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Chapter 1

Introduction

Mathematical optimization is a field of mathematics that is sadly often forgotten when it
comes to advertising science to the public. Broadly speaking, optimization consists in mini-
mizing or maximizing a function by assigning appropriate values to its input variables. The
search for the optimum of the function, i.e., the minimum or the maximum, is generally
further complicated by the fact that the set of allowed input values is restricted by a cer-
tain number of constraints. Optimization may not be the most appealing scientific field
and can even seem appalling to the uninitiated, but its importance cannot be lessened. In-
deed, although it is most of the time hidden in the shadows, optimization is behind almost
every important scientific challenge that keeps the researchers busy nowadays. From pro-
tein structure prediction (Liwo et al., 1999), through to scheduling (Bertsimas and Tsitsiklis,
1997; Graham et al., 1979), VLSI circuit layout (Cong et al., 1996), and operation of electri-
cal networks (Josz et al., 2015; Gonzalez et al., 2014), optimization is everywhere and plays
an increasing role in our society. These applications merely illustrate a few optimization prob-
lems in order to emphasize the importance of optimization techniques in present-day science,
but it is crucial to understand that the role of optimization is central to most hard scientific
problems.

On the other hand, machine learning, which is a subfield of computer science and artificial
intelligence, is a research domain that is, unlike optimization, very well publicized. Machine
learning techniques indeed play a leading part in the most advertised (and sometimes criti-
cized) advances in computer science. More specifically, machine learning is a discipline that
studies algorithms that can learn from data and subsequently use the acquired knowledge in
one way or another. Machine learning is nowadays very widely used in applications where
a lot of data is available, and where decisions using the available data have to be made
either repeatedly, quickly, or very accurately. Examples of such applications include spam
filtering (Blanzieri and Bryl, 2008), speech and handwriting recognition (Yu and Deng, 2012;
Plamondon and Srihari, 2000), cancer prediction and prognosis (Cruz and Wishart, 2006),
and recommendation systems (Ricci et al., 2011). Machine learning techniques are very pow-
erful, but are too often considered as an end in itself, and too rarely seen as a means to
solve larger problems. Additionally, and despite their evident successes in many applications
and their ever increasing theoretical foundations, machine learning techniques are sometimes
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disregarded by some scientific disciplines that are prone to judge the field too immature and
too inaccurate to be of any practical utility.

This thesis is at the crossroads between mathematical optimization and machine learning
and intends to bridge the gap that still separates them. Indeed, although these fields are
usually studied separately, there exist clear relationships between them that easily appear to
the keen observer. The clearest relationship is unidirectional: optimization is very often used
as a tool to solve machine learning problems. As such, optimization is seen as a component of
machine learning approaches. On the contrary, the other relationship, the one in the opposite
direction, is too rarely acknowledged and leveraged. In this work, we explicitly study the latter
link by using machine learning techniques as a component of optimization algorithms. With
this work, we try to strengthen the connections that exist between both fields by showing that
what machine learning can bring to optimization is at least as important as what optimization
brings to machine learning. In a word, we intend to further close the optimization-machine
learning loop and to show that both fields are intrinsically intertwined both practically and
theoretically.

In order to illustrate why machine learning can be used to improve optimization algorithms,
let us remind that most optimization algorithms have, at some point, to take decisions dur-
ing the course of the solution procedure. These decisions may be theoretically justified, but
may be arbitrary as well. It turns out that the arbitrary decisions taken by an optimiza-
tion algorithm are very important because they often critically condition the efficiency of
the algorithm. However, there exist many optimization problems for which no theoretically
efficient algorithm (and, hence, no theoretically good decisions) exists. For those problems
for which the optimization algorithm takes arbitrary decisions, taking the good decision at
the right time may be a determining factor to finding good solutions in a short amount of
time. Unfortunately, finding good decisions is typically hard especially since good decisions
vary from problem to problem. With that in mind, we propose to use machine learning tech-
niques to extract, from optimization data, useful information that can be used to identify
good decisions in order to provide optimization algorithms with the good decisions at the
right moments. The motivation behind this idea is based on the fact that

1. if, at a given moment, a decision is deemed good for a given problem, a similar decision
is probably good for a similar problem;

2. machine learning can be used to (i) quantify the goodness of a decision from data,
(ii) identify similar situations, and (iii) provide appropriate decisions according to the
current situation.

The goal of this thesis is to show how useful data can be generated and leveraged through
machine learning techniques in order for the optimization algorithms to take better decisions
based on optimization data previously observed in similar situations.

The research direction presented in this work is rather unusual. Indeed, using machine
learning techniques within optimization algorithms in order to improve the performance of
the solvers is only rarely investigated. Studying all kinds of optimization problems and all
optimization algorithms is certainly an unrealistic assignment. We therefore concentrate our
attention on linear and mixed-integer linear optimization, and, more particularly, on the
simplex and branch-and-bound algorithms.



Note that combining optimization with learning is not very common, but it is not a new
idea either. Since the beginning of the 1980s, many techniques leveraging this approach
have been developed. Mentioning every relevant piece of work would be hardly feasible
here. Instead, let us merely cite applications such as satisfiability problems (Hutter et al.,
2006), general mixed-integer optimization (Moll et al., 1998; Boyan and Moore, 2000), plan-
ning (Veloso et al., 1995; Xu et al., 2007), and job scheduling (Zhang and Dietterich, 1995)
that have greatly benefited from the application of learning methods to solve optimization
problems. For additional examples, we refer the reader to the book of Battiti et al. (2008)
that is dedicated to the use of learning techniques in optimization algorithms.

This thesis is the result of several years of research and is organized as a collection of
chapters that are more or less self-contained. Each chapter can, to some extent, be read
independently from the others. The remainder of the document is organized as follows. First,
Chapters 2 and 3 review the basic concepts of both mathematical optimization and machine
learning that are required to understand the contents of this work. Chapter 4 then presents
a first way to use machine learning as a component of the branch-and-bound algorithm by
applying machine learning techniques to variable branching. We then present, in Chapter 5,
another approach that makes use of machine learning algorithms to efficiently parallelize
the branch-and-bound algorithm. Chapter 6 next explores how the theory behind machine
learning can be applied to theoretical aspects of a famous linear optimization algorithm,
namely the simplex method. Finally, Chapter 7 concludes this manuscript with some closing
remarks.

Contributions of the thesis

Chapter 4 describes the methodology that we set up in order to speed up the branching
strategy used within the branch-and-bound algorithm. Machine learning is used here to
create a function that can be used as a cheap proxy instead of an existing expensive branching
strategy. The chapter describes the developed features, the data generation procedure, the
training of the proxy, and the experimental results. Additionally, we propose the method
both in a batch setting and in an online setting.

Chapter 5 presents how we leverage machine learning to evaluate the complexity of a MIP
problem. The complexity function trained with learning techniques is then applied, as an
illustrative example, to a naive parallel branch-and-bound implementation in order to balance
the workload between several processors. The chapter details the features developed for this
application, the data generation procedure, the training part, as well as the experimental
results. We also propose a simple theoretical analysis to illustrate how machine learning
can provide additional information about the subproblems to assess upfront the quality of a
proposed workload distribution.

Chapter 6 finally explores how the theory behind machine learning, and more particularly
the theory of reinforcement learning, can be applied to investigate theoretical questions about
the simplex method, an optimization algorithm used to solve linear programming problems.
More specifically, we study the question of the polynomiality of the simplex algorithm in a
general case. We propose a new methodology that uses reinforcement learning techniques to
create and study pivoting rules. The advantage of our approach relies in the fact that the
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tools that we use are quite well understood from a theoretical point of view. The theory
behind the methods that we apply can thus be used to theoretically analyze the simplex and,
more specifically, its complexity. It is to be noted that the study that we propose is merely
a first draft and that conclusive final results are still to be found. The contribution of the
chapter relies in the way the complexity of the simplex algorithm is studied.

Other research carried out during the thesis

This manuscript describes the research that I carried out on the topic ‘machine learning and
mathematical programming’. During my thesis, I also worked on other projects that are
outside the scope of the thesis. These are listed hereunder.

1. A. Marcos Alvarez, F. Maes, and L. Wehenkel (2012). Supervised learning to tune sim-
ulated annealing for in silico protein structure prediction. In ESANN 2012 proceedings,
20th European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, pages 49-54 (Marcos Alvarez et al., 2012).

2. A. Kimura, K. Ishiguro, M. Yamada, A. Marcos Alvarez, K. Kataoka, and K. Murasaki
(2013). Image context discovery from socially curated contents. In Proceedings of the
21st ACM international conference on Multimedia, pages 565-568 (Kimura et al., 2013).

3. A. Marcos Alvarez, M. Yamada, A. Kimura, and T. Iwata (2013). Clustering-based
anomaly detection in multi-view data. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pages 1545-1548
(Marcos Alvarez et al., 2013b).

4. A. Marcos Alvarez, M. Yamada, and A. Kimura (2013). Exploiting socially-generated
side information in dimensionality reduction. In Proceedings of the 2nd international
workshop on Socially-Aware Multimedia, pages 9-12 (Marcos Alvarez et al., 2013a).

5. S. Piérard, A. Marcos Alvarez, A. Lejeune, and M. Van Droogenbroeck (2014). On-
the-fly domain adaptation of binary classifiers. In 23rd Belgian-Dutch Conference on
Machine Learning (BENELEARN), pages 20-28 (Piérard et al., 2014).



Chapter 2

Understanding mathematical
optimization

As discussed in the introductory chapter, mathematical optimization is a field of mathematics
that studies how to assign values to a certain number of variables so as to minimize (or maxi-
mize) a function of those variables. Optimization attracts increasing attention of the research
community due to its growing importance. This chapter is intended as an introduction to the
basic concepts and mechanisms of mathematical optimization used in this thesis.

We first introduce the general concept of an optimization problem. We then specialize the
general problem to define linear and mixed-integer linear optimization problems. Additionally,
we describe, for each problem type, the most common algorithm used to solve such problems.

2.1 Mathematical optimization in general

Generally speaking, a mathematical optimization problem is a problem of the form

min f(x) (2.1)
st. hi(x) <0,i=1,...,m.

In this formulation, the vector & = (z1,...,2,)" € R” represents the variables of the problem,
the function f(-) represents the objective function that we seek to minimize!, and the m
functions h;(-) represent m constraints restricting the set of the acceptable values for the
variables x. This set of acceptable values is typically called the feasible region, or feasible set,
disregarding the nature of the constraints. For a given solution x’, we say that a constraint 4
is active (or tight) if the constraint ¢ is satisfied with equality at &', i.e., h;(2’) = 0. This
formulation is very general and encompasses most optimization problems that one can find
in practice. There exist however other problems that cannot be formulated according to
Equation (2.1). Such problems are not discussed in this work.

From now on, we focus on minimization problems, but the same analysis could be carried out with
maximization problems.
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Depending on the form of the functions f(-) and h;(-), the general formulation can be
simplified yielding specialized forms of the problem, which can be grouped in families or
classes. Thanks to the restrictions on the forms of the functions in each class, some properties
that are common to all problems in the class naturally appear. These properties usually render
the problems easier to analyze since supplementary information can be used. Additionally,
these properties facilitate the development of algorithms that are tailored to a specific problem
class and that exploit the properties of the class. As an example, imagine a class where
the functions f(-) and h;(-) are all linear functions (more precisely, affine functions) of the
variables . The problems in this class are then called linear optimization problems. These
problems are of practical interest because they happen to be relatively easy to solve due to
the numerous properties arising from the linearity of the functions appearing in the problems.

In general, optimization problems are hard to solve, and developing an approach that can
cope with all possible optimization problems at once seems, for the moment, out of reach.
This is the reason why developing specialized algorithms, tailored to specific problem classes,
is a much easier and much more sensible research direction. As a consequence, the focus of
mathematical optimization is on studying different classes of optimization problems in order
to expose interesting properties, and on developing class-specific algorithms that exploit the
properties of the considered class.

Note that a mathematical optimization problem is also often called a mathematical pro-
gramming problem. The terms optimization and programming are thus equivalent in most
situations. In the following of this document, we will use both designations interchangeably.

2.2 Linear optimization

Linear optimization is concerned with so-called linear programming (LP) problems, obtained
when the objective and the constraint functions are linear functions of the variables. These
problems are probably the simplest optimization problems that can be thought of, but, despite
their simplicity, they are central to many applications involving optimization. This section
introduces their formal definition, as well as one of the main algorithms used to solve them.

2.2.1 Problem definition

Linear programming (LP) problems are problems of the form

min ¢'x (2-2)
st. Ax <b
x € R,

where ¢ € R™, A € R™*" and b € R™ denote the cost coeflicients, the coefficient matrix, and
the right-hand side, respectively. The feasible region of LP problems is a polyhedron, referred
to as a polytope if it is bounded, obtained through the intersection of m half spaces. The
hyperplanes defining the half spaces that bound the polyhedron correspond to the inequality
constraints defined by the rows of the coefficient matrix A. The intersection of n constraints
is called a vertex of the polyhedron.
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In general, if the polyhedron is bounded, there exists at least one optimal solution. Sev-
eral optimal solutions may simultaneously exist if the problem is degenerate. Leaving aside
degeneracy and unboundedness, which are not discussed here, the linearity of the constraints
and of the objective function of LP problems implies the existence of a unique minimum and
implies that any discovered (local) minimum is also the global minimum. That minimum is
achieved at the border of the feasible region, and, more specifically, at a vertex of the poly-
hedron defining the feasible set. The fact that any minimum is a global minimum and its
location are important features that contribute to the (relative) simplicity of LP problems.
We later explain how these features are leveraged to solve such problems.

Figure 2.1 illustrates a simple 2-variable optimization problem. The red line and the grey
area represent the objective function that we seek to minimize and the feasible region of
the problem, respectively. The feasible region P is, in this case, a polytope bounded by a
certain number of linear constraints. Since there is no degeneracy in the problem, the optimal
solution z* minimizing the objective function corresponds to a vertex of the polytope.

Degeneracy and unboundedness (Vanderbei, 2014) are important aspects of LP problems
that need to be addressed in practice. However, for the sake of simplicity, we intentionally omit
the discussion of those important issues here, since the discussion of linear programming does
not suffer any loss in generality when leaving aside degeneracy and unboundedness (De Loera,
2011). We therefore consider, from now on, that the problems that we study are bounded
and non-degenerate.

2.2.2 The simplex algorithm

An optimization algorithm tries to find a point in the feasible region of the problem that
minimizes the value of the objective function. This definition of optimization algorithms is
valid in general. In the specific case of linear programming, we have seen that the optimum of
the problem, if it exists, corresponds to a vertex of the polyhedron defining the feasible region.
In this section, we present the most popular optimization algorithm for linear programming,
namely the simplex method, that exploits the knowledge of the possible locations of the
optimum to efficiently solve the problem.

The description of the simplex method given in this section is deliberately general and does
not go into particulars. The detailed description of the mechanisms of the simplex algorithm
is beyond the scope of this work, and does not contribute significantly to the understanding
of our contribution. For details about the simplex method, we refer the interested reader
to Bertsimas and Tsitsiklis (1997).

Main mechanisms

The simplex method (Dantzig, 1987), originally proposed by Dantzig in 1947, is an optimiza-
tion algorithm that travels through the vertices of the polyhedron to reach the one vertex that
corresponds to the optimal solution. Once the optimal vertex is reached, the optimization
terminates since the global minimum has been found. Starting from an arbitrary vertex, the
simplex method iteratively selects a neighbor of the current vertex and moves to the selected
vertex. This procedure is repeated until the optimal vertex, corresponding to the optimal
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constraints
T2

I

Figure 2.1: Feasible region and objective function of a linear programming problem.

solution, is found. Figure 2.2 illustrates the path followed by the simplex method on a simple
tridimensional problem from an arbitrary initial vertex.

The previous description of the simplex method corresponds to the geometric interpre-
tation of the algorithm, which is simpler to understand. The algorithm actually stands on
strong mathematical foundations, directly related to the mathematical formulation of LP
problems. However, the simplex method does not solve directly problems in the form (2.2).
Instead, the simplex solves problems in the so-called standard form, which is given by

min ¢’z (2.3)
st. Ax=0»>
x € RY,

where ¢ € R", A € R™*" and b € R™ denote the cost coefficients, the coefficient matrix,
and the right-hand side, respectively. A problem in the form (2.2) can be easily converted
to an equivalent formulation in the standard form (2.3), and vice versa. Note, however, that
equivalent problems may have different numbers of variables and constraints, and that the
parameters ¢, A, and b for both formulations will generally be different. From now on, we
exclusively work with LP problems given in the standard form (2.3).

The algebraic concept corresponding to vertices of a polyhedron is called a basic feasible
solution. A basic feasible solution (BFS) is a solution, i.e., a set of values given to the variables,
that (1) satisfies all constraints of the problem, (2) activates all equality constraints, and (3)
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Figure 2.2: Illustration of the simplex method on a simple tridimensional polytope. The
starting point of the method is the vertex ;. The method then iteratively moves from one
vertex to one of its neighbors until the optimal vertex, in this case xy, is reached. The
algorithm then terminates since the optimal solution has been found. The vector ¢ represents
the objective function that is to be minimized.

activates other (non-equality) constraints such that exactly n of the active constraints are
linearly independent. Because the problems are assumed to be in the standard form, a basic
feasible solution implies that Aax = b is always satisfied, and that n — m variables are equal
to 0 (condition (3) of the definition of a BFS). In other words, a solution that can be qualified
as a BFS corresponds to a vertex of the polyhedron of the problem. Two BFS are said to be
adjacent if they share n — 1 linearly independent active constraints. Naturally, two adjacent
BF'S correspond to two adjacent vertices, in such a way that the simplex algorithm sums up
to traveling through adjacent BFS.

Given that there are n—m variables that are 0 in a BF'S, the remaining (non-zero) variables
are fixed by solving the equation Ax = b. The n variables in the problem are thus separated
in two sets: m basic variables that have a non-zero value, and n — m non-basic variables that
are 0. By definition, the set B, called the ‘basis’, contains the indices of the basic variables,
and the matrix B, called a basis matrix, corresponds to the m columns of A for the basic
variables. Since the non-basic variables are 0, the values of the basic variables are obtained
by

xp = B~!b, (2.4)
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where x g is the solution vector for the basic variables.

The normal operation of the simplex algorithm involves jumping from one BFS to an
adjacent one. This can be easily achieved by changing only one active constraint in the
current BFS. In order to do that, one must first choose a so-called entering variable, i.e., a
non-basic variable that enters the basis, but also a leaving variable, i.e., a basic variable that
becomes non-basic. A pivoting rule is a rule according to which the entering and leaving
variables are chosen (in general, the effect of a pivoting rule is to move to a better BFS, i.e.,
a BFS with lower objective value).

During a pivot, when the chosen variable enters the basis, the corresponding active con-
straint is deactivated. In order for the new solution to remain a BFS, a new constraint must
become active and a basic variable z; with ¢ € B must thus leave the basis, i.e., x; becomes 0
and activates the corresponding constraint x; > 0. Which variable x; leaves the basis is
decided based on the following formulae

dp=-B'A;,
. . L B(i)
1= argmin ———-,
i€Bldp<0  9BG)

where j and A.; are the index of the entering variable and the corresponding column in matrix
A, respectively. The vector dp represents the direction that one follows in order to make
variable j enter the basis. The minimum is taken to ensure that the new solution obtained
when following direction dp remains feasible and allows to identify which variable is the first
to leave the basis when direction dg is followed.

When the entering and leaving variables are identified, the basis B is updated accordingly
and the procedure is repeated. Starting from an initial basic feasible solution, the simplex
algorithm uses the above formulae to travel through adjacent BFS until an optimal solution
is found. Knowing whether a solution is optimal or not is easy with the concept of reduced
costs. The reduced cost ¢; for variable z; is an updated version of the initial cost ¢; that is
computed as follows

Cci=c¢; — CgBilA;i,

where cp corresponds to the initial cost of the current basic variables. An optimal solution is
found when all the reduced costs are non-negative. Intuitively, the reduced cost ¢; represents
the increase of the value of the objective function per unit increase of the variable x;. Clearly,
since we are solving a minimization problem, only the negative reduced costs are promising,
since a positive ¢; implies increasing the objective function. Consequently, the non-negativity
of the reduced costs associated with a given basic feasible solution implies the optimality of
the considered solution. This criterion is used to terminate the simplex algorithm.

The simplex tableau

The previous equations define how the simplex works from a purely algebraic point of view.
However, for a better understanding, it is interesting to consider the so-called tableau form
of the simplex algorithm that translates the previous equations into a much more tangible
form.
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Let us assume that @ = [xp;x ] is a basic feasible solution and let p and x denote the
basic and non-basic variables, respectively. The equality constraints Ax = b can be rewritten
as

Bxp+ Nxy =0,

where A = [B; N| (without loss of generality, it is assumed that the basic variables have the
indices {1,...,m}, while the non-basic variables correspond to the indices {m +1,...,n}).
Left multiplying both sides by B~!, the equation becomes

Inxp + B 'Nxy = B™'b, (2.5)

where I, is the identity matrix of size m. Since the non-basic variables are assumed to
be null, i.e., xxy = 0, this equation is equivalent to Equation (2.4) previously introduced.
Interestingly, Equation (2.5) can be rewritten as

Az =b,

with A = [Hm;B_lN ] and b = B~!b, which indicates that, for a basic feasible solution,
the initial system of equations can be written as an equivalent system where the sub-matrix
of A corresponding to the basic variables is equal to the identity matrix. In particular, the
identity matrix (together with the fact that &y = 0) allows to easily find the values of the
basic variables (the solution for the ith basic variable is equal to the ith component of b).

The converse is true as well. Indeed, if a system of equations Az = b is such that m
columns of the matrix A represent an identity matrix of size m, then the variables corre-
sponding to the m columns forming the identity matrix are basic variables (the others being
non-basic). In particular, this implies that in order to find a BFS, it suffices to transform the
initial system of equations into an equivalent system where m columns represent an identity
matrix (one must also ensure that all the components of b are non-negative). Note that the
transformation must be done in such a way that the solutions to both systems are the same,
i.e., the transformation is done with operations on the rows.

We can now define the so-called simplex tableau that is obtained by concatenating the
matrices A, b, and € in a single matrix, called the tableau,

A b
SEM

where € denotes the reduced costs and x indicates the absence of a value (€ has only n values
while the concatenation of A and b has n + 1 columns). During the course of the algorithm,
the tableau evolves, through row operations applied to T', to explore successive BF'S until the
optimal BF'S is found.

Indeed, the normal operations of the simplex, which involve jumping from one BFS to
an adjacent one (i.e., pivoting), can be easily translated in terms of the system of equations.
Actually, since pivoting merely consists in exchanging the roles of a basic and a non-basic
variable, pivoting the system Ax = b simply implies transforming the current system into a
new system where the column corresponding to the entering variable becomes one column of
the identity matrix. The position of the 1 in the column of the entering variable is determined
by the leaving variable to ensure that A still contains an identity matrix as sub-matrix after
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the pivot. In mathematical terms, once the entering variable is chosen, say ¢, the leaving
variable j is such that

le = 15
Apj =0, Vk #1,
l= argmin 6,

k:l,...,m|9k >0

with

0= _bl ; _b—2; ol
Ay Ag;

|
l:

8N
3

When the entering and leaving variables are identified, ¢ and j (and [ the row corresponding
to variable j in the identity matrix), respectively, the system of equations can be transformed
into an equivalent system representing a new BFS. This update can be done easily with the
following operations

Ti;

Tll; =1T1. — T;i 1.

/ 1
j}: = T,
Trln: =Tm: — 7;CZZTI

T )

/ _ _ At(m+1)i

T(m+1): = Tim+1): Ty Ti.

where T and T” denote the simplex tableau before and after pivoting, respectively.

Note that, when the tableau is updated to reflect a new BFS, the reduced costs are updated
as well. Indeed, checking whether a BF'S is optimal is done by checking that all reduced costs
are non-negative and updating them is thus important in order to determine whether the
algorithm must continue pivoting or not. In vector form, the reduced costs are given by

¢ ' =c' —cLB A

and are updated at the same time as the rest of the tableau, i.e., during pivoting. Note
that, for a given BFS, the reduced costs corresponding to the basic variables are equal to 0.
Therefore, when the BFS changes, i.e., after a pivot, the reduced costs must be updated as
well to ensure that the reduced costs of the new basic variables are equal to 0. This update
is done in the same way as for the rest of the tableau, i.e., with row operations.



2.2. LINEAR OPTIMIZATION

An example

We now illustrate the theoretical description of the simplex algorithm hereabove given.

considered problem is as follows:

min — 4z — 2x9 — 323

2r1 + x99 4+ x3 +
s.t. 21 4+ 2x9 + 3z3
1 + 2z + 3

.%'Z'ZO.

First, the simplex tableau is initialized with the initial matrices A, b, and c.

T xT9 r3 T4 I5 Xg E

2 1 1 1 0 0]2

2 2 3 0 1 0]5

1 2 1 0 0 1]6
c|l-4 -2 -3 0 0 O

13

The

Then, a variable that enters the basis must be chosen (according to a pivoting rule). Here, the
variable x1 is chosen as entering variable because it has the smallest reduced cost. We now
compute the ratio vector to identify the leaving variable. The ratios are § = [1; 2.5; 6] and
the smallest ratio corresponds to the first component of the vector, which, in turn, indicates
that variable x4 must leave the basis when variable x1 enters. As explained above, in order to
make a variable enter the basis, one can modify the problem with row operations and make
zeros appear in the column corresponding to the entering variable with a unique 1 appearing
at the position corresponding to the leaving variable. Since the leaving variable is x4 and
since the 1 in the x4 column was located in the first row, we modify the problem to make
zeros appear everywhere in the column of x1 except for the first element of the column that
will contain a 1. Applying the following row operations,

1

o= 23"M

rh o =r —%n

Ty o=ry—3r

¢ =t—-3in

the tableau becomes
T T T3 T4 I5 Tg E
1 1/2 1/2 1/2 0 0]1
0 1 2 -1 1 03
0 3/2 1/2 —-1/2 0 115
c| O 0 -1 2 0 0

Following the same pivoting rule (i.e., the variable with the smallest reduced cost enters
the basis), variable z3 is chosen as entering variable. Computing the ratios, we obtain 6 =
[2; 1.5; 10]. The smallest ratio indicates that variable x5 must leave the basis. After the
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adequate row operations, the tableau becomes:

T1 T2 I3 T4 5 T¢ b

1 1/4 0 3/4 —1/a 0] 1/4
0 1/2 1 —-1/2 1/2 0| 3/2
0 5/4 0 —1/4 —1/4 1|17/4
0 1/2 0 3/2 1/2 0

c

which is optimal since all reduced costs are non-negative (implying that making a variable
enter the basis will increase the objective value).

In this last tableau, variables z3, x4, and x5 are non-basic (and thus equal to 0 in the
solution). The remaining variables (z1, x3, and xg) are basic and their value in the current
solution is given by the current right hand side. In the end, the optimal solution is

x* =[1/4; 0; 3/2; 0; 0; 17/4].

A few pitfalls of the method

The description that we give of the simplex algorithm merely explains its main mechanisms.
There exist many stumbling blocks that can prevent the algorithm from running correctly. In
the following, we present two problems that may affect the proper operation of the method
and briefly outline how these issues can be addressed. More specifically, we describe the issue
of finding an initial basic feasible solution and the problem of identifying, at each iteration,
the entering variable.

Initialization of the simplex method In general, jumping from one basic feasible solu-
tion (vertex) to another is easy, both geometrically and algebraically, but finding an initial
BF'S can be difficult in some situations. If a BF'S does not emerge naturally from the problem
formulation, it is necessary to use some tricks in order to find the starting BF'S of the simplex.
One of the most common approaches to solve that problem is called the big-M method. This
method consists in introducing m artificial variables, and in using the simplex method to
solve the initial problem augmented with these variables. The new problem is given by

min ¢'x+ MlTy
st. Axz+y=0>
x € R
y € RY,

where y and 1 represent the artificial variables and a vector of ones, respectively. The
parameter M is a scalar that is chosen to be ‘big’ enough, so that the solution to the new
problem leads to y = 0. Since each y; appears in only one constraint, the artificial variables
constitute a basis of the modified problem. The simplex is then applied to the new problem
with the set of artificial variables as an initial basis. During the iterations of the algorithm, the
artificial variables are removed from the initial basis due to the large value of the parameter M.
At the end of the optimization, if the initial problem admits a basic feasible solution, the
optimal basis of the modified problem does not contain any artificial variables anymore, and
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that basis is also a basis of the initial problem. By solving a modified problem, the big-M
method finds a basic feasible solution to the initial problem, if such a solution exists. The
discovered basic feasible solution is then used to initialize the simplex method for the initial
problem. Besides the big-M method, a similar technique, called the two-phase method, can
be used to find an initial BFS. We omit the description of that procedure here, and refer the
reader to Bertsimas and Tsitsiklis (1997) for a thorough explanation of both approaches.

Pivoting rule Using the simplex in practice rises one important question: how must the
entering basic variable be chosen? Answering that question is not a trivial matter since the
answer conditions the efficiency of the algorithm. Leaving aside the study of the complexity
of the simplex (which is addressed later), we discuss here the more prosaic cycling problem.
Indeed, in some circumstances, if no care is taken when choosing the entering basic variable,
the resulting new BFS may be one that has been previously visited. This phenomenon
is known as cycling since the algorithm returns, after a while, to a vertex that it already
processed. Due to the waste of computational resources it implies, this behavior is naturally
undesirable. The literature lists many different ‘pivoting rules’ that are used to choose the
entering basic variable. Among them, the simplest non-cycling rule, known as the Bland’s
rule, chooses the entering variable x; as one with negative reduced cost and, if ties occur
when deciding which variable leaves the basis, chooses the one with the smallest index ¢. This
rule ensures that the objective function decreases with each new visited BFS and is proved
to never cycle (Bertsimas and Tsitsiklis, 1997). In general, when a pivoting rule chooses an
entering variable with negative reduced cost and if the polytope is non-degenerate, cycling
never happens. However, since degeneracy is encountered quite often in practice, it is possible
that, in some rare cases, cycling occurs. Fortunately, there are several ways to deal with
cycling issues in practice, including anticycling pivoting rules and random perturbations, but
describing these elements is beyond the scope of this work.

2.3 Mixed-integer linear optimization

Mixed-integer linear programming (MILP or, more simply, MIP) problems are obtained when
some variables of an LP problem are constrained to integer values only. These additional con-
straints may seem harmless, but actually render the problems much more difficult (Vanderbei,
2014). Nonetheless, these problems are of practical interest because the integer variables
model behaviors that are out of reach of continuous variables. The integer variables are
indeed used when it is not possible to use continuous variables. For instance, if a variable
represents the number of units of a given product that are manufactured, sold, or purchased,
using continuous variables makes no sense since the units of product are usually indivisible
(it is not possible to build or buy 0.5 plane or 0.5 car). Additionally, binary integer vari-
ables (that can take the values 0 or 1 only) are often used to model choices or decisions.
For instance, a binary variable may model whether a power plant should be turned on or off
depending on the electricity market price (it is not possible to turn on half of the plant only).

In this section, we formally define MIP problems and describe the main mechanisms of
the branch-and-bound, which is the most popular algorithm used to solve these problems.
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2.3.1 Problem definition

Mixed-integer programming (MIP) problems are problems of the form

min ¢’z (2.6)
st. Ax <b
r; €L, Vjel

zjeR, Vjel,

where ¢ € R™", A € R™*" and b € R™ denote the cost coeflicients, the coefficient matrix, and
the right-hand side, respectively. I and C are two sets containing the indices of the integer
and continuous variables, respectively.

Figure 2.3 illustrates the same problem as in Figure 2.1, with the main difference that
both variables can now only take integer values. The feasible region becomes a collection of
feasible points, which turn out to be all feasible solutions. The feasible points are represented
as grey points in the figure. The optimal solution may not correspond to a vertex of the
polyhedron (defined by the constraints Az < b) anymore, and the simplex algorithm cannot
be applied as is. One possible approach to solve such problems could be to list all possible
solutions satisfying all constraints, and returning the one with the smallest objective function
value as the optimum of the problem.

In this work

For the sake of generality and easiness, we introduce the MIP problems and the branch-and-
bound algorithm in the general case, i.e., for the MIP problems formulated in the form of
Equation (2.6). In this work, we focus, however, more specifically on binary MIP problems,
where the integer variables can only take values 0 or 1. These problems are of the form

min ¢’z (2.7)

st. Ax <b
xJE{O,l},VjEI
ijR,VjEC.

Throughout this work, we focus solely on binary MIP problems. There are essentially
three reasons for this. First, despite the proximity between general MIPs and binary MIPs,
the analysis is easier to carry out on binary problems. For instance, the optimization tree
has a much clearer interpretation in the binary case than in the general case (going down
one level in the tree means setting one variable to 0 or 1 in the binary case, while this is
not true for general MIPs). Second, most MIP problems usually involve only binary integer
and continuous variables. Indeed, in 80% of the problems of the MIPLIB2010 (Koch et al.,
2011), which is a library of benchmark MIP problems obtained from the industry, all integer
variables are binary variables. The remaining 20% may contain general integer, binary integer
and continuous variables. The ratio of general MIPs is thus quite low. Finally, it is often
possible to formulate general MIP problems in the binary form. These elements justify the
focus on binary MIP problems throughout this research.
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constraints
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Figure 2.3: Feasible region and objective function of a mixed-integer linear programming
problem. In this case, the feasible region is not a polyhedron anymore. The feasible region
is composed of the points that lie inside the polyhedron defined by the constraints and for
which variables 1 and x have an integer value.

2.3.2 The branch-and-bound algorithm

The branch-and-bound (B&B) algorithm (Land and Doig, 1960) is probably the most widely
used algorithm to solve MIP problems in practice. B&B is an exact method in the sense
that, when the method terminates, the solution is guaranteed to be optimal. Of course, since
the MIP problems are very difficult, B&B may take a very long time before terminating. In
that case, it is still possible to stop the optimization earlier and to obtain a feasible (integer)
solution, but the optimality of the solution is not guaranteed anymore. In the following, we
concisely explain the main mechanisms of B&B in the case of general MIP problems. The
description that we give is valid for a minimization problem, but a similar reasoning applies
when the problem is a maximization problem.

Solving problems in the form (2.6) is rather difficult. It is interesting to note that, on
the other hand, the very similar LP-problems of the form (2.2) can be solved much more
efficiently with simple methods. The branch-and-bound algorithm leverages this fact by
turning the solution of a MIP problem into the solution of successive (simpler) LP problems.
More specifically, B&B builds an optimization tree in which each node s represents a version
of the initial optimization problem where
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1. the integrality constraints of the variables in I are relaxed, i.e., z; € R for ¢ € I, in
place of z; € Z;

2. additional constraints of the form x; < v (or z; > v) are added, where v is some scalar
(see later what v represents).

Because the integrality constraints are relaxed, the problem contained in each node is called a
linear programming relaxation (LP-relaxation) and can be solved efficiently with a traditional
linear programming method, e.g., the simplex algorithm. Another advantage of the linear
relaxation is that it gives a lower bound on the optimal objective value (this is discussed later
in greater detail). We denote the solution of the LP-relaxation at a given node s of the B&B
by @'(s) (written @’ for short if it is clear from the context which node it corresponds to), and
we call, with a little abuse of terminology, the variable x;, with ¢ € I, a fractional variable if
it has a fractional value in the current solution @’. The set of fractional variables of ’(s) is
denoted F(s), i.e.,
F(s) = {i{iGI/\xé(s) ¢Z}.

The value ¢'2'(s) is called the objective value of the solution @’(s).
We now turn to the description of B&B, whose pseudocode is given in Algorithm 1.

As mentioned earlier, B&B creates an optimization tree. That tree is created iteratively
and, at every moment, the tree represents the current state of the ongoing optimization. The
tree is composed of open nodes, i.e., the nodes that are yet to be explored, which are stored
in a queue, and of closed nodes, which are the nodes already processed by the algorithm.
An iteration of the B&B consists in three steps: (1) choose an open node s from the tree,
(2) solve the LP-relaxation contained at the chosen node, and (3), based on the solution of
the LP-relaxation, decide what to do next. Step (1) conditions how the optimization tree
is explored, e.g., breadth-first or depth-first. Step (2) is trivial since it merely consists in
applying an LP algorithm to the LP-relaxation corresponding to the chosen node. Finally,
step (3) is the heart of B&B and its main mechanisms deserve a more detailed description.
Step (3) can actually be divided in three different cases.

1. The first possible case is encountered either when the LP-relaxation at the chosen node
is infeasible or when the objective value of the LP-relaxation at the chosen node is
greater than the objective value of the best integral solution found thus far. In that
case, B&B does not continue the exploration of that branch of the tree since that branch
cannot yield a better integral solution. The operation that allows to discard the nodes
by comparing the objective values of the LP-relaxations with the objective value of the
best available integral solution is called ‘bounding’.

2. The second possible case encountered during step (3) corresponds to a node whose LP
solution respects all initial integrality constraints, i.e., the set F' is empty at that node.
In that case, the algorithm has found an integral solution (not necessarily optimal)
of the problem and the exploration of that branch of the tree is stopped (the node is
marked as closed and no child nodes are created).

3. Third, if the solution of the LP-relaxation at node s, i.e., the solution «’ of the LP-
relaxation obtained through step (2), violates at least one of the initial integrality con-
straints, i.e., if the set F(s) is non empty, the algorithm creates two child nodes, cor-
responding to two new subproblems. In order to create the children, B&B chooses a
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Algorithm 1 Branch-and-bound algorithm.

Inputs: p a MIP problem of the form (2.6)

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

procedure BRANCH-AND-BOUND(p)

Thest = NUIL ;5 Opest = +00 ; Oqual = —00
s = p with all integrality constraints relaxed > initial LP relaxation of p
q = {s} > initialize the queue

while ¢ # () do
s = retrieve next node to process and remove from the queue ¢
x’ = solve the LP relaxation corresponding to node s

0dual = update dual bound with ¢’ if required > dual bound update

if (s is infeasible) or (¢' ' > opes;) then
continue

end if

F(s)={ilieInz, ¢ Z} > compute the set of current fractional variables

if F(s) =0 then > integral solution found
if ¢' @’ < 0pest then > primal bound update

Thest = x’ 5 Obest = c'a!

end if

else > solution is fractional
i* = find a branching variable in F'(s) > find a branching variable
Ceft = § + (24 < [2)4]) > create left child by adding a constraint to s
Cright = S + (24 > [z} ]) > create right child by adding a constraint to s
q = qU {Clett; Cright }

end if

end while

return (xbest ;> Obest > Odual)

25: end procedure

variable x;, with ¢ € F(s), and adds, to the current subproblem, additional constraints
that are meant to cut, from the current set of feasible solutions, the current value of
variable z;, i.e., x; ¢ Z. One child subproblem is created by adding to the current
subproblem one constraint of the form z; < [z}], and the other child subproblem is
created by the addition of x; > [z}], such that variable x; is forbidden to take, in the
descendants of the current node, a value in the open interval (|2} ], [2}]). In particular,
these two constraints ensure that, in the subtree rooted at the current node, the variable
x; will never take the value z; again. This operation is called branching on variable z;
and it results in the expansion of the tree by two new open nodes. The exploration
of the parent is then over and the corresponding node is labeled as closed. Figure 2.4
illustrates a branching operation on a toy problem and also shows the resulting child

problems.

In the two first cases, the optimization tree is not developed, i.e., the nodes are marked

as closed and no child nodes are created, which reduces the total size of the tree, and, hence,
the optimization time.
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T2

/ x
T 1

(a) Parent node. The solution of the LP-relaxation at
the current node is not integral.

X9 €2

w/
. .

(b) Left child. The constraint zo < |x%] is added to (c) Right child. The constraint x> > [x5] is added to
the parent problem. the parent problem.

X1 €1

Figure 2.4: Ilustration of the branching operation performed by B&B. Subfigures (a), (b),
and (c) represent the parent node, and the resulting left and right child nodes, respectively.
In this example, variable x5 is chosen as branching variable, but variable x; could have been
chosen too. The solution of the LP-relaxation at the current node is not integral. In order to
create two child problems, branching is thus performed by adding, to the set of constraints
of the parent problem, one additional constraint for each child. The polyhedrons defining the
LP-relaxations of the child problems correspond to the intersection between the polyhedron of
the parent and the additional constraint. For each subproblem, a number of integral solutions
are removed by the addition of the constraint.
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The three steps composing B&B are applied iteratively to the optimization tree, whose
root node corresponds to a version of the original problem where all integrality constraints are
relaxed. Once the tree has been entirely explored, i.e., when the list of open nodes is empty,
the integral solution with the smallest objective value is returned as the optimal solution of
the initial problem. Note that if the optimization is to be stopped before all the nodes are
processed (e.g., because of time constraints), the algorithm can still provide a feasible solution
(if it has found one), but that solution is not guaranteed to be optimal. The optimality can
only be proved through the exploration of the entire optimization tree.

Primal and dual bounds One of the advantages of B&B is that, at any point in time
during the optimization, there exist two bounds on the objective value of the problem being
solved. These bounds are very useful to assess how far from termination the algorithm is and
how good the available solutions are.

The first bound, known as ‘primal bound’, corresponds to the smallest objective value
of all integral solutions found thus far. Actually, a real primal bound becomes available as
soon as the algorithm finds a first feasible solution. While no solution is available, the primal
bound is usually set to +oco. Fortunately, primal bounds become available very early in
the optimization. Indeed, state-of-the-art solvers traditionally use ‘heuristics’ to find primal
bounds for the current problem. Heuristics are functions that can turn non-integral solutions
into (non-optimal) integral solutions. These heuristics can be applied at any node of the tree
and are often applied, in particular, at the root node. This implies that primal bounds are
usually available from the very beginning of the optimization. Note, however, that heuristics
are, in general, not guaranteed to succeed and may be applied in vain, thus leaving the primal
bound to +oc. The second bound, also called ‘dual bound’, corresponds to the smallest
objective value of the solutions of the LP-relaxations contained in the open nodes of the tree.

The primal bound is an upper bound on the optimal objective value (corresponding to the
optimal integral solution) of the problem and is used to prune the nodes in the B&B tree.
The optimal objective of the current problem is thus, at worst, equal to the primal bound.
The dual bound, on the other hand, is a lower bound on the optimal objective value. At any
moment, the optimal objective is, at best, equal to the dual bound. During the algorithm,
the primal bound decreases and the dual bound increases and the algorithm terminates when
the two bounds become equal. Consequently, the bounds difference can be used to evaluate
whether the algorithm is close to termination or not. At the beginning of B&B, the primal
bound is initialized to infinity (unless integer solutions are available) and the dual bound is
set to the objective value of the LP-relaxation at the root node.

Remark 1 In this work, we sometimes refer to the dual bound increase of a given branching.
This should be understood as ‘the difference between the objective value of the LP-solution
of the child nodes and the objective value of the LP-solution of the parent node’. Since the
algorithm terminates when the primal bound becomes equal to the dual bound, a ‘good’
branching is, in general, one that will yield a large dual bound increase. Note that the dual
bound is global, i.e., it has the same meaning throughout the entire optimization tree, while
the dual bound increase is a local concept (local to a parent and its two children).
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Remark 2 The above description of B&B is universal, in the sense that it is the version of
B&B applied to general MIP problems. When the studied problem is binary, the procedure
can be simplified a bit. In the binary case, the initial relaxation for each variable z; € {0, 1}
is x; € [0,1]. Consequently, the left child node is created by the addition of the constraint
x; < 0, while the right child is created by the addition of x; > 1. These constraints force the
variable to 0 and 1 in the left and right child, respectively. The resulting optimization tree
becomes simpler to understand and analyze.

Additional features of the B&B

The above description of the B&B focuses only on the main mechanisms of the algorithm and
is enough to implement a pure version of the method. Several tricks and additional features
can be used to improve the efficiency of the implementation in order to solve larger and
harder problems. Without going into the details, we describe here some important techniques
that can dramatically improve the performance of the B&B. More specifically, we discuss the
preprocessing, the branching strategy, the node selection strategy, and the cutting planes.

Preprocessing In all MIP solvers, it is common to apply so-called preprocessing techniques
to the problem to be solved before calling B&B. The basic idea behind preprocessing is to
render the problem easier so that it can be solved more quickly by B&B. More specifically,
preprocessing analyzes the problem and extracts interesting facts that can be used to remove
redundant or useless variables and/or constraints from the formulation. Preprocessing can
additionally tighten the bounds on certain variables based on the properties of the problem.
Preprocessing techniques can also sometimes determine that the problem is infeasible without
actually applying B&B. It is to be noted however that applying those techniques is somewhat
time consuming and that a tradeoff must be found to ensure that the optimization time
gain due to a smaller problem is not lost in preprocessing time. There exist many different
preprocessing techniques that can decrease the time needed to solve a problem, but the
thorough description of those methods is beyond the scope of this work.

