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Group B Streptococcus (GBS) is a major cause of neonatal sepsis and mortality 
worldwide. Studies from both developed and developing countries have shown that 
HIV-exposed but uninfected (HEU) infants are at increased risk of infectious morbidity, 
as compared to HIV-unexposed uninfected infants (HUU). A higher susceptibility to GBS 
infections has been reported in HEU infants, particularly late-onset diseases and more 
severe manifestations of GBS diseases. We review here the possible explanations for 
increased susceptibility to GBS infection. Maternal GBS colonization during pregnancy 
is a major risk factor for early-onset GBS invasive disease, but colonization rates are 
not higher in HIV-infected compared to HIV-uninfected pregnant women, while selective 
colonization with more virulent strains in HIV-infected women is suggested in some 
studies. Lower serotype-specific GBS maternal antibody transfer and quantitative and 
qualitative defects of innate immune responses in HEU infants may play a role in the 
increased risk of GBS invasive disease. The impact of maternal antiretroviral treatment 
and its consequences on immune activation in HEU newborns are important to study. 
Maternal immunization presents a promising intervention to reduce GBS burden in the 
growing HEU population.

Keywords: Hiv exposed uninfected, Group B Streptococcus, newborn, infant, inflammation, breast milk, Hiv, 
pregnancy

iNTRODUCTiON

Group B Streptococcus (GBS) is a commensal Gram-positive coccus, colonizing the gastrointestinal 
(GI) tract of 10–40% of healthy adults. Classification of GBS is based on capsular polysaccharides 
(CPs) with 10 distinct serotypes (Ia, Ib, and II–IX). Invasive GBS disease includes meningitis, 
endocarditis, and urosepsis that usually occur in adults with underlying medical conditions such as 
diabetes, cancer, or advanced age (1). In neonates, GBS is a leading cause of severe neonatal sepsis 
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TABLe 1 | Summary of studies that assessed the risk of GBS invasive disease in HeU infants.

Reference N HUU control 
group

Design Location Period GBS disease risk in Hiv-exposed compared to 
Hiv-unexposed

Epalza 
et al (13)

20,480 Yes Monocentric retrospective Belgium 2001–2008 RR = 19.6 for all GBS infection
Higher severity, higher rate of LOD

Cutland  
et al. (14)

372 Yes Monocentric prospective South Africa 2004–2008 Higher IRR = 2.25 (95% CI 1.84–2.76) for invasive disease
Higher IRR = 1.69 (95% CI 1.28–2.24) for EOD
Higher IRR = 3.18 (95% CI 2.34–4.36) for LOD
Higher RR for both bacteremia (RR = 1.83; 95% CI 1.40–2.39) 
and meningitis (RR = 3.05; 95% CI 2.20–4.25)

Dangor  
et al. (4)

122 Yes Multicentre prospective South Africa 2012–2014 Higher IRR = 3.40 (95% CI 2.29–4.85) for invasive disease
Similar IRR for EOD
Higher IRR = 4.67 (95% CI 2.24–9.74) for LOD
Higher odds of LOD (OR = 3.5; 95% CI 1.53–8.09) and meningitis 
(OR = 6.85; 95% CI 2.64–18.31)

HEU, HIV-exposed uninfected infants; HUU, HIV-unexposed uninfected infants; GBS, Group B Streptococcus; EOD, early-onset disease; LOD, late-onset disease; RR, relative risk; 
IRR, incidence risk ratio; OR, odds ratio.
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and meningitis worldwide and accounts for a significant burden 
of neonatal morbidity, including long-term sequelae such as poor 
neurodevelopmental outcome and mortality (2–4). Transmission 
of GBS from a colonized mother to her newborn can occur verti-
cally before or during labor or horizontally during the neonatal 
period (2). The clinical spectrum of neonatal GBS disease is usu-
ally divided into early-onset disease (EOD) that occurs between 
birth and the sixth day of life and late-onset disease (LOD) that 
occurs between 7 and 90 days of life.

