schousboe Andreasen, C., Andreassen, E.,
Søndergaard Jensen, J., Sigmund, O.: On the real-
ization of the bulk modulus bounds for two-phase
viscoelastic composites. Journal of the Mechanics and
Physics of Solids 63, 228–241 (2014)

37. Sigmund, O.: Materials with prescribed constitutive pa-
rameters: An inverse homogenization problem. Interna-
tional Journal of Solids and Structures 31(17), 2313–2329
(1994)

38. Sigmund, O.: Tailoring materials with prescribed elastic
properties. Mechanics of Materials 20, 351–368 (1995)

39. Sigmund, O., Torquato, S.: Design materials with ex-
treme thermal expansion using a three-phase topology
optimization method. Journal of the Mechanics and
Physics of Solids 45(6), 1037–1067 (1997)
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