Branching strategy The branching strategy, i.e., the function that chooses an index ¢ in
the set F'(s) containing the indices of the fractional variables, is probably the component
of B&B that most influences the efficiency of the optimization. Indeed, the quality of the
branching strategy conditions the number of nodes that the algorithm explores before termi-
nating. This number of nodes has, of course, to be as small as possible so as to minimize the
time required to solve the problem.

Good branching decisions typically reduce the number of nodes processed by the algorithm.
Indeed, if the subproblems created by a branching have objective values that are greater than
the current primal bound, then these child nodes can be pruned from the tree, thus reducing
the remaining amount of work. On the other hand, a bad branching decision, one that does
not increase much the objective value, will end up with two new nodes to process in the
queue. Taking a good branching decision is usually not trivial and is quite time consuming.
There is usually a tradeoff between, on the one hand, taking a good branching decision, and,
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on the other hand, quickly taking a decision. We omit here the details about the different
branching strategies, since a much more complete description is given in Chapter 4.

Node selection strategy Another important aspect of B&B is the order in which the
nodes are explored by the algorithm, which is called the node selection strategy. There exist
several simple possibilities derived from the standard existing tree search methods. Depth-
first and breadth-first are obvious examples of such simple strategies. Another frequently
used approach, called best-bound, consists in selecting as next node to process the node with
the lowest LP-relaxation objective value. In general, the best-bound strategy is applied when
one wants to increase the dual bound on the current optimization and is typically regarded
as the one that yields the smallest number of nodes. However, best-bound is also known to
be memory consuming because the nodes accumulate in the queue. On the other hand, the
memory requirements of the depth-first strategy are very limited and depth-first usually finds
integral solutions quite quickly. Indeed, since depth-first travels the optimization tree from
the top to the very bottom, depth-first creates more and more constrained versions of the
original problem and therefore leads to the creation of nodes that have a higher probability of
being ‘closed’ either due to infeasibility or due to integrality of their solution (the latter case
may additionally possibly decrease the primal bound, and hence lead to further pruning of
the tree). Consequently, depth-first is usually applied in order to decrease the current primal
bound and in restricted-memory settings.

All node selection strategies have advantages and shortcomings that must be taken into
account during the optimization. For instance, if a solver wants to contain the amount
of memory it uses, depth-first is probably the best choice. However, the approaches to node
selection implemented in commercial solvers do not use a single strategy but commonly involve
several strategies between which the solver switches during the optimization to leverage the
strengths of the available strategies.

Cutting planes Cutting planes, or cuts for short, are additional constraints that are added
to the problem in order to ‘tighten’ the formulation. These cuts are important since they
reduce the feasible set of the problem and, hence, tend to speed up the optimization. The
goal of the cuts is to shrink the initial polyhedron, i.e., to tighten the formulation, with the
hope that the vertices of the shrunk polyhedron become closer to integer solutions. If that
happens, i.e., if the vertices of the shrunk polyhedron correspond to integer solutions, the
solutions of the LP-relaxations become integral and the problem becomes much easier since
no branching is required as the optimal solution of the LP-relaxation is already integral. Note
that the cuts must not rule out integer solutions, since they are meant to discard non-integral
solutions only. Figure 2.5 illustrates how cuts tighten and simplify the initial problem. There
exist many different types of cutting planes, each of which with different properties, but their
thorough description is beyond the scope of this work.
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Figure 2.5: Example with two cutting planes tightening the formulation of an initial MIP
problem. In that case, the optimal solution of the relaxation of the new formulation (i.e., the
optimal vertex of the new polyhedron) corresponds to an integer solution, and the problem
is thus solved directly with an LP technique, rather than with B&B. The cutting planes are

displayed in blue in the figure and the area removed by the cuts corresponds to the shaded
area.



Chapter 3

Understanding machine learning

Machine learning (ML) is a relatively new science and the community seems not to have agreed
on a common definition yet. ML can thus be described in different terms depending on the
point of view and the sensitivity of the scientist. Some define machine learning as a subfield
of computer science that is concerned with the development, study, and implementation of
algorithms that are able to learn from and make predictions on data (see, e.g., Hastie et al.,
2009). Some others, including the author of this manuscript, allow the contour of the definition
to be more flexible. This alternate definition considers machine learning as a subfield of
artificial intelligence focused on the development, study, and implementation of methods
allowing machines to evolve through a learning procedure (see, e.g., Samuel, 1959; Gutierrez,
2015). This second definition encompasses the first one but also comprises more applications
and methods. However, and despite the apparent disagreements about the definition, the
community does not worry much over such inconsequential problems.

Machine learning is a very wide field of research and introducing every aspect of it, seen
from different perspectives, is, at best, a very laborious work, at worst, a titanic task, and, in
the end, definitely not the goal of this short introduction. Therefore, and leaving aside our
own wide definition of machine learning, this section solely introduces the different facets of
ML that are mandatory for the proper understanding of this work, disregarding some major
aspects of utmost intellectual interest.

In this work, we only consider the so-called ‘supervised machine learning’ framework.
The goal of this short introduction is merely to give enough information to the unfamiliar
reader so that the remainder of this thesis becomes clear to everybody. The main intuition
as well as the main mechanisms are provided in this document, but we refer the reader to
appropriate scientific material for a deeper understanding of these concepts. The machine
learning specialists may safely continue their way through the manuscript and jump directly
to more advanced chapters.

This chapter first introduces the supervised machine learning framework that is central

to this research. Then, the following sections describe in greater detail the supervised ML
algorithms that we use in this work.

25
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3.1 A gentle introduction to supervised machine learning

3.1.1 Definition

Let 7 be some task that maps input states s € S to an output space ), i.e.,
T:8S— ),

where S is the set of possible input states of the task. The task 7 is not necessarily well
characterized. For instance, it can be a black box, like a physical system or a human behavior.
Examples of tasks T include protein folding and spam filtering. In the first case, the state s
corresponds to a sequence of amino acids, which univocally describes a protein, the output y
corresponds to the tridimensional structure of the protein defined by the input sequence, and
the task 7 corresponds to the folding process guided by the laws of physics and chemistry. In
the second example, the input state s is an email, the output y is a label (spam or not) and
the task consists for the receiver of the email in deciding whether the email is spam or not.

In general, it may be desirable to mathematically characterize or to simulate the task in
order to study and better understand the process. The previous examples perfectly illustrate
this goal. In the case of the protein folding problem, being able to predict the tridimensional
structure of a protein without long and costly experiments would be a major obstacle out
of the way of drug designers, possibly leading to groundbreaking discoveries in medicine.
Similarly, being able to predict whether an email is spam or not without human intervention
could save users a substantial amount of time. Supervised machine learning has the potential
to achieve those goals. Generally speaking, supervised learning techniques use observations
of the task T to approximate its behavior. The outcome of the learning procedure can then
be used as a proxy for T, i.e., as an approximation of the real task, in numerous situations.

For the sake of simplicity, we introduce machine learning in the easy case where the output
is a scalar, i.e., ) C R. Nonetheless, there exist applications where this is not true and where
the output belongs to more complicated spaces, e.g., Y C RP, where p is the dimension of
the output space. Protein folding is an example of such an application where the output is
multidimensional. Additionally, other settings (e.g., structured output spaces) have also been
studied, but are not discussed here.

Basically, supervised ML focuses on the construction, from available data, of a function f*
that mimics the task T, i.e.,

TORf()EF 0=,

where the function f* maps inputs from a space ® C R¢ to an output space M C R and
F* represents the set of possible mappings from ® to ). Ideally, the input of f* should be
s € §, the input state of T itself. However, representing the complete state is often a difficult
problem, e.g., because its dimensionality is too high or because it contains a lot of irrelevant
information. For this reason, in the machine learning community, the inputs ¢ € RY of
the functions f € F* are usually characteristics, called ‘features’, that represent a simplified
version of the input state s. Designing meaningful features is a key factor to success in a
learning problem, since the features control how close to the real task 7 the approximated
function f* can get. The features are discussed in greater detail in Section 3.1.5.



3.1. GENTLE INTRODUCTION TO SUPERVISED LEARNING 27

Formally, a supervised machine learning algorithm A is a procedure of the form
A (D x V) — F,

where the wildcard ‘*’ stands for VIV € N and F denotes the set of candidate functions, which
is referred to as the ‘hypothesis space’ and depends on the particular learning algorithm that
is used. Note that the set F is usually different from the set 7* and is such that F C F*.

More practically, a supervised machine learning algorithm takes as input a training set
Dirain = {(¢5,v) ), € (@ x V)N (of any size N) obtained from the task 7 and outputs
a function f € F that minimizes some loss function Lian on the given dataset. Stated
in mathematical terms, the learned function, or model, f resulting from the application of
algorithm A to the training set Dy, is often specified by

A~

N
f () =A (Dtrain) = al“fgefgin % ZZ:; Lirain (yia f (d)z)) . (31)

Naturally, the hope is that the machine learning algorithm produces a function f that ap-
proximates closely enough the sought function f*, i.e.,

f(®) = [ (), Vo € ®.

Equation (3.1) that defines f implies that fitting a model to a given dataset, i.e., learning
the model, amounts to solving an optimization problem. For most learning algorithms, the
learning procedure can indeed (sometimes with some effort) be regarded as an optimization
problem. Of course, not all optimization formulations are easy to solve and choosing between
several learning algorithms is often based on the difficulty of the underlying optimization
problem (computation time, uniqueness of the solution, etc.). Note that the loss function
Ltrain used in Equation (3.1) is, in general, such that

Lirain : y2 — R

and is used to measure, for a candidate model f’, how close a certain output value y' = f’(¢;)
is to some target output y = y; given in the training sample.

It is interesting to mention that some learning algorithms do not solve exactly Equa-
tion (3.1), but a modified version of it, where additional elements are added within the mini-
mization for several purposes (e.g., to control the complexity of the algorithm, to favor sparsity
of the model, etc.). Consequently, some learning algorithms, instead of Equation (3.1), solve
the more general equation

N
o . 1
f () =A (Dtrain) = arfgrr}ln {N Z ﬁtrain (yi7 f (d)z)) +R (f)} ) (32)
€ i=1
where R : F — R is an additional component minimized by the learning algorithm that can
serve several purposes. In some situations, R (-) may be referred to as a regularization term.
Equation (3.2) encompasses most learning methods, but it is still possible that a few learning
algorithms require a more complex mathematical formulation. We omit this discussion here.
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Let us finally mention that the strength of supervised machine learning relies on its ability
to generalize behaviors observed on data with very few assumptions needed. This makes it
a powerful tool when one wants to imitate unknown functions for which no, or very little,
information is available. The main requirement is that the machine learning procedure is
given a dataset containing input-output pairs (¢;,y;) obtained from the task 7 that the ML
algorithm is trying to imitate. Those input-output pairs can be obtained by simulation, there
is no need to actually know the functional representation of the real underlying function that
is to be learned.

3.1.2 Batch and online learning

As mentioned above, the main requirement to apply supervised machine learning techniques
is to have at one’s disposal a training set Diyain = {(¢;, yl)}fil € (® x V)V containing input-
output pairs obtained from the task 7. Within supervised learning, there exist two main
frameworks that differ by the initial availability of the data.

First, the most common framework, known as batch or offline learning, assumes that the
data is available to the learning algorithm from the very beginning. In that case, Equa-
tion (3.1) can be solved directly, during a training or learning phase and then subsequently
used to make predictions. However, it is not always realistic to assume that the entire dataset
is available from the beginning. In this situation, another learning framework can be used.
The second main framework, known as online learning, deals with the case where the data
arrives progressively. There are several possibilities regarding the arrival rate of the data.
For instance, the observations may arrive one at a time or may arrive packed, i.e., several
observations become simultaneously available. An online learning algorithm is typically an
iterative procedure that receives, at each iteration, so-called mini-batches, i.e., small training
sets of the form D; = {((pl,yz)}fil with 1 < N < N and j the iteration number. At a given
iteration j, online algorithms maintain a learned model fj that is the result of successive
learning steps that used the mini-batches as training data. When a new mini-batch arrives,
i.e., D; becomes available, the algorithm uses the newly available data to update the current
model and generate a new approximation fjH of the target function. Hopefully, the approx-
imation becomes better as new mini-batches become available, i.e., fj+1 is better than fj.
Unfortunately, this is not always the case and special care must be taken to ensure that the
approximation of the task does not deteriorate as the data arrives.

The border between batch and online learning is quite fuzzy and the two frameworks do
not differ much. Indeed, all algorithms can be applied in one framework or in the other.
It is especially true for online learning algorithms that can be adapted very easily to the
batch setting. It suffices to consider that the data is available from the very beginning and
that, subsequently, no more data arrives. The converse is true as well, but applying batch
algorithms in the online case is usually less easy and much less efficient from the computational
point of view. Indeed, most batch algorithms require the entire dataset to build the model and
incorporating new data cannot be done easily. A possibility to learn in an online setting with
a batch algorithm would be to retrain the model, when new data arrives, with the dataset
augmented with the newly available observations. It clearly appears that such a procedure is
not very efficient.
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From the computational perspective, online learning may seem better. It is true in general,
but this is usually achieved at the expense of the learning accuracy. Indeed, online learning
algorithms tend to be slightly weaker predictors than batch algorithms. It turns out that
both settings have advantages and shortcomings and that no one is better that the other in all
aspects. Deciding which algorithm to use depends, in the end, on the considered application.
In this work, we use both settings, since we tackle problems whose specific requirements favor
either one setting or the other.

3.1.3 Training, test, and generalization errors

The performance of a machine learning algorithm or of a learned model is traditionally eval-
uated through the computation of error measures. The computed errors can then be used to
determine which algorithm or model is the best. In machine learning, we distinguish three
types of errors: the training error, the test error, and the generalization error.

In general, the end goal of a learning algorithm is to discover the relationship that exists
between the entire input space ® and the entire output space ). The generalization error
measures this aspect by quantifying how well a model approximates the sought input-output
relationship over the entire space. Assuming that there exists a joint distribution over the
input-output space ® x ) according to which the observations are drawn, i.e., (¢,y) € & x Y
follow a distribution D, the generalization error for a given learned model f is defined as

€gen (f) =E$,y)~D |:£test (yz,f(@))} ;

where the expectation is taken over the observations (¢,y) drawn from distribution D and
Liest : V2 — R is a loss, or error, function.

Minimizing the generalization error is the goal that is pursued by all learning algorithms.
However, the generalization error is typically very hard to compute because the input-output
space ® x ) is usually very large (or even infinite and uncountable, for instance, if one
feature or the output is a scalar) and because it requires the knowledge of the distribution D.
When it is not conceivable to compute exactly the generalization error, the test error is used
instead to assess the quality of a model. The test error is computed from a finite collection of
observations Diest, whose elements are assumed to be independent and identically distributed
according to D. More specifically, the test error is given by

Ctest <f > = Ntlest Z Ltest <yz‘, f (¢z)) )

(¢i7yi)eDtest

where the test set Diest is such that Diest = {(¢;,yi) : (d;,yi) ~D, i =1,..., Niest } and D
is the same distribution as for the generalization error. The test error favorably estimates
the generalization error and is somewhat easier to compute (because it does not require the
knowledge of the distribution D). The test error is therefore very often used, in place of the
generalization error, to compare the quality of several learned models to identify the best one.

While the generalization and test errors are used to assess a learned model, the training
error is, on the other hand, used by the learning algorithm to train a model, i.e., to choose
a function f € F, so that the chosen model fits the available data. For a given model f,
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the training error e i, corresponds to the error computed from the training set Diyan =
{(¢;,y:)}Y, that is used for learning?, i.e.,

N ;
€train <f) = N Zﬁtrain <yi7 f ((:bz)) :
=1

A learning algorithm typically chooses a model that minimizes the training error eiain, al-
though additional terms can be taken into account during the minimization (see, for instance,
Equation (3.2) and its discussion). The training error is simple to compute and is used as
a proxy for the generalization error during the learning. The training error can indeed be
regarded as a proxy for the generalization error under certain circumstances, but the corre-
lation between both errors is not guaranteed. In particular, note that the training error only
models the performance of the proposed model for the training set Di,ain, Which represents
only a portion of the input-output space on which the generalization error focuses.

It is important to understand that the training error, on the one hand, and the test and
generalization errors, on the other hand, are intrinsically different. While the former is used
to train the model from the available data, the latter are used to assess the learned function.
Besides, the data used to compute the test and generalization errors is different from the
training data and it is very important to keep it that way. Indeed, since the training error is
meant to be a proxy to the generalization error, it is tempting to conclude that a model that
performs well in terms of the training error will perform well in terms of the generalization
error. Such a shortcut is dangerous because it omits to take into account the fact that the
training data is available in limited amount. What happens is that the learning algorithm
naturally places too much emphasis on the training data and totally ignores the rest of the
input-output space. This is a normal behavior, but it implies that care should be taken to
make sure that the learning does not become too specific. The generalization and test errors
are meant to evaluate independently from learning the quality of a model and are therefore
computed from data that is as independent as possible from the training data. In the end,
their goal is to tell whether the model generalizes well, i.e., is able to predict a correct output
for unseen data, or not. Generalization is the true goal of machine learning and making sure
that the trained models are able to generalize what they observe in the training data is of
primary importance.

Also note that the losses Liest and Lirain, which are used by the test and train errors, re-
spectively, may be the same, but may also be different. One of the reasons for this is that Liegt,
which corresponds to the real error that one wants to minimize for a given application, may
be very poorly suited to optimization. In that case, it often happens that another loss, Ltyain,
which can be handled much more easily by an optimization algorithm, is used as a proxy
to Liest during the training of the model. Obviously, this further justifies the use of the test
error to assess the quality of the model in the real setting of the considered application since
another loss is used during the training.

Note that, ideally, the training set Dirain is, like the test set, composed of independent and identically
distributed observations drawn from the joint distribution D. Unfortunately, this is not necessarily the case
and a poorly chosen training set may hinder the ability of the learning algorithm to correctly approximate the
input-output relationship over the entire space.
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3.1.4 Model complexity

The set F of possible output functions (see Equations (3.1) and (3.2)) depends on the partic-
ular machine learning algorithm that is used and possibly on the values of some parameters.
The richness of the set F is referred to as the expressive power or ‘descriptive complexity’
of the set F. The richer the set F, the finer the dynamics that can be captured. From this,
it seems that adding to F complex functions can only yield better results, but this is not
true and controlling (both downwards and upwards) the complexity of learning is important.
Indeed, restricting the size of F, i.e., allowing only simple models, may result in missing some
important aspects of the sought input-output relationship. For instance, if a straight line is
used to approximate data arranged according to a square function, the model will inevitably
fail to correctly approximate some portions of the space. On the other hand, excessively
increasing the richness of F, i.e., allowing very complex models, may encourage the learning
algorithm to focus on complicated dynamics that seemingly matter, but actually do not. In
the extreme case, the model can even learn noise, which should obviously be avoided as much
as possible. It therefore appears that tuning the complexity of the hypothesis space is impor-
tant in order to get the machine learning algorithm to work as expected on the considered
problem. The machine learning community studied this complexity aspect quite thoroughly,
but the technicalities that are hidden behind the complexity are beyond the scope of this
work. We refer the reader to appropriate literature for further details (see, e.g., Vapnik,
2013).

When one wants to improve the performance of a learned model, re-learning a more com-
plex model on the same data is usually a good idea. Unfortunately, as detailed above, in-
creasing the complexity does not always yield the expected results. In order to understand
why a greater complexity can be a problem, it is important to keep in mind that the training
and generalization errors are different by nature. While the former measures the accuracy of
a model on the training data, the latter is meant to assess the model over the entire input-
output space. Consequently, since both errors are computed on fundamentally different sets,
a model that yields a small training error is not guaranteed to yield a small generalization
error, and can very well produce a very large one. This phenomenon is known as overfitting.
Overfitting occurs when the model starts learning dynamics that are specific to the train-
ing set, but that are meaningless for the rest of the input-output space. Overfitting implies
that the learned model focuses too much on the provided dataset and does not ‘generalize’
enough. Overfitting is illustrated in Figure 3.1, which shows that increasing the complexity of
the hypothesis space beyond a certain point may be useful to decrease the training error, but
becomes counterproductive when it comes to the minimization of the generalization error.

3.1.5 The features

As briefly discussed in Section 3.1.1, the input of the candidate models f € F is most often
not s € S, the input of task 7, itself. Indeed, the raw input s can represent a wide variety
of things from numbers and text, to complex objects like images, large molecules, or time
series. Instead of using directly s and in order to make the input more easily understandable
by machines, the arguments of the functions f € F are typically a simplified version of s,
which take the form of vectors of features or characteristics. These vectors of features can
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Figure 3.1: Training and test error vs. model complexity. Example showing overfitting when
the trained model overfits the training set at the expense of the generalization (test) error.

usually be manipulated much more easily by an algorithm than the raw input s. Moreover,
the features are designed so that they represent only part of the current state s, ideally the
part that most influences the output.

Formally, a vector of features, or features for short, is a vector of characteristics that are
extracted from the input state s € S, i.e.,

C(s)=¢ e ®cRY,

where C is a function that computes the desired characteristics from the input s € S. In
general, features are numeric, either continuous or categorical, but other features such as
strings, histograms, or graphs can be used as well. The concept of ‘feature’ exists in other
fields and, for instance, is known as ‘explanatory variable’ in the statistics community.

The importance of features is twofold. First, representing an arbitrary input object s by a
vector of features constitutes, in a sense, a standard in the field of machine learning that allows
a learning algorithm to be developed independently of applications. Second, the features often
critically determine the efficiency of learning methods. Indeed, as they represent only part
of the current state of the task, it is important that the parts described by the features are
actually correlated with the desired output. For this reason, the features need to be carefully
designed and tailored to the problem of interest.

To illustrate features with some example, let us use the image classification problem, which
consists in assigning a class (e.g., house, food, human, car) to an image. The problem thus
amounts to analyzing the content of an input image and to deciding to which class the image
must be assigned to. There exist many features that can be used for such an application,
e.g., histograms of colors, histograms of gradients, and presence/absence of certain shapes.
Designing features is a complicated task and new features are often described in dedicated pa-
pers. In the computer vision domain, feature descriptors include the well-known SIFT (Lowe,
1999), GIST (Oliva and Torralba, 2001), and HoG (Dalal and Triggs, 2005) features.
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3.2 The regression problem

There exist different machine learning frameworks that depend on several aspects of the task
under study. For instance, the output y of interest can be either continuous or categorical
(i.e., take only a finite number of values) or can have a special structure, depending on the
considered problem. The nature of the output is one way to characterize different learning
frameworks. In this manuscript, we concentrate on the regression problem.

The regression problem focuses on the basic case where the output y is a continuous real
number. In this setting, the loss functions £ take simple forms like, for example,

( f (¢ )) ‘yz o f ((ﬁ@)‘ s known as the absolute error,
Yi i (i — f (¢;))?, known as the squared error.

Regression finds many applications in practice, e.g., in the financial industry (credit scor-
ing, algorithmic trading), in biology (gene expression, protein characterization), and in power
systems (load forecasting, security assessment). This section endeavors to describe two tra-
ditional regression methods: linear regression and regression trees.

3.2.1 Linear regression

Linear regression is probably the simplest learning technique for regression problems. Linear
regression makes the assumption that the output y € R is hnearly dependent on the inputs
¢ € R?. In mathematical terms, linear regression finds a function f such that

f(yeF= {f Zw@ wT¢}, (3.3)

where w € R? and ¢ € R are two column vectors representing the parameters of the model
and the inputs, respectively, and ¢(i) represents the ith component of the vector ¢. Linear
regression is illustrated in Figure 3.2.

Training a linear regression model in the form of Equation (3.3) is generally easy. Indeed,
the search for a function is replaced by the search for optimal weights @w that completely
define the sought function f Assuming a training set Diyain = {(¢;, y,)}Z 1> we can build a
feature matrix K, whose rows are composed of the features ¢,, and an output matrix (column
vector) Y, whose unique column is composed of the training outputs y;. In matrix form, K
and Y are given by

¢ Y1

L
K = ¢_2 ,and Y = y_2 ,

dN YN
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Figure 3.2: Linear regression example with a unidimensional input (d = 1) and noisy data.
The blue points correspond to the available data that is used to train the model represented
by the red line.

respectively. In order to fit the model to the data, i.e., in order to find the function f (+), it
then suffices to solve the following optimization problem

N
2
W = argmin Z (qubi — yl)

weRd i=1
— argmin (Kw —Y)" (Kw —Y)
weR?
= argmin | Kw — Y|3, (3.4)
weRd
where the squared error is used as loss function and f () = 1 T¢. Note that other loss

functions could be used, but the matrix form formulation may not be as straightforward as in
the case of the squared loss. Additionally, a regularization term R (w) (see Equation (3.2))
is often added within the minimization in Equation (3.4) to control the complexity of the
model. Such modifications of the linear regression method are not covered here.

Fitting the model to the data, i.e., finding the model parameters w with Equation (3.4),
is formulated as a minimization problem that can be solved quite easily. Indeed, under
mild conditions (among others that the matrix K has rank d), the minimized function has
a positive-definite Hessian matrix, which implies that the function is convex, and, hence,
possesses a unique minimizer. Setting the first derivative of the loss function to 0 yields

-1
W= (KTK> K'Y,

which expresses the solution of linear regression as a simple product of matrices (see, e.g.,
Hastie et al., 2009).

In statistics, this approach to estimate the parameters w (augmented with a few assump-
tions on the data) is known as the ordinary least squares method. Note that Equation (3.4)



3.2. THE REGRESSION PROBLEM 35

is written when it is assumed that the entire dataset is available at learning time. This cor-
responds to batch linear regression. It is also possible to easily adapt linear regression to the
online learning setting by, for instance, applying stochastic gradient descent to Equation (3.4).
In that case, each term of the sum is minimized separately, as the data arrives. We omit the
particulars here.

Among other advantages, linear regression is a simple method in many aspects. It is easy
to understand, to train, and to use, and both training and prediction are computationally
efficient. On the downside, the assumptions (linear dependency between the inputs and the
output) are very strong and much likely to be incorrect in many practical cases. Obviously,
if the assumed model strongly differs from the real function that generates the data, learning
such a model does not make much sense. In this respect, the features are of utmost im-
portance since linear regression can only model linear dependencies between the inputs and
the output. The features must thus be chosen such that the output is linearly dependent
on them. Actually, the features are probably the most critical factor that conditions the
performance of the method. Additionally, other aspects, like the scale of the features, can
hinder the performance of linear regression. These issues illustrate that the simplicity of the
method comes at a cost: modeling complex input-output relationships is possible only if the
features are designed by keeping in mind the limitations of the method. In the end, choosing
or developing features that work well with linear regression may overweigh the benefits of
using such a simple method. Besides the features, numerical aspects are another potential
issue of linear regression. Indeed, the stability and the relevance of the results significantly
depend on the data and, more specifically, on how well the matrix K is conditioned. If K is
ill-conditioned, the solution is usually very sensitive to perturbations in the data, e.g., noise,
and the results may consequently be unexploitable because a small change in the data (either
in K or in Y) can yield a totally different solution. When such situations arise, using a
regularized version of linear regression (see Equation (3.2)) often improves the conditioning
(and, hence, the stability) of the method. Ridge regression is an example of regularized linear
regression. In the case of ridge regression, Equation (3.4) becomes

W = argmin | Kw — Y3 + | Tw|3,
weR4
where T is called the Tikhonov matrix and is often a multiple of the identity matrix, i.e.,
I' = M. Like traditional linear regression, ridge regression possesses an analytical solution,
given by

—1
W= (KTK +I‘TI‘> K'Y,

with the difference that the conditioning is improved due to the presence of I' (Hastie et al.,
2009). Intuitively, the effect of regularization in ridge regression is to favor small weights w
since one component of the minimization is the Ls-norm of a multiple of the weight vector.
Besides ridge regression, there exist other types of regularization that improve the conditioning
of matrix K and that have different effects on the solution (e.g., favor sparse solutions), but
these other methods are not discussed here.

Despite a few shortcomings, linear regression is a good learning algorithm (because of
its simplicity) that may not produce the best prediction results but that is often used as a
first tool to tackle new problems. Indeed, in the context of machine learning, it is typically
appropriate to try simple methods first and to move on to more complicated approaches when
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required, in order to avoid as much as possible overfitting issues. In general, machine learners
like to apply the ‘Occam’s razor’ principle, which states that the simplest explanation is often
the best one. The interpretation of this principle in terms of machine learning implies that
simple models should be preferred when possible.

3.2.2 Regression trees

When simple methods like linear regression are not enough, one can resort to more complicated
learning techniques. This section focuses on the description of regression trees that, despite
their conceptual simplicity, are, in many aspects, a very powerful approach. We first present
the single regression tree approach, before briefly describing, in Section 3.2.3, more advanced
approaches that involve ensembles of trees.

A regression tree is a powerful and versatile learning technique that uses (in general)
hyperplanes to partition the input space, i.e., the feature space, into several regions. The idea
is to partition the input space into regions within which the behavior of the studied system
is simple enough. A region is typically defined by a collection of inequalities of the form
¢(j) < tor ¢(j) > t, where ¢(j) and t are referred to as the splitting variable and the split
point, respectively (Hastie et al., 2009). Each region thus represents a part of the feature
space where the dynamics of the initial system are easier to approximate than when the
entire input space is considered as a whole. In each region, a simple model (e.g., a constant)
is learned in order to approximate the system in that particular part of the input space.

The rationale behind the concept of the regression tree is conceptually simple but remains
extremely powerful. Furthermore, regression trees can cope with both numerical and categor-
ical inputs, and can be used for both classification and regression. An example of a regression
tree is depicted in Figure 3.3.

We now focus on the training of regression trees in the simplest case where the model used
in each region is a constant. Assuming that the feature space is partitioned into m regions
denoted Ry, Ry, ..., Ry, the prediction f (¢) of an arbitrary regression tree corresponding to
an input vector ¢ is given by

F(@)=> al(peRy), (3.5)

k=1

where ¢j is a constant associated with region Ry, and I (¢ € Ry) is an indicator function
whose value is 1 if ¢ belongs to region Ry and 0 otherwise. Similarly to the linear regression
case, our aim is to build the function f (@), of the form of Equation (3.5), such that a loss,
say the squared loss, is minimized over our training set D = {(¢;, yi)}ﬁil, ie.,

N
f () = argmin ) — ,~2, .
/() = argm ;um) yi) (3.6)

where F is the set of functions that can be written as in Equation (3.5).

In order to build the tree, the algorithm has to automatically find the splitting variables
and split points in order to define the regions Rj. The constants c¢; corresponding to each
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Figure 3.3: Regression tree example. This example provides a training set, a regression tree
learned from the given data, and a table showing which training example goes into which leaf
of the tree. When a new output value y has to be predicted for a given input vector ¢, this
input vector is fed at the root of the tree and then travels down the tree until it reaches a

leaf. The predicted value is then the ¢ value corresponding to the reached leaf.



38 CHAPTER 3. UNDERSTANDING MACHINE LEARNING

region are easy to find. Indeed, differentiating the loss in each region and setting the derivative
to 0 leads to constants ¢ that are given by (in the case of the squared loss)

_ Zz]\i1 yil (¢z € Rk)
Zij\il I(¢; € Ry) 7

which corresponds to the average of the output values y; of the observations ¢, belonging to
region Ry. The constants c; can thus be easily computed once the structure of the tree is

fixed.

Unfortunately, finding the tree structure that minimizes the total loss given in Equa-
tion (3.6) is a very hard problem (Hastie et al., 2009). Instead of searching for the global
optimum, the tree learning algorithm proceeds in a greedy manner to find a simple local
optimum. Starting from the root node with the entire dataset, the algorithm needs to find
a split, i.e., a splitting variable j* and a split point ¢*, that partitions the initial input space
into two regions

Ri(55 1) ={@|¢(") <t*} and R,(j%, 1) = {&|P(j") > '},

such that the total local loss is minimized. In mathematical terms, this corresponds to finding
j* and t* such that

(j*7t*) = argmin Z (yl - Cl(j, t))Q + Z (yl - c?"(j7 t))Q (37)

it ) ) ) )
J i:p; ER1(j,t) i:p; €Rr(j,t)

with

Yoy vil (¢ € Riji 1)) Yoy vil (@ € Relji 1))

S (¢ € Ra(ii1)) S (¢ € Re(i,))

where ¢;(j,t) and ¢,(j,t) correspond to the averages of the output values y of the training
observations belonging to R;(j,t) and R,(j,t), respectively. For a given splitting variable j,
the optimal split point ¢ can be found somewhat efficiently provided that the data points
(¢;, ;) are sorted according to ¢(j). Since finding the optimal ¢ for a given j is easy, the
optimal pair (j*,¢*) can thus be determined by evaluating the function to minimize for each
possible splitting variable. Once the optimal split is known, the initial dataset is partitioned
into two new datasets according to the optimal splitting variable and optimal split point. The
algorithm then applies the same procedure, i.e., finding the optimal split and partitioning the
dataset, for the datasets resulting from the previous split. In that way, a regression tree is
grown where each node corresponds to a region defined by a group of splits. The regions
appearing in the prediction function defined by Equation (3.5) correspond to the regions
defined by the leaves of the tree, i.e., the tree has m leaves that partition the input space in
R1, Ro, ..., R;,. Note that the inner nodes are not part of the prediction procedure itself,
but are used to efficiently find the leaf corresponding to an input vector ¢.

Cl(j,t) = and Cr(j7t) =

The previous paragraph describes how the tree is grown starting from its root. The natural
question that arises now concerns the stopping criterion. When should the previous algorithm
stop, or, in other words, how large should the tree be? A tree that is too small may miss
important dynamics appearing in the data, while an oversized tree may overfit the training
data. The size of the tree, i.e., the number of nodes, is traditionally regarded as an image of
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the complexity of the model. Finding a good balance between the fitting of the dataset and
the tree complexity is thus an important aspect of the method. A simple approach to limit
the size of the tree consists in forbidding splits of a node if the optimal split induces a decrease
in the considered loss that is not significant enough. Another approach consists in preventing
splits of nodes whose number of elements is below a certain threshold nyi,. A more advanced
approach to control the complexity of the method consists in growing large trees capturing
the dynamics of the data in a very detailed manner and then pruning the resulting trees, i.e.,
removing nodes, in order to reduce the complexity of the model. The details of the pruning
procedure are left out of this manuscript. We refer the reader to, e.g., Hastie et al. (2009) for
more information on this issue.

Regression trees have the advantage that they are simple to understand, to train and
to use. Additionally, they can be very accurate, i.e., achieve small losses, provided that a
large enough dataset is available. On the downside, regression trees are said to have a high
variance. Indeed, the learning procedure is heavily dependent on the training set and small
changes in the data can produce radically different trees. Additionally, a potential issue may
arise regarding the prediction time: regression trees are not the most stable learning models
when it comes to prediction time. Indeed, predicting an output value for a given input is
achieved by traversing the learned tree. Because the trees may be unbalanced and because the
predictions can take different paths down the tree, the prediction time can differ significantly
between two different inputs. By comparison, the linear regression method is much more
stable: prediction consists in computing an inner product between the weights and the input,
which will be equivalent for all predictions whatever the input.

3.2.3 Ensemble of regression trees

As mentioned in the previous section, one of the major drawbacks of regression trees is their
high variance: a small change in the training data can possibly yield completely different
regression trees. The wording ‘high variance’ is thus used because of the sensitivity of the
method to the training set. Fortunately, there are solutions to decrease the variance of tree-
based methods and, therefore, to increase their robustness. We concisely describe here two
methods, namely the ‘random forests’ and the ‘extremely randomized trees’, that favorably
replace single regression trees in many practical applications. Before detailing the differences
between the traditional regression trees and these two more advanced methods, we first define
the so-called ensemble learning paradigm and the bagging approach.

Ensemble methods and bagging

Ensemble learning is a machine learning paradigm that leverages the so-called ‘wisdom of
crowds’ in the context of machine learning. More specifically, ensemble learning consists in
combining a set of learning methods in order to achieve higher predictive power. There exist
several implementations of this principle, but we focus here solely on bagging.

Bagging (Breiman, 1996), also known as bootstrap aggregation, is an ensemble approach
whose primary goal is to increase the stability of learning algorithms (Hastie et al., 2009).
More specifically, bagging averages the output of many relatively unbiased models in order
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to reduce the variance of the averaged model. The bagging procedure is composed of two
steps. First, M random datasets denoted D; are generated by sampling (uniformly with
replacement) from the initial dataset Dy ain. These datasets are often called bootstrap samples
or bootstrapped datasets. Second, a single learning algorithm is applied separately on each
bootstrap sample in order to yield M different models f;, with ¢ = 1,..., M. The models are
then aggregated and the prediction of the aggregated model for a given input ¢ is given by

1 M
favg(¢) = MZfz(d))
i=1

Bagging is especially well-suited for learning algorithms that have low bias and high vari-
ance. Because they comply with these requirements, regression trees are natural candidates
to be used with bagging.

The claim of bagging is that the aggregated model fuyg(-) is better than the individual
models f;(+). In order to understand why bagging is useful, we report Hastie et al. (2009)’s
explanation. Let us assume that the output of a model for a given input ¢ can be regarded
as a random variable with mean p and variance o2. The real output corresponding to input
¢ is approximately equal to p since we assume that the models have low bias. Assume now
that we have M different models f;(), with i = 1,..., M, whose outputs, for the same input
¢, all have the same mean p and the same variance 0. The average of the fi(-), i.e., favg(*),
is a random variable since the sum of M random variables is still a random variable. The
mean of the aggregated model faye(¢p) remains equal to p, which is close to the real output.
However, the theory of statistics tells us that the variance of fag(¢), denoted agvg, is now
given by

2

1—
02 = po? + —Lo?

M )

where p is the (positive) pairwise correlation between the M individual models. If the models
are independent from each other, the correlation p is equal to 0 and the variance of the
aggregated model converges to 0 as the number of models increases. However, since it is in
general not possible to assume that the models are uncorrelated, there is a residual amount
of variance (po?) that bagging cannot eliminate, even if an infinite number of models are
aggregated.

The expression of agvg clearly shows that, when M increases, the resulting variance of the

aggregated model decreases. Since the predictive power of a model is usually a decreasing
function of the variance, it is easy to see why the aggregated model obtained with the bagging
procedure is indeed an improvement over the individual models. In the general case where
the bootstrap models are correlated, decreasing their correlation is a way to further improve
the efficiency of bagging.

Random forests

The ‘random forests’ method (Breiman, 2001) proposes to combine bagging with regression
trees. A random forests model is thus composed of M regression trees, each one of them
trained on a different bootstrap sample. The prediction is obtained by averaging the predic-
tions of the individual trees. The major innovation of the random forests lies in a simple trick
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that decorrelates the different bootstrap models in order to reduce the correlation p between
the individual models. Random forests are simple to train and to tune and their performance
is traditionally very good (Hastie et al., 2009).

As stated, the random forests try to build M uncorrelated trees. This uncorrelation is
achieved through randomization of the training process. Indeed, the random forests, unlike
traditional regression trees, consider, at each node, only a random subset of the features
as splitting candidates (see Section 3.2.2). More specifically, only m < d candidates are
considered at each node, and these m candidates are randomly selected among the d features.
In the regression case, a typical value for m is v/d. Apart from the bootstrap sample and
the random selection of the candidate splitting variables, all other aspects of the tree growing
procedure are analogous to the growing procedure of traditional regression trees. In particular,
the split point is chosen so as to minimize some loss (see Equation (3.7), Section 3.2.2).

Remark The bagging approach and the randomized training procedure participate together
in the reduction of the variance ngg of the global method through the increase of M and
decrease of p, respectively. It is to be noted, however, that reducing the correlation is achieved
at the expense of the variance of the individual models. Indeed, randomizing the tree growing
procedure actually increases the variance of the individual regression trees. If the variance of
a traditional regression tree is afrad and the variance of a randomized regression tree is afand,
the relationship

2 2
Otrad < Orand

holds in general (Hastie et al., 2009). The hope is naturally that this variance increase is
counterbalanced by the reduction of p in order to yield a global method that is better than
the one obtained when no randomization is performed.

Extremely randomized trees

The ‘extremely randomized trees’ (Geurts et al., 2006) take the founding ideas behind random
forests even further. As their name indicates, extremely randomized trees, or ExtraTrees,
are even more randomized than random forests. There are two main differences between
ExtraTrees and random forests that we detail in what follows.

First, in addition to randomly selecting the splitting candidates, the ExtraTrees also ran-
domize the choice of the split point for each splitting variable. More specifically, when a
random subset of the features is generated at each node of the individual trees, a random
split point is drawn for each feature in the random subset from a uniform distribution be-
tween ¢; and qﬁj, where ¢, and qﬁf represent the minimum and maximum values of feature 4
in the training set available at the current node, respectively. The splitting variable is then
chosen among the randomly selected candidates as the variable for which the random split
minimizes a given loss.

The second difference between both methods is that each individual tree is grown using
the entire training set in the ExtraTrees approach, while the individual trees are trained on
bootstrap replicas in the case of random forests. The motivation of this choice lies in the
impact that using bootstrap replicas has on the accuracy of ExtraTrees. The performance of
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ExtraTrees tends indeed to decrease when bootstrap replicas are used instead of the complete
learning dataset to grow the individual trees (Geurts et al., 2006).

Note that the remark formulated for the random forests (regarding the variance increase)
also applies to extremely randomized trees.



Chapter 4

Machine learning for variable
branching in branch-and-bound

The contents of this chapter are mainly reproductions of two pieces of work published on-
line (Marcos Alvarez et al., 2014, 2016).

4.1 Introduction

In this chapter, we address binary mixed-integer linear programming (MILP) problems of the
form (2.7). As detailed in Section 2.3.2, the branch-and-bound algorithm (Land and Doig,
1960), also referred to as B&B, is the method of choice when it comes to solving such prob-
lems. The description given in Section 2.3.2 focuses on the essential components of B&B.
However, as briefly mentioned, there exist numerous additional features, such as cutting
planes, presolve, heuristics, and advanced branching strategies, that can be added to the
algorithm in order to improve its performance (Achterberg and Wunderling, 2013). Among
those additional features, branching, i.e., the process that divides the feasible region into two
or more subproblems, is probably the key component that most conditions the efficiency of
the solver (Achterberg and Wunderling, 2013).

Branching strategies have been extensively studied in the literature and we briefly review
here some key contributions to that field. The simplest criterion, known as most-infeasible
branching, consists in branching on the variable that has the greatest fractional part, i.e., the
variable whose fractional part is closest to 0.5. However, most-infeasible branching is known to
perform poorly in practice and other methods, such as pseudocost branching (Benichou et al.,
1971), have been developed later. Pseudocost branching keeps a history of the dual bound
increases observed during previous branchings and uses this information to estimate the dual
bound improvements for each candidate variable at the current node. Although pseudocost
branching is very efficient in terms of computation time, the branchings performed at the very
beginning of the B&B tree might be inefficient, as no reliable history has been recorded at
that time. Later, Applegate et al. (1995) proposed a strategy, known as strong branching, that
overcomes this limitation. Strong branching explicitly evaluates the dual bound increase for
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each fractional variable by actually computing the LP relaxations resulting from the branch-
ing on that variable. The variable that leads to the largest increase is chosen as branching
variable at the current node. Despite its apparent simplicity, strong branching is, up to now,
the most efficient branching strategy in terms of the number of nodes in the B&B tree. How-
ever, this efficiency is achieved at the expense of computation time and strong branching is
unfortunately intractable in practice. More recently, Achterberg et al. (2005) proposed to
combine the advantages of both pseudocost and strong branching in a branching strategy
called reliability branching. Many other branching strategies have been developed for the
past 15 years, such as inference branching (Li and Anbulagan, 1997), non-chimerical branch-
ing (Fischetti and Monaci, 2012b), active constraint branching (Patel and Chinneck, 2007),
and cloud branching (Berthold and Salvagnin, 2013), but their thorough description is beyond
the scope of this work. Finally, let us mention hybrid branching (Achterberg and Berthold,
2009), which is probably today’s state-of-the-art branching strategy. Hybrid branching effi-
ciently combines five scores obtained from other common branching strategies and is used as
the main branching strategy in CPLEX 12.5 (Achterberg and Wunderling, 2013).

Following the ideas introduced by pseudocost branching, researchers have recently started
investigating branching strategies that rely on information collected through multiple B&B
restarts. Backdoor branching (Fischetti and Monaci, 2012a) and information-based branching
(Karzan et al., 2009) are two key contributions to this aspect. The mechanism of these strate-
gies is two-phased. During the first phase, the optimization of the current problem is restarted
from the beginning multiple times and the algorithm collects some statistics about each run.
In the second phase, the real optimization starts, and the harvested information is used to take
efficient branching decisions. The idea behind those methods is to quickly and superficially
explore different parts of the B&B tree and to decide, based on those shallow explorations,
which part it is better to focus on. Finally, let us mention the work of Di Liberto et al.
(2013) who recently proposed a two-phased method that uses machine learning techniques to
switch between several branching heuristics. More specifically, their method learns, during a
first phase, when it is better to apply a given heuristic. During the second phase, i.e., the
optimization per se, their algorithm switches between several branching heuristics based on
the knowledge acquired during the first phase.