Risk factors for invasive GBS disease in early life include both 
maternal and infant parameters. Maternal GBS colonization 
during the last weeks of pregnancy is a common risk factor for 
both EOD (2) and LOD (5). In the 1980s, clinical trials dem-
onstrated that GBS EOD might be prevented by intravenous 
antimicrobial prophylaxis with β-lactams administered during 
labor and delivery to women who are colonized by GBS (6). 
These observations have motivated the screening for GBS car-
riage in late pregnancy and the administration of antibiotic 
prophylaxis during labor to mothers with a positive GBS culture 
(culture-based screening) (7, 8). Other maternal and obstetric 
risk factors for EOD include GBS maternal bacteriuria during 
the current pregnancy, intrapartum fever, prolonged rupture of 
membranes, and preterm labor. Risk factors in neonates are less 
well characterized and mainly include prematurity and low levels 
of capsular type specific IgG (2, 9).

Recently, accumulating evidence indicates that HIV-exposed 
but uninfected (HEU) infants suffer from higher infectious 
morbidity with more severe infections and more infection-related 
hospitalizations (10). Some studies have shown a correlation 
between advanced maternal HIV infection and infectious mor-
bidity in HEU infants (11, 12), one in France showing that the 
risk of severe bacterial infection, including GBS, was higher when 
maternal CD4 count was lower than 350 cells/mm3.

A higher susceptibility for GBS invasive disease in HEU 
infants has been observed in both Europe and Southern Africa 
(4, 12–14).

The burden of GBS invasive disease is greater in low-income 
countries, notably in sub-Saharan Africa (3) where HIV infection 

prevalence in pregnant women can reach up to 40% (15, 16). 
Thus, the increased incidence of GBS disease in HIV-exposed 
infants has large global neonatal public health implications. 
Herein, we review the clinico-epidemiological studies support-
ing an increased susceptibility of HEU infants to GBS invasive 
disease along with the maternal and infant factors potentially 
contributing to this increased susceptibility and discuss possible 
interventions to reduce this burden.

HiGHeR RiSK OF GBS iNvASive DiSeASe 
iN Hiv-eXPOSeD iNFANTS: eviDeNCe 
FROM ePiDeMiOLOGiC AND CLiNiCAL 
STUDieS

While different studies from distinct parts of the world indicate 
that HEU infants have an increased risk for severe infections (10, 
12, 17–20), four studies (two in Western Europe and two in South 
Africa) suggest an increased risk specifically for GBS invasive dis-
ease in infants born to HIV-infected women. A large multicentre 
retrospective study performed in France between 2002 and 2010 
found an elevated hazard ratio of 2.7 for infection by encapsulated 
bacteria (including GBS) in infants born to mothers with low CD4 
count; however, this study did not include a HUU group. Three 
studies specifically assessed GBS risk in HIV-exposed infants and 
found an increased risk for GBS invasive disease: two separate 
studies from South Africa and one from Belgium (summarized 
in Table  1). In the two South African studies, HIV infection 
could not be systematically excluded in HIV-exposed neonates. 
However, in the recent study by Dangor et al. (4) mother-to-child 
HIV transmission has fallen below 3% in South Africa, making 
HIV infection least likely to be the primary cause of the increased 
GBS risk (21).

Importantly, HIV-exposed infants seem to suffer from a 
distinct pattern of invasive GBS disease. Indeed, these three 
studies consistently showed increased risk of LOD (4, 13, 14). 
GBS meningitis, a severe manifestation of GBS invasive disease, 
was also more likely in HIV-exposed infants in the two South 
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TABLe 2 | Summary of the studies assessing carriage of GBS’ prevalence in Hiv-infected pregnant women.

Reference Location Design Controls/Hiv+ GBS prevalence P value

Hiv− (%) Hiv+ (%)

Shah et al. (73) USA Retrospective 1947/90 26.0 32.2 0.2
Joao et al. (74) Brazil Cross-sectional No control group/158 NA 31 NA
Gray et al. (25) Malawi Cross-sectional 1454/402 21.7 19.4 0.4
Cutland et al. (24) South Africa Retrospective 1346/1346 23 17 0.0002
El Beitune et al. (75) Brazil Prospective 106/101 14.0 19.8 0.28
Mavenyengwa et al. (76) Zimbabwe Prospective 249/88 43.1 40.0 NA
Matee et al. (77) Tanzania Cross-sectional 276/24 24.3 8.3 0.08
Dangor et al. (32) South Africa Cross-sectional 81/83 27.2 32.5 0.4

A PubMed search was performed using the following MeSH terms: “Streptococcus agalactiae,” “pregnancy” and “HIV.”
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African studies (4, 14). Similarly, the Belgian study observed a 
greater severity of disease in HEU compared to HUU infants (13).

