Royale de Londres. Nous sommes persuadé que le public du continent ne se montrera pas moins empressé que le public anglais, et nous pouvons dire qu'il ne sera nullement trompé dans son attente, car ce livre est un véritable traité élémentaire d'Acoustique. Il est parfait au point de vue expérimental, il serait en effet impossible de mieux choisir, de mieux décrire, de mieux exécuter les expériences nécessaires à la manifestation des faits et à la détermination des lois qui les régissent. M. Tyndall a parfaitement fait ce qu'il a voulu faire. " J'ai essayé, " dit-il, " de rendre la science de l'Acoustique accessible à toutes les personnes intelligentes, en y comprenant celles qui n'ont reçu aucune instruction scientifique particulière. J'ai traité mon sujet d'une manière tout-à-fait expérimentale, et j'ai cherché à placer telle-ment chaque expérience sous les yeux et dans la main du lecteur qu'il puisse la réaliser lui-même ou la répéter. Mon désir et mon but ont été de laisser dans les esprits des images si nettes des divers phénomènes de l'Acoustique qu'ils les saisissent et les voient dans leurs rapports réels. ",

L'attrait de ce livre est encore augmenté par une intéressante préface du traducteur, où l'abbé Moigno, avec le talent qu'on lui connaît, fait l'historique de la science du son en l'accompagnant de nombreuses remarques techniques et philosophiques. Ces quelques pages prouvent que les questions d'Acoustique lui étaient familières et qu'il était par conséquent bien préparé pour la traduction de ce magnifique ouvrage auquel il doit être heureux d'avoir attaché son nom. Dans un appendice de quelques pages il donne l'énumeration rapide des faits et des instruments qu'il a cru utile d'ajouter à ceux que M. Tyndall a si bien démontrés et décrits.

J. M.

QUESTIONS (t).

10. \(a \) étant un nombre entier et \(n \) un nombre premier impair, le seul diviseur commun des nombres \(a - 1 \) et \(\frac{a^n - 1}{a - 1} \) est 1 ou \(n \).

11. De même, le seul diviseur commun des nombres \(a + 1 \) et \(\frac{a^n + 1}{a + 1} \) est 1 ou \(n \).

(t) *Catalan. Mélanges de mathématiques*, p. 40. L'auteur ne donne ces propositions que comme des théorèmes *empiriques* à vérifier, parce que les démonstrations, ou plutôt les tentatives de démonstrations de la plupart d'entre'elles, sont égarées depuis longtemps.
12. En outre, si \(a = n \neq 1, a^n \pm 1 \) est divisible par \(n \), et non divisible par \(n^2 \).
13. L'équation \((x + 1)^x - xy = 1 \) est impossible en nombres entiers, excepté pour \(x = 0, x = 1, x = 2 \).
14. L'équation \(x^m - 2^n = 1 \) est impossible en nombres entiers, excepté pour \(x = 3 \).
15. \(xy - y^x = 1 \) est impossible en nombres entiers excepté pour \(x = 3, y = 2 \) (*).
16. \(x^n - 1 = P^2 \) est impossible.
17. L'équation \(x^a - 1 = p^m \) n'est vérifiée que pour \(x = 3, p = 2, m = 3 \); ou \(x = 2, p = 3, m = 1 \).
18. L'équation \(mp - q^n = 1 \), dans laquelle \(p \) et \(q \) sont premiers, est impossible excepté, lorsque \(m = 3, p = 2, q = 2, n = 3 \).
19. Plus généralement : deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent être des puissances exactes (*).
20. \(x^3 + y^3 = p^3 \) est impossible, sauf le cas de \(x = 2, y = 1, p = 3 \).
21. L'équation :

\[
x^n = \frac{(2^n - 2) - 1}{2^n - 2} + 1
\]

est impossible en nombres entiers, excepté dans le cas de \(n = 3, x = 1 \).

(CAT ALAN).

DES EXAMENS. (Suite).

Dixième Examen.

1. — Extraction de la racine cubique des nombres.
2. — On donne la fraction \(\frac{A}{2^3.3^5} \) dans le système dont la base est 12, la convertir en fraction duodécimale. La fraction obtenue sera-t-elle simple ou mixte?
3. — Caractère de divisibilité par 7.
4. — Voir si le nombre 4535962 est divisible par 11.
5. — Qu'entend-on par preuve par 9 dans la multiplication? Si on recule un produit partiel d'un rang de trop vers la gauche la preuve par 9 en avertira-t-elle? et la preuve par 11?

(*) On ne compte pas la solution insignifiante \(x = 1, s = 0 \). La même restriction subsiste pour quelques uns des énoncés suivants.

(*) Ce théorème a été énoncé il y a plus de vingt cinq ans par M. Catalan dans le Journal de Crelle. II n'est donc pas problable que la démonstration en soit facile à trouver, mais les premières questions sont à la portée de tout le monde.