There exist numerous branching strategies and choosing one among all that are available
is not easy. In general, the main criterion is the time. Indeed, the primary objective when
solving an optimization problem is to solve it as quickly as possible. When using B&B, the
time T'(P) required to solve a problem P is approximately proportional to the number of
nodes explored by the algorithm, i.e.,

T(P) = tuN(P)7

where t,, and N(P) represent the time required to process one node and the number of nodes
in the optimization tree, respectively. In other words, in order to minimize the optimization
time T'(P), it is important to minimize both the time to process one node and the number of
explored nodes. The ‘efficiency’ of a branching strategy is thus a function of the time needed
to take a branching decision and the size of the resulting B&B tree. In general, there is
often a tradeoff between the time spent to process one node and the ‘quality’ of the resulting
decision, which influences the size of the optimization tree. For instance, the time required to
process one node with most-infeasible branching is very short, i.e., ¢, is very small, but the
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resulting branching decisions are usually poor, i.e., N(P) is large. On the other hand, strong
branching tends to produce small trees, but the processing time of a node is very large.

The idea proposed, detailed, and assessed in this chapter consists in using machine learning
techniques to approximate strong branching decisions without the computational cost of the
normal strong branching approach.

4.2 Proposed approach

4.2.1 Foundation and motivation

A branching heuristic, i.e., a procedure that splits a given problem into several subproblems,
can be formulated in a generic functional form B such that

B:(i,-) = R, (4.1)

where 7 represents the index of the candidate branching variable, and - represents unspecified
arguments of B. The branching variable i* is chosen as the one that maximizes' the scores
given by B, i.e.,
i* = argmax B (i, ) ,
1eF
where F' represents the set of fractional variables (see Section 2.3.2 for a description of the
notations used here).

The functional form B is different for every branching criterion and proposing a new
branching heuristic merely consists in providing a new B, including its implementation and the
specification of its arguments. For instance, in the case of most-infeasible branching (MIB),
Bmin only requires the current fractional solution to output a score for a variable. Then, the
functional form of MIB is written Byp (4, 2') = min (1 — 2}, 2}). Another example is strong
branching, which requires more input arguments, as it needs more information to take a
decision. The functional form of strong branching (SB) is By, (i, c,A b, ac’,l',u’), where 1’
and u’ represent the lower and upper bounds of the variables at the current node, respectively.
The implementation of By, consists in creating two subproblems by changing the upper and
lower bounds of variable ¢ in the current problem to |z}| and [z}], respectively. The LP-
relaxations of the subproblems thus created are then solved, and, for each subproblem, the
difference between the objective value of the subproblem and the objective value of the current
problem is computed. The differences computed for each subproblem represent the objective
increases observed between the current node and the child nodes when tighter bounds are
used for the variable i. The output of By, is finally given by the product? of the computed
differences.

The strength of machine learning (ML) relies on its ability to generalize behaviors observed
on data with very few assumptions needed. This makes it a powerful tool when one wants

1f ties occur, the variable that arrives first in the lexicographical order, i.e., the one with the smallest %, is
chosen.

20ther functions like the sum or the maximum of both objective increases can be used, but the product
generally yields better results.
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to imitate unknown functions for which no, or very little, information is available. The main
requirement is that the machine learning procedure needs a dataset containing input-output
pairs obtained from the function that the ML algorithm is trying to imitate. Those input-
output pairs can be obtained by simulation or through a black-box function, there is no need
to actually know the functional representation of the function to be learned.

Since machine learning techniques (see Section 3.1.1) can be used to approximate (learn)
functions, and since branching can be seen as a function, it seems natural to consider machine
learning as a reasonable way to build a branching strategy. We must stress here that machine
learning does not provide a completely new branching criterion, as it requires the observation
of real branching decisions to actually build a branching function. Rather than providing
a new branching heuristic, machine learning constructs a branching strategy that imitates
the decisions of the branching strategy that generated the dataset D, in our case, strong
branching.

Our goal is to create an efficient approximation of strong branching that could be used in
practice. In other words, we propose to create a branching heuristic B (i, ¢;) such that

B(Z7¢z) ~ Bsb (iac7A7b7 wlallau,) ) (42)

where ¢, is a feature vector describing the state of variable ¢ at the current node of the
optimization tree.

The functions in (4.2) differ in two ways: (i) B is not based on a determined function, but
rather learned from data, and (ii) BB takes as input a feature vector ¢ describing the current
state of the optimization problem. The success of such an approach relies on two aspects: (i)
the learned branching strategy needs to closely approximate the strong branching function,
and (ii) the function B (including the generation of its inputs) needs to be fast to evaluate.

Ideally, the input of the branching function B should be the complete state of the optimiza-
tion problem at the current node plus the current state of the B&B. However, representing
the complete state is often a difficult problem, e.g., because its dimensionality is too big, or
because it contains a lot of irrelevant information. For this reason, in the machine learn-
ing community, the inputs ¢ are usually ‘features’ representing a simplified version of the
considered input. We refer the reader to Section 3.1.5 for further details on the features.
The features are a fundamental component of our approach since they critically determine
the efficiency of learning methods. As they represent only part of the current state of the
task, it is important that the parts described by the features are indeed correlated with the
desired output. For this reason, the features need to be carefully designed and tailored to the
problem of interest. In our case, the feature vector ¢, does not describe the current node of
the B&B tree, but rather describes variable i in the current node. Those features need to be
computationally efficient and have to well represent the problem at the current B&B node
from the perspective of variable i. Section 4.3 explains in more detail how the features are
designed.

4.2.2 Description of the proposed approaches

Our goal is to overcome the large computational overhead resulting from a strong branching
decision by creating a function B that yields branching scores that are close to the real SB
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scores and that is fast to evaluate. Speeding up strong branching-like decisions is not a
new idea, as it is already behind other branching heuristics, such as reliability branching or
non-chimerical branching. In this work, we propose two alternative approaches to create B
that use machine learning techniques in order to imitate the strong branching decisions in an
efficient way.

Offline learning of strong branching decisions

First, we propose a two-phased approach that yields a ‘learned’ branching strategy denoted
by Biearned that can be used within B&B as a proxy to strong branching (SB). The first phase
involves optimizing a set of training problems with strong branching as branching heuristic
in order to generate a set of branching decisions. During this phase, each branching decision
is recorded in a dataset, called training set, that will then be used by a machine learning
algorithm to learn a function imitating SB decisions, i.e., Bjearned- In the second phase, we
introduce, as any other branching heuristic, Biearneq into B&B and evaluate its efficiency on
a set of test problems. An important characteristic of our approach is that the first phase
needs only to be done once. Indeed, once the branching heuristic Biearneq 1S learned from the
training set, it can be included directly into B&B, without requiring a new training phase
each time a problem needs to be solved. In that sense, we can say that the learning phase can
be done in an offline fashion, thus avoiding useless computational overhead at the beginning
of each optimization.

The idea behind our approach can be seen as a combination of the ideas behind reliabil-
ity branching and information-based branching. On the one hand, our approach is similar
to reliability branching in the sense that we want to find a fast proxy to strong branching.
However, the approaches differ in the means by which the information is collected, and in
how the information is used. On the other hand, our approach is similar to information-based
branching in the sense that it tries to use general information collected during a preliminary
phase in order to improve the performance of the current optimization. In both cases, the
idea is to gain a wide overview of the optimization and to use this overview to take sen-
sible branching decisions. The main difference appears in the way information is collected:
information-based branching harvests information through multiple restarts on the same prob-
lem, while our method collects optimization information obtained through the optimization
of a set of different optimization problems. Another important difference is that, in the case
of information-based branching, the collection phase needs to be done for each problem to
optimize, while our approach only requires the information to be collected once. This method
is detailed in Section 4.4.

Online learning of strong branching decisions

Second, in an attempt to push further the ideas proposed by the previous information-based
branching strategies, we present an approach that combines the ideas behind our first proposed
approach, i.e., learned branching Bjearmed, and reliability branching (Achterberg et al., 2005).
More specifically, the proposed method uses online learning algorithms to learn a proxy to
strong branching (SB). The idea is similar to the first approach that we propose in the sense
that the goal is to take SB-like decisions without the computational cost induced by the
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evaluation of the real SB scores. However, in this case, the learning is performed in an online
manner, during the course of the optimization, which alleviates some important shortcomings
of the previous approach. Indeed, since the learning is made online, no preliminary phase is
required in order to learn the proxy and no computing time is thus wasted in such a step.
Additionally, the learned function is really tailored to the studied problem rendering some
previous machine learning (ML) concerns obsolete. Moreover, our method uses a reliability
mechanism similar to that of reliability branching (Achterberg et al., 2005) to decide how the
SB score is going to be computed.

Technically speaking, this method uses SB scores in order to rank the possible branching
variables. The candidate with the largest score is chosen as branching variable. These scores
can be computed in two ways: either through the normal SB procedure, i.e., by computing
B (i, c, A, bz’ U, u’), or thanks to our learned proxy function Bgy, (4, ¢;). More specifically,
if the approximation of the SB score for a candidate variable, i.e., Bop (i, ¢;), is deemed
unreliable, the real SB score is used and, conversely, if the approximation is trusted for that
variable, the learned proxy is used to generate the score in place of the real SB function. The
proxy function By (i, ¢;) is expected to yield approximate SB scores that are close enough
to the real scores, i.e.,

Bolb (17 qb@) ~ Bsb (Za C, A, ba x/a l/a ul) 9

but in a much shorter amount of time than the real SB procedure. The SB proxy is learned in
an online fashion because the data used to train the function is generated during the course
of the B&B. We detail this idea in Section 4.5.

4.3 Feature description of an optimization variable

The features are the key component of our approach, since they critically condition the
efficiency of the method. On the one hand, the features need to be complete and precise in
order to describe the subproblem as accurately as possible. On the other hand, they need to
be efficient to compute. It is important to keep this tradeoff in mind, because there are many
good features that could have a very positive impact on the efficiency of the method, but that
are too expensive to compute. An example of such features is the objective increase obtained
when branching is performed on a variable, i.e., the numbers that are actually used by strong
branching to take a decision. Such features cannot be used in our approach, because of the
huge computational overhead required by their computation.

The features ¢; that we describe assume that the problem is in the canonical form (2.7).
Each feature vector ¢, is computed for variable ¢ at the current node and represents the
proper input for the functions Biearmed and Bg,. The features are divided into three subsets
representing different aspects of the state of the current problem in the optimization, namely
‘static problem features’, ‘dynamic problem features’ and ‘dynamic optimization features’.

Before describing the features that we use, we need to emphasize the three properties that
these features should have. The proposed features might seem a bit twisted and counter-
intuitive, but they have been designed such that the following requirements are fulfilled. If
they are not, the methods will in general yield poor performance (the requirements are less
crucial in the case of the online method By, that we propose).
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These requirements are as follows:

1. the number of features needs to be independent of the size of the problem instance.
Indeed, most learning algorithms can cope only with datasets in which all the feature
vectors ¢, have the same number of elements. If this number depends on the size of the
problem, a different branching strategy must be learned for each problem size. This is
of course an impractical situation, and enforcing the size-independency is the best way
to obtain a single learned branching strategy that can be used for any problem size.
This might seem a straightforward requirement, but the size-independency is not trivial
to achieve. Elementary features such as ¢, A or b cannot be used directly in this case.

2. the features should be invariant with respect to irrelevant changes in the problem, such
as row or column permutation.

3. the developed features need to be independent of the scale of the problem, i.e., if the
parameters (¢, A, and b) are multiplied by some factor, the features should remain
identical.

Note that Hutter et al. (2014) recently introduced a certain number of features describing
MIP problems. Beside a few of them, their features are by nature different and do not relate
directly to the ones proposed in this paper. Additionally, since ML in this paper and in
Hutter et al. (2014)’s paper targets distinct goals, the features that are relevant for each task
are likely to be different.

4.3.1 Static problem features

The first set of features is computed from the sole parameters ¢, A, and b. These features
are calculated once and for all and they represent some static information about the problem.
Their goal is to give an overall description of variable i in the problem. These features are
designed such that the aforementioned requirements are fulfilled.

The first three of them are devoted to the description of the current variable in terms
of the cost function. Besides the sign of the element c¢;, we also use [ /3 ;.. 5o lck| and
\¢il / 2 k.c,.<0 |ck|. Distinguishing both is important, because the sign of the coefficient in the
cost function is of utmost importance for evaluating the impact of a variable on the value of
the objective function.

The second class of static features is meant to represent the influence of the coefficients
of variable i in the coefficient matrix A. We develop three measures, namely M jl, M ]2, and
M ]3 , that describe variable ¢ within the problem in terms of the constraint j. Once the values
of the measures M; are computed for variable ¢ and each constraint j, the corresponding
features added to the feature vector ¢ are given by min; M; and max; M; (these values are
not included as is, but rather as two features: one representing the sign of the value and the
other one being its absolute value). The rationale behind this choice is that, when it comes
to describing the constraints of a given problem, only the extreme values are relevant.

The first measure M jl is composed of two parts: M ]-H computed by Aj;/ |b;|, Vj such that
b; > 0, and Mjl* computed by Aj;/ |b;|, Vj such that b; < 0. The minimum and maximum



50 CHAPTER 4. MACHINE LEARNING FOR VARIABLE BRANCHING

values of M jH and M jlf are used as features, to indicate by how much a variable contributes
to the constraint violations.

Measure M ]2 models the relationship between the cost of a variable and the coefficients of
the same variable in the constraints. Similarly to the first measure, M JQ is split in M j2+ =
|ci| /Aji, V5 with ¢; > 0, and Mf* = |¢i| JAj;, Vi with ¢; < 0. As for the previous measure,
the feature vector ¢ contains both the minimum and the maximum values of M j2+ and M ]2_.

Finally, the third measure M jg represents the inter-variable relationships within the con-
straints. The measure is split into two parts M3t and M3~ that are given by

Asil | Al
M3+:—| 2t and M3~ = ——2%
I Zk:Ajkzo |Ajk| ’ J Zk:Ajk<0 |Ajk|

M;"" is in turn divided in M;"H' and M;H'_ that are calculated using the formula of M;H'
for Aj;; > 0 and Aj; < 0, respectively. The same splitting is performed for M;’_. Again,
the minimum and maximum of the four M 33 computed for all constraints are added to the
features.

The static features are listed in Table 4.1. Measures M', M?, and M3 correspond to the
features 4-11, 12-19, and 20-35 of Table 4.1, respectively.

4.3.2 Dynamic problem features

The second type of features is related to the solution of the problem at the current B&B
node. These features are listed in Table 4.2.

These features contain the proportion of fixed variables at the current solution, the frac-
tionality of variable i, the up and down Driebeek penalties (Driebeek, 1966) corresponding
to variable i, normalized by the objective value o' at the current node. Furthermore, the
sensitivity range of the objective function coefficient of variable i, normalized by |¢;|, as well
as the sensitivity range of the right hand size coefficient b, (also normalized) are added to
the features, where r is the index of the row corresponding to the leaving basic variable when
variable i is entering the basis. Finally, the slack variable and the dual variable corresponding
to row r are also added to the features.

Note that some values are added both in their natural scale and in a logarithmic scale to
cope with different amplitudes that depend on the problem.

4.3.3 Dynamic optimization features

The last set of features used to describe variable ¢ within the B&B tree is meant to repre-
sent the overall impact of variable ¢ on the optimization. These features summarize global
information that is not available from the single current node. They are listed in Table 4.3.

When branching is performed on a variable, the objective increases are stored for that
variable. From these numbers, we extract statistics for each variable: the minimum, the max-
imum, the mean, the standard deviation, and the quartiles of the objective increases. These
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Feat. # | Description

1 sign ¢;

2-3 €l / 2kt mee >0 1k 5 61/ 2o pmt niep<o €Kl

4-5 sign {[ min; max ]j:l...m:bjzo Ajl-/|bj|}

6-7 [ min; max ]j:l...m:ijO Aji/\bj’

89 | sign {[ ming max Jj_y_p, <o Aji/ b}

10-11 [ min; max ]j:l...m:bj<0 Aji/bj]

12-13 sign {[ min; max ]j:l...m |cl-|/Aji} (if ¢; > 0,else [0;0])
14-15 [ min; max ]j:l...m lcil /A (if¢; >0, else [-1;-1])
16-17 sign {[ min; max J;_; ,, \ci]/Aji} (ife; <0,else [0;0])
18-19 [ min; max |,_; . |ei|/Aj (if¢; <0, else [-1;-1])
20-21 sign {[ min; max ]j:l...m:AjiEO Aji/ <Zk=1...n:Ajk20 ‘AJ’?D}

22-23 [ min; max [,y 450 Aji/ <Zk;:1...n:Ajk20 |Ajk|)

24-25 sign {[ min; max J;_y .4 >0 Aji/ <Zk;:1...n:z4jk<0 |Ajk|>}

26-27 [ min; max ;4050 Aji/ <Zk:1...n:A]~k<0 |Ajk|)

28-29 sign {[ min; max ]j:l...m:Aji<0 Aji/ <Zk=1...n:Ajk20 ‘AJ’?D}

30-31 [ min; max [,y .4, <0 Aji/ <Zk:1...n:A]~k20 \Ajk\)

32-33 sign {[ min; max ]j:l...m:Aji<0 Ajif <Zk;:1...n:z4jk<0 ‘Ajk’>}

34-35 [ min; max [,y a0 <0 Aji/ <Zk;:1...n:Ajk<0 |Ajk|)

Table 4.1: Static features used to describe variable i at a given node of the B&B. To avoid
repetitions, we use brackets to indicate that several features are obtained with the same
expression by simply changing a small element. For instance, 3 + [ a; b | indicates that two
features are computed with this expression: one is 3 + a and the other is 3 + b.
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Feat. # | Description

36 depth of the current node / number of integer variables

37| min(a] - o), [a)] - a)

38-40 log( [ down; up; down+up Driebeek penalties normalized by o' ])
41-43 [ down; up; down x up Driebeek penalties normalized by o’ |
44-46 sign ([ (G c?enJr ])

1748 | log (¢ — &) /leil) 5 log (€ — )/l

49-51 | sign ([ 55 by b )

52-53 | log ((br — b ") /Iby]) ; log (B3 — by) /[by )

54 slack variable used in constraint r

55 dual variable corresponding to constraint r

Table 4.2: Dynamic problem features used to describe variable i at a given node of the B&B.
Index r represents the row corresponding to the leaving basic variable when variable 7 is
entering the basis. To avoid repetitions, we use brackets to indicate that several features
are obtained with the same expression by simply changing a small element. For instance,
3 + [ a; b] indicates that two features are computed with this expression: one is 3 + a and
the other is 3 + 0.

statistics are used as features to describe the variable for which they were computed. As those
features should be independent of the scale of the problem, we divide each objective increase
by the objective value at the current node, such that the computed statistics correspond to
the relative objective increase for each variable.

Finally, the last feature added to this subset is the number of times variable 7 has been
chosen as branching variable, normalized by the total number of branchings performed.
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Feat. # | Description

56-59 [ mean; std; min; max ] of the observed objective increases for variable i
60 number of times B&B branched on ¢ / total number of branchings
61-64 quartiles of the observed objective increases for variable ¢

Table 4.3: Dynamic optimization features used to describe variable ¢ at a given node of the
B&B. To avoid repetitions, we use brackets to indicate that several features are obtained with
the same expression by simply changing a small element. For instance, 3 4 [ a; b | indicates
that two features are computed with this expression: one is 3 4+ a and the other is 3 + b.

4.4 Batch learning of strong branching decisions

This section details how strong branching can be approximated with a batch learning proce-
dure. We first describe the method per se and then present some experiments and results.
We finally discuss some aspects of the method in the last part of the section.

4.4.1 Learning branching decisions in a batch setting

Creating a new branching heuristic merely consists in providing an implementation of the
branching function B (see Equation (4.1)). The first method that we propose provides a
function Biearned (7, ;) that is learned in an offline fashion (batch learning) and then inserted
into B&B to select the branching variables. The definition of the features ¢ used to describe
a given variable is a prerequisite in order to apply this method. These features are detailed
in the previous section.

Once the features are known, the procedure to create Bijearmeq starts with the generation
of a dataset containing input-output observations of the system we want to model. In our
case, we want the input to be a variable (or, more specifically, a feature description of a
variable) and the output to be the corresponding strong branching score. When the dataset
is generated, it can be fed to a machine learning algorithm that learns a model able to predict
the output corresponding to a given input. The branching heuristic Biearned corresponds to
this model trained on the generated dataset.

We now detail the dataset generation procedure and give some details regarding the learn-
ing algorithm used on the generated dataset.

Dataset generation

As explained in Section 3.1.1, supervised learning algorithms need a dataset in order to learn
a function. Such a dataset is not available in our case, one must thus be generated so that our
procedure can be applied. The first step towards the creation of Bjearneq With a supervised
machine learning technique is thus to generate such a dataset from which the function can be
learned.

In order to create a training set of pairs (¢;, y;) that can be used for learning, we optimize
the problems contained in some sets, which we call training problems, with B&B using strong
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branching as branching heuristic. At each node explored by B&B during the optimization of
those problems, the strong branching score Bgp (z’, c,A,b,x' I, u ) = y; is computed for each
fractional variable ¢ € F' together with the features ¢, associated with that variable. These
features-score pairs are then saved in a dataset Dy}, which is then used as input of the learning
algorithm to generate the learned branching strategy. Note that, for the sake of simplicity,
we explain the method as if we predict the strong branching score. This is not entirely true.
Indeed, for scaling reasons imposed by the learning procedure, we rather include in the dataset
(and, thus, predict) the logarithm of the relative SB score. The relative SB score is obtained
by taking the product of the objective increases induced by a given branching, divided by the
absolute value of the LP objective at the current node. This transformation does not change
the branching decisions of SB, but renders the learning problem much easier.

The problems that are used to train Bjeameq are detailed in Section 4.4.2.

Machine learning algorithm

Once the features are designed to correctly describe each variable of the problem, and once
a dataset of input-output pairs is available, a machine learning algorithm can be applied to
learn a function from the available data.

In this work, we use Eztremely Randomized Trees (Geurts et al., 2006), or ExtraTrees,
that are a learning method based on an ensemble of regression trees. Our choice is motivated
by the simplicity and the robustness of ExtraTrees. Indeed, the performance of ExtraTrees is
very robust against the choice of their parameters and the default parameter values work very
well in practice (see Geurts et al., 2006). We refer the reader to Section 3.2.3 for a complete
description of ExtraTrees.

Applying the ExtraTrees to the available dataset is straightforward and yields Biearned,
a function that takes as argument an input vector describing a variable in an optimization
problem and that outputs an approximation of the SB score. The function Bijearmeq can then
be used without effort within B&B in place of the normal strong branching function Bgy,.

4.4.2 Experiments

This section describes the experimental procedure that we set up in order to assess the
efficiency of the proposed approach. It is composed of three steps: (1) generate a training
set Dy, using strong branching, (2) learn from Dy, a branching heuristic, and (3) compare the
learned heuristic with other branching strategies on various problems. This section describes
the different problem sets used within our approach as well as the experimental setup.

Problem sets

We use two types of problem sets, namely randomly generated problem sets and standard
benchmark problems from the MIPLIB (Bixby et al., 1996; Achterberg et al., 2006). The
random problem sets are used for both learning (steps 1 and 2) and assessing (step 3) the
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branching strategies, whereas MIPLIB problems are only used for assessment (step 3). The
reasons for using random problems are two-fold.

First, the typical evaluation procedure in machine learning consists in evaluating a function
learned from a dataset on a different dataset. If the function is both learned and evaluated
on the same dataset, the estimated performance might be too optimistic and might thus not
reflect the real performance of the learned function. To prevent this, the datasets are separated
into two parts: the first part is used for learning and the second part is used for assessing the
method. Since the MIPLIB is the traditional evaluation benchmark for MIP methods, and in
order to comply with the machine learning assessment methodology, we decided to use other
problems, i.e., the randomly created problems, to learn our branching heuristic. Note that it
would have been possible to use other techniques, such as k-fold cross validation, to correctly
evaluate the performance of different branching strategies on the MIPLIB without requiring
new problems to be created.

The second reason for using randomly generated problems is that the performance of any
machine learning procedure increases with the size and the variety of the dataset used by the
learning algorithm. In theory, the expected accuracy of the ML procedure over the entire
input space of the learned function is a monotonically increasing function of the size of the
dataset D. As this dataset is created by optimizing a set of problems, increasing the number
of problems in the problem set yields a bigger dataset D. It is thus to our advantage to
consider as many problems as possible to create D.

The problems used in this work are rather small. The small problem size used in our
experiments is justified by the need to observe the entire B&B tree in the dataset D. Indeed,
the learned branching heuristic can only reflect the branching decisions found in the training
set. If the training problems are too big or too difficult to solve, the dataset will only contain
branching decisions observed at the beginning of the B&B tree and will not reflect all the
possible branching decisions. It is thus important that the training set also contains branching
decisions from the very bottom of the B&B tree. This consideration has to be taken into
account when choosing the problems to include in our problem sets. For this reason, the size
of the training problems has to be limited, so that the problems can be solved as much as
possible with strong branching in a reasonable amount of time. Similarly, since the size of
the training problems is limited, so is the size of the test problems.

Random problems We randomly generate three sets of binary and mixed (binary-)integer
minimization problems that each contain two different types of constraints. The possible
constraints are chosen among set covering (SC), multi-knapsack (MKN), bin packing (BP),
and equality constraints (EQ). We generate problems that contain constraints of type BP-EQ),
BP-SC, and MKN-SC. The number of variables, the number of constraints, and the values of
the elements in the matrices ¢, A, and b are randomly generated. More specifically, we first
arbitrarily set some bounds on the number of variables, on the number of constraints, and
on the elements contained in the matrices ¢, A, and b. Then, we generate the parameters
defining the problem with a uniform distribution between the chosen bounds.

The number of variables in these problems is of the order of a couple of hundreds and the
number of constraints is of the order of one hundred. As some of those problems are going to
be used to generate the training set, we randomly split each problem family into a ‘train’ and
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a ‘test’ set. In the end, we have six problem sets: ‘BPEQ_train’, ‘BPEQ_test’, ‘BPSC_train’,
‘BPSC_test’, ‘MKNSC_train’, and ‘MKNSC_test’. The test sets contain 50 problems each,
while the train sets each contain 25. Tables 4.4 and 4.5 summarize statistics about the
randomly generated problems. More specifically, those tables respectively contain the bounds
on the number of variables and on the number of constraints of the problems belonging to
each randomly generated problem set. Remember that, as explained in the previous section,
the generated problems are intentionally kept small. The problem sets are available online?,
or can be provided upon request.

MIPLIB We also compare the proposed branching strategy to other branching strategies
on a problem set composed of benchmark problems from MIPLIB3 (Bixby et al., 1996) and
MIPLIB2003 (Achterberg et al., 2006). We eliminated the non-binary problems and the prob-
lems that were too big in order to match the size of the randomly generated problems (training
problems). The set finally contains 44 problems. Table 4.6 lists the test problems taken from
MIPLIB3 and MIPLIB2003.

Experimental setup

The computations have been performed on a 16-core computer, equipped with two Intel Xeon
E5520 (2.27GHz, 8 cores, and 8MB cache) and 32GB RAM, running CentOS 5.4 and CPLEX
12.2. We ran our experiments on our selection of the MIPLIB problems and on the problem
sets ‘BPEQ_test’, ‘BPSC_test’, and ‘MKNSC_test’, described in Section 4.4.2. The training
set Dy}, is generated from the problem sets ‘BPEQ_train’, ‘BPSC_train’, and ‘MKNSC _train’.

To assess only the performance of the different branching strategies, we disable heuris-
tics, cuts, and presolve in CPLEX (except for the last experiment). For each optimiza-
tion, only one core is made available, so that parallelism is disabled as well. We compare
our approach to five other branching strategies, namely random branching (random), most-
infeasible branching (MIB), non-chimerical branching (NCB) (Fischetti and Monaci, 2012b),
full strong branching (FSB), and reliability branching (RB) (Achterberg et al., 2005). Ran-
dom branching is a branching strategy in which the branching variable is randomly chosen
among the fractional variables. We use the perseverant version of non-chimerical branching
(Fischetti and Monaci, 2012b), and the default parameter values A = 4 and n = 8 for reliabil-
ity branching (Achterberg et al., 2005). Moreover, the strong branching LP-relaxations are
solved to optimality and there is no limit on the number of candidate fractional variables at
each node.

The generated training set Dy, contains around 7 x 107 learning examples. This number
is too large and we thus use only 10° of them, randomly selected without replacement from
the original dataset Dg,. The chosen parameters of ExtraTrees are N = 100, &k = |¢|,
and nmin = 20. More details about the parameters of the ExtraTrees can be found in the
appendices (see Appendix A.2). In this setup and on the considered computers (without
parallelization), learning the branching heuristic takes around 6 minutes. Naturally, this
time can be amortized if the same heuristic is used to optimize several problems and even

3http://www.montefiore.ulg.ac.be/~ama/research.php
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o7

Variables
all bin cont
# prob. min max min max min max
BPEQ_train 25 201 225 150 179 43 54
BPEQ_test 50 193 234 145 185 43 54
BPSC_train 25 109 136 109 136 0 0
BPSC_test 50 109 137 109 137 0 0
MKNSC_train 25 188 358 188 358 0 0
MEKNSC_test 50 185 342 185 342 0 0

Table 4.4: Randomly generated problem sets. ‘all’, ‘bin’, and ‘cont’ indicate the total number,
and the number of binary and continuous variables in the problems, respectively.

Constraints

all EQ BP SC MKN

min max min max min max min max min max
BPEQ_train 94 138 39 50 55 89 0 0 0 0
BPEQ_test 94 135 39 50 53 89 0 0 0 0
BPSC_train 80 110 0 0 50 73 28 40 0 0
BPSC_test 80 112 0 0 50 75 27 39 0 0
MEKNSC_train 108 156 0 0 0 0 61 7 42 84
MEKNSC _test 108 160 0 0 0 0 58 77 43 89

Table 4.5: Randomly generated problem sets.
the total number, and the number of equality, bin packing, set covering, and multi-knapsack
constraints in the problem sets, respectively.

10teams aflow30a

egout fiber
mas76 misc03
modglob nw04

pk1l pp08a

steind4db +tr12-30

aflow40b air03

fixnet6 harp2
misc06 misc07
opt1217 p0033
pp08aCUTS qiu
vpml vpm2

air04 air05
khb05250 1152l1av
mitre mod008
p0201 p0282
rentacar rgn

cap6000

1seu
mod010
p0548

setich

Table 4.6: List of problems (44) from MIPLIB3 and MIPLIB2003.

@ll’, ‘EQ’, ‘BP’, ‘SC7, and ‘MKN’ specify

dcmulti
mas74
mod011
p2756
stein27
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reduced by slightly changing the parameters of the ExtraTrees (at the potential expense of
performance).

Two types of experiments are performed: one where the optimization is stopped early
based on a limit either on the number of explored nodes or on the time spent, and another
one where the problems are solved until optimality however long it takes. For the first
experiment, the rationale behind the two considered limits is to evaluate different aspects of
the branching strategies. When the optimization is limited by the number of explored nodes,
we can compare the branching strategies based on the closed gap* and on the time spent to
actually explore that given number of nodes. This sheds some light on how good a branching
strategy is compared to other branching strategies. In these conditions, FSB is usually the
best in terms of closed gap and the worst in terms of time spent. On the other hand, the time
limit is useful to assess different strategies in practical conditions where the number of nodes
matters less than the time required to solve a problem. The closed gap is also used in that
experiment to assess how far from the optimum the optimization is after a given amount of
time. In this case, FSB is typically outperformed, in terms of closed gap, by other strategies.
The second experiment (without limit) is used to assess all branching strategies in a practical
situation where the problems need to be solved to optimality.

4.4.3 Results

We now present a selection of results comparing our approach to other branching strategies
(random, MIB, NCB, FSB, and RB). Tables 4.7, 4.8, and 4.10 report these results. In these
tables, ‘Cl. Gap’ refers to the closed gap, and ‘S/T’ indicates the number of problems solved
within the provided nodes or time limit, versus the total number of problems. ‘Nodes’ and
‘Time’ respectively represent the number of explored nodes and the time spent (in seconds)
before the optimization either finds the optimal solution, or stops earlier because of one
stopping criterion. Those values are measured separately for each problem and are averaged
in the tables.

In addition to the optimization results reported here, we also present some results related
to the learning aspects of our method. These results are given in Section 4.6.

Experiments with limits

Table 4.7 first shows the results achieved on the random test problem sets for both stopping
criteria. Those results show that our approach succeeds in efficiently imitating FSB. Indeed,
the experiments performed with a limit on the number of nodes show that the closed gap is
only 9% smaller, while the time spent is reduced by 85% compared to FSB. The experiments
with a time limit show that the reduced time required to take a decision allows the learned
strategy to explore more nodes, and to thus further close the gap than FSB. While these
results are encouraging, they are still slightly worse than the results obtained with RB, which
is both closer to FSB and faster than our approach.

“The closed gap (€ [0;1]) is the ratio of the difference between the current dual bound and the objective
value of the initial LP-relaxation, to the difference between the optimal objective value and the objective value
of the initial LP-relaxation. A value close to 1 indicates that the optimization is almost finished.
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In addition to the previously presented branching strategies, Table 4.7 contains one extra
experiment for each family of random problems. The normal learned branching strategy, i.e.,
(nmin = 20, all), is learned based on a dataset containing samples from the three types of
training problems, i.e., BPSC, BPEQ, and MKNSC. We also investigate, for each type of
random problem, the effect of learning the branching strategy from a dataset generated with
training problems of the same type as the target test problems. In other words, when we
test this strategy on the BPSC test problems, the branching rule is learned based on samples
generated with BPSC train problems only, which is indicated in the table by (nmi, = 20, BPSC
only). Overall, the results show that the strategies learned only on the type of problem on
which they are tested perform a bit better than the strategy learned from a dataset containing
a mixture of the three types of problems. This indicates that the approach can benefit
from learning on a specific problem type and that the performance of the learned branching
strategy improves when the problems to optimize are aligned with the problems that are used
to generate the training set.

Table 4.8 then shows the results obtained with a node limit and a time limit on the
MIPLIB problems. For these experiments, we separated the problems that were solved by all
methods from the problems that were not solved by at least one of the compared methods.
Similarly to the results obtained on the random problem sets, the proposed branching strategy
compares favorably with strong branching both on the node limit and time limit experiments.
Nonetheless, the results obtained with the learned branching strategy are still a little below
the results obtained with reliability branching. The results presented here are averaged over
all considered problems. The detailed results for all problems in the MIPLIB set are available
in Appendix A.3.
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Node limit (10° nodes) Time limit (10 min.)

BPSC_test problems S/T ClL Gap Time S/T ClL Gap  Nodes
Random 0/50 0.36 6.73  0/50 0.65 879,696
MIB 0/50 0.39 7.02  0/50 0.68 836,675
NCB 0/50 0.54 11745  0/50 0.66 45,048
FSB 0/50 0.55 243.70  0/50 0.63 27,157
RB 0/50 0.52 2829 1/50 0.77 223,369
Learned (npin = 20, all) 0/50 0.48 56.36  0/50 0.67 112918
Learned (nmin = 20, BPSC only) 0/50 0.51  60.54 0/50 0.70 109,066
BPEQ_test problems

Random 0/50 0.33 1744  0/50 0.55 366,982
MIB 0/50 0.40 1727 0/50 0.61 368,309
NCB 0/50 0.81 290.49  0/50 0.86 22,605
FSB 0/50 0.83 681.75 0/50 0.82 9,492
RB 0/50 0.80  74.53 10/50 0.95 90,273
Learned (npin = 20, all) 0/50 0.75 7797  5/50 0.92 106,057
Learned (nmin = 20, BPEQ only) 0/50 0.77  85.68  4/50 0.92 86,370
MKNSC_test problems

Random 0/50 0.56 7.26  24/50 0.95 587,123
MIB 0/50 0.60 7.39 31/50 0.97 496,475
NCB 0/50 0.67 102.23  5/50 0.83 51,749
FSB 0/50 0.68 13541 5/50 0.83 46,832
RB 0/50 0.65 27.79 18/50 0.94 173,513
Learned (npin = 20, all) 0/50 0.64 28.37 18/50 0.93 177,006
Learned (nyin = 20, MKNSC only) 0/50 0.64 3493 16/50 0.92 165,412

Table 4.7: Optimization results for the random problems. ‘Cl. Gap’ refers to the closed gap,
and ‘S/T’ indicates the number of problems solved within the provided nodes or time limit,
versus the total number of problems. ‘Nodes’ and ‘Time’ respectively represent the number
of explored nodes and the time spent (in seconds) before the optimization either finds the
optimal solution, or stops earlier because of one stopping criterion.
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Solved by all methods

61

Not solved by at least one method

Node limit = 10 nodes S/T Nodes Time S/T CL Gap Nodes  Time
Random 9/44 1,974 2.24 0/44 0.43 10,000  124.50
MIB 9/44 2,532 6.03 6/44 0.50 9,274  233.19
NCB 9/44 879 10.70 11/44 0.72 7,322 232.74
FSB 9/44 692 14.48 12/44 0.73 7,184  629.87
RB 9/44 1,123 15.78 10/44 0.64 7,806  219.39
Learned (npin = 20, all) 9/44 1,194 2.73  10/44 0.62 8,073  162.87
Time limit = 10 min

Random 19/44 29,588  30.50 0/44 0.47 867,837 600.01
MIB 19/44 14,931 14.68 3/44 0.52 764,439 561.27
NCB 19/44 7,061  41.55 5/44 0.73 101,408 513.00
FSB 19/44 5,687  70.84 3/44 0.66 49,008  534.65
RB 19/44 6,895 27.38 7/44 0.69 257,375 515.40
Learned (nmin = 20, all)  19/44 14,008 34.12 5/44 0.63 130,081 512.72

Table 4.8: Optimization results for the MIPLIB problems of Table 4.6
the closed gap, and ‘S/T’ indicates the number of problems solved within the provided nodes
or time limit, versus the total number of problems. ‘Nodes’ and ‘Time’ respectively represent
the number of explored nodes and the time spent (in seconds) before the optimization either
finds the optimal solution, or stops earlier because of one stopping criterion.

. ‘Cl. Gap’ refers to
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Experiments without limits

Finally, Tables 4.9 and 4.10 report the results form our last set of experiments. We apply
all branching heuristics on all MIPLIB problems initially contained in Table 4.6, and let the
computers solve the problem for five days. After this time limit, the problems that are not
solved by all branching methods are discarded. We create thus a new set of MIPLIB problems
(reported in Table 4.9) that is used to compare different branching strategies until the end
of the optimization procedure. Additionally, in another experiment, we let CPLEX use cuts
and heuristics (with default CPLEX parameters) in the course of the optimization in order
to observe their impact on the efficiency of each branching strategy. The optimization results
are shown in Table 4.10.

Overall, our method compares favorably to its competitors when cuts and heuristics are
used by CPLEX. Indeed, in that case, our learned branching strategy is the fastest (almost
three times faster than the second fastest method, i.e., MIB) to solve all the 30 considered
problems. Note that the apparent bad results of RB are due to three problems that are
especially hard for that branching heuristic (air04, air05, and mod011). If we remove them
from the computation of the average optimization time, both RB and the learned branching
strategy take 74 sec on average to solve the remaining 27 problems. That average time is still
40% smaller than the average time of the runner-up (MIB). These experiments show that
our strategy behaves very well when cuts and heuristics are used by CPLEX to solve the
problems. The detailed results are available in Appendix A.3.

Things appear to be different when cuts and heuristics are not used. Indeed, based on the
results of Table 4.10, our method seems to be very slow, but the large number of nodes and the
large amount of time is actually due to a small number of problems for which the method does
not work well. These problems artificially increase the average number of nodes and average
amount of time reported in the table. A finer analysis can be conducted by interpreting
the detailed results reported in Appendix A. When done, we see that our method is faster
than RB in 11/30 cases and faster than FSB in 21/30 cases, thus alleviating the a priori bad
performance of the learned branching strategy. A possible explanation for why our method
does not perform well on those problems can be that these problems, because too large, are
not well represented in the dataset that we use in order to learn the branching strategy. This
shows the importance of considering a large and diverse training set for the learning of an
efficient branching strategy.

4.4.4 Discussion of the proposed method

We describe, in this section, a new approach to design branching strategies for MILP problems.
It consists in observing branching decisions taken by a supposedly good strategy, FSB in
this case, and to imitate those decisions with a strategy obtained through offline supervised
machine learning techniques. The learned strategy can then be used in place of the usual
branching strategies. The experiments show promising results.
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aflow30a air03 air04 air05 cap6000 dcmulti
egout khb05250 11521av lseu mas76 misc03
misc06 misc07 mitre mod008 mod010 mod011
nw04 p0033 p0201 pkl pp08aCUTS qiu
rentacar rgn stein27 stein4b vpml vpm2

Table 4.9: Updated list of problems from MIPLIB3 and MIPLIB2003. This list contains the
problems from Table 4.6 that are solved to optimality with each branching heuristic in less
than five days.

w/o cuts and heuristics w/ cuts and heuristics

# nodes time # nodes time
Random 7,809,341 29,377.10 152,564 503.38
MIB 3,472,431 7,387.09 105,692 356.52
NCB 145,244 1,136.34 34,500 1,451.74
FSB 129,047 1,597.12 25,941 895.36
RB 318,384 886.12 51,913 2,836.93
Learned (nmin = 20, all) 1,037,055 3,023.34 57,652 124.94

Table 4.10: Optimization results (until termination) for the updated list of the MIPLIB
problems (Table 4.9). ‘Cl. Gap’ refers to the closed gap, and ‘S/T’ indicates the number of
problems solved within the provided nodes or time limit, versus the total number of problems.
‘Nodes’ and ‘Time’ respectively represent the number of explored nodes and the time spent
(in seconds) before the optimization either finds the optimal solution, or stops earlier because
of one stopping criterion.

Comparison with other branching strategies

The idea behind our approach can be seen as a combination of the ideas behind reliability
branching and information-based branching. On the one hand, our approach is similar to
reliability branching in the sense that we want to find a fast proxy to strong branching.
However, the approaches differ in the means by which the information is collected, and in
how the information is used. On the other hand, our approach is similar to information-based
branching in the sense that it tries to use general information collected during a preliminary
phase in order to speed up the current optimization. In both cases, the idea is to obtain a broad
overview of the B&B process and to use this overview to take sensible branching decisions.
The main difference lies in the way information is collected: information-based branching
harvests information through multiple restarts on the same problem, while our method collects
optimization information obtained through the optimization of a set of different optimization
problems. Another important difference is that, in the case of information-based branching,
the collection phase needs to be performed for each problem to optimize, while our approach
only requires the information to be collected once. In the light of Table 4.7, it is to be
noted, however, that customizing the branching strategy to the problem being optimized
could supposedly yield better results, which would be in favor of the approach that involves
collecting some data for each problem to solve.
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Connections with the no free lunch theorems

The no free lunch theorems (NFL) (Wolpert and Macready, 1997) state that, for certain
types of mathematical problems, the performance of any optimization algorithm, averaged
over all problems in the class, is equivalent. Additional NFL results indicate that matching,
or aligning, algorithms to problems is a way to achieve better performance. This suggests
that incorporating knowledge about the problem into the optimization algorithm has the
potential to improve its efficiency. Although NFL theorems do not apply to MIP solving
and branch-and-bound (Wolpert and Macready, 1997), a similar behavior is often observed
in practice. For example, while strong branching is very effective (in terms of the number
of explored nodes) on general MIP problems, this strategy is not optimal for Constraint
Satisfaction Problems (CSP), where other branching strategies are preferred. This indicates
that, even if the NFL theorems do not apply as is, it is realistic to imagine that incorporating
prior knowledge about the problem could improve the performance of traditional MIP solving
approaches.

Surprisingly, in the MIP optimization area, hybrid branching (Achterberg and Berthold,
2009) is the only strategy that takes this fact into consideration. Hybrid branching combines,
in a weighted sum, several criteria known to be effective for different types of problems.
This probably explains why hybrid branching outperforms other branching strategies across
multiple problem sets (Achterberg and Berthold, 2009; Achterberg and Wunderling, 2013).
Despite its simplicity, hybrid branching is a state-of-the-art strategy used in the last CPLEX
release (Achterberg and Wunderling, 2013). However, one might be interested in what would
happen if the criteria were combined in a more elaborated way.

Although our work is completely devoted to the imitation of strong branching, we believe
that the same framework can be applied to adapt the branching heuristic to the problem
being optimized. In that aspect, the proposed method has a great potential to achieve better
performance across large sets of problems, as the branching strategy generated using machine
learning can, in principle, imitate decisions made by different branching strategies at the same
time.

4.5 Online learning of strong branching decisions

The second approach that we develop to speed up strong branching proposes to use online
machine learning techniques in place of offline algorithms. The advantage of online learn-
ing techniques relies on the fact that they do not require a full dataset in order to train a
model. They rather build the model incrementally as the data arrives. We refer the reader
to Section 3.1.2 for more information about online learning.