Serotype III strains are the main cause of LOD and meningitis 
(22). Only one study specifically assessed serotype distribution 
between HEU and HUU infants and did not find any difference 
according to HIV exposure; serotypes Ia and III were the most 
prevalent in both groups (14).

MATeRNAL GBS COLONiZATiON iN  
Hiv-iNFeCTeD PReGNANT wOMeN

Maternal vaginal colonization by GBS in late pregnancy or at 
delivery is the main factor associated with both EOD and LOD 
(23). This link has motivated the recommendation of universal 
antenatal screening for GBS at 35–37 weeks of gestation and the 
administration of intrapartum antibiotic prophylaxis (IAP) in 
case of positive screening. This strategy has been associated with 
a significantly decreased incidence of EOD but has no impact on 
the incidence of LOD (9).

Table 2 summarizes the studies reporting GBS carriage preva-
lence in HIV-positive pregnant women. Seven studies included a 
control group of HIV-uninfected pregnant women; among them, 
five reported a similar prevalence in both groups and two studies 
found a lower prevalence in HIV-infected women.

Most studies have included low numbers of HIV-infected 
pregnant women. Cutland et  al. performed the largest study 
published so far including more than 5000 pregnant women, of 
which 1347 were HIV-infected pregnant women in South Africa. 
This study found a significantly lower prevalence of GBS carriage 
in HIV-infected compared to HIV-uninfected pregnant women 
(17 vs. 23%; P = 0.0002) (24).

Interestingly, in another large cross-sectional study in Malawi, 
GBS carriage was associated with CD4 cell count (25); the pro-
portion of women colonized with GBS was significantly higher in 
HIV-infected women with a CD4 cell count higher than 500 cells/
mm3 when compared to women with a CD4 cell count lower than 
200 cells/mm3. However, GBS prevalence in HIV-infected women 
with high CD4 count (28.2%) was not significantly higher than 
in HIV-uninfected women (21.7%). The increased colonization 
rate in HIV-infected women with high CD4 cell count might be 
biased by the presence of other risk factors for GBS colonization 
like diabetes or obesity (23), which are expected to be found more 

often in women with higher CD4 cell counts (26) and were not 
taken into account. On the other hand, HIV-infected women with 
low CD4 cell count are known to have increased prevalence of 
bacterial vaginosis that could compete with GBS and are more 
likely to take cotrimoxazole prophylaxis resulting in lower GBS 
carriage rates (27–29). In the Cutland et al.’s study, CD4 cell count 
was only available in a limited proportion of HIV-infected women 
but the majority had a CD4 count >350/mm3 (24).

In summary, HIV infection is not associated with higher 
prevalence of GBS colonization rate in pregnant women. On the 
contrary, recent evidence indicates that HIV infection might even 
be associated with lower GBS colonization rate, particularly in 
pregnant women with low CD4 counts.

The hypervirulent clone ST-17, which belongs to serotype III 
strains, accounts for the majority of GBS meningitis and LOD 
sepsis (22). Antibiotic use has been shown to be critical in the 
selection of virulent GBS strains (30). HIV-infected women are 
exposed more frequently to antibiotics for therapeutic or pro-
phylactic use (31). Limited data exist regarding the GBS serotype 
distribution in HIV-infected mothers. In a South African study on 
164 pregnant women (83 HIV-infected and 81 HIV-uninfected), 
serotype III predominated in HIV-infected women (11/27, 40.7% 
of all serotypes vs. 13.6% in HIV-uninfected women), while 
serotype Ia was predominantly found in HIV-uninfected women 
(13/22, 59.1% of all serotypes vs. 29.6% in HIV-infected women) 
(32). In a recently published study performed in Kenya, while 
HIV infection was associated with lower risk of GBS colonization 
rate, HIV-infected women had higher risk of being colonized with 
the hypervirulent clone CC17. This risk was even higher for those 
taking co-trimoxazole prophylaxis (29). This predominance of 
serotype III in HIV-infected women could explain the higher 
incidence of GBS LOD in HIV-exposed infants (4, 13, 14) but 
needs confirmation in larger cohorts. The serotypes associated 
with invasive GBS disease in HEU infants in developed countries 
have not been characterized.