In an attempt to push further the method introduced in Section 4.4, we present an approach
that combines the ideas behind the branching strategy developed in the previous section, i.e.,
‘learned branching’, and reliability branching. More specifically, this method uses online
learning algorithms to learn a function that approximates strong branching (SB) and that is
both fast to evaluate and accurate enough. The idea is similar to the one introduced by learned
branching in the sense that the goal is to take SB-like decisions without the computational
cost induced by the real SB. However, in this case, the learning is performed in an online
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manner, during the course of the optimization, which alleviates some important shortcomings
of the previous approach. Indeed, since the learning is made online, no preliminary phase is
required in order to generate a dataset nor to learn the proxy. No computing time is thus
wasted in such a step. Additionally, the learned function is really tailored to the studied
problem rendering previous machine learning concerns (like, for instance, some requirements
on the features) obsolete.

Similarly to the batch learning case, this section details the method that we set up to
leverage online learning techniques in order to learn a proxy to strong branching. We succes-
sively describe the method, the experiments, and the results and finally conclude with some
discussion of the method.

4.5.1 Learning branching decisions in an online setting

As already discussed in some detail, strong branching (SB) (Applegate et al., 1995) is a very
popular branching heuristic that selects a branching variable by explicitly computing the dual
bound improvements for each candidate. Let us recall that SB is known to perform very well
in terms of the number of nodes of the resulting B&B tree, but requires a very large amount
of computational effort to take a decision. In order to alleviate this problem, the method that
we propose learns, during the course of the optimization, a function that approximates SB
and that can be evaluated more quickly. The approximation of SB is obtained with a very
simple online learning technique, namely (online) linear regression. Moreover, the method
that we develop uses a reliability mechanism that is similar to the one used by reliability
branching (Achterberg et al., 2005).

More specifically, we propose to use the function B, to select the branching variable
among the set of candidate variables. The function B, is trained with a linear regression
algorithm, which assumes that the output is obtained through an inner product between the
inputs (i.e., the features) and a vector of parameters w, i.e.,

. T
Bow (i, ;) = w ' ¢,
where ¢, is a feature vector that represents variable ¢ at the given node of the B&B tree.
Unlike the batch method, however, the function By, (more specifically the parameter vector
w) is not obtained through a preliminary learning phase, but trained during the optimization.

As in the batch case, the function By, must be fast to evaluate and close enough to the real
SB function, i.e.,

Bolb (Z7 d)z) ~ Bsb (27 C, A7 b7 IB/, l/a ul) .

Note that the features used to describe a variable are similar to the ones used in the batch
case (see Section 4.4) and are described in Section 4.3. There is one minor difference though:
features 41-43 are bounded above by 10* because linear regression is not suited when the
features can take very large values. Features 41-43 are thus, in the online case, given by

min (1647 [ down; up; down+up Driebeek penalties normalized by o ]) .

In this application, we only limit the magnitude of three features because the other features
remain at acceptably low values. It is possible though that, in other contexts, other features
take large values that could hinder the efficiency of linear regression. In general, it is good to
ensure that the features do not take too large values.
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Description of the online learning branching (OLB) strategy

Technically speaking, the branching strategy that we propose (OLB) is as follows. When B&B
needs to branch, a set of candidate variables is first selected among all fractional variables at
the current node. A score is then computed for each variable in that set. The variable with
the largest score is then chosen as branching variable.

The branching scores can be computed in two ways. On the one hand, if the function By,
is deemed unreliable for the candidate variable, the real SB score is computed, together with
a set of features describing that variable at the current node. The computed score is used to
rank the candidate variable, but it is also stored in a dataset (with the computed features)
to improve the approximation of the SB proxy. On the other hand, if the function B, is
deemed reliable, the features describing the current candidate are computed and fed to the
approximated version of SB, i.e., the function B, learned with linear regression, in order to
quickly generate an approximate SB score, hopefully close to the real SB score.

The real SB scores that are generated when the approximation cannot be trusted are used
to train a simple linear regression, whose goal is to predict approximate SB scores®. The
learning is performed in an online fashion with a simple gradient descent algorithm (using
line search) to allow the approximation to evolve during the course of the optimization. In
order to determine whether the approximation for a given variable is reliable or not, we
simply count the number of samples (i.e., computed real SB scores and features) that have
been generated previously for each variable. This mechanism is comparable to the reliability
mechanism of reliability branching (Achterberg et al., 2005).

The complete description of our branching strategy is given in Algorithm 2. The proposed
method requires four main parameters. First, A\ € Nar controls the number of variables that
can be considered as branching candidates at each iteration. Second, n € Ng indicates how
many samples are required in order to trust the approximation for a specific variable. Lastly,
0 € RS‘ and o € Rg are used to limit the convergence of the gradient descent algorithm in
order to avoid undesirable oscillations (cf. Algorithm 2, line 32).

Improvements of OLB

One of the limitations of OLB is that there is only a limited number of learning samples
per variable. If the input-output dynamics for a variable change, for instance because the
tree grows bigger, then the learned linear regression becomes useless, as it does not represent
anymore the correct dynamics for that variable. Allowing the linear regression to learn during
the entire course of B&B is one way to avoid this issue. We call the resulting method
online perpetual learning branching (OPLB). The basic mechanisms remain unchanged. The
only difference is that, when a branching is actually performed and a real SB score is not
generated, some information (the node, the objective value, and the features for the branching
variable) is recorded in an ad hoc data structure. When both child nodes created during that
branching are explored, the resulting dual bound improvement can be computed exactly. This
improvement, which actually corresponds to the real SB score, is then added, together with

5Similarly to the batch case (see Section 4.4.1), we do not predict exactly the SB scores, but rather predict
the logarithm of the relative SB scores.
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the stored features, to the learning queue in order to be processed by the learning algorithm.
Using this trick allows the branching strategy to adapt over time, even if the dynamics of the
problem for a given variable change.

4.5.2 Experiments

We assess the efficiency of online learning branching (OLB) by comparing different branching
strategies on a selection of problems from MIPLIB (Bixby et al., 1996; Achterberg et al.,
2006), listed in Table 4.6. These problems are the same as the ones used to assess the
performance of learned branching Biearned-

The experiments consist in optimizing the selected problems while plugging in different
branching strategies. Each problem is optimized 10 times with 10 different random seeds
(from 0 to 9). We impose a time limit of 7,200 seconds for each optimization.

The experiments are carried out on a 16-core computer, equipped with two Intel Xeon
E5520 (2.27GHz, 8 cores) and 32GB RAM, running CPLEX 12.6. We disable presolve in
CPLEX but leave the default values for the other parameters (except for the seed). Addi-
tionally, we disable parallelism, i.e., only one core is made available for each run of CPLEX.
We compare our approach to three other branching strategies, namely full strong branch-
ing (FSB) (Applegate et al., 1995), reliability branching (RB) (Achterberg et al., 2005), and
learned branching (Learned) (see Section 4.4). The default parameter values A =4 and n =8
are used for RB (Achterberg et al., 2005). For FSB, the SB LP-relaxations are solved to
optimality and there is no limit on the number of candidate fractional variables at each node.
For learned, we use the default parameters (see Section 4.4), i.e., N = 100, k = |¢|, and
Nmin = 20. The parameters for our methods, online learning branching (OLB) and online
perpetual learning branching (OPLB), are A =4, n =8, § = 0.01, and ¢ = 500.

4.5.3 Results

We use performance profiles to compare the considered branching strategies. The performance
profiles are drawn considering that the pairs composed of a problem and a seed are a single
problem. Consequently, the performance profiles are constructed with 440 problems (every
combination of problem and seed). In addition to the performance profiles, the complete
experimental results are reported in Appendix A.4.

The performance profiles (Dolan and Moré, 2002) report the probability that a solver
solves a problem vs. a performance ratio. A point (x,y) on a performance profile curve
should be understood as ‘there is a probability y that the method solves a problem if it is
given at most x times as much budget as the best solver needs to solve the problem’. The
leftmost part of the performance profiles indicates how good the solvers are, i.e., how fast
they solve the problems in terms of the chosen metric (time or number of nodes, in this case).
On the other hand, the rightmost part of the graphs is usually an image of the robustness of
a method, i.e., this part indicates the proportion of problems that will eventually be solved
by a method if enough time is granted.



68 CHAPTER 4. MACHINE LEARNING FOR VARIABLE BRANCHING

Algorithm 2 Online learning branching (OLB). Note that all variables are assumed to be

global.

Inputs: ' and o are the solution and the objective value at the current B&B node, respec-
tively — w is the weight vector of linear regression (i.e., the parameters of Bgy,) — k is
the learning iteration — ¢ is the learning queue — c¢;, and cp are data structures that
count, respectively, the number of samples already learned and the number of samples

waiting in the queue for each variable
Parameters: \, n, d, o

> variable j is unreliable
> compute real SB score

1: procedure OLB(2/, o, w, k, q, cr,, cp)

2 best_variable = -1 ; best_score = -1

3 for each fractional variable j in =’ do

4 if number of evaluated candidate variables > A\ then
5: break

6 end if

7 if c1(j) +cp(j) < n then

8 s = strongBranchingScore(j, 2, 0)

9 ¢ = computeFeatures(j, ', 0)

10: qg=qU(e,s) > add score and features to ¢
11: cp ( j ) ++

12: else > variable j is reliable
13: if ¢z (j) < n then > if samples are not learned yet, learn new B,
14: LEARN(w, k, ¢, cr, cp)

15: end if

16: ¢ = computeFeatures(j, ', 0) > compute features ¢ for variable j
17: s = Bop(j,0) = w' ¢ > compute approx. SB score for j with Bgp,
18: end if

19: if s > best_score then

20: best_variable = j ; best_score = s

21: end if

22: end for

23: if size(q) > maximum allowed size then > limit the size of the queue
24: LEARN(’w, k, q, cr, Cp)

25: end if

26: return best_variable

27: end procedure
28: procedure LEARN(w, k, q, ¢, cp)
29: for (¢,s) € g do

30: l=s—w'¢

31: Vi=—-l¢

32: w=w— exp(—éLkJ_lj)(p?lel
33: k=k+1

34: end for

35: q= 0

36:  Vj:en(y) =cr(j) +ep(i)iep(j) =0
37: end procedure

> current loss
> current gradient of the loss
> Bop, update equation

> clear learning queue
> increase reliability of all variables
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Figure 4.1(a) illustrates the performance of the methods in terms of time, while Fig-
ure 4.1(b) focuses on the number of nodes required to solve the problems. The results show
that FSB behaves as expected: very good in terms of nodes, but rather slow in general.
The proposed method (OLB, OPLB) compares favorably to the other methods. It takes
rather good branching decisions and is shown to be very fast in the beginning of the opti-
mization (better than the others when the time ratio is less than ~3.5). Learned branching
is dominated by OLB and OPLB in the beginning but catches up quite quickly® (the ratio
of solved instances exceeds the other methods when a large enough amount of time is pro-
vided). Learned is also very effective in terms of nodes. Overall, RB is dominated by the
other approaches both in terms of time and in terms of nodes. Finally, we note that learn-
ing perpetually (OPLB) does not improve significantly the performance of the normal online
learning approach (OLB).

In addition to the optimization results reported here, we discuss some learning aspects of
the proposed method in Section 4.6.

4.5.4 Discussion of the proposed method

The online branching strategy described here constitutes a slight improvement over the ap-
proach proposed in the previous section. The goal of this online technique remains unchanged:
find an approximation of strong branching that is fast to evaluate. The difference between
both methods lies in how the approximation is obtained. In the former method, a dataset
is first generated and then fed to a learning algorithm in order to train a model with the
available data. This approach requires that some (possible large) amount of time is devoted
to the generation of the training set and to the preliminary learning phase. The online ap-
proach alleviates this problem by using online learning techniques that do not require that a
full dataset is available from the beginning. The model is instead trained online, i.e., on the
fly, as the data arrives.

In addition to this advantage, the proposed online branching strategy is similar in its
mechanisms to reliability branching. The method is meant to work with a supposedly good
branching strategy (full strong branching in this case). During the branching procedure, if
the approximation for a candidate variable is deemed unreliable, the good branching strategy
is used, which increases the confidence level of the approximation for that variable. At some
point in time, the variable can be trusted and, from that moment on, the approximation of
the score generated by the good strategy is used instead of the real score.

The experimental results show that our approach compares favorably to other branching
strategies both in terms of time and in terms of nodes and outperforms reliability branching
in both metrics. It is interesting to note though that learned branching outperforms OLB
and OPLB when the performance ratio (time and number of nodes) increases. This result
is against the intuition since one could have expected that online learning can tailor the
strong branching approximation to the optimized problem more easily than a batch learning
algorithm. A possible explanation for this behavior could be that the online learning procedure
is damped too much, i.e., the parameters  and o are too small.

5Tt is to be noted that the time required to train the ‘Learned’ branching strategy Biearnea is not taken into
account in the performance profiles.
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Finally, note that, in this case, the features design is somewhat less critical than in the
batch learning case. Indeed, in the batch case, the features constitute a common representa-
tion of any variable of any problem. The features must, in a sense, lie in a common space that
allows the comparison between two variables whatever the problem. In the online case, this
is not required anymore and the features can be designed specifically for a problem (in par-
ticular, they can be of different dimensionalities for different problems), since no information
is carried over from one optimization to the next.
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Figure 4.1: Performance profiles for the competing methods. The detailed experimental
results used to draw the performance profiles are reported in Appendix A.4.



72 CHAPTER 4. MACHINE LEARNING FOR VARIABLE BRANCHING

4.6 Analyzing learning performance

This section reports some results related to the learning aspects of our methods.

4.6.1 Learning accuracy

We first assess the performance of our learned functions to determine how close from the
real scores the predicted values are. More specifically, we use the average and the median
of the relative errors to check the accuracy of the methods. For a single real score and the
corresponding prediction, the relative error is computed as

ly — 9

RE= —F—"F"—
max (le=3, [y[)’

where y and ¢ denote the real score computed with the strong branching procedure and the
prediction obtained with our learning techniques, respectively. We add the maximum in the
computation of the error to ensure that the denominator is different from 0 and not too small.

The assessment procedure is as follows. From the original dataset generated in Sec-
tion 4.4.2, two subsets are randomly sampled (without replacement). The first subset is
a training set and the second one is a test set. The original dataset contains around 7 x 107
learning examples and is thus rather large. In order to ease the experiments, we only use a
fraction of it. More specifically, the training and test set each contain 10° (distinct) samples,
which are randomly sampled from the original dataset. The assessment procedure then con-
sists in training a model on the training set and in computing the relative errors induced by
the model on the test set. More specifically, the inputs in the test set are used as inputs of
the learned models and the corresponding outputs given by the models, i.e., the predictions,
are then compared to the real outputs stored in the dataset. The relative errors are computed
according to the previous formula and the learning algorithms can then be compared based
on the average and median relative errors that they induce on the test set.

In this work, we learn a function that approximates strong branching with both ExtraTrees
and linear regression, in the batch and online case, respectively. Although ExtraTrees typically
yield better performance than linear regression, the latter is used, in the online version of the
proposed approach, to train the model. This is due to the fact that ExtraTrees cannot
be easily adapted to the online setting, while linear regression can. Because both learning
algorithms are used, we evaluate the performance of both methods on the available data.
Note that, strictly speaking, online linear regression is used in our approach, but we evaluate
linear regression in the batch case. The reason is that it is typically harder to evaluate online
algorithms because several issues arise (e.g., not enough test data) and dealing with all of
them to fairly assess the method implies a certain amount of additional work. For the sake
of convenience, we thus use the batch setting for linear regression as well. This does not
impact interpretability but two aspects must be highlighted. First, batch linear regression
typically performs better than online linear regression (the reported results may thus be overly
optimistic). Second, the online version of our approach is applied to a single problem, i.e., the
SB proxy is learned for the considered problem only. This learning task is likely to be easier
than the batch approach that takes into account many different problems at the same time
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and that is used to assess linear regression in batch mode. There is thus a second effect not
accounted for here, but this effect tends to negatively impact the reported performance, i.e.,
tends to increase the reported errors. Because of these two limitations, one must be cautious
when analyzing the obtained results, but using batch linear regression is, in any case, useful
to better understand the dynamics of the problem and to validate the choice of that algorithm
to train an online proxy to SB. In addition to the two mentioned learning algorithms, we also
apply a third one to the training and test sets, namely the Lasso method (Tibshirani, 1996).
The Lasso is basically a linear regression that pushes the less useful regression coefficients
to 0. This method is helpful to determine which features are the most important to predict
a correct output. To apply the Lasso, one needs to determine the value of one parameter «
that controls how ‘hard’ the features are pushed to O.

In these experiments, we use the same parameters for the ExtraTrees as in the rest of
the chapter, i.e., N = 100, k = |¢|, and nyi, = 20. Batch linear regression does not have
any parameter and, regarding the Lasso, several values of the parameter o are considered:
a ={0.01,0.1,0.5,1}.

The learning results are reported in Table 4.11 and Figure 4.2. First, Table 4.11 indi-
cates that, even if the ExtraTrees are a bit ahead, the three learning algorithms are able to
approximate fairly well the SB score. Indeed, a relative error of 16% and 22% is achieved
on average on the predictions with the ExtraTrees and linear regression, respectively. Addi-
tionally, the median shows that for 50% of the samples, the prediction error is less than 6%
and 8%, respectively. This indicates that the predictions achieve a quite good accuracy in
general with only a limited number of features and very simple learning algorithms (without
any parameter tuning). Figure 4.2 next shows a histogram of the relative errors achieved on
the test set with the ExtraTrees. The graph shows that, for a large fraction of the test set,
the relative errors are rather small. More precisely, 50% of the samples are predicted with a
relative error less than 5.97% (the median), and the relative error is less than 20% for 90.62%
of the test data. In addition to the prediction accuracy, we report in the table the Spearman
correlation coefficient that measures the rank correlation between the predictions and the real
scores. The numbers show that the predictions are highly correlated with the real scores with
coefficients of 0.94 and 0.89 for the ExtraTrees and linear regression, respectively. This high
correlation implies that, in many cases, it is likely that the variable ranking provided by the
learned strategy is similar to the ranking provided by strong branching.

Finally, it is important to emphasize that the learning accuracy is not crucial here. Indeed,
the main purpose of the approach is to quickly approximate the strong branching behavior
and not to predict with infinite accuracy the strong branching scores. Obviously, being able
to estimate those scores accurately is a key factor to success, but a fair assessment of the
method must also consider the optimization results obtained with the approach. Generally
speaking, in order to learn strong branching, it is more important to learn the candidate
variables ranking rather than the true scores. The reported results show that our approach
succeeds in that aspect quite well.
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Lasso
ET LR 0.01 0.1 0.5 1
RE: mean 0.1604 0.2207 0.2196 0.2281 0.2347 0.2488
RE: median 0.0597 0.0828 0.0833 0.0902 0.1001 0.1056
Spearman corr. 0.9398 0.8914 0.8903 0.8626 0.8411 0.8328

Table 4.11: Means and medians of the relative errors, and the Spearman correlation coef-
ficients achieved on the test set by ExtraTrees (ET), linear regression (LR), and the Lasso
(with different values of the main parameter of the Lasso).

4.6.2 Important features

Besides the accuracy of the learning methods, we also analyze the importance of each feature
on the ability of the learned function to predict a correct output. There are several ways to
assess the feature importance.

A first possibility consists in using the outcome of the learning procedure to determine
which features matter most. For instance, in linear regression, one could assume that the
larger the absolute value of a regression coefficient, the more important the corresponding
feature is. This is true to some extent in the sense that the regression coeflicient of a useless
variable can be set to 0 without impacting the prediction. However, it is highly unlikely that
the regression coefficients corresponding to meaningless features are exactly equal to 0. The
learning algorithm will always try to learn a bit (even noise) from the data for all features and
even useless features will consequently have non-zero coeflicients. Moreover, the amplitudes of
the regression coefficients depend on the amplitudes of the features. If a meaningless feature
happens to take very small values, it is possible that, in order to ‘learn something’, the
learning algorithm will set the regression coefficients to large values. Similarly, a very small
regression coeflicient may correspond to a very important feature that takes large values. This
implies that, though interesting, the regression coefficients may not be trusted entirely when
it comes to feature importances. On the other hand, the Lasso method is designed in such a
way that meaningless features can be dealt with. Indeed, the Lasso encourages the regression
coefficients to be 0. This alleviates a bit the previous concerns because it implies that the
regression coeflicients of useless features will naturally fade away. However, if the regression
coefficient of an important feature is close to 0, the algorithm may push that coefficient to 0
as well thus depriving the prediction from an important component. This method is thus not
exempt from flaws either. Finally, the ExtraTrees possess a nice characteristic that computes,
during the learning procedure, so-called feature importances for each input feature. These
feature importances are similarly helpful to understand the input-output correlations in the
dataset.

A second possibility to estimate the impact of a feature on the prediction ability is to
compute the cost of omission (COO) (Leyton-Brown et al., 2009). The cost of omission
represents the cost, in terms of the error, that omitting a given feature during the learning
and the testing phases induces. More specifically, the learning and the testing phases are
applied as usual on the same data from which the considered feature is eliminated. The mean
relative error (MRE) without the considered feature can then be estimated from the test set.
The difference between the MRE obtained without the feature and the MRE obtained with
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Figure 4.2: Histogram of the relative errors achieved on the test set with the ExtraTrees.
The graph is limited to 1 here for readability reasons. Note that there are some samples in
the test set for which the relative error is larger than 1, but their number is limited. More
precisely, the relative error is larger than 1 (i.e., 100%) for only 1.34% of the test set.

all features is an image of how important the feature is. If the value of the COOQ is positive,
this means that the feature is important for the prediction. On the other hand, when the
COQO is negative, it implies that the feature has a negative impact on the prediction accuracy.
Small values of the COO (either positive or negative) indicate that the feature is not very
important and could just be a source of noise in the prediction. Note that we use in this
work the normalized COO which consists in attributing to the largest COO a value of 100,
all other COOs being scaled accordingly.

The two possibilities detailed above can, to some extent, provide information about the
importance of the features taken individually. This information can be used to improve the
understanding of the dynamics of the problem but should not be regarded as a conclusive
analysis. Moreover, the potential interactions between the features are not taken into account
with either method and this (important) aspect is thus totally omitted by such evaluation
procedures.

Table 4.12 reports the feature importances (for the 10 most important features) as obtained
through the learning procedure (feature importances for the ExtraTrees and amplitude of the
regression coefficients for the other two methods), the MRE obtained without the considered
feature, and the corresponding COQO. The conclusions that can be drawn from the table are
twofold. First, feature # 37, i.e., the fractionality of the candidate variable, seems to be an
important feature, although removing that feature does not impact very negatively the per-
formance. Second, none of the other features seems to be important according to the feature
importances nor according to the COQOs. This is of course misleading. This leads us to think
that what matters in this situation is not really the individual features themselves, but the
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interactions between those features. Further investigating how the features are combined in
order to predict a good output may largely improve the understanding of the branching pro-
cedure. The complete list of feature importances is available from Appendix A.1 in Tables A.1
and A.2.
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ET LR Lasso (a = 0.01)

# FI MRE CcOO FI MRE CcOO FI MRE COO

2 0.2875 0.1591 -4 0.0000 0.2078 -262 0.0000 0.2141 -38
27 0.1297  0.1596 -3 0.0000 0.2077 -263 0.1213 0.2141 -38
37 0.0497  0.1892 100 0.0000 0.2257 100 1.0000 0.2341 100
40  0.0486 0.1552 -18  0.0000 0.2078 -261 0.0451 0.2141 -38
31 0.0449 0.1587 -6 0.0000 0.2078 -262 0.2423 0.2150 -32
18 0.0413 0.1569 -12 0.0000 0.2077 -263 0.0009 0.2117 -55
63  0.0289 0.1574 -10  0.0000 0.2106 -204  0.1037  0.2157 -27
56 0.0287  0.1571 -11 0.0000 0.2073 -272 0.0000 0.2141 -38
o7  0.0286 0.1580 -8 0.0000 0.2182 -50  0.6523 0.2235 27
58  0.0273 0.1562 -14  0.0000 0.2084 -249 0.0052 0.2133 -44

Table 4.12: Feature importances (of the 10 most important features) as computed by the
ExtraTrees (ET), linear regression (LR), and the Lasso. Each row of the table corresponds to
a feature, whose number is given in the first column. ‘FI’ represents the feature importance
for the corresponding feature. For the ExtraTrees, the feature importances are the result
of the internal procedure run during the learning phase. For LR and the Lasso, the feature
importances correspond to the (normalized) absolute values of the regression coefficients. Note
that, in the case of LR, a few coefficients are very large (order of 107) and thus the relative
importance of the other features is seemingly null. ‘MRE’ represents the mean relative error
obtained on the test set when the considered feature is eliminated from learning and testing.
The COOQOs are obtained by comparing the MREs obtained without the features and the
values reported in Table 4.11. The complete list of feature importances is available from
Appendix A.1 in Tables A.1 and A.2.
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4.7 Concluding remarks and outlooks

In this chapter, we proposed a new approach to design branching strategies for MILP prob-
lems. It consists in observing branching decisions taken by a supposedly good strategy, strong
branching in our case, and to imitate those decisions with a strategy obtained by a machine
learning procedure. To this end, we develop a set of features that are used to characterize the
current state of the problem in the B&B tree from the perspective of a particular variable.
These features are computed for all candidate variables and used as input of the learned
branching heuristic in order to predict an approximation of the strong branching score for
that variable. We propose two approaches that use machine learning: a batch approach and
an online approach. In the batch case, a dataset must be generated prior to the optimization
and fed to a machine learning algorithm in order to train a model on the data that approx-
imates strong branching. In the online case, it is not necessary to generate a dataset, since
the online learning algorithm trains the model during the course of the optimization. The
experiments performed to assess the efficiency of both methods show promising results and
suggest that further research in this direction may lead to favorable improvements in MIP
solvers.

The underlying mechanism of the developed approaches is not different from other branch-
ing strategies. Indeed, in all cases, features are computed from the current state of the problem
(in some way or another) and then used to decide which variable to branch on. Those features
can be, e.g., the fractionality of the variable in the current solution (used in most-infeasible
and reliability branching), the pseudocosts of the variables (used in reliability branching), or
the objective increases observed when the branching is performed (used in strong branching).
In our approach, however, we can include many types of features, including those used by
popular strategies. The difference lies in how these features are used. While, in traditional
methods, the features are assumed to explain everything and are all used to take the branch-
ing decision, we let the learning algorithm decide which features are relevant and which are
not. Indeed, learning algorithms are able to sort out which of those features are useful, and
are able to automatically determine how to combine them to rank branching decisions.

In that sense, we can see our method as a very general branching strategy that can imitate
any other heuristic, as long as the appropriate features are provided. For example, in its
current implementation, our approach can be tied to pseudocost and reliability branching.
Indeed, our features include the value of the fractionality of the variables and the observed ob-
jective increases (see Section 4.3). This means that the information that pseudocost branching
uses to take a decision is provided to the learning algorithm. Our approach can thus, in prin-
ciple, use only the pseudocosts and the variable fractionalities to take a branching decision,
if the learning algorithm decides that these features best explain the desired output. Note,
however, that the desired output that we are focusing on is the strong branching score, which
is different from the score used by pseudocost branching. The learning algorithm can also
discover novel heuristics by combining the features used by several popular methods with
novel ones, hopefully yielding a better approximation of the desired output.

Note that, although the goal of this work is to create a fast approximation of strong
branching, it would be possible to use the very same approach to approximate a branching
strategy that is even more expensive and effective (in terms of the number of nodes of the
tree) than strong branching.



Chapter 5

Machine learning for parallel
branch-and-bound

The contents of this chapter are mainly reproductions of one piece of work published on-
line (Marcos Alvarez et al., 2015).

5.1 Introduction

At this point, there should be no need to insist on the ubiquity of branch-and-bound (B&B)
and its variants in solving mixed-integer programming (MIP) problems. In the previous
chapter, we focus our attention on improving one key element of B&B, namely the branching
strategy, to better and faster solve optimization problems. However, despite all improvements
that can been made to all components of B&B (including, e.g., cutting planes, branching
strategies, and presolve), some very large MIP problems remain nowadays still too difficult
to be solved by a single sequential B&B.

Parallelizing B&B on a large number of computers is a promising way to solve those
problems that remain out of reach for traditional approaches. This rationale is strongly
motivated by two arguments. First, B&B is a natural candidate for parallelization since it
relies on the divide-and-conquer paradigm. Parallelizing B&B is indeed conceptually quite
simple and mainly consists in dividing the original optimization tree in several subtrees, or
subproblems, and in letting each processor, or worker, work on its own part of the global tree.
Two parallel implementations mainly differ in the way the original work is split among the
available workers and by the amount of communication involved in the optimization. The
second argument in favor of parallel B&B is the explosion of parallel computing and affordable
massively parallel computers that has been witnessed in the last two to three decades.

Based on these observations, many researchers started developing parallel B&B algorithms.
One of the first reported attempts to parallelize B&B dates back to 1975 and is summarized
in a 1988 paper by Pruul et al. (1988). In that paper, Pruul et al. describe a simple approach
to parallelize B&B on a shared memory serial computer. They report a set of experimental re-
sults obtained on the travelling salesman problem and analyze the efficiency of their approach.

79
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One important finding is that the number of explored nodes might be less in the parallel case
than in the serial case. As a consequence, the achieved speedup computed from the number
of explored nodes might be higher than the number of processors on which the B&B has been
parallelized. These findings further support the idea that parallel B&B is a front-running
candidate to solve large MIP problems. It has to be noted however that there exist special
cases where the parallel version of B&B performs worse than its serial counterpart (see, e.g.,
Lai and Sahni, 1984).

Very early, balancing the load of each worker of a parallel B&B has become a major
concern. Indeed, as for any parallel algorithm, load balance is a crucial aspect that must
be addressed in order to achieve interesting speedups. Throughout the years, several load
balancing schemes have been proposed. For instance, El-Dessouki and Huen (1980) propose
a mixed static and dynamic balancing scheme that gives each processor the responsibility
to compute its own subtree and that allows them to help other processors when their own
workload has been exhausted. Later, Karp and Zhang (1988) proposed a fully dynamic work
distribution method that automatically balances the load of each worker by sending the
newly created children to random processors. Rao and Kumar (1987) also proposed several
load balancing schemes tailored to different parallel architectures (see also Kumar and Rao,

1987).

A common shortcoming of all the dynamic load balancing schemes is that they imply a
large amount of communication. It became very early clear that the overhead cost induced by
communication times was a major concern for all parallel B&B implementations. On the one
hand, communication is desirable because it allows to better balance each processor’s load by
ensuring that no processor remains idle while others are working. Moreover, communication
can also reduce the total amount of work to be done by all processors by sharing information
about feasible solutions. But, despite its advantages, communication between processors
remains very expensive and should be limited to its minimum. Laursen (1994) was one of the
first to propose a method in which the processors do not communicate with each other and that
allocates statically the workload to each worker. Of course, the key factor to success of this
approach is to evaluate accurately enough the difficulty of the subtree given to each processor.
If the workload is not well balanced between the workers, the utilization of the processors will
not be optimal. One of the approaches proposed by Laursen consists in finding a function
that predicts the number of nodes of a subtree, i.e., its difficulty, from a set of characteristics
extracted from the subtree. Laursen carried out a series of experiments with several functions
constructed from simple functional forms like the exponential or the logarithm. Unfortunately,
each considered function was not able to consistently predict the difficulty of several classes
of problems. Laursen concluded that it was not trivial to find such a function. Later, the
idea proposed by Laursen (1994) has been further explored in a more principled approach by
Otten and Dechter (2012) who used machine learning techniques to create a function that can
be used to predict the difficulty of a subproblem based on easily computable features. They
reported good results for a given class of MIP problems represented over graphical models

solved by an AND/OR branch-and-bound.

In a slightly different fashion, Wah and Yu (1985) and Yang and Das (1994) have devel-
oped interesting approaches to evaluate the difficulty of a subproblem. Both approaches are
based on probabilistic models that are used to predict the complexity of a subproblem. De-
spite the encouraging results that they report, the assumptions required by the probabilistic
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models seem very strong and unrealistic for a wide variety of problems. The interest in
parallel B&B is not limited to the field of optimization. Indeed, parallelizing B&B has also
attracted some attention in the computer science community that developed several frame-
works aimed at easing the implementation of personal specialized parallel B&B algorithms
(see, e.g., Eckstein et al., 2001; Dorta et al., 2004).

It must be noted that the survey of related work reported here is by no means exhaustive
and we refer the reader to Gendron and Crainic (1994)’s paper for a wider, though older,
survey of parallel B&B techniques.

Based on the previously made observations and on previous work, and further supported
by the conclusions drawn by Linderoth (1998, p. 197), we propose in this work a new ap-
proach using machine learning to balance the load between several processors and apply our
approach to a set of unit commitment (UC) problems. The main contribution of this work
is the development of an approach using machine learning to create and distribute several
subproblems to a given number of processors such that the workloads of each processor are
not too dissimilar. This is achieved through the use of learning techniques to create a diffi-
culty estimator that is able to evaluate the difficulty (in terms of the number of nodes) of a
subproblem. Moreover, we develop a set of new features that allow to represent a subproblem
in order to predict its difficulty, in terms of the number of nodes. It must be emphasized that
we do not propose a new parallel implementation of the B&B, but rather use a naive par-
allelization to illustrate how we can estimate the difficulty of subproblems through learning
techniques. The experimental results show that the approach succeeds in efficiently balancing
the load between several processors and that it achieves interesting results with and without
communication. It is to be noted that the developed features do not depend on the class of
problems used to assess our method. These features are virtually applicable to any type of
MIP problem, although some adaptation might be necessary to improve the performance on
a given problem class. Moreover, we must emphasize that machine learning is mainly useful
when the considered problems are related to each other, otherwise it is in general difficult
for the algorithm to learn something from the available data. Because of these requirements,
the proposed approach is primarily applicable to the situations where similar problems have
to be repeatedly solved over time. Focusing on unit commitment (UC) problems is thus a
straightforward choice since generation companies, or transmission system operators, have to
repeatedly solve very similar UC problems again and again.

In the remainder, we first start, in Section 5.2, by stating the addressed problem more
formally and then give, in Section 5.3, a detailed description of the method that we propose.
A short theoretical analysis is next carried out in Section 5.4. Sections 5.5, 5.6, and 5.7
then describe the experimental setup that we use to validate our approach, together with
the experimental results that followed. Finally, Section 5.8 concludes this chapter and draws
some lines of future work.

5.2 Problem statement

Before getting into the details of the proposed solution, let us first give a more specific
description of the addressed problem. As in the previous chapter, we focus here on binary
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mixed-integer linear programming (MIP) problems of the form (2.7) and, in the following, we
use the notations introduced in Sections 2.3.1 and 2.3.2.

Our aim is to develop an efficient parallel version of a branch-and-bound algorithm that
minimizes the amount of communication and that achieves high speedups. In order to do so,
we will split the original optimization tree into several subtrees that cover together the initial
tree. These subtrees constitute a partition of the initial optimization tree. Each subtree is
then given to a processor (a processor can be responsible for several subtrees) that is asked to
solve the subproblem defined by the subtree. Communication between processors is ideally
forbidden, but a small amount can still be allowed in order to benefit from the solutions
found by other processors. Because communication should be maintained at its minimum,
the workload of each processor, i.e., the difficulty of the given set of subtrees, should ideally
be balanced between all processors so that high speedups can be achieved. Balancing the
workload is the problem tackled in this chapter.

In the context of optimization, the workload is basically the time a solver needs to find
the optimal solution, but other difficulty measures are also commonly used. For instance,
in the case of B&B, it is acknowledged that the number of nodes explored by the algorithm
before optimality is proved favorably estimates the difficulty of a problem. In this work,
we focus on the latter difficulty measure, i.e., the number of nodes, as it is more robust to
perturbations during the experiments and roughly linearly dependent (up to a time factor)
on the optimization time.

More specifically, the proposed method uses machine learning techniques in order to assess
the difficulty of a subproblem, i.e., to determine the number of nodes required to solve it, and
then uses that information to distribute the subproblems among the available processors.

5.3 Description of the method

In this section, we describe the method that we devise in order to balance the load of each
individual processor of a parallel branch-and-bound. We first describe how we generate a set
of subproblems that span the entire optimization tree. We next describe how the subproblems
can be distributed among the available processors.

5.3.1 Generating a partition of the original optimization tree

The approach that we propose to generate a partition of the optimization tree is very much
alike a traditional branch-and-bound. It is represented in Algorithm 3.

In this algorithm, we generate a partition of the original optimization tree containing
at most k elements. From now on, the notation p represents a subproblem of the original
problem, i.e., a problem for which a certain number of binary variables are fixed either to 0
or 1. In particular, py designates the root node, i.e., a version of the original problem in which
no binary variable is fixed. The algorithm first starts with pg that is added to a queue gq.
Then, the procedure is as follows. The algorithm retrieves and removes a subproblem p from
the queue and iteratively creates a certain number of children of p by setting each unfixed
binary variable in p to 0 and then to 1. Thus, for each unfixed binary variable, we create
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two children by fixing that variable alternately to 0 and to 1. A set of features describing
each child thus created is then computed with a given function C(-). The computed features
are subsequently used as input of a learned complexity function fyodes(:) that returns an
estimate of the number of nodes required to solve the child subproblem represented by the
features. The predictions of the numbers of nodes of each child are next used to compute a
score according to which the unfixed binary variables in the subproblem p are ranked. Once
every unfixed binary variable has been scored, the two child subproblems corresponding to
the variable that has the lowest score are added to the queue. The presented procedure is
then repeated by removing from the queue the subproblem whose predicted number of nodes
is the greatest, until the queue fulfills a given stopping criterion or until a maximum queue
size has been reached.

In the end of the procedure, each element of the queue represents the root node of a subtree
forming the sought partition of the original optimization tree.

The behavior of the proposed partitioning algorithm depends on three main factors: the
function froges(:) predicting the number of nodes of a subproblem; the way the features are
computed, i.e., the implementation of function C (-); and the implementation of the function
score (+,-). The rest of this section details how these functions were implemented in this work.

Assessing the difficulty of a subproblem

In order to create a partition of the original optimization tree that balances well the workload
of each processor, our procedure requires that a function able to predict the difficulty of a
subproblem is available. As previous research indicates (Wah and Yu, 1985; Yang and Das,
1994; Laursen, 1994), it is not trivial to find a simple mathematical formulation for such a
function. We thus decided to resort to machine learning in order to create that function.

In this work, we apply supervised machine learning techniques. Remember that, in the
supervised learning case, a dataset containing input-output pairs is needed by the machine
learning algorithm to construct the desired function. The input-output pairs should be ob-
servations of the system that the function is supposed to imitate. The inputs traditionally
consist in feature vectors, i.e., vectors of scalars, that represent some characteristics of the
subproblem. The output of the function is, in this case, the number of nodes that need to
be explored before the subproblem is solved. The output thus gives an idea of how difficult
a subproblem is.

More specifically, the function that we learn is
fnodes 1@ C Rd — R,

where @ is the feature space that is included in R?. In principle, the output should be an
integer, but this is not guaranteed by the machine learning algorithm. We thus allow the
estimated number of nodes to be a general scalar instead of an integer.

The supervised learning framework requires that a training set of input-output pairs ob-
served from the system we are trying to imitate is available for learning. In our case, such
a dataset is not available and we must thus create one so that our method can be applied.
In order to do that, we first select a set of problems. We next randomly generate, for each
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Algorithm 3 Partitioning algorithm of an optimization tree.

Inputs: N, the number of processors — k, the maximum number of elements in the par-
tition — pg, the initial root node — fyodes (), & function that estimates the number of
nodes of a subproblem, takes a feature vector as input — C (-), a function that generates
a feature vector that describes the subproblem given as input

1: procedure PARTITION(N, k, po, fnodes (+), C ()
2: q=Dpo > ¢ is a queue containing subproblems
3: while true do
4: if |¢| > k then
5: break
6: else if |g| > 3N then
T: if maXpeq fnodes (C (p)) < % Zpéq fnodes (C (p)) then
8: break
9: end if
10: end if
11: P = argmax,/cq Jnodes (C (p,))
12: s =400
13: for i € U, do > Up, is the set of indices of the unfixed binary variables in p
14: Plefy = p With z; set to 0
15: Meft = frodes (C (Pieft))
16: Pright = p With z; set to 1
17: Tright = fnodes (C (Pright)) > 7 is an estimate of the number of nodes of p
18: s = score(Neft, Nright )
19: if s < s* then
20: s¥=s
21: Pikeft = Pleft
22: Plight = Pright
23: end if
24: end for
25: ¢=q\pU {pfefta pifight}
26: end while
27: return q > return a list containing the generated partition

28: end procedure
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problem in this set, a certain number of subproblems by randomly fixing each variable in a
random subset of the binary variables to 0 or 1. For instance, if the problem contains 20
binary variables, we first select a random subset of them and we subsequently randomly fix
each variable in this subset to 0 or 1. The created subproblem is then optimized until opti-
mality is reached. Solving the subproblem yields the number of nodes (and, hence, an image
of its difficulty), which corresponds to the output part of a pair of the training set. The input
part is given by the feature vector that is computed for the randomly generated subproblem.
This procedure is repeated until enough data is generated.

Once the training set is created, we can apply a supervised machine learning algorithm in
order to learn the function f;oqes from the observed data. In this work, we use the random
forests algorithm (Breiman, 2001) (see Section 3.2.3). Once the function is trained, estimating
the number of nodes that solving a given subproblem requires starts with computing the
features, which can then be fed to the trained function. In other words, estimating the size
of the optimization tree of a subproblem p is written f,odes (C (p)). However, for the sake of
conciseness, we may sometimes drop the feature computation and simply write fyodes (P)-

Computing the features of a subproblem

As mentioned in the previous section, the input of the function fo4es should be a vector. This
section describes how the features are computed for a given subproblem. More specifically,
we propose an implementation for the function

C:P—dcCRY

where P is the ‘space’ of subproblems and ® is the feature space. Note that the features that
are detailed in this section are merely a proposal. It may be relevant, if not compulsory, to
develop new features, and thus new functions C (-), in order to apply this procedure to other
classes of MIP problems than those considered in this work.

A subproblem p is created by fixing a certain number of binary variables either to 0 or
to 1. We denote by F), the set of the indices of the fixed binary variables and the set of unfixed
binary variables by U,. The indices of the variables fixed to 0 and 1 are respectively contained
in the sets Fj,o and Fp;. Note that we assume that all problems are in the form (2.7) and that
we use the same notations as in Sections 2.3.1 and 2.3.2.

We denote the LP solution of the root node of the original problem by (), and the solution
at the root of the subproblem p by :c;,. Similarly, the value of the objective function obtained
with the solutions x, and @), are denoted of and o}, respectively. We moreover assume that
a heuristic solution is available from the beginning. The heuristic function h(-) applied to
solution z{, gives the solution xf! = h(zx}), and the value of the objective function for this
solution is 06‘. This heuristic solution allows us to compute the initial gap g; at the root node

of subproblem p, that is,

0q

Note that this gap can be negative since the LP objective of the subproblem can be greater
than the objective of the heuristic solution computed at the root node of the original problem.
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Additionally, we compute, for each subproblem p, a new right hand side b;, for each
constraint 7. Indeed, since some variables are fixed in p, the values of their coefficients in the
constraint matrix A, multiplied by their value, can be subtracted from the initial b. We thus
define the new right hand side as

bi=bi— Y Ay,

jerl
since it is not necessary to subtract the coefficients of the variables fixed to 0.

In order to compute additional features, we also optimize, for a very short period of time,
the subproblem p with a traditional B&B. More specifically, we allow a certain number of
nodes (typically 5,000) to be explored. Note that the algorithm uses as primal bound the
value of the objective function found by the heuristic at the root node, i.e., 06‘. When this
budget is exhausted, we extract a certain number of characteristics from the optimization.
This phase is called probing and the maximum number of nodes to be explored is referred
to as the probing budget. At the end of the optimization or when the probing budget is
exhausted, we retrieve the dual bound ozzzlzmg and the new primal bound o’ robing - \with

primal *

these values, we can compute the final gap gy at the end of the probing phase with

robing robing
. Ogrimal B OZual
9f = robing
primal

Besides the previous values that must be recomputed for each new subproblem p, we carry
out some preliminary calculations whose results are subsequently used to extract character-
istics from any subproblem p. More specifically, we compute the relative objective increase
observed between the root node of the original problem and the subproblem created by fixing
a specific binary variable x;, with j € I, to 0 or 1. We thus obtain two vectors ozg and ot1,
such that

/ /
Opzj:() OO

/ /
Opzjzl 00

oip(j) = and  0i1(j) =

)

[0 ||

where p,,—o (respectively p;,;=1) is the subproblem created by fixing variable z; to 0 (respec-
tively 1), and leaving all other variables unfixed. These vectors are computed once and for
all in the beginning and are used to compute some of the proposed features.

The above description merely introduces the notations and some values that are used to
compute the features describing a given subproblem p. The complete list of features that we
use in this work is given in Tables 5.1 and 5.2. In these tables, the features are separated into
five categories, each one of which is meant to represent different aspects of the problem. The
first category of features captures basic characteristics of the subproblem, as well as some
differences between the subproblem and the original root problem, like the increase of the LP
objective between the roots of both problems. The second category aims at representing the
different interactions that exist between the fixed binary variables of the subproblem and the
other binary variables in the cost function and in the constraints. Then, the features in the
third category model the sparsity of the subproblem with different measures computed from
the subproblem and the original problem. The fourth category is similar to the second one
except that its goal is to evaluate the connections between all variables (fixed, unfixed binary,
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and continuous variables) in the objective function as well as in the constraints. Finally, the
fifth category contains the features that are computed after the probing phase. These features
give a small glimpse of the optimization of the subproblem.

Tables 5.1 and 5.2 list 66 features in total. When all features are computed for a given
subproblem p, the output of function C (p) is a vector composed of the 66 values, where the
numbers given in the tables represent the positions of the features in the final vector.

Scoring a variable

In the algorithm that we propose (Algorithm 3, line 18), a score is used to determine which
variable it is better to branch on in order to expand the current tree by two newly created
nodes. How this score is computed influences the behavior of the tree partitioning algorithm.
The first score that we propose aims at balancing the difficulty, i.e., the number of nodes, of
each newly created children. The proposed score is as follows:

Tleft — Tright
2

7AﬂLright - ﬁleft
2

Tleft + Tright
2

SCOT€hal (Meft; Tright) = ,

where fijef; and fiyigh respectively denote the estimated size of the left and right subproblems.

The other proposed scoring criterion is designed such that the total amount of work is
minimized. It is given by

SCOT€max (ﬁlefta ﬁright) = max (ﬁlefta ﬁright) .

This score does not take into account the difficulty equilibrium between the two created
nodes. It is assumed that the balance can be achieved later when the generated subproblems
are distributed to the workers.

5.3.2 Distributing nodes to processors

In the case where the number of generated subproblems is equal to the number of processors,
the distribution of the work is trivial. However, when the number of nodes in the partition
is greater than the number of processors, one must find a way to distribute the work evenly
between the processors such that the workload is well balanced between each worker.

There are several ways this distribution can be done. In this work, we apply a simple
greedy method although other, more formal, approaches exist. The greedy routine that we
use is detailed in Algorithm 4. The output of this algorithm is an array, one element per
processor, of queues specifying which subproblems have to be solved by a given processor.
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Feat. # | Description

1 |06 — 0| / lop]

2-3 [Fpol /II]5 [ Fpal/ 1]

4 |Upl/11]

5 (Lo 10— 260 + Sjery 1= 26()1) /155
6-9 [min ; max ; mean ; std] ;. 0io(j)

10-13 [min ; max ; mean ; std];cp | 0i1(j)

14-17 [min ; max; mean ; std] ;¢ L0io(j) + 30i1(j)
18 (o6 — ) /log]

19 Zjer i/ D jer €

20 ZjeUp ¢/ Yjer€

2122 | [min; max],_y_, (b~ S, Aij) /b

23-24 [min ; max],_; . ZjeUp Aij/bi

25-26 [min ; max], _; ,, <ZjeUp Ajj — @) /b;

27-28 | [min; max|;_y > 5er, Aig/ 2jer Aij

29-30 [min; max|;_y ., > sep, Aij/ D jer Aij

31-34 [mean ; min ; max ; std];cp [[Aslly /m

35-38 [mean ; min ; max ; std];cp [ Ayl /m

39-42 [mean ; min ; max; std],;co |4, /m

Table 5.1: Features (1/2) used to describe a subproblem. To avoid repetitions, we use brackets
to indicate that several features are obtained with the same expression by simply changing a
small element. For instance, 3 4 [ a; b | indicates that two features are computed with this
expression: one is 3 + a and the other is 3 + b.
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Feat. # | Description

43 2 jer, G/ 2j=1C

44 ZjeUp ¢/ Z?:l j

45 2jec €l 2j=16

46-47 [min; max];_; ., > iep Aij/ > i1 Aij

48-49 | [min; max];_y > 5ep Aij/ D51 Aij

50-51 [min; max];_; ., > cc Aij/ Z?—l Aij

5258 | fmins max) gm0 (5ye0a, 50 A6 + Syecuy o0 Ai) /b

54-55 [min ; max]i:BiZO (deUp Ay <0 Aij T 2 jecia, <0 Aw) /b

56-57 [min ; max];z (Z]eUp Ay20 Aij T 2 jecia,>0 Aw) /b;

58-59 [min ; max]i:5¢<0 (Z]EUP 1A <0 Aij + Z]EC 1A;<0 Alj) /bi

60 | (o™ o) Jela™

61| (ob —obrimai) Job

62 ratio between the number of open nodes left after the probing budget is ex-
hausted and the number of explored nodes

63 maximum depth of the probing tree

64 depth of the last full level (i.e., the level [ such that the numbers of nodes in the
levels I’ =1...1 are 21/) in the probing tree

65 waist of the probing tree (i.e., level [ with the largest number of nodes)

66 1009:-91)

_loil

Table 5.2: Features (2/2) used to describe a subproblem. To avoid repetitions, we use brackets
to indicate that several features are obtained with the same expression by simply changing a
small element. For instance, 3 + [ a; b | indicates that two features are computed with this
expression: one is 3 + a and the other is 3 + b.
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Algorithm 4 Greedy subproblem allocation.
Inputs: N, the number of processors — ¢, a list containing the subproblems of the generated
tree partition

1: procedure ALLOC(N, q)

2 h(i) =0, Vi > h is an array of N scalars
3 1(3) =0, Vi > [ is an array of N queues
4 while ¢ # () do

5: p = argmax,y ¢, fuodes (C (") > select the most difficult remaining subproblem
6 j =argming_, nh(j’) > identify the queue whose expected workload is the least
7 (7)) =1l Up > add the current subproblem to the chosen queue
8 h(j) = h(J) + foodes (C(p)) > update the expected workload of the chosen queue
9: q=q\p

10: end while

11: return [ > (i) contains the subproblems to be solved by processor i

12: end procedure

A more formal approach to allocate the subproblems to the workers is to solve the following
optimization problem:

N
min E 2
i=1

k
S.t. Zaijﬁj:wi Vi=1...N
Jj=1

N
daj=1 VYji=1...k
=1

m-—w; <z Vi=1...N
m—w; > —
aije{o’l}
wy, 2 € RT,

where k and N respectively correspond to the number of subproblems to be allocated and
to the number of processors, and 7; and m respectively represent the predicted number of
nodes of a subproblem and the ideal average load of each processor, i.e., Z]j\,nj . The solution
of this problem yields an optimal subproblem allocation based on the available knowledge.
Obviously, since the amount of work (i.e., the number of nodes) required to solve each sub-
problem is not known exactly, the real allocation is likely to be suboptimal. Formulating the
subproblem allocation as a stochastic or robust optimization problem is an interesting way
to take uncertainty into account.
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5.4 Theoretical analysis

In this section, we present a short theoretical analysis of our method. Indeed, one of the side
advantages of using machine learning is that it is possible to get in advance, i.e., without
carrying out the optimization, an estimate of the number of nodes to be processed before a
subproblem is solved to optimality. Moreover, the error of this estimate can be estimated as
well. In the following, we show how these estimates can be used to get an approximation of
the speedup of the method before the optimization is carried out.

Thanks to machine learning, the number of nodes n; required to solve a subproblem
p; can be estimated with the learned function, i.e., 7; = frodes(pi). In practice however,
the prediction is not perfect and we can assume that the real number of nodes n; required
to solve the subproblem to optimality is a random variable that is distributed around the
predicted value n;. Furthermore, it is in general easier to reach an equilibrium between the
workloads of each processor when the chunks that have to be distributed are smaller. For
this reason, we assume that the number of generated subproblems is greater than the number
of processors. Each worker j therefore possesses a queue g; containing the subproblems for
which it is responsible.

Assuming that the mean of n; is f7; and that its standard deviation is &;, the following
theorems characterize a given subproblem allocation. We propose two theorems that charac-
terize, respectively, the speedup obtained with a parallel work distribution, and its absolute
duration, i.e., the maximum number of nodes over all processors. Both theorems provide
information that can be used in different situations. Indeed, the speedup is useful when one
wants to characterize whether the processors are efficiently used, while the absolute duration
is of interest when one wants to know how quickly an optimization job will terminate. Note
that, in this context, the speedup has to be understood as the ratio between the total amount
of work carried out by all processors (i.e., the sum of the numbers of nodes of all processors),
and the largest amount of work (i.e., the largest number of nodes over all processors).

Theorem 1 (Speedup approximation). Let k be a number of subproblems that have been
generated in such a way that their union covers the entire original optimization tree, and let
each subproblem p; be allocated to one queue q; of one of the N available workers w;j, the
speedup SU obtained by this work distribution is bounded below by lgy and above by ugy, i.e.,

lsy < SU < ugy,

I(N-1)

where lsy =1+ =—

and ugy = N, with probability at least

N
€= Hp(l7u7/1'wj70'wj) )

J=1

— ~ 2 ~2
whET’e Mw] - Zt:ptqu nt, ij - Zt:ptqu O-t’ and

u 1 _ )
l,u, SO ) = / —F——€X -
p( lu’wj w]) . O'wj /_27'(' p [ 20_121}j
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Proof. The main mechanisms of the proof of this theorem are based on the probability theory.
Since we assume that k& > N, each worker is responsible for the optimization of a certain
number of subproblems. The total number of nodes required in order to finish a ‘job’ is thus
the sum, over all subproblems p; optimized by a processor w;, of the number of nodes n; that
these subproblems require in order to be fully optimized. We define a new random variable
G, for the worker w; such that

ij == Z ;.

1:pi€q;
Assuming that the central limit theorem applies in this situation, and that the variables n;

are independent of each other, the random variable Gy, which represents the total amount
of work the processor carries out, is distributed according to a normal distribution with

parameters
_ . 2 _ )
How; = E ng and oy, = E 0y
t:preq; t:prEq;

Then, arbitrarily choosing two values [ and u, we can compute the probability that the total
number of nodes explored by one worker is comprised between [ and u:

(lu o )_/uéex _M dz
P\ U Py Ow; ) = ; O-wj\/% p 20120j .

Given that the variables n; are independent of each other, so are the variables G,,;. Thus, the
probability e that the total amount of work carried out by each worker is comprised between

[ and u is given by
N

€= Hp(l7u7uw]"0-w]') .

j=1
Finally, the lower and upper bounds lsy and ugy on the speedup can be computed from the
bounds I and u on the number of nodes of each worker by

I(N-1)

u

lsu =1+ and wusy = N,

where gy and ugy respectively represent the worst and the best case. The best bound on the
speedup ugy corresponds to the case where all workers carry out the same amount of work.
On the other hand, the worst case gy corresponds to the case where N — 1 workers carry
out an amount of work equal to I, while the remaining worker is responsible for an amount
of work equal to u. O

Note that the probability € given by Theorem 1 is actually a lower bound on the probability
that the speedup falls in the range [lgu, ugyu]. Indeed, there are situations where the amounts
of work of the processors are outside the range [l,u], but still yield a speedup comprised
between lgy and usy.

Theorem 1 can be used to determine beforehand whether the chosen work distribution
would lead to interesting speedups or not. It is to be noted that the previous analysis is
valid when communication between processors is forbidden. If the workers are given the
possibility to communicate, for example a primal bound, the expected speedup would most
likely be greater than the one estimated by Theorem 1. Moreover, we must emphasize the
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fact that this speedup computation assumes that the serial amount of work, i.e., when a
single subproblem (the root) is optimized by a single processor, is equal to the sum of the
individual amounts of work of each subproblem. This is not entirely true, but, for the sake of
simplicity, this approximation is used in order to compute in advance the speedup for a given
work distribution. Thus, rather than giving a real speedup, the previous theorem might be
more useful to estimate the actual utilization of the processors.

In addition to the speedup, the mechanisms of the previous theorem can be used to deter-
mine the probability that a worker w; explores more than a given number of nodes.

Theorem 2. Based on the same assumptions as Theorem 1, the probability € that each worker
explores mo more than a given number t of nodes is given by
N
E =

14 (t7 Hwj s ij) )
7=1

with

! 1 (x—uwj)2
@(t,ﬂwj,awj): ﬂomexp - | d=.

Proof. The proof of this theorem follows immediately from the fact that the random variables
G, are normally distributed. The probability that one of these variables is less than a given
value t is directly computable, and the probability that all variables are less than ¢ is obtained
by computing the product of each individual probability since the G, are assumed to be
independent of each other. O

Given the presented theorems, and provided that the considered learning algorithm is
able to characterize the variance of a prediction (which is the case for the random forests),
one can easily evaluate the performance of a given partition of the original problem and its
distribution among several workers. In a similar way, the proposed theorems could be used,
with some adaptations, to find the optimal work distribution, instead of evaluating a given
subproblem allocation.

5.5 Experiments

We describe here the problems that we use to evaluate our approach and the general experi-
mental procedure that leads to the presented results.
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5.5.1 Problem sets

We evaluate our approach on a set of unit commitment (UC) problems. The problems that
we consider are a minimalist version of UC problems. Their mathematical form is given by

nNs ns T
nin chszw DD
7j=1 i=1
nNs ngs T ns T
+fo”2@/ DD RO DB
j=1 i=1 j=1 i=2
s.t. SUNS a4 3N wf > dy Vi=1...T
NS<MNSyU Vi=1...T,Vj=1...nng
_MSyU Vi=1...T,Vj=1...ng

xfjs S e Rt

y@] 7y1]7z1] € {07 1} .

In this formulation, T, nyg, and ng represent the number of time periods, the number of
power plants without startup costs, and the number of plants with startup costs, respectively.
The other parameters c;, f;, and u; denote the variable, fixed, and startup costs of each
power plant, respectively. Finally, the M; and d; denote the nominal (maximum) power of
each plant and the demands that have to be satisfied at each time period, respectively.

In this work, we set the number of periods to 12, and the number of power plants with and
without startup costs both to 5. Moreover, all the UC problems that we consider differ only by
the demand of each period, i.e., all the parameters are identical except for the demands that
are different for each problem. In order to create our problems, we generate randomly a first
set of parameters including the demands, which will constitute the basis of our UC problems.
Then, the demands for each problem are randomly updated by adding to the initial vector of
demands [El, e ,ET] a unique randomly drawn term d,,,, and a random term for each time
period dj. The final demand vectors are thus of the form [dy, + dy+dj,...,dn+dr+ dr],
where the d,,, changes from problem to problem, and the d] from problem to problem and
from period to period. We generate one set of 300 problems that constitute a training set,
and a set of 20 UC problems to evaluate our approach. Those problem sets are available
online! and can be provided upon request.

All our experiments are performed on our randomly generated problems. There are two
reasons why we decided to use such problems for our experiments. First, machine learning
requires that the problems that we use for learning and for testing are similar enough. If the
problems in the training set are too dissimilar from those in the test set, nothing useful for
the test can be learned from the provided data. In this first study, we thus decided to focus
only on a single class of problems, with similar characteristics. In principle, the approach can

"http://www.montefiore.ulg.ac.be/~ama/research.php
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be extended to take into account different classes of problems and more dissimilar problems,
but this demands more data to be generated (and considerably more time). Moreover, the
features would probably need to be adapted to capture a (most likely) larger set of problems
dynamics. Second, the choice of a set of UC problems with a same cost structure and varying
demands is also motivated by its similarity to practical situations. Indeed, in the real world,
the generation companies, or the transmission system operators, have to repeatedly solve
similar problems with a similar cost structure (the plants do not change very often), but with
a varying demand. Our problem setting is thus strongly motivated by an obvious similarity
with practical applications.

5.5.2 Experimental procedure

Once the problem sets are at our disposal, our experimental procedure can be applied. It is
composed of three steps: (1) we generate a training set Dy, of pairs composed of features of
subproblems and the corresponding numbers of nodes; (2) we learn from D, a function able
to predict the size of a subproblem; and (3) we apply our partitioning algorithm in order to
generate several subproblems and analyze the obtained experimental results.

Note that, in all experiments, including steps (1) and (3) of our experimental procedure,
we give to B&B an upper (primal) bound on the problem. This primal bound is very loose,
and is computed with a simple heuristic that merely consists in rounding up each fractional
variable in the LP solution of the root node of the original problem.

Step 1: dataset generation

In order to create a dataset of pairs (¢;, n;), we first generate, for each problem in our learning
problem set, a certain number (250) of random subproblems. Each subproblem is created by
randomly choosing a subset of the binary variables and by randomly fixing each variable in this
subset to either 0 or 1. Then, for each subproblem, we compute the features ¢; corresponding
to this subproblem and we solve the subproblem to optimality. The number of nodes n;
required to fully optimize the subproblem is added, together with the feature vector ¢;, to
the dataset Dy, as a pair (¢, n;). The dataset Dy, contains around 75,000 learning examples
and is used as input of the learning algorithm to create the function fyoges(-)-

Step 2: learning a function predicting the number of nodes

We now apply a supervised machine learning algorithm to the training set D, to learn a
function that predicts the number of nodes required to solve a subproblem to optimality. In
this work, we use the random forests algorithm (Breiman, 2001), whose description is given
in Section 3.2.3. Our choice is motivated by the computational efficiency (in the learning
phase) and the simple mechanisms of the random forests. Another advantage is that the
performance of the random forests is very robust against the choice of their parameters. The
random forests actually have three main parameters: M, which is the number of trees in
the ensemble method; nyi,, which is the number of training samples contained in a node
below which that node becomes a leaf; and m, which is the number of candidate features
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considered at each node of a tree. The number of trees is set to M = 50 in our experiments.
The parameter ny,;, controls the complexity of the trees and is set to a value of ny;, = 10.
Finally, the parameter m is given the value d, where d is the number of features used to
describe a subproblem (m = 66 in our case).

Because the experiments show that the parameter values have little impact on the perfor-
mance of the method, the values that we give to those parameters have been chosen based on
our experience without any tuning. The exact understanding of these parameters is beyond
the scope of this chapter and we refer the reader to Section 3.2.3 or to Breiman (2001) for a
deeper explanation.

Step 3: comparing several partitioning schemes

After having generated the training set D,, and applied the learning algorithm, we can
compare our learned partitioning scheme to other schemes. Besides the one proposed in
this work and due to the lack of clear competitors, we have imagined two extremely simple
approaches that we compare our method with. The first one, that we call ‘random’, consists
in generating a certain number of subproblems partitioning the original optimization tree
completely randomly. The procedure is as follows. Imagine that there is a list that stores,
such as in B&B, all open nodes. The list is first initialized with the original root node. While
the number of elements in the list is less than the desired number of elements in the partition,
the procedure takes one node randomly from the list. That node is examined and the unfixed
binary variables are identified. Then, one unfixed binary variable is randomly chosen and
two child nodes are created by fixing the randomly chosen variable to 0 and 1, respectively.
This procedure yields a totally random partitioning of the original tree. The second approach
that we propose is similar to the previous one, except that the next node to split into two
children is not chosen randomly. Indeed, we rather open the nodes in a breadth-first manner
such that the tree resulting from the random partitioning is balanced. We naturally name
this approach ‘balanced’.

When the number of nodes is equal to the number of processors, distributing the work
among the different workers is easy. When the number of elements in the partition is greater
than the number of processors, we must find a way to distribute the work between them.
When the partition is generated with our learned method, we use Algorithm 4 to distribute
the work between all workers. When the random or balanced schemes generate the partition,
we randomly distribute the subproblems to each worker while balancing the number of sub-
problems that each processor is responsible for, i.e., we attribute to each processor a number
k/N of subproblems.

Note that the subproblems generated by our approach depend on the scoring function that
is used. We propose two different scoring functions in Section 5.3.1. However, our experiments
show that the second one, i.e., scoremay, is more efficient than the first one. Thus, for the
sake of conciseness, we mainly focus, from now on, on the scoring function score(fie, right) =
SCOT€max (Meft; Tright) = MAaX (Meft, Nright ). We report nonetheless some results generated with
scorep,) to illustrate to what extent scorep,; is less effective than scorepax.

In order to assess the proposed approach, we generate, for each problem in our test set,
several partitions of increasing size with the three proposed partitioning schemes. We then
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gather the results and analyze them. Furthermore, we consider a setting without communica-
tion and a setting with communication where the best found primal bound is shared among
the processors (updates of this primal bound are performed on a regular basis).

We evaluate our approach on the problems contained in our test set (20 UC problems).
CPLEX 12.2 is used as the main B&B solver. Note that presolve is applied to each problem
at the root node and then is disabled for the subproblems. Moreover, in order to assess only
the performance of the partitioning strategies, we disable heuristics and cuts in CPLEX.

5.6 Experimental results: learning

This section focuses on the presentation and discussion of some experimental results regarding
the learning procedure.

5.6.1 Learning to predict the number of nodes

We first report some results regarding the accuracy of the learned complexity function fodes-
In order to quantify the precision of the function, we split the initial training set Dy, into
two sets: one set, Drtlgain, is used to train the complexity function (around 50,000 samples),
and the other set, Df{;ﬁt, is used to test the learned function (around 25,000 samples)?. Once
the function is trained, we predict an output for each feature vector in Dgift,

be compared to the real output stored in the set. An element in the test set is denoted
by (¢;,n;) € Dfﬁft and the corresponding prediction obtained with the learned function is

denoted by frodes (¢z) = ;.

The presented result tables illustrate the performance of our learned function. More specif-
ically, the tables report the mean and the median of the achieved relative errors, as well as
the Spearman correlation (i.e., the correlation of the ranks) between the predictions and the
real values. For a sample (¢;,n;) in the test set, the relative error is given by

which can then

RE, — 1"l

max(g,n;)’

where € € ]RSr is added to upper bound the computed relative errors.

Computing the correlation, the mean, and the median of the relative errors for all samples
in the test set is not enough to correctly assess the learning accuracy. Indeed, the distribution
of the relative errors in R™ is not uniform: the distribution is much denser for smaller errors.
For this reason, we partition the space of relative errors, i.e., R*, in several regions and
evaluate the learned function independently on each region. The learned function is therefore
assessed in several situations depending on the magnitude of the errors.

Our method is initially designed to predict the number of nodes of a subproblem. How-
ever, this learning problem is rather difficult because the output, i.e., the number of nodes,

2Note that the initial dataset Dy is split with respect to the problems that generate the samples. This

means that the problems used to generate the samples contained in the test set D are different from the

. np
problems that generate the samples in the training set Di'™
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typically follows an exponential function of the problem parameters, e.g., the number of bi-
nary variables®. The exponential nature of the output makes it hard for traditional learning
algorithms to perform well (in terms of common performance measures, e.g., the mean rel-
ative error). In order to ease the problem from the learning point of view, we also consider
the case where the output is not the number of nodes of the subproblem, but its logarithm.
This modification does not change anything to the task (the logarithm is monotonous), but
renders the problem slightly easier from the learning point of view, because the input-output
relationship becomes more linear. In the following (and in the next section), we thus report
the results in the case where the function is trained with the number of nodes, and in the
case where the function is trained with the logarithm of the number of nodes. Note that the
relative errors are computed with ¢ = 1 when the output is the number of nodes and with
£ = le™® when the output is the logarithm of the number of nodes.

Table 5.3 reports the prediction accuracy of the random forests when the output is the
number of nodes and when the output is the logarithm of the number of nodes. The table
shows that, in both cases, around 28% of the test samples are predicted exactly. Those samples
mostly correspond to very small or unfeasible subproblems that are very easily detected by
the learning method with the chosen features. When larger errors are considered, we can
make three main observations:

1. the Spearman correlation between the predictions and the real outputs is always very
high (0.86 in the worst case);

2. when the number of nodes is the chosen output, only 22.35% of the samples have a
relative error larger than 150% and, despite the relatively high mean relative error
(738.01%), the correlation remains very good (0.90);

3. when the output is the logarithm of the number of nodes, the relative errors are much
better (the mean relative error is 20.30% in the worst case) than in the former case, but
the correlation between the predictions and the real outputs diminishes.

Table 5.3 suggests that, as expected, it is easier to predict the logarithm than the number
of nodes. However, the correlation in the logarithm case, though still high, is less than the
correlation obtained when the number of nodes is the chosen output. The next section shows
that lower relative errors do not necessarily mean better optimization results. Table 5.3
also shows that there exist some problems for which the learned function is not accurate
enough. This was expected since the dataset that we use is obviously too small and does
not satisfactorily cover the space of considered problems (especially the largest problems).
Consequently, the predictions are less accurate for those (sub)problems that are not well
represented in the training set. There are two (complementary) ways to alleviate this problem:
(i) increase the training set, and (ii) develop better features. However, despite the relatively
bad accuracy, the computed correlations show that the predictions are still highly correlated
with the real values even for the hardest problems. This is important since we are not
interested only in quantitative aspects of the predictions, but also in qualitative aspects.
Indeed, being able to tell whether a subproblem will take much longer to solve than another
one is a valuable piece of information that can be as useful as the accurate prediction of the
number of nodes.

3There is no rule that states that the number of nodes is indeed an exponential function of the input
parameters, but such a behavior is often observed in practice.
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RE (%)

Output Considered % elem. Mean Median Corr.
elements

#nodes
RE; =0 28.08 0.00 0.00 1.0000
0 < RE; <50 31.96 21.39 19.93  0.9959
50 < RE; <100 12.59 70.22 68.17 0.9371
100 < RE; <150 5.02 122.92 121.78  0.9996
150 < RE; < 400 22.35 738.01 388.87  0.9014

log #nodes
RE; = 28.10 0.00 0.00 1.0000
0<RE; <5 36.44 2.21 2.08 0.9900
5 < RE; <10 20.11 7.24 7.16 0.9106
10 < RE; <15 9.29 12.17 11.98 0.8272
15 < RE; < +00 6.06 20.30 18.60 0.8696

Table 5.3: Prediction accuracy of the learned complexity function when the considered output
is the number of nodes and when the output is the logarithm of the number of nodes (probe
size=5,000). The table reports the mean and the median of the relative errors, as well as
the Spearman correlation coefficient between the real outputs and the predictions. Each line
represents a case where only some samples are considered for the computations. For instance,
the line labeled 0 < RE; < 50 indicates that only those samples for which the relative error is
strictly greater than 0 and less than or equal to 50 are used to compute the mean, the median,
and the correlation. The table also reports the proportion of elements considered in each line.
Note that the samples for which the prediction is perfect, i.e., RE; = 0, are separated from
the others to compute the performance measures.

In addition to Table 5.3, we also report, in Table 5.4, complementary learning results.
While Table 5.3 displays the learning results for the default probing budget (5,000 nodes),
Table 5.4 reports the same performance measures when the probing budget varies. As a
reminder, the probing budget refers to the size of the probing tree that is used in the com-
putation of the features. As expected, the table indicates that increasing the probing size to
50,000 nodes has a positive impact on the predictions. When the output is the number of
nodes, the proportion of elements that are not well predicted (150 < RE; < +00) significantly
decreases (from 22.35% to 13.38%) and the corresponding mean relative error falls down to
434.59%. Besides, the Spearman correlation significantly progresses. When the output is the
logarithm of the number of nodes, the increase in the accuracy of the method is not as signif-
icant, but the correlation becomes much better. It is to be noted that reducing the probing
budget has a serious negative impact on the learning accuracy. However, the optimization
results reported in the next section show that the effect on the parallelization of B&B is
limited.

Finally, it is important to recall that the learning accuracy is not crucial here. Indeed, the
main purpose of the approach is to split the workload evenly among several processors and
not to predict with infinite accuracy the size of an optimization tree. Obviously, being able to
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estimate accurately the size of the tree remains a key factor to success, but a fair assessment
of the method must also consider the optimization results obtained with the approach. It
turns out that, in this problem setting, being able to correctly sort several subproblems by
difficulty is at least as important as accurately predicting their hardness. The correlation
results show that our approach achieves this objective quite well.

5.6.2 Important features

Besides the raw prediction accuracy, we also analyze the importance of each feature on the
ability of the learned function to predict a correct output?. There are several ways to assess
whether a feature matters or not. In this work, we use two techniques as in Section 4.6.2.

First, we examine the so-called ‘feature importances’, which are values computed by the
random forests at learning time and that sum to 1 over all features. The greater the fea-
ture importance, the more relevant the feature is. Similarly, we use the cost of omission
(COO) (Leyton-Brown et al., 2009) to estimate the impact of a feature on the prediction
ability. The cost of omission consists in omitting a given feature during the learning and
the testing phases. We can then compute the estimated mean relative error (MRE) obtained
without the chosen feature. The difference between the MRE obtained without the feature
and the MRE obtained with all features is an image of how important the feature is and
is referred to as the cost of omission. If the value of the COO is positive, this means that
the feature is important for the prediction. On the other hand, when the COO is negative,
it implies that the feature has a negative impact on the prediction accuracy. Small COOs
(either positive or negative) indicate that the feature is not very important and could just be
a source of noise in the prediction. Note that we use in this work the normalized COO which
consists in attributing to the largest positive COO a value of 100, all other COOs are then
scaled accordingly. Given that there exist some large errors that have a huge impact on the
MRE, and, thus, on the COO, we compute the COOs with different thresholds on the relative
errors, just as in the previous section®. The results of the feature importances are summarized
in Table 5.5 for the 10 most relevant features (according to the feature importances computed
by the random forests). The entire list of feature importances is given in Appendix B.1.

The table indicates that feature #66, i.e., the gap decrease at the end of the probing phase,
as well as feature #63, i.e., the maximum depth of the probing tree, are very important.
Apart from feature #64, i.e., the depth of the last full level in the probing tree (which does
not appear in Table 5.5, see Appendix B.1), the importance of the other features seems to
be negligible compared to features #66 and #63 (the COOs are rather small). Even if they
appear to be less important than the two winners, removing them typically yields positive
COOs, which could indicate that their absence is detrimental to the prediction. Additionally,
the importance of the features (other than features #66 and #63) tends to decrease when the
errors considered in the computation of the COOs increase. This behavior is expected as, for
those examples whose predictions are very poor, the features seem to not be particularly able
to explain the dynamics of the difficulty estimation problem. For those examples, the features

4A probing budget of 5,000 nodes is used to compute the feature importances.

5Note that, in this case, the elements that are considered to compute the mean, and thus the COO, are
those elements for which the initial relative error (i.e., the relative error obtained with all features) is included
in the interval.



Probe size = 50 Probe size = 500 Probe size = 50,000
RE (%) RE (%) RE (%)
Considered % Mean  Median  Corr. % Mean  Median  Corr. % Mean Median  Corr.
elements
#nodes
RE; =0 28.02 0 0 1 28.07 0 0 1 28.08 0 0 1
0 < RE; <50 20.15 22.75 21.72 0.9961  26.09 21.95 20.69 0.9966 41.03 20.81 19.17 0.9924

50 < RE; <100 12.01 72.40 71.20 0.8758 12.14 70.79 69.21 0.9129 12.63  69.59 67.03 0.9699
100 < RE; <150 4.07 123.55  123.55 0.9995 4.74 122.62  121.56 0.9995 4.88 12287  121.76 0.9995
150 < RE; < 400 35.75 4,744.63  745.99 0.7125 2897 1,27833  559.44 0.8037 13.38 434.59  292.17 0.9601

log #nodes
RE; =0 28.10 0 0 1 28.08 0 0 1 28.08 0 0 1
0<RE; <5 25.81 2.37 2.30 0.9859 31.13 2.30 2.22 0.9894  44.45 2.12 1.99 0.9892
5 <RE; <10 19.81 7.39 7.34 0.8966  20.35 7.33 7.25 0.8939 17.65 7.09 6.90 0.9483
10 < RE; <15 12.60 12.23 12.13 0.7401  10.88 12.23 12.10 0.7543 6.48 12.00 11.74 0.9497

15 < RE; < 400 13.68 22.26 20.00 0.4551 9.56 21.38 19.38 0.6970 3.33  20.66 18.54 0.9523

Table 5.4: Prediction accuracy of the learned complexity function when the probing budget varies. The table reports the mean and

the median of the relative errors, as well as the Spearman correlation coefficient between the real outputs and the predictions. The
table is read as Table 5.3.
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are, in a sense, noise and it is thus no surprise that their importance is small. Interestingly,
in the logarithm case, removing the features one at a time seems to have a positive impact on
the prediction when the largest errors are considered (negative COOs when RE; > 5). This
would mean that none of the features is important. This is of course misleading and the most
likely conclusion that can be drawn from this observation is that single features alone do not
explain the output and that the combination of several features is more important than the
individual features themselves to yield a correct prediction.

As a closing remark, let us mention that this analysis alone is not conclusive and that
further work is required to determine whether the features (apart from features #63 and
#66) are really important or just model noise. Additionally, it seems that the combination of
several features is rather important for the predictions, but the impact of those interactions
cannot be deduced from the sole COOs. Further investigating those relationships would most
likely greatly improve our understanding of the subproblem difficulty estimation task.



Output RE; =0 0 < RE; <50 50 < RE; <100 100 < RE; < 150 150 < RE; < 4+
#nodes # FI MRE CcOO MRE CcOO MRE CcOO MRE COO MRE COO

66  0.2020 0.00 0  100.52 100 171.40 100 348.15 100 992.00 100

63 0.1388 137.42 100 40.19 24 89.48 19 153.77 14 731.56 -3

14 0.0705 0.00 0 25.01 5) 71.46 1 126.78 2 721.52 -6

18 0.0629 0.00 0 26.16 6 73.29 3 131.85 4 736.73 -1

62  0.0493 0.00 0 25.53 5 70.98 1 127.22 2 730.60 -3

17 0.0410 0.00 0 24.62 4 71.32 1 126.28 1 730.19 -3

1 0.0325 0.00 0 24.82 4 71.43 1 127.47 2 741.18 1

61 0.0297 0.00 0 26.12 6 74.54 4 135.67 6 736.86 -0

16 0.0277 0.00 0 24.56 4 72.22 2 125.86 1 726.41 -5

60 0.0206 0.00 0 25.01 ) 72.23 2 130.13 3 740.92 1
Output RE; =0 0<RE; <5 5 <RE; <10 10 < RE; <15 15 < RE; < 40
log #nodes # FI MRE COO MRE COO MRE COO MRE COO MRE COO

63 0.9001 0.12 24 3.30 79 7.45 100 11.82 -334 19.04 -807

66  0.0577 0.00 0 3.59 100 6.97 -127 11.37 -761 18.83 -944

62 0.0199 0.00 0 2.50 21 7.07 -82 11.94 -222 19.86 -281

18 0.0035 0.00 0 2.51 22 7.06 -84 11.84 -312 19.78 -334

65 0.0019 0.10 20 2.56 26 7.12 -58 11.98 -183 20.01 -187

61 0.0015 0.00 0 2.48 20 7.15 -44 11.93 -225 19.88 =271

40 0.0014 0.00 0 2.45 17 7.08 =77 11.88 =277 19.71 -380

14 0.0014 0.00 0 2.47 19 7.08 -75 11.88 -274 19.77 -344

17 0.0012 0.00 0 2.42 15 7.09 -71 11.93 -226 19.92 -243

99 0.0012 0.00 0 2.43 16 7.15 -43 12.06 -100 20.15 -100

Table 5.5: Feature importances and normalized costs of omission for the 10 most important features. ‘#’ indicates the feature
number, “FI’ represents the feature importance computed by the random forests, and ‘MRE’ and ‘COQ’ represent, respectively, the
mean relative error (in %) and the corresponding cost of omission achieved when the feature of interest is removed from the data.
The results are reported when the output of the learning model is #nodes and log #nodes. Finally, several cases are considered to
compute the COOs, as detailed in Section 5.6.1. The complete list of feature importances is available in Appendix B.1.
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5.7 Experimental results: optimization

We now turn to experimental results regarding the parallelization of B&B.

5.7.1 Parallel optimization

We compare the approach that we propose to the trivial ones in a real parallel optimization
setting. We apply the three proposed partitioning schemes to our set of test problems and cre-
ate increasingly larger partitions of the original optimization trees. We consider two settings.
First, we generate partitions whose sizes k are equal to the number of available workers V.
In that case, each worker, or processor, is responsible for a single subproblem. The second
setting focuses on the case where the subproblems outnumber the workers. In that case, k is
larger than N and each processor is typically responsible for more than one subproblem.

We assess the performance of the competing partitioning methods thanks to several mea-
sures computed from the experimental results. More specifically, when problem i is entirely
solved (i.e., all workers are done), the number of nodes processed by each worker j is recorded.
The value n;; represents the number of nodes worker j has to explore in order to solve its
share of the work that is required to entirely solve problem ¢. When there is only one sub-
problem assigned to a processor, n;; represents the number of nodes required to solve that
subproblem. When the worker is responsible for several subproblems, n;; represents the sum
of the nodes required to solve each subproblem assigned to j. Several performance measures
(average, standard deviation, minimum, maximum, and sum) are then computed for each
problem from the stored n;;. In other words, we compute, for each problem i, the values
mean; n;;, std; n;;, min; n;;, max; n;;, and Zj n;j. Then, these values are averaged over all
test problems for each partitioning method and each partition size and finally reported in our
experimental results.

We perform two types of experiments: with and without communication. In the case
without communication, each worker is assigned a given number of subproblems and solves
each subproblem independently of the other subproblems and independently of the other
workers. In the case where communications are allowed, their sole purpose is to render the
best primal bound available to all workers. The communication is thus maintained at its
minimum but remains yet very useful to achieve good performance. The communication
works as follows. There is, in shared memory, a single scalar that stores the objective value of
the best known integral solution. Periodically, after a predefined number of nodes is explored
by the worker, the shared primal bound is read and the worker updates its local primal
bound accordingly. This allows all processors to be aware of the best available solution in
order to early prune unpromising branches of the tree. Moreover, each time a new integral
solution is found, the worker responsible for that discovery updates, if necessary, the shared
primal bound. This mechanism has proved to be very useful in reducing the total amount
of work carried out by all processors, while being very light in terms of communication.
We arbitrarily set the default communication interval to 10,000 nodes, but the experimental
results suggest that this communication interval can be increased without impacting the
optimization results. Note that the optimal communication interval typically depends on



5.7. EXPERIMENTAL RESULTS: OPTIMIZATION 105

the nature of the considered problems. The proposed value for this parameter is thus not
universal and should therefore be adapted based on the studied problems.

The experiments that we carry out are designed to compare several partitioning strategies
and to evaluate the impact of the parameters on the optimization results. We compare the
two trivial partitioning strategies (random and balanced) described in Section 5.5.2 with the
proposed learned partitioning strategy. We define a default learned partitioning strategy
that is used in the comparison with the trivial approaches. This default learned partitioning
scheme uses scorep.x as scoring function, allows 5,000 nodes to be explored in the probing
phase of the feature computation, and uses the number of nodes as a difficulty estimator, i.e.,
the learning algorithm directly predicts the number of nodes of a given subproblem. We also
carry out other experiments that are meant to measure the importance of communication and
to assess the effect of the parameters of the learned partitioning strategy on the optimization
results. Note that, in addition to the three partitioning methods, we also report in the results
a so-called ‘baseline’, which corresponds to the normal optimization of a problem, i.e., starting
from the root, the problem is solved to optimality by a single processor.

Size of the partition equal to the number of workers: £k = N

In this first set of experiments, the size of the partition is equal to the number of processors.
We generate partitions of size 2 to 24, i.e., we generate k subproblems (with k = 2...24)
for each problem to optimize, each subproblem being optimized by a single processor. The
performance measures described above and averaged over all problems in our test set are
reported, versus the size of the partition, in Figures 5.1-5.7. These figures are just meant to
show the trends of the performance measures. The detailed results are given in the form of
tables in Appendix B.2.

Figures 5.1 and 5.2 first report the results for the random, balanced, and default learned
partitioning strategies without and with communication, respectively. The reported results
directly show that our approach always beats the two trivial approaches in every aspect
(considering the same communication setup). The results also highlight the importance of
communication to achieve good performance in parallel B&B. Overall, the mean number of
nodes per processor decreases for all partitioning schemes when the number of generated
subproblems increases, i.e., when the size of the partition increases. The same observation
can be made for the minimum of the number of nodes across all processors. The maximum of
the number of nodes tends to increase when the number of elements in the partition increases,
but only when communications are forbidden. This can be easily understood since the deeper
the subproblem is in the optimization tree, the less likely it is to contain a good feasible
solution that can prune unpromising branches. Also note that the maximum is the most
interesting measure because it conditions the speedup. Indeed, even if the total amount of
work required to solve a problem is not equal between the serial and the parallel case, the
time needed to complete the optimization is conditioned by the processor that takes the most
time. In order to analyze the potential speedups, the maximum number of nodes must thus
be compared with the number of nodes in the serial case, i.e., the baseline. The speedups
obtained when communications are forbidden are very modest. The situation is different
when we allow the processors to communicate. Indeed, in that case, our approach achieves a
very interesting 4.22 speedup with respect to the serial case when the problem is parallelized
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on 24 cores. This has to be compared with the speedups of 1.36 and 1.58 obtained with the
random and balanced partitioning schemes. In other words, the approach that we propose
indeed achieves speedups that can have an important practical impact.

Figures 5.1 and 5.2 highlight the crucial role that communication plays when it comes
to achieving interesting speedups. It is not clear, however, whether one should allow a lot
of communications or if only a limited amount is enough to obtain good results. Figure 5.3
analyses this aspect. From the figure, it appears that the sensitivity of the optimization
results is quite low with respect to the communication interval. These results tend to indicate
that only very little communication is actually required to obtain interesting speedups.

The previous figures report the optimization results for the default learned partitioning
strategy. Figures 5.4-5.7 report the optimization results when the parameters of the learned
strategy vary. Figures 5.4 and 5.5 first report the impact of the scoring function used to create
the partition, as well as the impact of the difficulty estimator. From these figures, it appears
that scoreyp,; is outperformed by scorep, .y in every aspect, even in balancing the workload. The
figures additionally show that the choice of the difficulty estimator (#nodes or log #nodes)
is not very important. This is quite surprising given that the learning results clearly favor
the logarithm of the number of nodes. However, these results strengthen the claim that
the learning accuracy is not crucial in this application and that the ranking induced by the
predictions is actually more important than the raw prediction accuracy. Finally, Figures 5.6
and 5.7 report the effect of the probing budget on the optimization results. The previous
section clearly indicates that increasing the probing budget improves the learning accuracy.
A similar phenomenon appears in the figures. Indeed, the larger the size of the probing
tree, the better the optimization results. It is interesting to note though that, even without
communication, a speedup of ~ 4 can be achieved when a probing budget of 50,000 nodes is
allowed for the computation of the features. The speedup becomes even better (= 7) when
communications are allowed. On the other hand, when the probing budget is very small (50
nodes), the optimization results are not very good without communication, but compare very
nicely with the other probing sizes when communications are allowed.

As a final remark, it is interesting to emphasize that the computed speedups are lower
bounds on the attainable speedups. Indeed, in this work, we do not perform dynamic load
balancing since we only distribute the work to each processor before the optimization starts.
If a dynamic load balancing scheme is used to further improve the work equilibrium between
the processors, it is conceivable that much higher speedups can be achieved. Indeed, in that
case, other measures, such as the mean and the minimum numbers of nodes per processor,
should be used to enrich our analysis. Given that the mean and the minimum workload per
processor are both very low with our method, it is fair to expect greater gains in computation
time if a dynamic load balancing scheme is used, together with our method, in order to
redistribute the work from the busiest processor to the idle ones.