TRANSFeR OF GBS-SPeCiFiC MATeRNAL 
ANTiBODieS

Maternal antibodies are actively transferred to the fetus through 
the placental Fc receptors during the third trimester of pregnancy. 
Levels of maternal IgG and cord blood IgG are strongly correlated 
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(33). Strong evidence indicates that transplacentally transferred 
CP-specific IgG protects infants against invasive GBS disease. 
Indeed, low levels of capsular IgG in mother and newborn are 
associated with higher risk of EOD and LOD associated with 
different serotypes (34, 35).

The transfer of maternal IgG against pathogens and vaccine-
specific antigens (17, 36–39) is known to be diminished in HEU 
infants. One of the causes might be maternal hypergamma-
globulinemia associated with chronic HIV infection that could 
compete with specific maternal IgG at the level of the FcRn (33). 
Uncontrolled HIV infection and the use of combination antiret-
roviral therapy (cART) are both associated with preterm delivery 
(40–42), which results in lower concentrations of maternally 
derived antibodies.

A recent study performed in South Africa assessed the levels 
of IgG to both capsular and surface proteins in 164 HIV-infected 
(43% of whom were on cART) and uninfected mother-newborn 
dyads. Median capsular antibody concentrations were found 
to be lower for serotypes Ib and V in HIV-infected pregnant 
women compared to controls and for all serotypes studied (Ia, Ib, 
III, and V) in HIV-exposed compared to HUU newborns. The 
cord-maternal ratio was 37.4 and 32.5% lower for serotypes Ia 
and III, respectively, in HIV-infected mother-newborn dyads. 
No correlation was found between maternal CD4 cell count 
(median 423 cells/mm3) and transfer of capsular antibodies (32). 
Unfortunately, the impact of maternal hypergammaglobuline-
mia, that is expected to decrease after cART initiation (43), was 
not investigated.

In a smaller study performed in South Africa, capsular 
antibody concentration was also found to be lower in both HIV-
infected pregnant women and their newborns, when compared to 
HIV-uninfected women and their HUU newborns. Importantly, 
HEU infants at 16 weeks of age still had lower concentrations of 
GBS-specific antibodies against all serotypes studied. Moreover, 
HEU newborns had lower concentrations of antibody-mediated 
complement deposition on all GBS serotypes suggesting different 
functionality of GBS-specific antibody (44). Antibody, along with 
complement, contributes to opsonophagocytosis of GBS strains 
(45, 46). The opsonophagocytic (OPA) activity of GBS serotype-
specific antibodies has been shown to inversely correlate with 
colonization in pregnancy (47).

In summary, HEU infants have lower levels of maternally 
derived GBS-specific antibodies with potentially lower OPA 
activity contributing to an increased risk of postnatal coloniza-
tion and of EOD and LOD.

iMPACT OF BReASTFeeDiNG PRACTiCe

Breastfeeding plays a critical role in the protection against infec-
tious diseases of the infants. Transfer of pathogen-specific IgA 
and IgG originating from mucosal and milk B cells complements 
IgG transferred during pregnancy (48).

Two studies provide evidence that both GBS-specific IgG and 
IgA can be detected in breast milk. Edwards et al. (49) studied nine 
women 2 months after delivery with sera levels of type III-specific 
capsular IgG above the correlate of protection against EOD  
(1 μg/ml). Serotype III capsular IgG were found in breast milk 

in 3/9 women, those with the highest serum concentrations. IgA 
was also found in 6/9 women. Similarly, Lagergård et al. measured 
a prevalence of 63% GBS-specific IgA in milk samples from 70 
women (50).

Breast milk avoidance is generally recommended in HIV-
infected mothers in high-income countries but not in developing 
countries (51) and avoidance of breastfeeding in HEU infants 
might contribute to decreased IgG and IgA GBS-specific levels 
in HEU infants at the level of GI tract. Colonization of the GI 
tract of infants is the first step before invasive disease. An animal 
model has shown that maternal breast milk antibodies protect 
against penetration of commensal bacteria through the intestinal 
mucosa (52). In an animal model of GBS infection, suckling 
animals exposed to maternal antibodies were protected against 
an oral challenge with serotype III GBS strains (53). Breast milk 
thus provides levels of GBS-specific IgG and IgA that potentially 
limit GBS invasion of the intestinal mucosa and subsequent 
hematogenous spread.