Size of the partition greater than the number of workers: &t > N

The last set of experiments that we propose focuses on the parallel optimization of our set of
test problems when the number k of generated subproblems is greater than the number N of
workers, i.e., k > N. In order to do so, we generate a certain number k of subproblems with
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Figure 5.1: Parallel optimization results (k = N) without communication. Comparison
between the two trivial partitioning strategies (random and balanced) and the default learned
partitioning strategy (score=scoremax, probe size=5,000, and output=#nodes).
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Figure 5.2: Parallel optimization results (k = N) with communication every 10,000 nodes.
Comparison between the two trivial partitioning strategies (random and balanced) and the de-
fault learned partitioning strategy (score=scorenax, probe size=5,000, and output=#nodes).
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Figure 5.3: Parallel optimization results (kK = N) for the default learned partitioning strat-
egy (score=scorepax, probe size=>5,000, and output=#nodes) with different communication
intervals. ‘c0’ indicates no communication and ‘cx’ indicates communication every x nodes.
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Figure 5.4: Parallel optimization results (k = N) without communication for the learned
partitioning strategy (probe size=5,000): impact of the scoring functions scorep, (‘bal’)
and scorepax (‘max’), and impact of the output predicted by the learning algorithm (either
#nodes, or log #nodes).
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Figure 5.5: Parallel optimization results (k = N) with communication every 10,000 nodes for
the learned partitioning strategy (probe size=5,000): impact of the scoring functions scorep,)
(‘bal’) and scorepax (‘max’), and impact of the output predicted by the learning algorithm
(either #nodes, or log #nodes).
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Figure 5.6: Parallel optimization results (k = N) without communication for the learned
partitioning strategy (score=scoremax and output=#nodes): impact of the probing budget.
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Figure 5.7: Parallel optimization results (k = N) with communication every 10,000 nodes
for the learned partitioning strategy (score=scorepax and output=#nodes): impact of the
probing budget.
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each considered partitioning scheme. Then, the subproblems are distributed across the N
available processors, either by randomly attributing k/N subproblems to each processor (for
the random and balanced partitioning schemes), or by using Algorithm 4 (for the learned
partitioning scheme). Note that the number of subproblems generated with the learned
partitioning scheme is at most k, but may be less given that Algorithm 3 provides another
stopping criterion that can be used to stop the generation of the subproblems before the
limit k is reached. Table 5.6 reports, in the case where the number of generated subproblems
is greater than the number of workers, the same performance measures as those presented in
Figures 5.1 and 5.2. Note that, in this case, the performance measures (average, standard
deviation, etc.) are computed from the total number of nodes processed by each worker, which
corresponds to the sum of the number of nodes required by each subproblem attributed to
the given worker. The total number of nodes processed by each worker is thus an image of
the total amount of work carried out by a worker.

Table 5.6 reports the parallel optimization results when the number k of generated subprob-
lems is greater than the number N of processors. We compare the two trivial approaches (ran-
dom and balanced) with the default learned approach (score=scoreyax, probe size=5,000, and
output=#nodes). The table first indicates that the parallel optimization without communi-
cation does not compare very well with the single threaded case. Indeed, the maximum
number of nodes that a worker processes is always greater than in the single threaded case.
This implies that the parallel optimization does not terminate before the single threaded
B&B. However, the approach that we propose compares favorably with the trivial partition-
ing schemes. Indeed, with our method, the mean number of nodes that a processor explores
decreases, as well as the standard deviation. This implies that, on average, the number of
nodes per worker is less than for a single threaded optimization and that the load is acceptably
well balanced. Things are different when communications are allowed between the processors.
Indeed, while the trivial partitioning schemes still perform very poorly compared to the sin-
gle threaded optimization, the proposed method, on the other hand, exhibits very interesting
performance. Indeed, in that case, the obtained speedups between the single threaded base-
line and the learned partitioning scheme are equal to 4.07 and 5.61, for 12 and 24 processors,
respectively. Similarly to the case without communication, the mean number of nodes and the
standard deviation per processor are reduced compared to the trivial partitioning schemes,
which shows that the discrepancies between the workloads of the workers are limited.

Finally, it is interesting to compare the situation where each worker is assigned only
one subproblem, with the situation where they are responsible for multiple subproblems.
This analysis can be carried out by comparing the results from Table 5.6 with those from
Tables B.9-B.13 in Appendix B.2. Comparing both sets of results for 12 and 24 processors
yields the following observations. First, the mean and the total number of nodes are roughly
equal between both setups. Additionally, we see that the standard deviation per processor
decreases when more subproblems are assigned to a single worker, which is a display of better
load balance. Lastly, we observe that the difference between the maximum and the minimum
number of nodes decreases when the processors are assigned more than one subproblem, which
tends, again, to show that the work is better balanced in that case. Overall, the conclusion
that can be drawn is that allocating more than one subproblem to each processor does not
increase the total amount of work to be carried out, but sensibly reduces the unbalance
between the workers.
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N k Mean Std Min Max Sum
baseline 1 1 9.81e+05 - 9.81e+05 9.81e+05 9.81e+05

Without communication (c0)
random 12 240 7.94e+06 5.70e+06 1.73e+06 1.97e+-07 9.53e+07
random 24 480  6.29¢+06 5.76e+-06 1.00e+06 2.14e+4-07 1.51e+08
balanced 12 240 1.55e4+07  8.81e+06 4.53e+06 3.33e+07 1.86e+08
balanced 24 480 1.25e4+07  8.15e+06 3.28e+06 3.79e+07 3.00e+08
learned 12 240 5.96e+05 2.38e+05 1.85e+05 9.89e+05 7.16e+06
learned 24 480 5.54e+05 3.03e+05 1.22e+4-05 1.18e+-06 1.33e4-07

With communication every 10,000 nodes (c10k)
random 12 240 1.67e4-05 1.89e+05 4.22e+04 6.94e+05 2.00e+06
random 24 480 7.98e+04 1.59e+05 1.03e+-04 7.60e+05 1.91e+06
balanced 12 240 1.99e+05 1.50e+05 5.22e+04 5.47e+05 2.39e+06
balanced 24 480 1.44e+05 1.27e+4-05 3.29e+04 9.73e+05 3.46e+06
learned 12 240 9.38e+-04 6.14e+04 1.90e+-04 2.41e+05 1.12e+06
learned 24 480 4.58e+04 3.95e+04 6.80e+03 1.75e+-05 1.10e+-06

Table 5.6: Parallel optimization results with and without communication when the number
of generated subproblems (k) is greater than the number of processors (N), i.e., k > N. The
table compares the two trivial approaches (random and balanced) with the default learned
partitioning approach (score=scorepax, probe size=5,000, and output=#nodes). The values
reported are computed in the same way as in the previous section. Note that, for the learned
partitioning scheme, the k indicates the maximum number of elements in the partition. The
real number of generated subproblems is different for each problem and depends on the
stopping criterion given in Algorithm 3.
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5.8 Concluding remarks and outlooks

In this chapter, we propose a new approach to split the optimization of a single problem into
several independent parts that can be solved by several workers in parallel, with the goal
that the amount of work given to each processor is well balanced between the workers. The
approach consists in creating a function, with the use of machine learning techniques, that
is able to estimate the number of nodes, hence the amount of work, that a solver needs to
process in order to solve to optimality a subproblem of the original problem. To this end, we
develop a set of features that are used to characterize a given subproblem in the B&B tree and
use these features as input of the learned function in order to predict the expected number
of nodes required to solve the given subproblem to optimality. These estimates are then used
to create a partition of the original optimization tree so that one or several elements of the
partition can be given to each worker. The experiments show that our approach succeeds in
balancing the amount of work between the processors and that interesting speedups can be
achieved with little effort.

Further research orientations include the development of more relevant features that would
better grasp the dynamics of the considered problems in order to better predict the subprob-
lem difficulty. Another research direction is to implement the proposed framework on mas-
sively parallel computers to better understand how the speedups and processor utilizations
evolve when the original work is split into a very large number of independent parts.

Finally, let us emphasize the fact that the same framework can be transposed to any
problem class with only minor adaptations to the proposed method (e.g., adaptation to the
features). Indeed, although this work totally focuses on a single class of MIP problems,
namely the unit commitment problems, no specific information about the problem class is
used in the development of the method. This implies that the method is entirely generic and
could be applied to any problem class with great success. If modifications should be made to
the method (and modifications may not be compulsory for the method to work), they would
mainly concentrate on the features and would most likely be minor.



Chapter 6

Machine learning and the theory of
linear optimization

6.1 Introduction

In the previous chapters, we have shown how machine learning techniques can be used to
improve several components of a traditional optimization algorithm, namely the branch-and-
bound algorithm. The proposed approaches are practical in the sense that they are meant
to address pragmatic issues faced by the solvers. However, even if the proposed methods
are mainly driven by practical goals, it is possible to use them to gain theoretical insights
about the solution process. For instance, in the case of the branching strategy, it is possible
to use our techniques to determine which features are important so as to better theoretically
understand what conditions good branchings for specific problems. In this chapter, we push
this idea further and, leaving aside the practical aspects, we turn our attention to theoretical
challenges in optimization. We show how learning techniques can provide interesting tools to
theoretically study optimization questions. More specifically, we theoretically investigate the
worst case complexity of the simplex algorithm, which is a central matter in the theory of
linear optimization.

In this chapter, we consider linear programming problems (LP problems) (see Chapter 2,
Equation (2.2)) solved by the simplex algorithm and we study the worst case complexity of the
algorithm in very general situations. It is well known that linear programming problems can
be solved in polynomial time using specific algorithms (see, e.g., Khachiyan, 1980; Karmarkar,
1984; Nesterov and Nemirovskii, 1994). These algorithms are known to have a ‘weakly poly-
nomial time complexity’, which is defined by the fact that the number of iterations of the
algorithm polynomially depends on the size of the problem (number of variables and con-
straints) and on the logarithm of the numbers that appear in the problem. On the contrary,
the number of iterations required by ‘strongly polynomial time’ algorithms only depends on
the size of the problem (number of variables and constraints) and not on the magnitude of
the coefficients that appear in the problem (Megiddo, 1986). For the time being, strongly
polynomial algorithms are not known for linear programming in general (some algorithms are
strongly polynomial for certain classes of LP problems).

117
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In this work, we investigate whether a strongly polynomial version of the simplex method
exists for any linear programming problem. To this end, we try to find so-called polynomial
pivoting rules that, when used within the simplex skeleton, will prove that the complexity of
the algorithm is polynomial in the dimensions of the problem. Note that a pivoting rule is
said to be polynomial if the pivoting rule induces a run of the algorithm that terminates after
a polynomial number of iterations and if each iteration is itself polynomial in the dimensions
of the problem. In order to find such polynomial pivoting rules, we propose to formulate the
simplex algorithm applied to an optimization problem as a Markov decision process (MDP).
We then cast the search for a polynomial pivoting rule as a reinforcement learning problem,
which is a learning framework that provides tools to solve MDPs. Once this parallel is drawn,
the theory of reinforcement learning can be used to analyze from a theoretical perspective
the proposed approach.

Without going too much into the details here, let us briefly explain why we formulate the
simplex algorithm as an MDP and let us concisely lay down the main steps of the proposed
idea. The simplex algorithm is an iterative algorithm that goes from basic feasible solution
to basic feasible solution until the optimal solution is found. These transitions are discrete.
Indeed, even if one iteration of the simplex algorithm involves continuous variables changing
values, the basic feasible solutions can be described in a discrete manner by just identifying
the variables that belong to the basis. Additionally, these transitions are controlled by the
algorithm by means of discrete decisions: the choice of the pivoting variable. This setting
is very similar to Markov decision processes (MDPs) where a system (here the simplex algo-
rithm) experiences state changes when actions (here the pivoting decisions) are taken. MDPs
are widely used in control problems where they model how the systems evolve when control
actions are applied. Because of their wide application range, many different tools have been
developed to solve MDPs and most of these tools have undergone extensive theoretical study,
which we leverage here. Among the possible tools that can be used to solve MDPs, we fo-
cus on reinforcement learning (RL) techniques because of the richness of the available theory.
Once the parallel between the simplex and MDPs is drawn, it is easy to formulate the simplex
as an MDP and to make use of RL algorithms and of RL theory to study the simplex from
the perspective of MDPs.

The purpose of this chapter is to propose a novel approach to tackle the question of the
worst case complexity of the simplex. We introduce some tools and give some preliminary
theoretical results, but the chapter merely presents and describes the proposed approach
and does not solve the question of the worst case complexity of the simplex, which remains
open. The chapter proposes a framework and gives some initial results on which a complete
solution can be built, which is a required first step. The contributions of the chapter lie in
the formulation of the simplex as an MDP and in the proposed idea that learning techniques
can be used to gain theoretical insights about the complexity of the algorithm. Furthermore,
the main stumbling blocks are identified, so that the main difficulties are already highlighted.
However, we believe that a considerable amount of work is still needed in order to yield an
entire and satisfactory theoretical analysis of the problem on top of what we present here.
Moreover, it is our belief that close collaboration between the optimization and learning
research communities is the key to bringing the proposed approach to a complete solution.
Hopefully, the preliminary results that we present here will encourage such collaborations.
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In the following, we first redefine, in Section 6.2, LP problems and the simplex algorithm
from a geometric perspective. Then, Section 6.3 discusses the complexity of the simplex
method. Section 6.4 next defines Markov decision processes (MDP) as well as the reinforce-
ment learning paradigm and casts the simplex algorithm as an MDP. Section 6.5 dives deep
into the problem and describes how the theory of reinforcement learning can provide inter-
esting tools to study theoretical questions about the simplex method. Later on, we move a
bit away from theory in Section 6.6 where we push the analysis a bit further and also discuss
some practical aspects of the proposed approach. Finally, Section 6.7 draws the conclusions
of this chapter.

6.2 Linear programming problems, simplex algorithm, and ge-
ometry

In this section, we remind the basic definitions regarding linear optimization already given
in Chapter 2. We nonetheless reintroduce them here because they are presented in a slightly
different way that serves the purpose of this chapter. Indeed, besides their algebraic for-
mulation, optimization problems can be analyzed and studied under the light of elementary
geometry. Actually, the algebraic components of the LP problem (e.g., the objective function,
the constraints) as well as the algebraic objects handled during the solution of that problem
(e.g., the basic feasible solutions) have a clear counterpart in the geometric world. In what
follows, we give a simplified introduction to the important algebraic concepts, together with
their geometric twins, that are required to understand this work, as well as a description of
the simplex algorithm based on these definitions.

Note that the discussion is voluntarily simplified here in order to focus on the most impor-
tant concepts only. We refer the reader to appropriate literature for further details and for-
mal introduction of the mentioned mathematical concepts (see, e.g., Bertsimas and Tsitsiklis,
1997).

6.2.1 Linear programming problems and their geometry

As a reminder, let us redefine linear programming (LP) problems, which are problems of the
form

min c¢'x (6-1)
st. Ax<b
x e R",

where ¢ € R", A € R™*" and b € R™ denote the cost coefficients, the coefficient matrix,
and the right-hand side, respectively. Note that the number of constraints m is assumed to
be larger than the number of variables n, i.e., m > n.

The concept of polyhedron is central to linear programming. Formally, polyhedra are
defined as follows.
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Definition 1 (Polyhedron). A polyhedron P is defined as a set of R™ bounded by m hyper-
planes, i.e.,
P={x: Az <b}.

Because polyhedra represent the sets of feasible solutions of the LP problems, it is easy to
see why polyhedra are crucial to linear programming. This nice parallel that can be drawn
between a geometric object (a polyhedron) and algebraic elements (the constraints that define
the set of feasible solutions) is at the root of the geometric-algebraic interpretation of linear
programming. The polyhedra may be unbounded or bounded, in which case they are referred
to as polytopes (see, e.g., Nemhauser and Wolsey, 1988). If the polyhedra are non-empty and
bounded, i.e., when they are non-empty polytopes, there exists in general an optimal solution
to the corresponding optimization problems. When a polyhedron is unbounded, a solution
may not exist depending on the cost function and, more specifically, on the orientation of
the cost function with respect to the polyhedron. In this work, we solely consider non-empty
bounded polyhedra.

In addition to the previous definition, we also define an extreme point of the polyhedron,
or vertex, as follows.

Definition 2 (Vertex or extreme point of a polyhedron). A point & of a polyhedron P is a ver-
tex if it cannot be expressed as a convex combination of two other elements of the polyhedron,
i.e.,

By,zeP\x,\€[0,1] such that x =y + (1 — \)z.

From the geometric point of view, the vertices are located at the intersection of n facets
of the polyhedron (i.e., at the intersection of n constraints). Vertices are important objects
to understand the mechanisms of the simplex and are related to the concept of basic feasible
solution, whose definition is given now.

Definition 3 (Basic feasible solution). Let Ax < b define a polyhedron, a basic feasible
solution (BFS) is a point © € R™ such that

1. n linearly independent inequalities are satisfied with equality, i.e., ® satisfies

A, x=0b; Viec V;

2. all inequalities are satisfied, i.e., x satisfies

Ax <b;

where V' is a set containing the n indices of the constraints satisfied with equality by x, and
A;. represents the ith row of matriz A. For a given BFS, the constraints A;.x = b; withi € V
are said to be tight or active.

From the previous definition, it appears that a BFS is defined by n active linearly indepen-
dent inequalities. If more than n inequalities are active at a given BFS (they are not linearly
independent anymore), we say that the BFS is degenerate. Degeneracy happens when more
than n inequalities are active at one or several BFS. Without loss of generality of our analysis,
we can safely assume that the considered polyhedra are non-degenerate (i.e., all BFS are non-
degenerate) and, from now on, we thus focus on non-degenerate polyhedra only (De Loera,
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2011). Note that, because we assume that there is no degeneracy in the studied problems,
the theory of optimization guarantees that there is a one-to-one correspondence between a
basic feasible solution and a vertex of the polyhedron. This implies, in particular, that an
optimal solution of the problem corresponds to a vertex of the polyhedron. In the following,
we use indistinguishably vertex, extreme point, and BFS to refer to the same elements.

Definition 4 (Number of vertices of a polyhedron). The number V of vertices of a polyhedron
s bounded by
|
VY < my___.m™ - m'’.
—\n nl(m—mn)! —

In particular, the number V of vertices of a polyhedron is typically an exponential function
of the parameters n and m of the problem. To illustrate this, let us consider one of the simplest
polytopes: the unit hypercube, which corresponds to the n-dimensional generalization of the
three-dimensional cube. In mathematical terms, the unit hypercube of dimension n is defined
by 2n hyperplanes given by

0<z; <1, Vi=1...n,

where the number m of constraints is equal to 2n. The number of vertices of a hypercube
is equal to 2™ and, equivalently, to 2% . This example illustrates that, even with very simple
constructions, the number of vertices can grow exponentially fast as a function of the param-
eters of the problem (either n or m). We describe later why this growth is an issue when it
comes to solving LP problems.

In the theory of optimization, the concept of adjacent basic feasible solutions is of primary
importance. Let us now define this algebraic notion.

Definition 5 (Adjacent basic feasible solutions). Two basic feasible solutions (defined by the
sets V1 and Vo of active constraints, respectively) are said to be adjacent if and only if

|V1ﬂ‘/2|:n—1,

i.e., the two BFS share the same n— 1 active linearly independent inequalities and differ only
by one active constraint.

Since there is a strict correspondence between BFS and vertices (the polyhedra are non-
degenerate), two adjacent vertices are defined in a similar way as two adjacent BFS. From
a geometric perspective, two adjacent vertices are also said to be ‘neighbors’ and the neigh-
borhood of a vertex refers to the set of its adjacent vertices (or adjacent BFS). As mentioned
above, the vertices are located at the intersection of n linearly independent constraints. In
order to better understand the notion of adjacent vertices, let us define the edges of a poly-
hedron.

Definition 6 (Edge of a polyhedron). An edge of a polyhedron corresponds to the intersection
of n — 1 linearly independent constraints. In algebraic terms, an edge corresponds to

{x: Az <bANA;x=10;, Vie E},

where E is a set containing the n — 1 indices of the constraints satisfied with equality, and
A;. represents the ith row of matriz A.
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In particular, the above definition implies that two adjacent vertices belong to the same
edge. An edge can thus be seen as a ‘link’ between two adjacent vertices.

With these definitions at hand, it appears quite directly that it is possible to travel through
all vertices of a polyhedron (and, hence, through all BFS) by following only the edges of the
polyhedron. It is thus possible to find a path, between any arbitrary pair of vertices, that
follows only the edges of the polyhedron. This leads to the following definitions of the path
between two vertices and of the diameter of a polyhedron.

Definition 7 (Path between two vertices). In a polyhedron, a path between a vertex Vi and
a vertex Vo is defined as a sequence of edges that connect a sequence of adjacent vertices that
starts with V1 and ends with Vo. The length of a path is equal to the number of edges in the
path.

Definition 8 (Diameter of a polyhedron). The diameter of a polyhedron is defined as the
mazimum length of the shortest path between any two arbitrary vertices of the polyhedron.

The diameter of a polyhedron is central to the concepts and theory developed in this
chapter. The diameter has attracted a lot of attention from the research community because
it is related to the efficiency of optimization algorithms (see next section). There exist many
studies that investigate the diameters of well known polytopes, but these are not discussed
here. We merely report a very important conjecture, the Hirsch conjecture, which is the basis
of our theoretical reasoning. This conjecture, formulated by Warren Hirsch in 1957, gives an
upper bound on the diameter of any polyhedron (Bertsimas and Tsitsiklis, 1997; De Loera,
2011). This conjecture has been recently disproved (Santos, 2012).

Conjecture 1 (Hirsch conjecture). The diameter of any polyhedron is no more than

Even if the Hirsch conjecture is now known to be false, the research community still
believes that a modified version of the Hirsch conjecture is true (see, e.g., De Loera, 2011).
A modified version of the Hirsch conjecture could be as follows.

Conjecture 2 (Modified Hirsch conjecture). The diameter of any polyhedron is no more than

p(m,n),

where p(-,+) is a polynomial of the input arguments.

If the proposed modified Hirsch conjecture is true, this implies that it is possible to reach
any vertex from any starting vertex by traversing at most a polynomial number of edges
(polynomial in the dimensions m and n of the polyhedron). From now on, we make the
working assumption that the proposed modified Hirsch conjecture is true.

Assumption 1. The modified Hirsch conjecture as presented in Conjecture 2 is true, i.e.,
the diameter of any polyhedron is bounded by a polynomial in the dimensions n and m of the
polyhedron.
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6.2.2 The simplex algorithm

The simplex algorithm (Dantzig, 1987), originally proposed by Dantzig in 1947, is one of
the most efficient and most widely used optimization algorithms to solve LP problems. This
section does not provide a detailed description of the algorithm, but merely presents its
mechanisms from the geometrical perspective. We refer the reader to Chapter 2 of this
document or to other appropriate material for a more complete description of the method (see,
e.g., Chvatal, 1983; Bertsimas and Tsitsiklis, 1997; Vanderbei, 2014; Nemhauser and Wolsey,
1988).

The simplex method is an iterative algorithm that travels through the vertices (or BFS)
of a given polyhedron until the vertex corresponding to the optimal basic feasible solution
is found. The method starts at an arbitrary vertex (or BFS). Then, each iteration consists
in choosing a neighboring vertex that, ideally, has not been visited yet. The algorithm next
moves to that vertex and the process is repeated until the optimal vertex is reached. Note
that the algorithm follows the edges of the polyhedron, since it iteratively visits adjacent
vertices (adjacent BFS).

The only decision that has to be taken by the algorithm consists in choosing which adjacent
vertex to process next. Deciding which vertex of the polyhedron will be the next vertex to
explore is called ‘pivoting’.

Definition 9 (Pivoting rule). A pivoting rule is a rule that is applied at each iteration of
the simplex algorithm and that determines the next vertex to explore. For any starting vertex
(i.e., any starting point of the simplex), a pivoting rule induces a path through the vertices of
the polyhedron (the path follows the edges).

Pivoting rules are designed in such a way that they define, for any starting vertex, a
path that (hopefully) ends at the optimal vertex of the problem. Pivoting rules may cycle,
but such a behavior is undesirable. There exist many different pivoting rules and some are
better than others (in terms of the length of the induced paths). In the worst (pathologi-
cal) case, a pivoting rule may visit all vertices of the polyhedron before finding the optimal
vertex (Klee and Minty, 1972).

It must be emphasized that the definition of pivoting rules used in this work slightly differs
from other definitions found in the literature. Traditionally, pivoting rules are indeed defined
as rules that choose adjacent vertices (adjacent basic feasible solutions) with better objective
values (see, e.g., De Loera, 2011). We shall refer to these rules as greedy pivoting rules. In
this work, we do not require the next vertex to have a better objective value. We refer the
reader to Section 6.6.2 for more details on this matter.

Theoretical challenges regarding the simplex

The search for a pivoting rule whose worst case complexity is polynomial (in terms of n
and m) is an important theoretical aspect of the study of the simplex algorithm. Assuming
that the proposed modified Hirsch conjecture is true, such a rule exists. On the contrary, if
the proposed modified Hirsch conjecture is false, it makes no sense to search for a polynomial
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pivoting rule. This justifies Assumption 1 (i.e., the diameter is polynomial in the dimensions
of the problem).

This work is devoted to the description of a methodology that endeavors to construct, in
polynomial complexity, a pivoting rule that is guaranteed to yield paths of polynomial length
when applied to restricted classes of problems. In particular, this work will use the theory of
reinforcement learning to prove, or at least give hints, that such rules exist and can be found.
Note that, for the simplex algorithm to be polynomial in the worst case, it is not sufficient
that the length of the path is polynomial, each iteration of the algorithm must be polynomial
as well. This implies that the pivoting rule must

1. yield paths of polynomial length between any starting vertex and the optimal vertex;

2. be applicable in polynomial time (i.e., the time needed to take a pivoting decision must
be polynomial).

6.3 Complexity of the simplex algorithm

The performance of the simplex method is measured in terms of the number of vertices that
are explored before the algorithm finds the (assumed) unique optimal solution. This number
of vertices corresponds to the length of the path followed by the algorithm through the vertices
of the polyhedron, i.e., the number of iterations of the simplex. The traveled path depends
on the chosen implementation of the simplex and, more specifically, on the pivoting rule that
is used within the algorithm as well as on the starting vertex. In this section, we discuss
the performance, or time complexity, of the simplex in several situations. Note that this
discussion is not intended to be a thorough review of the literature in the field, nor is it
meant to go into the details of computational complexity theory.

Before discussing the performance of the simplex algorithm, let us briefly remind that there
exist three types of performance measures: the best-, average-, and worst-case performance,
respectively. The best-case performance represents a lower bound on the performance of any
execution of the algorithm. The best-case performance is achieved when all components of
the solution process are such that it is not possible to solve the problem more efficiently with
the considered algorithm. For instance, in the case of the simplex, if a procedure (assumed to
be an oracle whose time complexity is a constant) initializes the algorithm with the optimal
vertex for each possible problem, then the simplex does not even need to perform any pivot
and the problem is solved directly, hence, in constant time. The average-case performance
represents the expected performance of the algorithm when it solves a problem drawn from
a given distribution of problems. The average-case performance is intended to represent the
behavior of the algorithm in practice when the problem to solve is not known beforehand. The
average-case performance is typically much harder to compute than the best- and worst-case
performance because it involves computing expectations over problem distributions. Finally,
the worst-case performance is used to model the worst scenario that an algorithm can face.
It is of primary interest in critical applications when an algorithm is required to produce a
solution in a given amount of time.

Usually, the best-case performance is not the most informative complexity measure because
it represents situations that are unlikely to happen in practice. The average- and worst-case
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performance are generally preferred to study an algorithm as they model the average (likely
to be observed in practice) and worst situations that the examined algorithm can face. When
upgrades are made to an algorithm, they generally focus on improving the average- and worst-
case behaviors. We therefore restrict, in the following, our discussion to these two performance
measures.

Let P(n,m) denote a family of optimization problems of size (n, m) represented in the form
of Equation (6.1). Let S denote a particular implementation of the simplex method including
the pivoting rule and let I be an initialization rule that chooses the starting vertex of the
algorithm. For a specific tuple (S, I, P(-,-)), the average-case and worst-case performance of
the simplex, which are expressed in terms of the number of iterations of the algorithm, are
defined as follows.

Definition 10 (Average-case performance of the simplex). For a given tuple (S,I,P(-,-)),
the average-case performance Ky (S, I, P(n,m)) of the simplex is defined as the expectation
of the number K (S,I,p(n,m)) of iterations required in order to solve any problem p(n,m) €
P(n,m), distributed according to a given distribution Dp(, m). In mathematical terms, the
average-case performance is given by

Kavg (S, 1, P(n,m)) = E [K (S, I, p(n,m)) } Y(n,m).

p(n7m)NDP(n,m)
The average-case performance is often written in asymptotic notation, i.e.,
Ky (8,1, P(n,m)) = O(Fuuy (8,1, P(n,m) ),
where O designates the big-O notation and Fayg (S, 1, P(n,m)) is a function that characterizes

the average-case performance for increasing problem sizes.

Definition 11 (Worst-case performance of the simplex). For a given tuple (S,I, P(-,)), the
worst-case performance Kyorst (S, I, P(n,m)) of the simplex is defined as the mazimum of
the number K (S,I,p(n,m)) of iterations required in order to solve any problem p(n,m) €
P(n,m). In mathematical terms, the worst-case performance is given by

Kuorst (ST, P(n,m)) =~ max | K (S, 1,p(n,m)) |, ¥(n,m).
p(n,m)eP(n,m)

The worst-case performance is often written in asymptotic notation, i.e.,
Kauorst (8, T, P(n,m)) = O Fyorst (S, 1, P(n,m)) ).

where O designates the big-O notation and Fyerst (S, I, P(n,m)) is a function that character-
izes the worst-case performance for increasing problem sizes.

The average-case performance of the simplex is known to be polynomial in terms of the
dimensions n and m of the problems, i.e.,

Kavg = O (A(n,m)),

where A(+,-) denotes a polynomial. Such a result has been proved for different implemen-
tations of the simplex algorithm and for different assumptions on the distributions of the
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problems (see, e.g., Borgwardt, 1982; Smale, 1983; Adler and Megiddo, 1985; Borgwardt,
1988). A formal proof of average polynomial complexity may not exist for every possible
implementation of the simplex method, but it is widely acknowledged that the complexity of
the simplex is indeed polynomial on average under rather general assumptions (Vanderbei,
2014; Nemhauser and Wolsey, 1988).

Unfortunately, despite the fact that the simplex works quite well in practice (i.e., polyno-
mial time on average), the worst-case performance remains exponential (see, e.g., Klee and Minty,
1972). This can be easily understood intuitively. Indeed, given Definition 4, we know that the
number of vertices of a polyhedron can be as large as an exponential function of the dimen-
sions (n and m) of the problem. If a pivoting rule is initialized with a very bad (with respect
to the pivoting rule) starting vertex, then it is possible that the algorithm visits all possible
vertices before finding the optimal solution. The corresponding complexity is thus exponen-
tial. Stated in mathematical terms, the worst-case performance for the simplex algorithm is
given by

Kyorst = O (exp(n, m)) )

where exp(n, m) denotes an exponential function of the parameters.

In the case of the simplex, the complexity is mainly controlled by the pivoting rule used
within the algorithm and by the starting vertex. There exist pivoting rules that are guar-
anteed to run in polynomial time for certain problem classes, even in the worst case (see,
e.g., Ye, 2011). However, there exists at least one counter example (polytope and starting
vertex) for most pivoting rules for which the algorithm requires an exponential number of
iterations (Amenta and Ziegler, 1999; De Loera, 2011). It turns out that a pivoting rule,
i.e., an implementation of the simplex, whose worst-case performance is polynomial for any
possible LP problem class has not been found yet.

6.4 The simplex algorithm and sequential decision making
problems

We claim that the simplex algorithm can be seen as a sequential decision making problem.
We show in the following how. We first define more formally the so-called Markov decision
processes (a framework to study sequential decision making problems), as well as the rein-
forcement learning paradigm. Then, we detail why a polyhedron can be regarded as a state
space and make explicit the relationships between the simplex algorithm and the reinforce-
ment learning task.

6.4.1 Markov decision processes and reinforcement learning

Reinforcement learning is a field of machine learning that can be defined as the problem of
controlling a Markov decision process so that some performance criterion is maximized (see,
e.g., Sutton and Barto, 1998). In the following, we give a more detailed description and
definition of these elements.

Definition 12. A finite Markov decision process (MDP) is a 4-tuple (S, A, p,r), where
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e S={1,...,ns} is a finite set of states;
e A={1,...,n4} is a finite set of actions;

e pla,s,8) = Plsgp1 =8 |st = s,ar = a] is a probability distribution representing the
probability that the state at time t + 1 is s', when the state at time t and the action
chosen at time t are s and a, respectively;

e 1(s,s') is a reward function' representing the reward received when state s' is reached
from state s.

An MDP is an iterative process that features a player, or agent, that takes actions at
successive time steps. Given the initial state sg, and the sequence of actions ag, a1, ao,

. chosen by the player, the states of the MDP follow the sequence sg, s1, So, ..., where
each state s;y1 is a realization of a random variable distributed according to the probability
distribution

p(atast7')-

The player chooses the sequence of actions according to a so-called policy m : & — A,
which maps a state to an action. The goal of the player is to choose the sequence of actions
so as to maximize the sequence of rewards r(sg, s1), r(s1,82), r(s2,s3), ... that the player
receives. The sequence of received rewards depends on the sequence of states, which itself
depends on the sequence of actions and thus on the policy played by the agent. In general, a
policy 7 is given a score by summing the (discounted) rewards received by the player at each
time step. In mathematical terms, this amounts to computing the sum

T

Z’Ytr(st, St+1),

t=0

where 0 < v < 1 is a so-called discount factor and T represents the time horizon. With this
definition at hand, we can compute the score of the policy w that produced the sequence of
states s; for any initial state so. This score, known as the value function, is given by

T
T = Jim B Y y'r(si, si1) [so = i

T—o00
t=0

in the infinite horizon case, where F [-] represents the expectation over the sequence of visited
states sg, s1, S2, ..., ST

Definition 13 (Reinforcement learning). The reinforcement learning (RL) task is defined as
the problem of finding a policy 7 according to which the sequence of chosen actions yields
a sequence of rewards that is maximum. In other words, reinforcement learning tries to find
the policy T that mazimizes the value function J™ (i) for every state i.

Note that the definition hereabove is given so as to keep the discussion relatively simple.
More formally, the term ‘reinforcement learning’ is usually limited to the problems for which
the dynamics (transition probabilities and rewards) are unknown. For those cases where the
model is known, the problem of finding an optimal policy is often referred to as dynamic

Note that, in general, the reward function also depends on the chosen action. We omit this dependency
here since it is not required in our analysis and r(s, s) is essentially a special case of the more general (s, a, s’).
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programming (DP) (Busoniu et al., 2010). Instead of juggling with both names and in order
to simplify the discussion, we restrict our wording to reinforcement learning because RL is
more general than dynamic programming (RL techniques can indeed be applied to problems
for which the dynamics are known, whereas DP techniques cannot be used when a model is
not available).

6.4.2 Simplex as a sequential decision making problem

Since the simplex algorithm mainly handles vertices, and because each vertex is unique, the
vertices can be seen as states of a state space. The current vertex processed by the simplex
can thus be seen as the current state of an MDP. Additionally, the simplex algorithm merely
jumps from one vertex to the next and the possible transitions are limited by the neighborhood
of the current vertex in the considered polyhedron. These possible transitions can be reflected
in the MDP through the transition probability matrix that defines the probability to go from
one state to another when a given action is taken. Figure 6.1 illustrates a mapping from a
polyhedron to a graph with matching nodes and edges.

In the following, we cast the simplex algorithm as a probabilistic MDP. Moving from a
deterministic setting to a probabilistic one may seem odd, but this conversion is motivated by
the fact that RL techniques are traditionally used with probabilistic settings. Applying RL
techniques to deterministic problems is possible, but most of the machinery of RL algorithms
are designed for the probabilistic case. Additionally, probabilistic settings are more general
than deterministic ones and, in particular, encompass the deterministic case. Since there is
no loss of generality when formulating the problem in a probabilistic manner and because RL
mainly deals with probabilistic problems, formulating the simplex as a probabilistic MDP is
a reasonable choice.

6.4.3 MDP formulation of the simplex

Let us consider a state space S = {1,2,...,V} composed of a finite number V of states. The
state space S corresponds to the set of vertices of the polyhedron of the studied LP problem.
Let us also consider a set of actions A = {(4,7)},Vi,j € S that model the actions allowing
the MDP to go from one state (vertex) to the next.

Simplex as a finite horizon MDP

An MDP formulation generally involves a probability distribution that governs the transitions
between the states according to the chosen actions. Since, in the simplex, not all transitions
are allowed, the probability distribution must reflect these constraints in the MDP. More
specifically, there are two constraints that govern the path of the simplex through the algo-
rithm: (i) it is not possible to reach a non-neighboring vertex with one step, and (ii) when
the current state is 4, following an edge (i,7) with tail 7 inevitably leads to node j. Stated
in MDP terms, this amounts to imposing the following constraints on the transitions of the
MDP: when the current state (vertex) is ¢,

1. an action a = (4, ) leads deterministically to state j provided that j is a neighbor of i;
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Figure 6.1: A polyhedron can be considered as a graph whose nodes are the vertices of the
polyhedron and whose edges correspond to the edges of the polyhedron. In the graph, the
circles represent the states of the problem and the edges represent the allowed transitions
from one state to the next.

2. if an action a = (4, 7) is chosen and j is not a neighbor, the MDP cannot move to j and
must remain in state ¢;

3. an action a = (¢/,j") with tail i # i cannot be chosen and the MDP must also remain
in state <.

If we denote by N (i) the set of neighbors of the vertex i in the polyhedron, whose cardinal-
ity [N (¢)] is bounded above by m — n (i.e., the number of neighbors of state i is bounded by
m — n), the probability distribution p (a,,j) that models the transitions in the state space
(and, hence, in the polyhedron) is given by

1 ifid=ing eN@ANj=],
VGGA,Z,]ES,p(a—(’b,j),’b,j)— 1 le/?éZ/\j:Z, (62)
0 otherwise.

In addition to the previous elements, a reward function needs to be added to the MDP
formulation. If the reward function is chosen appropriately, the solution (i.e., the optimal
policy) of the corresponding reinforcement learning problem will yield a shortest path from
any state (vertex) to the optimal state (i.e., the optimal vertex). Indeed, the optimal policy,
according to Definition 13, maximizes the value function for each state. If the chosen reward
is such that the value function for any initial state is a (strictly) decreasing function of the
length of the path between the initial and final states, maximizing the value function becomes
equivalent to minimizing the length of the path. In particular, the optimal (maximum) value
function is achieved for minimum path lengths. One possible reward function for which the
optimal policy yields such shortest paths from any state to the optimal one (when v < 1) is
R1, which is defined as

1 if j is the optimal vertex,
0 otherwise.

Ri(i,j) = {

Note that it is crucial that the discount factor « is strictly less than 1 for R; to yield optimal
paths. It is possible to devise other reward functions that similarly yield shortest paths. The
proposed reward R is a simple example of such reward functions.
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Finally, for the MDP formulation to be complete, a policy according to which the decisions
are taken needs to be defined. Once the optimal value function J™ is known, the optimal
policy 7* is obtained directly with

w() —agmac{ B [r66.0) 4957 (0)]}. ©3)

where p (a, ,-) is the probability distribution that models the allowed transitions in the MDP
(see Definition 12) and E[-] is the expectation operator. In our case, this expression can be
simplified to

R, (1) = (i,argmax IR, (])) €A,
JEN()

where Jg, denotes the optimal value function for reward R;. This definition implies that, at
a given vertex i of the polytope, the next vertex to process corresponds to the neighboring
vertex that maximizes the optimal value function. Since the optimal value function for a node
is equal to the discount factor () to the power of the length of the shortest path between
that node and the optimal node, following the maximum value function yields shortest paths
through the vertices of the polytope. Note that, if J5 (j) can be evaluated in polynomial
time for any state j, the optimal policy W%l(-) is polynomial as well since the argmax only
considers [N ()] < m — n elements.

From finite to infinite horizon

The MDP formulation of the simplex given above holds in the finite horizon setting. Since
applying the theory of reinforcement learning is usually easier in the infinite horizon case, we
transform the previous MDP formulation of the simplex into an infinite horizon formulation,
which, fortunately, requires only a minor modification. Indeed, it suffices to add a new
transition from the optimal vertex to each other vertex in the polytope in such a way that
the vertex following the optimal one is randomly chosen with uniform distribution. When the
current state of the MDP is the optimal vertex, the transition probability becomes

v ifi =i
Vae AjeS, pla= (7)) =4 1 ifi+4i"Aj=i,
0  otherwise,

where ¢* is the optimal vertex and V represents the number of vertices in the polytope.

The modification is really minor but it has an important implication. Indeed, adding a
transition after the optimal vertex changes the optimal value function for all vertices. The
optimal value function quits being equal to the discount factor to the power of the shortest
path between the current node and the optimal one. However, this is not a major concern.
Indeed, the optimal value function in the infinite case actually just corresponds to the sum
of the optimal value in the finite horizon setting and of a ‘restart term’ due to the added
transition after the optimal vertex. The optimal value function for a node j in the infinite
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horizon case is thus given by

JL () =E ZVtT(St,StH) lso =J
Lt=0 i
Cr - N
=E ) A'r(snse)lso=7 | +E| D 4'r(st,se41) [sny1 =1
| t=0 ] t=T;+1
— fyTjT‘(STj, STj-}-l) + ")/Tj+1 E Z ")/ 17" St, St41 ‘ST +1 = .
t=T;+1

~~
[e%

= WTj (T(STJ', STj+1) + 704)

where T represents the length of the shortest path between vertex j and the optimal vertex i*
and « represents the restart term. Note that it is possible to write JZ (j) in that way
because all rewards are 0 except for the reward that leads to the optimal vertex and because
the restart transition renders the sequence of states STj+1, STj+25 - - - independent from the
sequence s1, 82, ..., s7;. In this special case, the reward leading to the optimal vertex is equal
to 1 (see definition of Rq), which yields an optimal value function equal to

JZ () =75 (1 +7a). (6.4)

As mentioned, the restart term has almost no impact: a greedy policy (i.e., a policy of the
form of Equation (6.3)) starting from an arbitrary vertex still follows the shortest path until
the optimal vertex is reached.

Starting from its definition, it is possible to give a simple expression for a.

—1
a=E Z ’y r(St, St+1) |sT+1—2

t=Tj+1
, -1
—Z (i*,i) + E Z VT (s, s641) |sTy40 = 0
ZES t=T;42
-Tj-2,,
:—Z i) +~vE Z Y2 (s, S04 ‘5T+2—Z
1€S t=T;42
:—nyE ny r(sy, Spi1)|so =1
1€S t'=

= —ZWTH 1+ 7a),
€S



132 CHAPTER 6. MACHINE LEARNING AND LINEAR OPTIMIZATION THEORY

where we use Equation (6.4), the fact that r(¢*,7) = 0, and the transition probabilities defined
for the simplex. Further simplifying this expression yields

1 ,
o= 7 14 qa)
€S

aZ%Z,}/Tiﬁ—l_i_%z,yTi-i—Qa

€S €S
1 : 1 ,
o — _27T2+2a _ _ZVEH
P « P 4
€S €S
1
v 2ies?
T —.
=52 esy"t?

T;+1

(6.5)

o =

The optimal value function possesses several interesting properties. The following lemma
illustrates one of them.

Lemma 1 (Optimal value function of neighboring vertices). Let i be an arbitrary vertex of
the polytope and let N(i) denote the set of neighbors of i. The optimal value function J*
obeys the following equation

vJ*(i), or
Vi e N(i), J*(j) = ij((g), or
B

Proof. Equation (6.4) indicates that the optimal value function is equal to the product of the
factors 47" and (14 ~ya), where T} represents the length of the shortest path between vertex 4
and the optimal vertex. For a vertex j € N (i), i.e., a neighbor of 4, the length of the shortest
path to the optimal vertex is either the same, one less, or one more than the distance from ¢ to
the same optimal vertex. Writing the optimal value function as Equation (6.4) for T;, T; — 1,
and T; + 1 proves the lemma. O

Discussion

Given the previous MDP formulation, it appears clearly that the simplex can be regarded as an
agent that seeks a path in the state space from an arbitrary starting state to the optimal state
(corresponding to the optimal vertex of the LP problem). In this formulation, the simplex
pivoting rules are represented by the policies of the MDP. Making the simplex as efficient as
possible implies that the number of iterations is as small as possible and, hence, that the path
travelled by the simplex is as short as possible between the initial and final states (which, by
the way, forbids the loops in the path). However, this is rarely achieved, and even more rarely
guaranteed, with traditional pivoting rules defined within the optimization framework. On the
other hand, the RL framework, together with the MDP formulation of the simplex, provides
the theoretical tools to study such pivoting rules. Indeed, applying the ad hoc algorithm, and
under certain assumptions, RL is guaranteed to find the optimal policies, which correspond
to the optimal (shortest) pivoting rules. Since the shortest paths are polynomial due to our
working assumption (the modified Hirsch conjecture is true), polynomial pivoting rules can
be found for any polytope.
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Actually, the MDP formulation of the simplex replaces the search for a polynomial pivoting
rule by the search for an optimal policy that maximizes an appropriately chosen reward.
The assumption that the diameter of the polytope is polynomial (i.e., the modified Hirsch
conjecture is true) ensures that the shortest path induced by the optimal policy is actually
polynomial in the dimensions m and n of the LP problem.

It is important to emphasize here that the length of the path traveled by the simplex
is only one component of the complexity of the proposed approach. Indeed, in the MDP
framework, several other elements have to be taken into account in order to claim that the
entire approach is polynomial. More specifically, the time complexity of the entire approach
is composed of

1. the time required to find the optimal policy with RL algorithms. This component has
to be taken into account only once, since the optimal policy remains the same for the
entire optimization once it is found;

2. the time required to apply the chosen policy, which has to be multiplied by the number
of times the policy is applied (roughly equal to number of iterations of the simplex up
to a multiplicative factor). The time required to apply a policy is itself composed of
several components. More details about the complexity of applying a policy are given
later in the chapter.