Conversely, as reviewed recently (54), breast milk could also 
represent a vector of GBS transmission during the postnatal 
period. Breast milk feeding has been significantly associated 
with GBS colonization in Gambian infants after birth (55). The 
role of breastfeeding by HIV-infected women in transmission of 
GBS and development of sepsis in HEU children have not been 
evaluated yet.

iMPACT OF HeU iNFANTS’ iMMUNiTY

The innate immunity plays a pivotal role against GBS infection 
not only by its direct effect against the pathogen at early stages 
of infection but also by shaping subsequent adaptive immune 
responses. Innate immune response against extracellular bacte-
ria such as GBS involves various cells including neutrophils and 
antigen-presenting cells (monocytes and dendritic cells among 
others). Neutrophils play a fundamental role in the elimination 
of invading bacteria through phagocytosis and microbial killing 
(56). In newborns and in preterm infants, neutrophils display 
qualitative defects including impaired migration to inflammed 
sites and lower production of antimicrobial peptides such as the 
bactericidal/permeability-increasing protein (57). Although 
the functionality of neutrophils in HEU newborns has not been 
studied, various studies have reported prolonged neutropenia 
in HEU infants exposed to nucleoside reverse transcriptase 
inhibitors (NRTI) that could persist up to 24  months of age 
(58–60).

Monocytes and dendritic cells play an important role in the 
initiation of the innate immune response against GBS and are 
activated through recognition of pathogen-associated molecular 
patterns (PAMPs) by toll-like receptors (TLRs) (61, 62). Upon 
contact with GBS, innate cells produce high amounts of TNF-α 
that is one of the major mediators of bacterial clearance and also 
of the immunopathology of GBS invasive disease (63, 64).

The exposure of HEU infants to maternal HIV-derived prod-
ucts and to a proinflammatory intrauterine environment result 
in modifications of the phenotype and function of neonatal 
innate immune cells (17, 65, 66). Single-cell analysis performed 
in South African infants demonstrated significant differences at 
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TABLe 3 | Summary of proposed interventions to decrease GBS burden 
in HeU infants and their impact and limitations.

intervention impact Limitations

Intrapartum antibiotic 
prophylaxis

Decrease of EOD 
incidence (7)

No impact on LOD 
incidence (9)

Maternal immunization 
with a trivalent vaccine 
(Ia, Ib, III)

Lower maternal and 
postnatal colonization 
rate (47)

Only cover specific  
strains (78)

Lower incidence of 
invasive disease (34)

Lower response to vaccine 
in HIV-infected women (72)

Breastfeeding 
promotion

IgG/IgA at the level of GI 
tract can decrease GBS 
invasion (49, 50, 53)

GBS transmission through 
breast milk (54)

Antiretroviral treatment 
before conception with 
immune restoration

Decreased neonatal 
immune activation (71)

Higher rate of premature 
birth associated with some 
regimens (41)

Less toxic NRTI or NRTI 
sparing regimen

Preservation of 
neutrophils count 
(58–60)
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early life periods in the inflammatory response of innate cells 
between HEU and HUU infants that were restricted to certain 
types of TLR stimulation (67). HEU infant-derived monocytes 
produced more TNF-α and IL-6 than did HUU infant cells upon 
their stimulation with bacterial PAMPs, LPS, and PAM but not 
with single strand RNA (R848). In vitro experiments indicate 
that the production of TNF-α by monocytes/macrophages upon 
interaction with GBS depends upon bacterial single-strand 
RNA recognition rather than peptidoglycan (68). It remains 
to be established how HEU infant innate cells would respond 
to multiple stimuli induced by whole bacteria instead of TLR 
individual stimulation.

When tightly controlled, the inflammatory response can be 
host beneficial through promoting an efficient immune response 
against the pathogen. Yet, an excessive inflammatory response, 
which is frequently observed in neonatal GBS infection, can lead 
to fulminant septic shock and a poor outcome (62). The ratio 
of proinflammatory vs. anti-inflammatory cytokines, such as 
IL-10, is thus critical for the outcome of GBS infection. IL-10, 
the production of which is induced by GBS glycerinaldehyde-
3-phosphate-dehydrogenase enzyme, has a dual role in the 
susceptibility to GBS and disease severity (62). On the one 
hand, IL-10 may be regarded as beneficial for the host through 
the control of the excessive inflammatory response that can 
be damaging for host tissues (69). On the other hand, the 
immunosuppressive effect of IL-10 may be deleterious. A mice 
study has shown that TLR2-induced IL-10 production increases 
GBS susceptibility by limiting the recruitment of neutrophils to 
infected tissues during neonatal bacteria sepsis (70). In a clinical 
study comparing HIV-infected pregnant women either receiv-
ing cART or not, it has been shown that polyclonal stimulation 
of cord blood mononuclear cells from HEU newborns of moth-
ers with a detectable viral load had higher proinflammatory vs. 
IL-10 ratios when compared to HEU newborns of mothers with 
an undetectable viral load (71). This suggests that the exposure 
of neonates to maternal immune activation favors a proinflam-
matory state.

In summary, both exposure to cART and chronic maternal 
immune activation induce quantitative and qualitative defects 
of innate immune cells. These abnormalities may participate not 
only in the increased susceptibility to GBS invasive disease but 
also in the increased severity observed in clinical studies (13, 14), 
possibly as a consequence of more highly activated innate immune 
responses.

CONCLUSiON AND PeRSPeCTiveS

There is consistent evidence from clinical and epidemiological 
studies that

 (1) HIV-exposed and HEU infants have an increased susceptibil-
ity to GBS invasive disease compared to HUU infants;

 (2) GBS disease in HIV-exposed infants presents with more severe 
manifestations such as meningitis than in HUU infants; and

 (3) HIV-exposed infants have a substantially elevated risk for 
LOD that is not associated with a higher prevalence of GBS 
carriage in HIV-infected women.

We thus hypothesize that this increased susceptibility to 
severe GBS disease results from accumulating factors including 
(1) lower concentrations of GBS-specific capsular antibodies with 
potentially lower OPA activity that promotes GBS colonization 
during the postnatal period and increases the risk of progression 
from colonization to invasive disease (32, 34, 44); (2) an activated 
and “hyper-responding” HEU infant immune system that gener-
ally favors immunopathology (62, 67, 71).

Consequently, interventions could be proposed to lower the 
risk and the severity of invasive GBS disease in HEU infants 
(Table  3). These include universal maternal cART, potential 
maternal GBS vaccination, and possibly IAP.

Low maternal CD4 count has been associated with severe 
infections in HEU infants, including GBS (11, 12), suggesting 
that cART initiation before conception and the subsequent 
immune restoration could prevent deleterious consequences of 
HIV exposure, likely through control of maternal inflammation 
(39). Maternal immunization during pregnancy appears as an 
efficient strategy to provide adequate levels of capsular specific 
antibodies in the neonate. A phase II trial on the use of trivalent 
glycoconjugate GBS vaccine (against serotypes Ia, Ib, and III) 
in HIV-infected and uninfected pregnant women was recently 
published (72). The concentrations of maternal antibodies were 
lower in HIV-infected women though, irrespective of the CD4 
count. Of note is that the difference between HIV-infected and 
uninfected women was greatest for serotype III-specific antibody, 
serotype III being the major cause of LOD (23). Correlates of 
protection remain to be established to further validate the impact 
of this vaccine in the protection of HEU infants against GBS 
diseases. However, more studies are needed to assess whether 
or not HIV-infected pregnant women are colonized by specific 
strains (29, 32), which would impact vaccine policy. Evidence 
suggests that HEU infants are more likely to suffer from LOD 
(4, 13, 14); therefore, IAP that results in significant reductions in 
EOD will not contribute to a substantial decrease of GBS burden 
in this population (9). Studies in Europe [i.e., Belgium and France 
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(12, 13)] have reported increased invasive GBS disease in HEU 
infants despite an IAP strategy being in place.

Finally, HEU infants represent a model to decipher host 
immune responses toward GBS in early life. Studies about the 
innate response in HEU infants correlated with clinical outcomes 
could provide new information about mechanisms of GBS inva-
sive disease immunopathology.
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