For the MDP-powered simplex to be polynomial, the complexity of every component of the
approach must be polynomial, in addition to yielding polynomial paths through the polytope.
Moreover, the space required by the different components of the approach need to be poly-
nomial as well in the dimension of the optimization problem. These aspects are discussed in
greater detail in the remainder of the chapter.

For the sake of readability, we may in the following use interchangeably the terms pivoting
rule, policy, and value function in an abuse of terminology.

6.5 Using reinforcement learning theory to find polynomial
pivoting rules

Casting the simplex algorithm as a Markov decision process allows us to use the theory of
reinforcement learning to shed light onto some theoretical aspects of the simplex method
from a radically new perspective. We now discuss how reinforcement learning methods can
be applied to the simplex problem.

In this section, we start by briefly describing how reinforcement learning algorithms work
and then give some theoretical results that tie the efficiency of RL methods to the complexity
of the simplex algorithm. We then consider two specific RL algorithms and analyze how their
outcomes can be used to derive theoretical results for the simplex.
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6.5.1 Brief description of reinforcement learning algorithms

Before going any further, it is worth mentioning here that traditional RL algorithms, such as
value iteration or policy iteration, are, as their names indicate, iterative. They typically start
with an arbitrary value function (in the case of value iteration) or an arbitrary policy (in
the case of policy iteration) and try to improve the current approximation as the algorithm
progresses.

In the following, we give brief descriptions of the value iteration, the policy iteration,
and the approximate value iteration methods. Note that we voluntarily omit the details
regarding the internal mechanisms of the RL algorithms. We refer the reader to, for instance,
Bertsekas and Tsitsiklis (1996) or Sutton and Barto (1998) for a complete description of these
algorithms.

Value iteration

Value iteration (VI) is a RL technique whose goal is to find the optimal value function of a
MDP. More specifically, the method starts with an arbitrary approximation Jy of the optimal
value function J*, e.g.,

jo(s) =0,Vs€eS,

and provides, after L iterations, a new approximation J;, that (hopefully) approximates J*
closely enough, i.e.,

Ji(s) = J*(s), Vs € S.

At each iteration, VI applies a specific operator 7, known as the Bellman operator, that
provides a new approximation of the optimal value function. The Bellman operator is defined
as follows:

Jey1(s) = TJk(s) = max { Z pla,s,s’) <7“(s, s') + ’yjk(s’)> }

s'eS

which, in our case, can be simplified to

Jir1(s) = S/Iélﬁ/}({g) {r(s, s+ ij(s')} , (6.6)

since the probability distribution of the MDP formulation of the simplex (see Equation (6.2))

greatly simplifies the first equation. In the end, adding all steps of the algorithm together,
VI sums up to only a few operations represented in Algorithm 5.

Policy iteration

For the sake of completeness, let us briefly highlight the main features of policy iteration
(PI) that differs from VI in that PI tries to find the optimal policy instead of the optimal
value function. The algorithm initializes its working policy 7 to some initial arbitrary policy,
say 7o, and then iterates to bring the working policy closer and closer to the optimal policy
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Algorithm 5 Value iteration (VI)

1: jo(s) =0,VseS

2: for k=0,...,L—1do

3: for s € S do .

I Jeaa(s) = maxgeno) {r(s o) + 7Ju(s) |
5: end for

6: end for

7*. When the algorithm terminates after L iterations, the working policy is hopefully a fair

representation of the optimal policy, i.e.,
TL(s) =~ 7*(s), Vs € S.

Unlike VI, we do not enter into the particulars of PI since the remainder of this work relies
on VI techniques only.

Approximate value iteration

Pure VI as presented above suffers two main drawbacks:

1. each iteration of the algorithm requires a number of (sub)iterations that is proportional
to the size of the state space to update the current approximation of J* (because each
component of J is updated independently, see lines 3-5 in Algorithm 5);

2. storing J requires O(V) space.

These two drawbacks rapidly become a main concern. Indeed, the requirements regarding
both storage space and computation time may prevent the algorithm from being applied to in-
teresting problems (interesting from a practical point of view). To alleviate both shortcomings
of VI, approximate value iteration (AVI) methods can be used.

Approximate value iteration differs from the theoretical version of VI in that the value
function is not stored as a vector (with one component equal to the value of the value function
for a given state). Instead, in AVI, each iterate of the value function Jy, is approximated,
typically by choosing Jj, from a given set of possible functions F. In that case, it is possible
that one iterate of the value function, which is projected onto F, cannot be represented exactly,
hence the qualifier ‘approximate’. In mathematical terms, the value function computed by
an AVI method after k iterations is thus

where F = {f(-)} is a set of functions that map states to scalars, i.e., f : S — R. For a
choice of the function set F, the task of value iteration, which aims at finding the optimal
value function J*(s), translates, in terms of the function set F, into finding f* such that

f* = argmin [|J* = f ()],
fer
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where [|-[|, represents a p-norm and f () a vector with one component per state s € S. In
other words, AVI aims at finding the function f* that minimizes some distance (in terms of
a p-norm) between the function set and the optimal value function.

Restricting Jj, to a given function set F alleviates the storage issue discussed earlier.
Indeed, the function set can be chosen so that the required storage is limited. Choosing a
restricted function set thus solves the space complexity issue of VI. The second issue, the
update operation with the Bellman operator, remains open. We now discuss fitted value
iteration (FVI) which is a RL algorithm that implements the AVI idea (see, e.g., Munos,
2007). In FVI, the Bellman operator is not used as is to find the next iterate. Instead, a
supervised learning algorithm is used to provide the next function f = jk+1 (hence the term
fitted in FVI). More specifically, at each iteration, FVI

1. generates a set {si}fil of H states drawn for an arbitrary distribution u;

2. applies the Bellman operator (Equation (6.6)) to those states only to obtain a set of
values {ul}szl,

3. computes some chosen features {¢; = C(s;)}:L, from the generated states;

4. applies the supervised learning algorithm to the training set {(¢;, u,)}fi | to obtain the
next iterate Jyii.

FVI is summarized in Algorithm 6.

FVI smartly gets round the storage and time issues of VI. Obviously, this comes at a price
and FVI achieves both memory and computation time efficiency at the expense of accuracy
(which is typically worse for FVI) and at the expense of the guaranteed convergence of VI.

6.5.2 Tying the efficiency of RL to the complexity of the simplex

The success of a RL algorithm can be measured based on how close the approximation is from
the optimal value function or policy and based on how many iterations L are needed to obtain
this result. This aspect is important and must be taken into account in our analysis. In this
section, we show how the efficiency of reinforcement learning algorithms can be tied to the
complexity of the simplex. More specifically, we focus here on the value iteration algorithm.

As mentioned before, value iteration typically yields an approximation J of the optimal
value function. We saw earlier that the optimal value function J* indeed finds polynomial
paths from any vertex of the polytope to the optimal one. We now prove that it is possible
to obtain similar results if the approximated value function J is used instead of J*.

Theorem 3 (Local shortest paths with approximated value functions). Let J be an approz-
imation of the real value function J* such that

|

and let T; be the length of the shortest path from an arbitrary vertex i to the optimal vertex o.
For any vertex © such that

J*—jH <e,

2e
(I+vya)(1—7)’

T; <1+log,
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Algorithm 6 Fitted value iteration (FVI)

1: jo =0

2: for k=0,...,L—1do

3: {s,}fil ~ L > generate a set of states from distribution pu
4: U; = MaXg/e N/ (s;) {T(Si, s+ ’yjk(s’)} ,i=1,...,.H > Bellman operator
5: {¢p, =C (52)}ZH:1 > compute the feature representation of the generated states
6: Jyt1 = train <{(d)z~, u;)}L 1) > compute features and apply learning algorithm
7: end for

then a policy that is greedy with respect to the approzimate value function J yields shortest
paths between the vertex i and the optimal vertex o.

Proof. Let us assume that the simplex algorithm starts at vertex ¢, whose optimal value
function is given by J*(i). Using Lemma 1, it is clear that any vertex k € AN (i) that is a
neighbor of i is either

1. at the same distance as ¢ to the optimal node, in which case J*(k) = J*(i);
2. one step further to the optimal node, in which case J*(k) = vJ*(7);
3. one step closer to the optimal node, in which case J*(k) = v~ 1.J*(3).

We denote by Noy(i), Ny1(i), and N_1(i) the sets of vertices that are at the same distance,
one step further, and one step closer to the optimal node, respectively.

Considering that the simplex is at vertex ¢, the next state that lies on the shortest path
and that is one step closer to the optimal vertex belongs to the set N_1(i). The simplex thus
follows the shortest path if the next state that is explored by the algorithm belongs to that
set. In order for such a vertex to be chosen by the greedy policy, we need

J(@') < J(5),Vi' € No(i) vV Ny1(i),§ € N_1(i),
which, provided that HJ *_J H < &, becomes
J(k)+e < J(j) —e,

where k € Ny(i) and j € N_1(i). The following schema illustrates graphically why this
inequality can be written.

Vi’ e /}/+1(i) vk ENo(i) Vi e J}f,l(i)
T (k) ()
R
JH(il) —e < J({) < T + < ) JG) —e < J(G) < TG) +e
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Using Equation 6.4, we can write
Jk)+e< J(j) —¢
Y14+ va) +e <45 1 4+ va) —¢
2 <4114 ya) =" (1 4 q0),

which means that if ¢ satisfies this inequality, then the next state indeed belongs to one
optimal path towards the optimal vertex.

Going back to the hypothesis, we now have
2¢e
(L +ye)(1 —7)
2e

(1 +7a)(1—7)
2e

L+ 7a)(1 =7)

T; < 1+log,

T, —-1< logv

log, (’yTi_l) < log, (
2e T;—1
<t
(I +7a)(1=9)
2e <7T M1+ ya)(1 - ),

which shows that, for a given error in the approximation of the value function, the approx-
imation still leads optimal decisions as long as the vertices are not too far away from the
optimal vertex. Indeed, this bound holds for all vertices whose distance to the optimal vertex
is less than 7T; and, in particular, the bound holds for all vertices that lie on the shortest path
between ¢ and o.

This last inequality shows that, if the shortest path from a vertex 7 and the optimal vertex
is less than 1 + log, (HVO?%, then an approximate value function J, which is such that

‘J *_J H < g, yields an optimal path through the edges of the polytope from i to o. O
o0

Theorem 3 shows that, for a given approximation of the value function, it is still possible to
recover the shortest paths for those vertices that are not too far away from the optimal vertex.
Theorem 3 also indicates that it is not necessary to approximate with infinite accuracy the
real value function in order for the procedure to yield shortest (polynomial) paths through
the polytope. This result is extended to the entire polytope by the following corollary.

Corollary 1 (Global shortest paths with approximated value functions). Let J be an ap-
prozimation of the optimal value function J* such that

|

and let Tp be the diameter of the polytope P, i.e., the maximum length of all shortest paths
from arbitrary vertices to the optimal vertex. If the approxzimation error € is such that

J*—jH <e,

1
£ < 59T 1+ 50)(1 =),

then the approzimate value function J yields shortest paths between any starting vertex i € S
and the optimal vertex o in the polytope P.
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Proof. The proof is straightforward. Indeed, applying Theorem 3 leads to the conclusion that
the current approximation of the optimal value function yields shortest paths through the
polytope for all vertices that are not further away than Tp from the optimal vertex. Since, by
definition, T is the largest distance between any two vertices in the polytope, we conclude
that J yields shortest paths for any starting vertex in the polytope. O

Corollary 1 proves that an approximate value function can still yield shortest paths through
the entire polytope provided that the approximation is close enough to the real value function.

6.5.3 Value iteration to compute the optimal value function

Let us first consider the naive value iteration algorithm to find the optimal policy and let us
show how the theory of RL can provide interesting insights about the optimization problem.
We use here theoretical results presented in Bartlett (2003) with the necessary adaptations
of notation.

Consider that the value function is represented as a vector, with one component per state
of the MDP. Such a representation allows us to represent exactly all possible value functions
that can be derived for the current MDP. With such a representation of the value function,
it can be shown (see, e.g., Bartlett, 2003, Theorem 2) that value iteration converges to the
optimal value function after a finite number of iterations. In particular, after L iterations,
value iteration yields an approximation .J;, of the value function that satisfies

_ 27L+1
PPN R
|77 = 7] < g e
This result can be used to determine the number of iterations required by value iteration to
produce an approximation of the value function that is close enough to the optimal value
function so as to yield shortest paths through the polytope.

Theorem 4 (Sufficient convergence of value iteration to the optimal value function). After
L iterations, where

1
L>Tp—2+log, 1 +log, (1 +~va)(1 — 7)3, (6.7)

value iteration produces an approximation of the value function that is close enough to the
optimal value function and, hence, yields shortest paths through polytope P.

Proof. Combining the convergence results of value iteration (Equation (6.7)) with Corollary 1
yields

7 2yt L orp
|77 = 7] = g e < 5™ 7 0 9@) (0= ),

1,
Y Ir|| o < ZWTP "1+ ya) (1 —7)?,

1
L+1>Tp—1+]log, 1 +log, (1 +~ya)(1 —7)3,

where ||r|| ., = 1 by definition of the reward function R;. O
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Theorem 4 shows that the convergence of value iteration is linear with the diameter of the
polytope and, hence, linear with the number of variables and constraints. This guarantees
a polynomial convergence of the algorithm towards the optimal value function and, hence,
towards the optimal policy (pivoting rule).

However, despite the polynomial convergence of value iteration, this approach does not
answer the question of the polynomial complexity of the simplex. Indeed, as discussed in
Section 6.5.1, VI suffers two main drawbacks regarding both the required storage space and
the training time. These two drawbacks are major concerns in this situation:

1. since each iteration of the training procedure requires iterating over all states of the
MDP and since the number of states may be exponential, the training procedure is
potentially exponential as well;

2. storing the approximate value function J requires O(V) space, where V is potentially
exponential.

These two drawbacks render the proposed solution method not satisfactory when the
approach is analyzed as a whole. Indeed, the learning part of the approach, which is dedicated
to finding the optimal value function, is not polynomial in the dimensions of the optimization
problem. Additionally, the space required to apply this solution (due to the storage of the
approximate value function) is proportional to the number of vertices in the polyhedron,
which is potentially exponential.

6.5.4 Fitted value iteration to compute the optimal value function

To get round the limitations of the ‘theoretical’ approach detailed in Section 6.5.3, we must
turn to other techniques than VI. We now consider the so-called fitted value iteration (FVI)
method that differs from VI in that the value function is not stored as a vector (with one
component equal to the value of the value function for a given state). Instead, in FVI, the
possible value functions are restricted to a fixed set of candidate functions. Additionally,
the computational complexity of the update operations can be controlled by an appropriate
choice of the algorithm parameters. We now discuss the different aspects of FVI applied to
the simplex problem, show how the space and time can be controlled, and discuss how the
FVI theoretical guarantees can be transposed to the problem of finding good pivoting rules
for the simplex algorithm.

FVI space complexity

The total space required to execute FVI is composed of two parts: the space required to store
the current iterate J and the space required to store the data generated at each iteration,
drawn from distribution p (see line 3 in Algorithm 6).

In FVI, each iterate belongs to a predefined function set F. Constraining the set of possible
functions to a given function set has one important advantage: if the function set admits a
compact representation, for instance by means of a parametric representation of the elements
of the set, the space required to store one element of the set can be easily controlled. For
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example, if F is constrained to the set of linear functions from the inputs to the output, F
can be expressed as

}':{f(:c)::cTHWGRq}.

In this case, storing one single element f € F amounts to storing g scalars. Hence, under
the assumption that the elements of the function set can be represented in a compact way,
the space requirements of FVI can be controlled effectively by controlling the richness of F.
Clearly, since the space of representable functions is restricted, FVI may not converge to the
optimal value function while VI is guaranteed to. Note that the function set F is typically
directly dependent on the learning algorithm that is used as part of FVI.

The second component of the space required to run FVI arises from the data that is
generated and fed to the learning algorithm to create the next iterate jk+1. The total amount
of space required to store the generated data is thus equal to the number of observations
drawn from the distribution multiplied by the space required to store one state. In typical
situations, one state can be represented in a compact way. For instance, in this work, each
state is uniquely identified by n values (where the n values represent the basic feasible solution
corresponding to the state). Since the space required to represent one state is rather small,
the space required to store the data to learn from is mainly dependent on the number of
observations that are drawn from the distribution. Fortunately, this number is a parameter
of FVI and the required space can thus be kept within acceptable limits.

FVI time complexity

The time complexity of FVI depends on four components:
1. the number L of iterations of the algorithm;
2. the number H of states drawn from distribution u;
3. the time to compute the features;
4. the time taken by the learning algorithm to learn a model from the generated data.

Both the number of iterations of the algorithm and the size of the generated data are
parameters of FVI and can therefore be chosen so that the time complexity does not get out
of control. On top of the data generation, the features that are used as input of the learning
algorithm must also be computable efficiently. This is a matter of major importance since it
is possible to design very interesting features, but that can be too time consuming to compute
and thus not usable for our purposes. This aspect is not discussed here since the choice of the
good features remains an open question and depends on the particular polytope on which we
want to apply the proposed approach (a more detailed discussion is proposed further below).

Finally, the last component of the time complexity directly depends on the chosen learning
algorithm. Once the features are computed for the data drawn from the target distribution,
they can be given as input to the learning algorithm that is then responsible for finding the
best candidate in F to minimize the error between the values computed by the approximate
Bellman operator and the prediction obtained with the target model (see line 6 in Algo-
rithm 6). The time complexity of the algorithm has to be taken into account to evaluate the
total time complexity of FVI. Since this time complexity depends on the particular algorithm
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that is used within FVI, no specific information can be given here. For the sake of illustra-
tion, let us just mention that a simple learning algorithm like linear regression has a time
complexity of (approximately) O(H?), where H corresponds to the number of observations
in the sampled data.

Summing up the previous points, the total time complexity of FVI is given by
Kpvi = O (LH* K Korain(H))

where K¢ and Kipain(H) represent the time complexity needed to compute the features for
one state and the time complexity of the learning algorithm that (typically) depends on H.
Clearly, the time complexity of FVI remains under control (i.e., not exponential) provided
that both K¢ and Kipain(H) are kept at acceptable values.

Theoretical guarantees on the FVI solution

We have seen that FVI offers simple means to control the time and space complexity of
the training procedure. While FVI gets round the main limitations of VI, FVI loses the
guaranteed convergence. Despite this shortcoming, there exist theoretical guarantees on the
quality of the obtained solution. For this analysis, we rely on Munos and Szepesvari (2008)
who propose a thorough study of the performance of FVI with respect to the considered
learning algorithm, to the number L of iterations, and to the number H of samples generated
at each iteration.

Before stating the main result of Munos and Szepesvari (2008) that we use in the follow-
ing, let us first define two assumptions that are required in order to apply their theorem.
Munos and Szepesvari (2008, Assumption A0)

Assumption 2 (MDP regularity, Assumption A0 (Munos and Szepesvéri, 2008)). The MDP
satisfies the following:

~

the state space S of the MDP is a bounded closed subset of some Fuclidian space;
the action space A is finite;
the discount factor is lower and upper bounded: 0 < v < 1;

the reward function is a bounded measurable function with bound R,q.;

SAEEE N

the support of the ‘reward kernel” S(-|s,a) (the probability distribution of the reward

conditioned on the state s and action a) is included in —f?m(m Rm(w , independently

of (s,a) € S x A.

Assumption 3 (Uniformly stochastic transitions, Assumption Al (Munos and Szepesvari,
2008)). Foralls € S and a € A, the probability transitions p (a,s,s’) = P [s;41 = 8’ |s¢ = s,a; = a]
are such that

p (a7 S, ) < C;mu'(')'

In the case of the MDP formulation of the simplex, we conjecture that both assumptions are
satisfied (see the following for a discussion of the possible pitfalls). In that case, provided that
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Assumptions A0 and A1 are satisfied, we can make use of Theorem 2 in Munos and Szepesvari
(2008) that states the following (with some modifications in the notations).

Theorem 5 (Theorem 2 (Munos and Szepesvéri, 2008)). For a fixred p > 1, a given distribu-
tion u over the state space S, and a given Jo € F, then, for any € >0 and § > 0, there exist
integers

e [ that is linear in log %, log Jiaz, and log ﬁ,

e H and M that are polynomial in %, log%, log ﬁ, Jmazs Rmaz, log|A|, and

log N/ (Ca(l 7)? ,F H, ,u) , for some constant ¢ > 0,
“/Crg)u

such that, if FVI is applied to the MDP and 7r, is a greedy policy with respect to the L-th

iterate of FVI, i.e., Jr, then with probability at least 1 — 4,

27y %
- < Wcudp,ﬂ(Tf,f)‘F&

|7 = T

We see directly that moving from the simple VI to the more realistic FVI considerably
complicates the analysis of the error bounds. In order to analyze this result in the sim-
plest way, let us first focus on the quality bound and then move on to the discussion of the
assumptions and of the different parameters appearing in the theorem:.

Before discussing how this theorem can be applied to our problem, let us specify the
values and meaning of some variables appearing in the theorem. To start with, Jyax rep-
resents the maximum value that the value function can take, which is equal to the restart
term o. Riax represents the bounds on the support of the reward kernel, Wthh in our case,

is equal to 1. Then, by definition (see Munos and Szepesvari (2008)), Cpp , satisfies Cpp p <
(1=7)2>,,51 my™ 1C,. The value d, , (TF,F) is referred to as the ‘inherent Bellman error’
and represents a bound on the error of the individual iterations (Munos and Szepesvari, 2008).
Finally, N (-, -, -, -) represents the expectation of the covering number of a set of identically dis-
tributed points whose description is omitted here (see Munos and Szepesvéri (2008) for more
information on this). Applying Theorem 5 to our problem requires a precise understanding of
all the parameters and variables that appear here. Completing the proposed analysis requires
paying careful attention to all these elements that may seem of minor importance, but that
could have a huge impact on the final conclusions.

FVI bounds applied to the simplex MDP

Theorem 5 as described above allows us to study how FVI behaves on the simplex MDP.

We first assume that one can find a feature description of the states and a learning algo-
rithm that are both easy to compute (i.e., polynomial time) and that approximate accurately
enough the consecutive iterates of the value function, i.e., dy, , (TF,F) = 0. This equation
can be expressed as

d F,F) = sup inf — =0,
o (TF,F) 222}2;”79 fllp s
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which, in words, means that applying the Bellman operator to a function that belongs to the
function set F yields a new function that belongs to the same set.

If the inherent Bellman error term d, , (TF,F) can be set to 0, Corollary 1 gives us
the maximum allowed error for an approximate value function to yield shortest paths in the
polytope. We can then state the following conjecture.

Conjecture 3 (Polynomial complexity of FVI). Provided that all the above assumptions are
satisfied and that the inherent Bellman error is equal to 0, FVI finds optimal paths in the
MDP if

1 7 _
e <571+ 0)(1 - 7).
Then, with this fized value of €, the integers L, H, and M yield o complezity of FVI that is

Kpyr = O (LH* K¢ K pain(H))

which is polynomial in the initial dimensions of the optimization problem.

Given the expressions of the integer parameters of FVI as stated by Theorem 5, it is
realistic to assume that polynomial bounds for the training time of FVI could be derived
while guaranteeing that the resulting pivoting rules are also polynomial. However, there
remain a number of unanswered questions in this approach and we are not able, at this time,
to prove the conjecture.

Discussion of the assumptions

Conjecture 3 indicates that it is possible to find polynomial pivoting rules in polynomial time.
However, caution must be taken in several ways. Indeed, some shortcuts have been used to
derive this conjecture and these shortcuts must be thoroughly studied before one can state a
theorem based on that conjecture. The following is a discussion of some aspects and of some
shortcuts that led us to state the conjecture. This is by no means an exhaustive list of all the
elements that must be taken into account in order to convert the conjecture into a theorem.

1. Munos and Szepesvari (2008) study FVI with the assumption that the state space S is
continuous. This is not the case with the simplex MDP since we consider that the state
space corresponds to the set of vertices of the polytope. The main question is thus: can
similar performance bounds be derived for discrete state spaces?

2. Stochasticity is another aspect to be taken into account. Indeed, the setting in
Munos and Szepesvari (2008) considers that both transitions and rewards are stochas-
tic. In the simplex MDP, neither is. The deterministic nature of the simplex MDP must
thus be factored in when considering Theorem 5 to investigate the role of stochasticity
in the results.

3. Another difference between the main theorem on which the conjecture relies and the sim-
plex MDP lies in the fact that the Bellman operator is estimated in
Munos and Szepesvari (2008) (because of reward stochasticity, M states are drawn from
the distribution p (a, s,-) and averaged to estimate each argument of the max function
in Equation 6.6). However, since the transitions and rewards are deterministic in the
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simplex MDP, a single sample is sufficient to compute exactly each argument of the
maximum. It is not clear how this can affect the results.

These are just a few aspects that we highlight here and that could be detrimental to the
application of the proposed approach. Clearly all assumptions should be double-checked to
make sure that no shortcut is left unstudied. Obviously, the rather complicated nature of the
considered bounds renders this task cumbersome and far from trivial.

It is also worth noticing that all theorems depend on the restart term « (defined in Equa-
tion (6.5)). This term however does not depend on the method used to find the pivoting rules
(it depends on the formulation of the simplex MDP), but appears in all the bounds. This
indicates that some polytopes may be better suited for some solution methods depending on
the corresponding values of their restart term.

Finally, in addition to checking that all assumptions are indeed satisfied, it is important
to keep in mind that the method works only if

1. a training algorithm with a function set F rich enough can be found and if the training
time of such an algorithm is polynomial in the dimensions of the problem:;

2. features can be designed such that, together with the learning algorithm, they are able to
approximate the sought value functions accurately enough and if they can be computed
in polynomial time with respect to the dimensions of the problem.

Actually both elements need to be considered simultaneously. Indeed, choosing a representa-
tion for the value function goes hand in hand with the choice of the features. A representation
will be able to accurately enough approximate the real value function only if appropriate
features are given. And the features need to be taken into account (in particular their com-
putational complexity) when a representation is chosen. A solution to one matter cannot be
given without providing a solution to the other. Typically, a good choice for the value func-
tion representation and for the features is a choice that minimizes the inherent Bellman error
dp (TF,F) (ideally sets it to 0). In words, minimizing the inherent Bellman error means
that, when a new update of the approximate value function is computed, the projection er-
ror of that approximation onto the space F of candidate value functions is minimum. The
difficulty of finding such a representation/features combo comes from the fact that the error
needs to be 0 (or at least very small) at any iteration of FVI. This may seem out of reach in
general cases, but, considering the very special structure of the value functions in the simplex
MDP, finding a representation/features pair that satisfies this requirement in our case does
not seem foolish. However, we want to emphasize here that this task is, in our opinion, far
from being trivial.

All in all, we are very aware that meeting all requirements is rather hard. However,
the primary purpose of this theoretical study is to be exploratory. Making everything work
together may be hard, but we nonetheless think that the proposed methodology clearly points
towards novel research directions in the fields of linear programming and of the simplex
algorithm.
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6.6 Discussion, comments, and remarks

From the theoretical point of view, the approach proposed above shows that MDPs are
a promising way to deliver interesting insights about the theory of the simplex algorithm.
However, we only discuss some theoretical aspects of the idea. This section is devoted to
pushing the analysis a bit further and to giving some additional details about the developed
theory.

6.6.1 Generate data to learn from

From a very practical perspective, applying FVI techniques to learn an optimal pivoting rule
requires a training set to learn from. Generating a useful training set is not a simple task.
Indeed, the quality of the training set critically conditions the quality of the learned policy
(i.e., the learned pivoting rule). Actually, the learning task of RL algorithms is much easier
if the training set contains good trajectories®. If such good trajectories do not appear in the
training set, the ability of the RL algorithm to learn something useful may be hindered. Some
care should thus be taken when generating a training set to learn from.

One possibility to generate a good training set from a practical point of view is as follows.
Given a polytope P,

1. choose an arbitrary vertex (BFS) o’ € P;

2. make that vertex optimal by appropriately choosing the objective function, i.e., choose
a vector ¢’ such that x’ is an optimal solution to the problem;

3. from the (now) optimal vertex x’, explore backwards the graph (this generates a tra-
jectory that passes through the optimal vertex);

4. repeat several times Point 3 in order to generate multiple trajectories (a few long tra-
jectories are preferable than many short trajectories).

This idea can be used to generate useful training sets that can be fed to the RL algorithm.
This procedure merely describes a means by which a training set can be created. The proce-
dure (size of the training set, length of the trajectories, etc.) needs to be tuned in accordance
with the particular characteristics of the studied problem and of the considered RL algorithm.

6.6.2 Note on the greediness of pivoting rules

In this work, we relax the constraint that a pivoting rule must choose an improving (in the
sense of the objective function) basic feasible solution as the next vertex to process. If the
greediness is enforced, the graph corresponding to the polytope becomes a directed graph,
where the directions of the edges depend on the cost function. It happens that, while the
diameter of a polytope is independent of the cost function, the diameter (or its equivalent)
of the greedy-directed graph does depend on ¢. Because not all transitions are allowed in the

2The goodness of a trajectory usually depends on the considered reward function. For instance, in the case
of R1 proposed hereabove, a good trajectory to learn from is one that goes through the optimal state.



6.7. CONCLUSION 147

directed graph, requiring the pivoting rule to be greedy may actually forbid the existence of a
polynomial path between any vertex and the optimal one. Indeed, even the assumption that
the Hirsch conjecture is true does not guarantee that a polynomial path exists between any
two vertices in the corresponding directed graph.

If one is interested in the polynomiality of greedy pivoting rules, the modified Hirsch
conjecture is no longer enough as a working assumption. For the greedy pivoting rules to
have a chance to be polynomial on general polytopes, one must assume (or prove) that
there exists a path of polynomial length in the directed graph between any vertex and the
optimal vertex. This assumption is likely to be stronger than the modified Hirsch conjecture.
Additionally, it is even possible that, for a given cost function and a given polyhedron, no
polynomial pivoting rule exists. This leads us to think that the existence of polynomial greedy
pivoting rules depends on the cost function at least as much as on the polytope itself and is
a problem much harder than its non-greedy counterpart.

However, if it is conceivable that all paths are polynomial in a greedy-directed polytope,
applying the same framework as the one proposed hereabove leads to the optimal (polynomial)
solution. Our choice to relax the greediness of pivoting rules is thus only motivated by the
fact that the diameter of any polytope is strongly believed to be polynomial, while no such
statement can be formulated for the greedy-directed polytopes. Relaxing the greediness thus
allows us to consider any polytope as potential candidate to apply our method, while the list
of candidate polytopes would have been much shorter if the greediness was enforced.

6.7 Conclusion

In this chapter, we study an important theoretical question in the field of linear optimiza-
tion: the worst case complexity of the simplex algorithm. To this end, we use the theory of
reinforcement learning, a machine learning paradigm, and show how this theory can provide
interesting tools to improve the theoretical analysis of the simplex algorithm.

Reinforcement learning is a learning framework whose goal is to teach an agent to take
decisions in Markovian environments. In order to apply this framework to the simplex, we
formulate the solution procedure of the simplex as a Markov decision process (MDP). More
specifically, we regard the simplex as an agent that takes decisions in a state space (the vertices
of the polytope) and whose goal is to maximize some criterion (a decreasing function of the
number of iterations required to reach the optimal vertex). Once the simplex is formulated
as an MDP, the theory of reinforcement learning provides theoretical tools to study the worst
case complexity of the simplex.

Having modeled the search for a simplex pivoting rule as an MDP, we use several rein-
forcement learning algorithms and the corresponding theory to shed some light onto the time
complexity of the simplex. In particular, we consider the value iteration (VI) and the fitted
value iteration (FVI) algorithms. The theoretical results obtained with the value iteration
analysis show that, in a polynomial number of iterations, the algorithm finds a pivoting rule
that, when used within simplex, is also polynomial in the dimensions of the problem. The
drawback of this approach is that the space complexity is exponential and so is the training
time required to find the pivoting rule (because of the number of subiterations). In order to
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alleviate these two issues, the fitted value iteration algorithm is considered. We show that
using fitted value iteration both the space and training complexity are kept under control
(i.e., are not exponential), but this is achieved at the expense of the accuracy. Moreover,
complete study of the search for pivoting rules with FVI involves some advanced mathemat-
ical concepts that have left some questions unanswered and that lead to a conjecture instead
of a theorem.

As such, the solutions that we propose are certainly not the end of the road since many
points are left open. However, we believe that this work, although still in its early stages,
can have a significant impact on the theory of the simplex algorithm. Indeed, we propose to
tackle the search for a polynomial pivoting rule from a radically different perspective: rather
than trying to find a pivoting rule and then prove that it is polynomial, we conjecture that,
under some (possibly strong) assumptions, learning algorithms can find themselves polynomial
pivoting rules with minimal human intervention. This could have a major impact on the way
the community approaches the problem.

As a final note, let us emphasize that the theory of machine learning provides other theo-
retical tools that could be used to study this problem. In particular, reinforcement learning
theory may not be the most suitable framework to prove that the time complexity of the
simplex is polynomial in the dimensions of the problem. Other ML frameworks could provide
the appropriate tools for such a study such as, for instance, the ‘probably approximately
correct learning’ framework (Valiant, 1984).



Chapter 7

Conclusions and outlooks

Put briefly, the idea that we develop in this work consists in using learning techniques to im-
prove the performance and understanding of optimization algorithms. This approach is not
new and has been referred to by many names, one of which is ‘learning to search’ (Langley,
1985). Throughout the years, numerous methods leveraging this principle have been devel-
oped, but they were in general tailored to specific tasks. In this thesis, we try to tackle the
problem from a higher perspective and, instead of focusing on specific applications, we turn
our attention to common optimization algorithms. More precisely, we implement the idea
on two of them, namely the simplex and the branch-and-bound algorithms, and use learning
techniques to improve some of their mechanisms.

In the following, we first summarize the conclusions of each individual chapter. We then
detail the objectives of the thesis and explain how, according to the obtained results, they
have been achieved. We next present a few pragmatic research directions that directly follow
the contents of this manuscript and finally conclude this work with some general remarks.

7.1 Conclusions of the individual chapters

7.1.1 Learning to branch in branch-and-bound

Our first attempt to use learning techniques to improve optimization algorithms focuses on
branching strategies used within the branch-and-bound algorithm. The idea is to create a
cheap approximation of a good branching strategy that is usually expensive to evaluate.

The proposed approach consists in observing branching decisions taken by a supposedly
good strategy, strong branching in our case, and to imitate those decisions with a strategy
obtained by a machine learning procedure. To this end, we develop a set of features that are
used to characterize the current state of the problem in the B&B tree from the perspective
of a particular variable. These features are computed for all candidate variables and used as
input of the learned branching heuristic in order to predict an approximation of the strong
branching score for that variable. The underlying mechanism of the developed approach is not
different from other branching strategies. Indeed, in all cases, features are computed from the
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current state of the problem (in some way or another) and then used to decide which variable
to branch on. In our approach, however, we can include many types of features, including
those used by popular strategies, and let the learning algorithm decide which features are
the best to predict a given branching score. In that sense, we can see our method as a very
general branching strategy that can imitate any other heuristic, as long as the appropriate
features are provided.

We propose two approaches that use machine learning: a batch approach and an online
approach. In the batch case, a dataset must be generated prior to the optimization and fed
to a machine learning algorithm in order to train a model on the data that approximates
strong branching. In the online case, it is not necessary to generate a dataset, since the online
learning algorithm trains the model during the course of the optimization. The experiments
performed to assess the efficiency of both methods show promising results and suggest that
further research in this direction may lead to favorable improvements in MIP solvers.

7.1.2 Learning to estimate the difficulty of a MIP problem and its use in
parallelization

The next research direction that we investigate consists in using learning techniques to esti-
mate the difficulty of a MIP problem. As an application of the created difficulty estimator, we
illustrate how evaluating the difficulty of a problem can be used to improve the parallelization
of a naive parallel branch-and-bound.

More specifically, we propose an approach to split the optimization of a single problem
into several independent parts that can be solved by several workers in parallel, with the
goal that the amount of work given to each processor is well balanced between the workers.
The parallelization scheme is very naive and the innovation mostly lies in how the difficulty
of the subproblems is estimated. To do this, we create a function, with the use of learning
techniques, that is able to estimate the number of nodes, hence the amount of work, that a
solver needs to process in order to solve to optimality a subproblem of the original problem.
To this end, we develop a set of features that are used to characterize a given subproblem in
the B&B tree and use these features as input of the learned function in order to predict the
expected number of nodes required to solve the given subproblem to optimality. The estimates
of the numbers of nodes are then used to create a partition of the original optimization tree
so that one or several elements of the partition can be given to each worker. The experiments
show that our approach succeeds in balancing the amount of work between the processors
and that interesting speedups can be achieved with little effort.

7.1.3 Learning theory applied to the simplex algorithm

In the last part of this work, we show how the theory of machine learning can be used to
improve the theoretical analysis of optimization algorithms. More specifically, we tackle an
important question in the field of linear optimization: the worst case complexity of the simplex
algorithm.

More precisely, we use the theory of reinforcement learning (RL), which is a learning
framework whose goal is to teach an agent to take decisions in a Markovian environment.
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The basic idea of our development is to formulate the simplex algorithm as a Markov decision
process (MDP) on which the reinforcement learning framework can be applied. In this case,
the decisions taken by the agent determine the path of the simplex algorithm (through the
basic feasible solutions of the problem). Once it is formulated as an MDP, the theory of
reinforcement learning provides new tools to study the worst case complexity of the simplex
algorithm.

We tackle the problem with two different RL algorithms that have been studied theoret-
ically quite extensively. We first consider a naive RL algorithm (value iteration or VI) and
show that this algorithm is able to find pivoting rules that are guaranteed to be polynomial
if enough time is given to the algorithm. The found pivoting rule is indeed guaranteed to be
polynomial when used to solve a problem, but the time required to find the pivoting rule (the
training time of the algorithm) is not. Additionally, the space required by the approach is pro-
portional to the number of vertices of the polytope. This proof is thus not satisfactory since
the learning step (and the required space) renders the entire procedure not polynomial. To
get round this issue, we consider another RL algorithm (fitted value iteration or FVI) whose
fundamental mechanisms are meant to render the training time tractable. This algorithm has
been studied theoretically and there exist, similarly to the simpler VI, theoretical guarantees
on the quality of the solutions found by the algorithm. Using both the theory of FVI and
the fact that the training complexity can be controlled, we show how such an approach can
get us one step closer to finding polynomial pivoting rules for the simplex algorithm. Note
that we present here only a draft of a global proof and further work is required in order to
leverage the full power of RL theory to answer optimization-related questions.

We believe that this work, although still in its early stages, can have a significant impact on
the theory of the simplex algorithm. Indeed, we propose to tackle the search for a polynomial
pivoting rule from a radically different perspective, which is, in our opinion, easier to approach.
Rather than trying to find a pivoting rule and then prove that it is polynomial, we conjecture
that, under some assumptions, learning algorithms can find themselves polynomial pivoting
rules without human intervention. We believe that this new approach of the subject may lead
to major breakthroughs in the field.

7.2 Objectives of the thesis

The raison d’étre of this thesis is threefold.

First, we show that massive amounts of data are generated for free when one solves an
optimization problem. It turns out that, currently, only little, if any, knowledge is gained
from this available data. Therefore, we additionally propose several ways to leverage this
data through appropriate techniques in the context of optimization algorithms.

Second, we show that the information gathered and interpreted by learning techniques
can not only be used to improve the performance of optimization algorithms, but also to
better understand how they work and what conditions their efficiency. For instance, in the
case of variable branching, an analysis of the feature importances highlights which features
are important and which are irrelevant. This information sheds some light on how branching
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works and can improve the understanding that researchers have on that crucial step of branch-
and-bound.

Lastly, mathematical optimization is a field of science that has been primarily governed by
pure mathematicians who tend to be reluctant when it comes to not-so-theoretical disciplines
like machine learning. In this work, we believe that we have produced convincing evidence that
machine learning should not be disregarded and that, quite to the contrary, machine learning
should be considered as a front-running candidate to improve optimization algorithms. We
hope that this modest contribution will, at least, draw attention to such methodologies and,
at best, lead to major breakthroughs that will dramatically improve the field of mathematical
optimization.

7.3 Outlooks and future research

There is still a lot to be done in the research direction that we have investigated. We mention
in the following a few elements that deserve, in our opinion, some attention.

In this work, a large part of the research was devoted to the design of appropriate features.
Some of them have proved to be crucial to the methods, but others turned out to be much
less important. One obvious first step on the path of improvement would be to develop more
advanced (tailored?) features describing the studied problems. This could be done by hand,
as in this thesis, or through automatic methods. This is indeed rendered possible by the recent
developments of machine learning. For instance, in the past few years, the learning community
has witnessed the rapid growth of deep learning methods. These methods have been applied
successfully in many applications (including speech recognition and image classification), but
they are also known to automatically extract important features from the raw data they are
fed with. Using this kind of methods to automatize the feature representation is a promising
research direction in the present case where the features are not trivial to identify nor design.

Second, it is important to emphasize that this work completely, and voluntarily, omits
the search for the best learning algorithm and its optimal parameters. We did not consider
this part as a crucial component of our research and consequently used algorithms that are
known to perform well while being robust with respect to the choice of the parameter values.
However, if the methodology that we propose is meant to be used in competitive environments,
it is clear that considerable effort should be put into identifying which learning algorithm
performs best for a dedicated task. Achieving state-of-the-art performance most definitely
requires such a (possibly cumbersome) preliminary step.

Finally, it goes without saying that applying the proposed methodology to other problem
families and other optimization algorithms than the ones considered in this work is of great
practical interest.

7.4 Final word

In this work, we believe that two aspects clearly surface. On the one hand, free data is
generated when one optimizes a problem and, on the other hand, that data contains a lot
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of helpful information that can be used to improve the internal machinery of an optimiza-
tion algorithm and its general behavior. With that in mind, one can regard optimization
algorithms as objects that, in addition to their direct goal, which is to solve an optimization
problem, are given the possibility to evolve and improve. It would be interesting to study
optimization algorithms under the light of the well-known exploration-exploitation tradeoff.
Under the scope of this framework, the development of optimization algorithms would be
totally different. Indeed, one would need to entirely rethink the way these algorithms work
to account for the fact that they are given short-term and long-term goals. The short-term
goals would correspond to the solution of a single optimization problem, while the long-term
goals would push the algorithm to learn a lot from the past in order to be more efficient in
the future. Making optimization decisions in that context would be entirely different since
one would need to take into account several objectives, among which some of them are most
likely stochastic. The advent of such algorithms would probably imply the obsolescence of
current optimization researchers, but, fortunately for us, it is unlikely to happen overnight.

With this work, we barely scratch the surface of the general idea that optimization can
benefit from learning, but we believe that the potential for improving optimization techniques
with machine learning is huge. Overall, we hope that this work will foster collaborations
between optimizers and machine learners and will further bridge the gap that still separates

both fields.

Finally, let us emphasize again that this thesis is intended as a proof-of-concept and merely
focuses on the simplest optimization problems (linear and mixed-integer linear optimization).
We strongly believe, however, that the same machine learning reasoning can be used much
more efficiently in the situations that are studied in this work and that similar approaches can
also be successfully applied to other, more difficult, optimization problems, such as convex,
stochastic, and global optimization. It is just a matter of figuring out how.
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Appendix A

Machine learning for variable
branching: appendix

This appendix brings additional information about the methodology deployed to improve the
design of branching strategies with learning techniques as detailed in Chapter 4.

A.1 Detailed feature importance results

This appendix reports the detailed feature importances and costs of omission for all variables
developed for this application. The results are given in Tables A.1 and A.2. For an analysis
of the tables, we refer the reader to Section 4.6.2 of the main document.
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APPENDIX A. MACHINE LEARNING FOR BRANCHING: APPENDIX

ET LR Lasso (a = 0.01)

# FI MRE  COO FI MRE  COO FI MRE  COO

2 0.2875 0.1591 -4 0.0000  0.2078 -262  0.0000  0.2141 -38
27 0.1297  0.1596 -3 0.0000  0.2077 -263  0.1213  0.2141 -38
37  0.0497  0.1892 100 0.0000  0.2257 100 1.0000  0.2341 100
40  0.0486  0.1552 -18  0.0000  0.2078 -261 0.0451 0.2141 -38
31 0.0449  0.1587 -6 0.0000  0.2078 -262  0.2423  0.2150 -32
18 0.0413  0.1569 -12 0.0000  0.2077 -263  0.0009  0.2117 -55
63  0.0289  0.1574 -10  0.0000  0.2106 -204  0.1037  0.2157 -27
56 0.0287  0.1571 -11 0.0000  0.2073 -272  0.0000  0.2141 -38
57  0.0286  0.1580 -8 0.0000  0.2182 -50  0.6523  0.2235 27
58  0.0273  0.1562 -14  0.0000  0.2084 -249  0.0052 0.2133 -44
30  0.0213  0.1574 -10  0.0000  0.2078 -260  0.0953  0.2141 -38
62  0.0207  0.1573 -11 0.0000  0.2077 -263  0.0302 0.2143 -37
61 0.0198  0.1571 -11 0.0000  0.2058 -302  0.2220  0.2158 -27
39  0.0191 0.1591 -5 0.0000  0.2078 -261 0.0000  0.2141 -38
38  0.0180  0.1568 -12 0.0000  0.2078 -261 0.0000  0.2141 -38
36  0.0152 0.1657 18  0.0000  0.2067 -283  0.0415 0.2141 -38
59  0.0146  0.1585 -7 0.0000  0.2078 -262  0.0142 0.2141 -38
43  0.0144  0.1557 -16  0.0000  0.1967 -486  0.0003  0.1991 -142
64  0.0118  0.1599 -2 0.0000  0.2078 -262  0.0023  0.2141 -38
41 0.0116  0.1564 -14  0.0000  0.2089 -239  0.0008  0.2150 -32
42 0.0105 0.1575 -10  0.0000  0.2086 -245  0.0006  0.2155 -29
23 0.0102 0.1563 -14  0.0000  0.2079 -259  0.0000  0.2141 -38
46 0.0097  0.1579 -9 0.0000  0.2071 -275  0.0846  0.2139 -40
55 0.0071 0.1576 -10  0.0000  0.2078 -261 0.0000  0.2141 -38
60  0.0061 0.1602 -1 0.0000  0.2084 -248  0.0000  0.2141 -38
35 0.0056  0.1583 -7 0.0000  0.2078 -260  0.1511 0.2141 -38

7 0.0056  0.1580 -8 0.0000  0.2078 -262  0.0001 0.2141 -38
47 0.0049  0.1583 -7 0.0000  0.2078 -261 0.0013  0.2141 -38
48  0.0044  0.1574 -10  0.0000  0.2078 -262  0.0048  0.2141 -39

4 0.0043 0.1574 -10  0.0000  0.2078 -262  0.0358  0.2141 -38
34 0.0043  0.1585 -6 0.0000  0.2080 -258  0.0000  0.2141 -38

3 00043  0.1572 -11 0.0000  0.2077 -264  0.0000  0.2141 -38

Table A.1: Feature importances (1/2) as computed by the ExtraTrees (ET), linear regression
(LR), and the Lasso. Each row of the table corresponds to a feature, whose number is given

in the first column.

‘FI’ represents the feature importance for the corresponding feature.

For the ExtraTrees, the feature importances are the result of the internal procedure run
during the learning phase. For LR and the Lasso, the feature importances correspond to the
(normalized) absolute values of the regression coefficients. Note that, in the case of LR, a
few coefficients are very large (order of 107) and thus the relative importance of the other
features is seemingly null. ‘MRE’ represents the mean relative error obtained on the test set
when the considered feature is eliminated from learning and testing. The COQOs are obtained
by comparing the MREs obtained without the features and the values reported in Table 4.11.
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ET LR Lasso (a = 0.01)
# FI MRE  COO FI MRE  COO FI MRE  COO
11 0.0042 0.1571 -11 0.0000  0.2078 -262  0.0001 0.2141 -38
10 0.0041 0.1550 -19  0.0000  0.2078 -261 0.0002 0.2142 -38
54 0.0040 0.1562 -14  0.0000  0.2078 -261 0.0000  0.2141 -38
52 0.0038  0.1589 -5 0.0000  0.2078 -262  0.0037  0.2141 -38
6 0.0038  0.1582 -8 0.0000  0.2078 -261 0.0001 0.2141 -38
8 0.0028  0.1602 -0 0.0000  0.2078 -262  0.0000  0.2141 -38
12 0.0027  0.1604 0 03204 0.2078 -262  0.0000  0.2141 -38
44 0.0021 0.1594 -3 0.0000  0.2078 -262  0.0000  0.2141 -38
13 0.0020  0.1556 -16  0.3204  0.2078 -262  0.0000  0.2141 -38
53  0.0020  0.1580 -8 0.0000  0.2078 -262  0.0001 0.2141 -38
o1 0.0015 0.1587 -6 0.0000  0.2078 -262  0.0000  0.2141 -38
50  0.0014  0.1594 -4 0.0000  0.2078 -261 0.0042 0.2141 -38
49  0.0014  0.1570 -12 - 0.0000  0.2077 -263  0.0044  0.2141 -39
9 0.0013  0.1570 -12 0.0000  0.2078 -261 0.0123  0.2142 -38
45  0.0010  0.1582 -8 1.0000  0.2078 -262  0.0013  0.2141 -38
14 0.0010 0.1571 -11 0.0000  0.2081 -254  0.0005 0.2144 -36
1 0.0006  0.1566 -13 0.3959  0.2078 -262  0.0222 0.2141 -38
15 0.0005 0.1582 -8 0.0367  0.2078 -262  0.0000  0.2141 -38
17 0.0002 0.1565 -13 0.7171 0.2078 -262  0.0000  0.2141 -38
16  0.0002 0.1563 -14  0.1496  0.2078 -262  0.0000  0.2141 -38
5 0.0001 0.1570 -12 0.0000  0.2078 -262  0.0000  0.2141 -38
21 0.0001 0.1568 -13  0.0000  0.2078 -262  0.0000  0.2141 -38
25 0.0000 0.1572 -11 0.0000  0.2078 -262  0.0000  0.2141 -38
33 0.0000  0.1565 -13 0.0749  0.2078 -262  0.0000  0.2141 -38
28  0.0000  0.1575 -10  0.0749  0.2078 -262  0.0000  0.2141 -38
29  0.0000  0.1593 -4 0.0746  0.2078 -262  0.0000  0.2141 -38
32 0.0000  0.1577 -9 0.0749  0.2078 -262  0.0000  0.2141 -38
19  0.0000  0.1567 -13  0.0000  0.2078 -262  0.0000  0.2141 -38
20  0.0000  0.1561 -15 0.0000  0.2078 -262  0.0000  0.2141 -38
22 0.0000  0.1585 -6 0.0000  0.2078 -262  0.0000  0.2141 -38
24 0.0000  0.1586 -6 0.0000  0.2078 -262  0.0000  0.2141 -38
26 0.0000  0.1596 -3 0.0000  0.2078 -262  0.0000  0.2141 -38

Table A.2: Feature importances (2/2) as computed by the ExtraTrees (ET), linear regression
(LR), and the Lasso. Each row of the table corresponds to a feature, whose number is given

in the first column.

‘FI’ represents the feature importance for the corresponding feature.

For the ExtraTrees, the feature importances are the result of the internal procedure run
during the learning phase. For LR and the Lasso, the feature importances correspond to the
(normalized) absolute values of the regression coefficients. Note that, in the case of LR, a
few coefficients are very large (order of 107) and thus the relative importance of the other
features is seemingly null. ‘MRE’ represents the mean relative error obtained on the test set
when the considered feature is eliminated from learning and testing. The COQOs are obtained
by comparing the MREs obtained without the features and the values reported in Table 4.11.
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A.2 About ExtraTrees parameters

The performance of ExtraTrees (Geurts et al., 2006) is very robust with respect to the choice
of their parameters. ExtraTrees actually have three parameters: N, which is the number of
trees in the method; k, which is the number of features evaluated at each node during the
creation of the trees; and nuin, which is the number of learning samples contained in a node
below which that node becomes a leaf. The number of trees is set to the default value of
N =100 in our experiments. The parameter k, which represents the number of features that
are considered for the creation of the next node in the ExtraTrees, is also set to a default value
of k = |¢|. The exact understanding of these parameters is beyond the scope of this appendix
and we refer the reader to the paper of Geurts et al. (2006) for a deeper explanation.

Tables A.3, A4, A.5, and A.6 compare the influence of the parameter nyi, on the per-
formance of the method. The experiments are the same as those detailed in Section 4.4.3 of
the main document. The main observation that can be made from those tables is that the
parameter ny;, influences the computational time, but not really the accuracy of the taken
decisions. Indeed, the greater the nyi,, the faster the method. This behavior was expected, as
a large npyin produces smaller trees, which generally reduces the computational time required
to take a branching decision. On the other hand, the third column of Tables A.3 and A.6, and
the sixth column of Table A.4, all of which correspond to the gap closed after the node limit
has been reached, show that the accuracy of the taken decisions is not influenced by npyi, in
the range of tested values. These observations illustrate that the method is actually robust
to the choice of npin.

Besides the experiments included in this appendix, further work should focus on a more de-
tailed study of the influence of the different parameters of the ExtraTrees on the performance
of the optimization procedure.
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Node limit (10° nodes) Time limit (10 min.)
S/T Cl Gap Time S/T Cl. Gap Nodes
Learned - np;m =1 0/150 0.62 72.23 16/150 0.81 104,090
Learned - nypn =5 0/150 0.62 63.28 19/150 0.82 114,389
Learned - nyi;, = 10 0/150 0.62 61.91 21/150 0.83 122,038
Learned - nypi, = 20 0/150 0.62 54.23 23/150 0.84 131,994

Table A.3: Optimization results for the problems of BPEQ_test, BPSC_test and MKNSC _test.

Solved by all methods Not solved by at least one method

S/T  Nodes Time S/T  ClL Gap  Nodes Time
Learned - npi, = 1 9/44 1,436 3.42 11/44 0.63 8,084 110.70
Learned - nyi, =5 9/44 1,229 3.25 10/44 0.62 8,176 103.34
Learned - npyi, =10  9/44 1,437 5.45  10/44 0.63 8,083 84.75
Learned - npyi, =20  9/44 1,194 2.73  10/44 0.62 8,073 162.87

Table A.4: Optimization results for the MIPLIB problems. Node limit = 10° nodes.

Solved by all methods Not solved by at least one method

S/T  Nodes Time S/T CL Gap Nodes Time
Learned - nyy, =1 19/44 13,887 36.19 5/44 0.64 112,810 510.72
Learned - npyi;, =5 19/44 15,310  38.46  5/44 0.64 116,493 525.46
Learned - ny;, = 10 19/44 14,647 37.42 7/44 0.65 124,346 499.55
Learned - npin, =20  19/44 14,008  34.12  5/44 0.63 130,081 512.72

Table A.5: Optimization results for the MIPLIB problems. Time limit = 10 min.

Node limit (10° nodes) Time limit (10 min.)

S/T CL Gap Time S/T Cl Gap Nodes
Learned - nyin = 1 0/50 0.47 76.20 0/50 0.63 83,938
Learned - nypi, =5 0/50 0.47 6731 0/50 0.64 94,826
Learned - nyn = 10 0/50 0.47 68.58 0/50 0.65 102,941
Learned - nyi, = 20 0/50 0.48 56.36  0/50 0.67 112,918
Learned - nyyn = 1 - BPSC only 0/50 0.51 90.69 0/50 0.67 77,174
Learned - nyi, = 5 - BPSC only 0/50 0.51 79.53 0/50 0.67 82,535
Learned - ny,i, = 10 - BPSC only  0/50 0.51 7279 0/50 0.68 92,586
Learned - npyi, = 20 - BPSC only  0/50 0.51 60.54 0/50 0.70 109,066

Table A.6: Optimization results for the problems from BPSC_test. Comparison between the
strategy learned on the entire training set and the strategy learned only from BPSC_train
examples.
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A.3 Batch learning of branching decisions: complete experi-
mental results

This section contains the detailed experimental results for the MIPLIB problems used in our
experiments. Averaging the following results over all problems gives the aggregated results
shown in the main document. The detailed results are given in Tables A.7 through A.20.

The first set of tables, i.e., Tables A.7 through A.14, reports the results for the MIPLIB
problems contained in Table 4.6 when limits are set either on the number of nodes or on the
time spent. The B&B version that is used for these experiments is pure, i.e., no cuts nor
heuristics are used.

The second set of tables, i.e., Tables A.15 through A.20, reports the optimization results
for the problems contained in Table 4.9. These problems are obtained by keeping from the
initial list of problems those that are solved within a 5 days time limit with all considered
branching strategies. Tables A.15 through A.20 then report the optimization results with no
time (or node) limit on the second list of MIPLIB problems. The first three tables correspond
to the results obtained with a pure version of B&B, while the second half of the tables contains
the results when CPLEX’s cuts and heuristics are used during the optimization.



Problem names 10teams aflow30a aflow40b air03 air04 air05 cap6000 demulti egout fiber fixnet6

LP Obj. 917 983.17 1,005.66 338,864 55,535.40 25,877.60 -2,450,000 183,976 149.59 156,083 1,200.88

True Obj. 924 1,158 1,170 340,160 56,100 26,374 -2,450,000 188,182 568.10 405,935 3,983

Fin. by all 0 0 0 1 0 0 0 0 0 0 0

Random Fin. 4 5 5 0 4 4 5 5 4 5 5
Obj. 917 1,051.18 1,043.31 340,160 55,946.50 26,234.50 -2,450,000 187,298 562.60 189,746 1,573.11

Nodes 10,000 10,000 10,000 25 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Time 364.40 9.35 44.47 1.45 2,219.56 1,173.48 30.70 5.61 1.12 5.39 4

Cl. Gap 0 0.39 0.23 1 0.68 0.72 0.41 0.79 0.99 0.13 0.13

MIB Fin. 4 5 5 0 4 5 5 0 0 5 5
Obj. 920 1,059.97 1,038.70 340,160 55,980.80 26,270.30 -2,450,000 188,182 568.10 184,391 2,004.30

Nodes 10,000 10,000 10,000 7 10,000 10,000 10,000 9,493 7,015 10,000 10,000

Time 251.55 10.44 46.41 0.60 5,965.28 1,516.76 29.02 4.44 0.79 591 4.12

Cl. Gap 0.43 0.44 0.20 1 0.74 0.79 0.41 1 1 0.11 0.29

NCB Fin. 0 5 5 0 0 0 5 0 0 5 5
Obj. 924 1,117.99 1,099.12 340,160 56,137 26,374 -2,450,000 188,182 568.10 359,328 2,528.38

Nodes 1,453 10,000 10,000 3 131 215 10,000 1,065 5,713 10,000 10,000

Time 456.18 98.16 354.31 2.04 1,146.13 772.90 147.50 2.99 1.94 52.82 74.06

Cl. Gap 1 0.77 0.58 1 1 1 0.44 1 1 0.81 0.48

FSB Fin. 0 5 5 0 0 0 5 0 0 5 5
Obj. 924 1,120.14 1,099.87 340,160 56,137 26,400 -2,450,000 188,182 568 362,329 2,482.51

Nodes 259 10,000 10,000 3 111 177 10,000 927 4,730 10,000 10,000

Time 1,215.41 217.34 979.50 2.75 3,249.42 3,840 159 4.83 2.16 267.72 246.11

Cl. Gap 1 0.78 0.58 1 1 1 0.44 1 1 0.83 0.46

RB Fin. 5 5 5 0 0 0 5 0 0 5 5
Obj. 917 1,103.69 1,089.99 340,160 56,137 26,374 -2,450,000 188,182 568.10 287,517 2,322.90

Nodes 10,000 10,000 10,000 3 3,601 1,489 10,000 1,013 9,143 10,000 10,000

Time 1,200.43 37.74 136.16 0.53 2,786.84 1,461.74 118 1.79 2.37 18.77 18.36

Cl. Gap 0 0.69 0.52 1 1 1 0.44 1 1 0.53 0.40

Learned Fin. 0 5 5 0 0 4 5 0 0 5 5
Obj. 924 1,064.88 1,039.41 340,160 56,137 26,284.40 -2,450,000 188,182 568.10 313,565 2,239.68

Nodes 1,739 10,000 10,000 3 3,833 10,000 10,000 1,565 3,007 10,000 10,000

Time 108.16 57.10 146.12 0.48 1,648.75 2,237.31 45.80 2.76 1.31 42.17 61.90

Cl. Gap 1 0.47 0.21 1 1 0.82 0.44 1 1 0.63 0.37

Table A.7T: Detailed results for the MIPLIB problems (1/4). Node limit = 10° nodes. The row ‘Cl. Gap’ refers to the gap closed at the
end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to solve
this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization: 0 for optimality, 1
for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution
found, and 5 for another stopping criterion with no feasible solution found.
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Problem names harp2 khb05250 1152lav Iseu masT4 mas76 misc03 misc06 misc07 mitre mod008

LP Obj. -74,300,000 95,900,000 4,656.36 834.68 10,482.80 38,893.90 1,910 12,841.70 1,415 114,741 290.93

True Obj. -73,900,000 107,000,000 4,722 1,120 11,801.20 40,005.10 3,360 12,850.90 2,810 115,155 307

Fin. by all 0 0 0 0 0 0 1 1 0 0 0

Random Fin. 5 4 4 5 5 5 0 0 4 5 4
Obj. 74,300,000 107,000,000 4,700.21 1,005.77 10,860.40 39,280.80 3,360 12,851.10 2,294.29 115,094 305.69

Nodes 10,000 10,000 10,000 10,000 10,000 10,000 1,179 527 10,000 10,000 10,000

Time 16.92 6.17 32.30 1.10 3.37 3.04 0.51 0.69 10.44 182.61 1.50

Cl. Gap 0.16 0.98 0.67 0.60 0.29 0.35 1 1.02 0.63 0.85 0.92

MIB Fin. 5 0 4 5 5 5 0 0 4 0 0
Obj. -74,300,000 107,000,000 4,705.10 1,062.44 10,877 39,301.10 3,360 12,850.90 2,5674.11 115,155 307

Nodes 10,000 7,477 10,000 10,000 10,000 10,000 629 551 10,000 986 9,091

Time 15.67 4.95 35.04 1.11 3.42 3.08 0.32 0.76 9 30.06 1.49

Cl. Gap 0.14 1 0.74 0.80 0.30 0.37 1 1 0.83 1 1

NCB Fin. 5 0 0 4 5 5 0 0 4 0 0
Obj. -74,100,000 107,000,000 4,722 1,093.29 11,041.20 39,371.80 3,360 12,850.90 2,487.50 115,155 307

Nodes 10,000 1,527 213 10,000 10,000 10,000 579 56 10,000 617 4,605

Time 95.59 4.76 4.53 5.16 28.23 23.72 2.65 0.58 152.62 49.18 2.85

ClL. Gap 0.63 1 1 0.91 0.42 0.43 1 1 0.77 1 1

FSB Fin. 5 0 0 5 5 5 0 0 4 0 0
Obj. -74,100,000 107,000,000 4,722 1,088.06 11,041.80 39,410.90 3,360 12,850.90 2,537.50 115,000 307

Nodes 10,000 1,502 238 10,000 10,000 10,000 371 55 10,000 709 3,333

Time 336 7.27 47.67 8.37 44.55 35.20 2.78 1.20 378.26 139 1.77

Cl. Gap 0.65 1 1 0.89 0.42 0.47 1 1 0.80 1 1

RB Fin. 5 0 0 4 5 5 0 0 4 0 0
Obj. -74,100,000 107,000,000 4,722 1,095.03 11,008 39,368 3,360 12,850.90 2,668.33 115,155 307

Nodes 10,000 1,685 611 10,000 10,000 10,000 641 62 10,000 1,900 2,927

Time 43.14 2.21 6.71 2.68 9.43 8.12 1.89 0.54 48.44 130.35 1.24

Cl. Gap 0.56 1 1 0.91 0.40 0.43 1 1 0.90 1 1

Learned Fin. 5 0 0 4 5 5 0 0 5 0 0
Obj. -74,100,000 107,000,000 4,722 1,083.23 10,914.30 39,321 3,360 12,850.90 2,410 115,155 307

Nodes 10,000 5,790 1,061 10,000 10,000 10,000 1,865 161 10,000 470 6,365

Time 59.84 8.29 8.77 6.90 21.87 16.38 2.29 0.53 35.01 26.31 3.81

Cl. Gap 0.41 1 1 0.87 0.33 0.38 1 1 0.71 1 1

91

Table A.8: Detailed results for the MIPLIB problems (2/4). Node limit = 10° nodes. The row ‘Cl. Gap’ refers to the gap closed at the
end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to solve
this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization: 0 for optimality, 1
for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution
found, and 5 for another stopping criterion with no feasible solution found.
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Problem names mod010 mod011 modglob nw04 opt1217 p0033 p0201 p0282 p0548 p2756 pkl

LP Obj. 6,532.08 -62,100,000 20,400,000 16,310.70 -20.02 2,520.57 6,875 176,868 429.68 2,698.95 0

True Obj. 6,548 -54,600,000 20,700,000 16,862 -16 3,089 7,615 258,411 8,691 3,124 11

Fin. by all 0 0 0 1 0 1 1 0 0 0 0

Random Fin. 4 5 5 0 5 0 0 5 5 5 5
Obj. 6,543 -57,400,000 20,500,000 16,862 -20.02 3,089 7,615 184,159 1,422.30 2,713.04 2.38

Nodes 10,000 10,000 10,000 259 10,000 4,859 649 10,000 10,000 10,000 10,000

Time 21.46 67.20 3.31 10.80 6.83 0.31 0.45 2.36 4.10 12.33 2.72

Cl. Gap 0.69 0.62 0.33 1 0 1 1 0.09 0.12 0.03 0.22

MIB Fin. 0 5 5 0 5 0 0 5 5 5 5
Obj. 6,548 -55,700,000 20,600,000 16,862 -20.02 3,089 7,615 181,564 512.38 2,702.63 3.05

Nodes 532 10,000 10,000 1,737 10,000 6,265 4,747 10,000 10,000 10,000 10,000

Time 3.74 77.08 3.34 45.13 6.82 0.35 2.37 2.56 3.16 9.92 2.66

Cl. Gap 1 0.84 0.57 1 0 1 1 0.06 0.01 0.01 0.28

NCB Fin. 0 5 5 0 5 0 0 0 5 5 5
Obj. 6,548 -55,000,000 20,600,000 16,862 -19.80 3,089 7,615 258,411 8,678.53 2,925.78 4.79

Nodes 96 10,000 10,000 355 10,000 745 173 624 10,000 10,000 10,000

Time 2.47 2,764.36 24.84 62.49 17 0.10 1.16 1.12 24.01 142.83 33.08

Cl. Gap 1 0.94 0.66 1 0.06 1 1 1 1 0.53 0.44

FSB Fin. 0 5 5 0 5 0 0 0 0 5 5
Obj. 6,548 -55,000,000 20,600,000 16,862 -19.77 3,089 7,615 258,411 8,690 2,942.55 4.54

Nodes 31 10,000 10,000 233 10,000 363 186 502 8,920 10,000 10,000

Time 3.33 3,815.40 63.53 82.35 150.78 0.07 3.71 1.29 24.80 483.98 53.50

Cl. Gap 1 0.94 0.70 1 0.06 1 1 1 1 0.57 0.41

RB Fin. 0 5 5 0 5 0 0 0 5 5 5
Obj. 6,548 -55,300,000 20,600,000 16,862 -19.92 3,089 7,615 258,411 4,881.29 2,715.33 4.07

Nodes 83 10,000 10,000 1,201 10,000 1,150 359 767 10,000 10,000 10,000

Time 3.26 991.97 9.07 116.97 16.27 0.15 1.51 0.97 20.97 64.81 9.59

Cl. Gap 1 0.90 0.58 1 0.03 1 1 1 0.54 0.04 0.37

Learned Fin. 0 5 5 0 5 0 0 0 5 5 5
Obj. 6,548 -55,900,000 20,600,000 16,862 -19.98 3,090 7,615 258,411 8,640.78 2,721.47 2.96

Nodes 123 10,000 10,000 235 10,000 291 612 8,614 10,000 10,000 10,000

Time 1.58 127.51 22.36 10.80 39.96 0.07 1.78 7.55 23.56 110.99 17.70

Cl. Gap 1 0.83 0.45 1 0.01 1 1 1 0.99 0.05 0.27

Table A.9: Detailed results for the MIPLIB problems (3/4). Node limit = 10° nodes. The row ‘Cl. Gap’ refers to the gap closed at the
end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to solve
this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization: 0 for optimality, 1
for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution
found, and 5 for another stopping criterion with no feasible solution found.
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Problem names pp08a pp08aCUTS qiu rentacar rgn setlch stein27 steindb tr12-30 vpml vpm2

LP Obj. 2,748.35 5,480.61 -931.64 28,800,000 48.80 32,007.70 13 22 14,210.40 15.42 9.89

True Obj. 7,350 7,350 -132.87 30,400,000 82.20 54,537.80 18 30 131,000 20 13.75

Fin. by all 0 0 0 1 1 0 1 0 0 0 0

Random Fin. 5 5 5 0 0 5 0 5 5 5 5
Obj. 4,270.24 6,265.34 -350.96 30,400,000 82.20 36,346.60 18 27.50 21,683.40 16.63 11.33

Nodes 10,000 10,000 10,000 41 5,947 10,000 4,283 10,000 10,000 10,000 10,000

Time 1.77 4.44 97.92 4.54 0.83 3.73 0.60 3.99 4.40 2.48 3.01

Cl. Gap 0.33 0.42 0.73 1 1 0.19 1 0.69 0.06 0.27 0.37

MIB Fin. 5 5 5 0 0 5 0 5 5 5 5
Obj. 4,601.49 6,269.34 -344.50 30,400,000 82.20 35,370.60 18 27.33 23,785.10 16.97 11.32

Nodes 10,000 10,000 10,000 26 4,147 10,000 4,681 10,000 10,000 10,000 10,000

Time 1.77 5.07 88.89 3.48 0.58 3.87 0.64 3.75 4.73 2.58 3.17

Cl. Gap 0.40 0.42 0.74 1 1 0.15 1 0.67 0.08 0.34 0.37

NCB Fin. 5 5 5 0 0 5 0 5 5 5 5
Obj. 5,078.04 6,729.63 -156.37 30,400,000 82.20 39,908.60 18 27.50 26,409.90 18.23 12.53

Nodes 10,000 10,000 10,000 26 2,735 10,000 3,240 10,000 10,000 10,000 10,000

Time 18.01 58.62 1,403.40 24.52 1.03 37.06 1.77 47.48 50.81 10.54 36.48

Cl. Gap 0.51 0.67 0.97 1 1 0.35 1 0.69 0.10 0.61 0.69

FSB Fin. 5 5 5 0 0 5 0 5 5 5 5
Obj. 5,174.11 6,697.22 -216.31 30,400,000 82.20 40,156.80 18 28.07 27,009.20 18.05 12.50

Nodes 10,000 10,000 10,000 26 2,849 10,000 2,141 10,000 10,000 10,000 10,000

Time 73.86 199.13 3,404.77 32.19 1.74 592 3.51 181.32 1,724.58 28.28 66.18

Cl. Gap 0.53 0.65 0.90 1 1 0.36 1 0.76 0.11 0.57 0.67

RB Fin. 5 5 4 0 0 5 0 5 5 5 5
Obj. 4,659.35 6,567.33 -143.30 30,400,000 82.20 40,319 18 27.50 26,487 17.78 11.89

Nodes 10,000 10,000 10,000 21 2,701 10,000 3,980 10,000 10,000 10,000 10,000

Time 6.23 15.49 436.22 18.23 0.77 9.60 1.41 21.27 13.61 5.67 19

Cl. Gap 0.42 0.58 0.99 1 1 0.37 1 0.69 0.11 0.52 0.52

Learned Fin. 5 5 5 0 0 5 0 5 5 5 5
Obj. 4,730.36 6,490.81 -279.63 30,400,000 82.20 39,600 18 27.50 24,065.90 16.95 11.35

Nodes 10,000 10,000 10,000 36 3,401 10,000 4,140 10,000 10,000 10,000 10,000

Time 42.04 51.12 152.68 4.32 1.20 120 3.13 31.06 366.50 16.07 31.62

Cl. Gap 0.43 0.54 0.82 1 1 0.34 1 0.69 0.08 0.33 0.38

Table A.10: Detailed results for the MIPLIB problems (4/4). Node limit = 10° nodes. The row ‘Cl. Gap’ refers to the gap closed
at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were
able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization: 0
for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with a

feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names 10teams aflow30a aflow40b air03 air04 air05 cap6000 demulti egout fiber fixnet6

LP Obj. 917 983.17 1,005.66 338,864 55,535.40 25,877.60 -2,451,540 183,976 149.59 156,083 1,200.88

True Obj. 924 1,158 1,168 340,160 56,137 26,374 -2,451,200 188,182 568.10 405,935 3,983

Fin. by all 0 0 0 1 0 0 1 1 1 0 0

Random Fin. 4 5 5 0 5 4 0 0 0 5 5
Obj. 917 1,105.30 1,061.77 340,160 55,798.10 26,181.90 -2,451,380 188,182 568.10 217,681 1,837.57

Nodes 20,337 603,128 141,714 25 762 3,742 81,127 87,985 11,855 1,076,478 1,304,269

Time 600.01 600.01 600.01 1.45 600.02 600.02 263.52 46.17 1.31 600.01 600.01

Cl. Gap 0 0.70 0.35 1 0.44 0.61 0.47 1 1 0.25 0.23

MIB Fin. 4 5 5 0 5 5 0 0 0 5 5
Obj. 920.27 1,114.89 1,057.98 340,160 55,849.90 26,221 -2,451,340 188,182 568.10 216,400 2,481.05

Nodes 28,721 565,662 133,573 7 872 3,877 22,637 9,493 7,015 966,294 1,250,501

Time 600.01 600.01 600.01 0.60 600.10 600.02 64.25 4.48 0.80 600.01 600.01

Cl. Gap 0.47 0.75 0.32 1 0.52 0.69 0.59 1 1 0.24 0.46

NCB Fin. 0 5 4 0 5 5 0 0 0 0 5
Obj. 924 1,103.67 1,141.45 340,160 55,787.30 26,285.90 -2,451,340 188,182 568.10 405,935 2,766.69

Nodes 1,453 16,178 52,727 3 12 104 17,214 1,065 5,713 88,143 69,931

Time 456.95 600.01 600.01 2.04 600.06 600.01 261.12 3.04 1.99 275.17 600.01

Cl. Gap 1 0.69 0.84 1 0.42 0.82 0.59 1 1 1 0.56

FSB Fin. 5 4 5 0 5 5 0 0 0 4 5
Obj. 923 1,135.33 1,095.06 340,160 55,632.60 26,139.10 -2,451,340 188,182 568.10 380,621 2,593.05

Nodes 102 27,814 6,023 3 6 23 15,732 927 4,725 24,604 25,867

Time 600.10 600.01 600.01 2.76 600.18 600.16 254.21 4.87 2.23 600.01 600.01

Cl. Gap 0.86 0.87 0.55 1 0.16 0.53 0.59 1 1 0.90 0.50

RB Fin. 5 4 5 0 5 5 0 0 0 4 5
Obj. 917 1,149.05 1,102.58 340,160 55,823.60 26,227.20 -2,451,340 188,182 568.10 382,623 2,773.55

Nodes 4,018 147,308 44,452 3 247 612 18,989 1,013 9,143 289,900 343,403

Time 600.01 600.01 600.01 0.52 600.03 600.02 225.13 1.80 2.39 600.01 600.01

Cl. Gap 0 0.95 0.60 1 0.48 0.70 0.59 1 1 0.91 0.57

Learned Fin. 0 5 5 0 5 5 0 0 0 5 5
Obj. 924 1,104.13 1,046.45 340,160 55,992.20 26,224.70 -2,451,380 188,182 568.10 372,086 2,411.64

Nodes 1,739 120,872 43,281 3 553 2,083 66,587 1,565 3,007 150,084 104,029

Time 108.28 600.01 600.01 0.49 600.01 600.01 314.71 2.74 1.31 600.01 600.01

Cl. Gap 1 0.69 0.25 1 0.76 0.70 0.47 1 1 0.86 0.44

Table A.11: Detailed results for the MIPLIB problems (1/4). Time limit = 600 seconds. The row ‘Cl. Gap’ refers to the gap closed
at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were
able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization: 0
for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with a
feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names harp2 khb05250 1152lav Iseu masT4 mas76 misc03 misc06 misc07 mitre mod008

LP Obj. -74,325,200 95,919,500 4,656.36 834.68 10,482.80 38,893.90 1,910 12,841.70 1,415 114,741 290.93

True Obj. -73,899,300 106,940,000 4,722 1,120 11,801.20 40,005.10 3,360 12,850.90 2,810 115,155 307

Fin. by all 0 1 1 1 0 0 1 1 1 0 1

Random Fin. 5 0 0 0 5 4 0 0 0 5 0
Obj. -74,231,300 106,940,000 4,722 1,120 11,227.40 39,899.60 3,360 12,851.10 2,810 115,131 307

Nodes 219,404 11,555 57,281 112,035 1,092,445 1,662,754 1,179 527 82,081 63,300 10,307

Time 600.03 7.15 107.70 10.23 600.01 600.01 0.52 0.70 53.43 600.01 1.54

Cl. Gap 0.22 1 1 1 0.56 0.91 1 1.02 1 0.94 1

MIB Fin. 5 0 0 0 5 4 0 0 0 0 0
Obj. -74,236,200 106,940,000 4,722 1,120 11,245.90 39,888.20 3,360 12,850.90 2,810 115,155 307

Nodes 260,188 7,477 42,037 52,413 1,046,064 1,230,909 629 551 24,005 986 9,091

Time 600.03 4.96 96.91 6.10 600.01 600.01 0.33 0.77 15.88 30.04 1.51

Cl. Gap 0.21 1 1 1 0.58 0.89 1 1 1 1 1

NCB Fin. 5 0 0 0 5 4 0 0 0 0 0
Obj. -74,019,800 106,940,000 4,722 1,120 11,349.60 39,784.90 3,360 12,850.90 2,810 115,155 307

Nodes 52,988 1,527 213 18,533 171,360 234,705 579 56 32,873 617 4,605

Time 600.01 4.79 4.57 7.24 600.01 600.01 2.71 0.59 254.98 49.25 2.91

Cl. Gap 0.72 1 1 1 0.66 0.80 1 1 1 1 1

FSB Fin. 5 0 0 0 5 4 0 0 0 0 0
Obj. -74,040,700 106,940,000 4,722 1,120 11,310.80 39,786.60 3,360 12,850.90 2,810 115,155 307

Nodes 17,259 1,502 238 24,957 132,769 178,936 371 55 25,551 709 3,333

Time 600.02 7.40 48.17 16.65 600.01 600.01 2.83 1.22 591.65 139.18 1.81

Cl. Gap 0.67 1 1 1 0.63 0.80 1 1 1 1 1

RB Fin. 5 0 0 0 5 0 0 0 0 0 0
Obj. -74,034,800 106,940,000 4,722 1,120 11,481.90 40,005.10 3,360 12,850.90 2,810 115,155 307

Nodes 115,774 1,685 611 16,933 547,986 621,181 641 62 19,179 1,900 2,927

Time 600.03 2.24 6.76 3.99 600.01 496.77 1.92 0.53 59.87 130.55 1.25

Cl. Gap 0.68 1 1 1 0.76 1 1 1 1 1 1

Learned Fin. 5 0 0 0 5 4 0 0 0 0 0
Obj. -74,115,700 106,940,000 4,722 1,120 11,230.50 39,753 3,360 12,850.90 2,810 115,155 307

Nodes 90,166 5,790 1,061 23,707 301,782 403,888 1,865 161 97,197 470 6,365

Time 600.01 8.24 8.66 11.39 600.01 600.01 2.24 0.53 174.27 26.21 3.59

Cl. Gap 0.49 1 1 1 0.57 0.77 1 1 1 1 1

Table A.12: Detailed results for the MIPLIB problems (2/4). Time limit = 600 seconds. The row ‘Cl. Gap’ refers to the gap closed
at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were
able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization: 0
for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with a

feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names mod010 mod011 modglob nw04 opt1217 p0033 p0201 p0282 p0548 p2756 pkl

LP Obj. 6,532.08 -62,122,000 20,430,900 16,310.70 -20.02 2,520.57 6,875 176,868 429.68 2,698.95 0

True Obj. 6,548 -54,558,500 20,740,500 16,862 -16 3,089 7,615 258,411 8,691 3,124 11

Fin. by all 1 0 0 1 0 1 1 0 0 0 0

Random Fin. 0 5 5 0 5 0 0 5 5 5 4
Obj. 6,548 -55,956,000 20,607,600 16,862 -20.02 3,089 7,615 192,124 2,085.24 2,733.15 10.92

Nodes 27,055 82,469 1,293,324 259 687,665 4,859 649 1,712,728 1,285,332 529,728 1,346,758

Time 47.98 600.01 600.01 10.81 600.01 0.32 0.45 600.01 600.01 600.01 600.01

Cl. Gap 1 0.82 0.57 1 0 1 1 0.19 0.20 0.08 0.99

MIB Fin. 0 0 5 0 5 0 0 5 5 5 0
Obj. 6,548 -54,558,500 20,706,800 16,862 -20.02 3,089 7,615 184,470 524.95 2,705.50 11

Nodes 532 49,533 989,483 1,737 670,264 6,265 4,747 1,504,144 1,121,079 634,588 927,663

Time 3.76 419.22 600.01 44.77 600.01 0.37 2.43 600.01 600.01 600.01 382.10

Cl. Gap 1 1 0.89 1 0 1 1 0.09 0.01 0.02 1

NCB Fin. 0 5 5 0 5 0 0 0 0 5 5
Obj. 6,548 -56,157,900 20,682,800 16,862 -19.65 3,089 7,615 258,411 8,691 2,984.96 9.95

Nodes 96 2,518 176,901 355 260,272 745 173 624 18,782 34,910 151,768

Time 2.50 600.05 600.01 62.35 600.01 0.12 1.17 1.14 42.31 600.01 600.01

Cl. Gap 1 0.79 0.81 1 0.09 1 1 1 1 0.67 0.90

FSB Fin. 0 5 5 0 5 0 0 0 0 5 5
Obj. 6,548 -56,661,700 20,686,000 16,862 -19.66 3,089 7,615 258,411 8,691 2,950.75 9.23

Nodes 31 1,260 101,090 233 38,913 363 186 502 8,920 12,364 125,603

Time 3.36 600.03 600.01 82.23 600.01 0.07 3.78 1.31 25.15 600.01 600.01

Cl. Gap 1 0.72 0.82 1 0.09 1 1 1 1 0.59 0.84

RB Fin. 0 5 5 0 5 0 0 0 0 5 0
Obj. 6,548 -55,719,100 20,686,900 16,862 -19.76 3,089 7,615 258,411 8,691 2,763.77 11

Nodes 83 6,180 493,119 1,201 389,380 1,145 359 767 145,693 92,008 366,151

Time 3.27 600.06 600.01 117.90 600.01 0.15 1.52 0.97 174.10 600.01 358.78

Cl. Gap 1 0.85 0.83 1 0.07 1 1 1 1 0.15 1

Learned Fin. 0 0 5 0 5 0 0 0 0 5 5
Obj. 6,548 -54,558,500 20,600,400 16,862 -19.93 3,089 7,615 258,411 8,691 2,728.89 8.60

Nodes 123 46,907 259,394 235 135,183 291 612 8,614 86,603 53,100 362,383

Time 1.59 564.95 600.01 10.68 600.01 0.07 1.73 7.56 110.72 600.01 600.01

Cl. Gap 1 1 0.55 1 0.02 1 1 1 1 0.07 0.78

Table A.13: Detailed results for the MIPLIB problems (3/4). Time limit = 600 seconds. The row ‘Cl. Gap’ refers to the gap closed
at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were
able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization: 0
for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with a
feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names pp08a pp08aCUTS qiu rentacar rgn set1lch stein27 steindb tr12-30 vpml vpm2

LP Obj. 2,748.35 5,480.61 -931.64 28,806,100 48.80 32,007.70 13 22 14,210.40 15.42 9.89

True Obj. 7,350 7,350 -132.87 30,356,800 82.20 54,537.80 18 30 130,596 20 13.75

Fin. by all 0 0 0 1 1 0 1 1 0 0 0

Random Fin. 5 5 4 0 0 5 0 0 5 5 5
Obj. 5,198.76 6,756.75 -226.26 30,356,800 82.20 37,522.60 18 30 24,059.40 18.25 12.60

Nodes 1,725,290 1,103,681 74,246 41 5,947 1,351,176 4,283 63,115 1,251,955 1,608,231 1,455,001

Time 600.01 600.01 600.01 4.54 0.85 600.01 0.60 20.25 600.01 600.01 600.05

Cl. Gap 0.53 0.68 0.88 1 1 0.24 1 1 0.08 0.62 0.70

MIB Fin. 5 5 4 0 0 5 0 0 5 5 5
Obj. 5,625.42 6,817.68 -211.52 30,356,800 82.20 35,814.40 18 30 26,437.20 18.55 12.60

Nodes 1,525,690 1,001,129 80,056 26 4,147 1,174,846 4,681 86,199 1,049,709 1,563,746 1,331,407

Time 600.01 600.01 600.01 3.49 0.60 600.01 0.66 26.17 600.02 600.01 600

Cl. Gap 0.63 0.72 0.90 1 1 0.17 1 1 0.11 0.68 0.70

NCB Fin. 5 5 5 0 0 5 0 0 5 5 5
Obj. 5,800.71 6,988.93 -229.11 30,356,800 82.20 41,291.10 18 30 28,983.30 19.25 13.16

Nodes 223,945 86,240 4,592 26 2,735 122,404 3,239 44,219 120,874 501,139 142,007

Time 600.01 600.01 600.01 24.52 1.06 600.01 1.80 149.92 600.01 600.01 600

Cl. Gap 0.66 0.81 0.88 1 1 0.41 1 1 0.13 0.84 0.85

FSB Fin. 5 5 5 0 0 5 0 0 5 5 5
Obj. 5,666.07 6,864.18 -399.43 30,356,800 82.20 40,157.30 18 30 25,847.50 19 13.06

Nodes 87,459 32,806 1,360 26 2,849 10,008 2,141 24,835 3,496 282,230 105,079

Time 600.01 600.01 600.01 32.21 1.80 600.02 3.61 285.03 600.02 600.01 600.01

Cl. Gap 0.63 0.74 0.67 1 1 0.36 1 1 0.10 0.78 0.82

RB Fin. 5 5 0 0 0 5 0 0 5 0 5
Obj. 5,649.88 7,082.74 -132.87 30,356,800 82.20 42,397.10 18 30 30,376.10 20 12.79

Nodes 643,995 305,396 14,923 21 2,701 492,097 3,975 50,335 418,805 649,531 299,538

Time 600.01 600.01 477.28 18.20 0.78 600.01 1.44 70.49 600.01 446.18 600.01

Cl. Gap 0.63 0.86 1 1 1 0.46 1 1 0.14 1 0.75

Learned Fin. 5 5 5 0 0 5 0 0 5 5 5
Obj. 5,318.51 6,828.05 -179.74 30,356,800 82.20 40,650.20 18 30 24.,425.10 18.18 12.24

Nodes 166,483 129,426 47,914 36 3,401 52,779 4,141 50,013 16,200 448,168 219,927

Time 600.01 600.01 600.01 4.32 1.20 600.01 3.12 97.31 600.03 600.01 600

Cl. Gap 0.56 0.72 0.94 1 1 0.38 1 1 0.09 0.60 0.61

Table A.14: Detailed results for the MIPLIB problems (4/4). Time limit = 600 seconds. The row ‘Cl. Gap’ refers to the gap closed
at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were
able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization: 0
for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with a
feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names aflow30a air03 air04 air05 cap6000 demulti egout khb05250 1152lav Iseu

LP Obj. 983.17 338,864 55,535.40 25,877.60 -2,451,540 183,976 149.59 95,919,500 4,656.36 834.68

True Obj. 1,158 340,160 56,137 26,374 -2,451,200 188,182 568.10 106,940,000 4,722 1,120

Fin. by all 1 1 1 1 1 1 1 1 1 1

Random Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,450,000 188,182 568.10 107,000,000 4,722 1,120

Nodes 15,800,801 25 130,471 88,241 81,127 87,985 11,855 11,555 57,281 112,035

Time 19,276.30 1.44 9,228.73 4,613 259.32 45.45 1.27 6.85 106.19 9.82

Cl. Gap 1 1 1 1 4.53 1 1 1.01 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,340 188,182 568.10 106,940,000 4,722 1,120

Nodes 7,691,239 7 105,821 66,991 22,637 9,493 7,015 7,477 42,037 52,413

Time 9,109.39 0.59 14,008.90 5,642.01 63.34 4.44 0.77 4.77 95.61 5.78

Cl. Gap 1 1 1 1 0.59 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,340 188,182 568.10 106,940,000 4,722 1,120

Nodes 137,895 3 131 215 17,214 1,065 5,713 1,527 213 18,533

Time 1,296.89 2.02 1,133.76 768.24 256.47 2.98 1.93 4.71 4.51 6.93

Cl. Gap 1 1 1 1 0.59 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,340 188,182 568.10 106,940,000 4,722 1,120

Nodes 118,057 3 111 177 15,732 927 4,725 1,502 238 24,957

Time 2,073.98 2.73 3,224.13 3,812.73 250.59 4.81 2.13 7.22 47.27 15.98

Cl. Gap 1 1 1 1 0.59 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,340 188,182 568.10 106,940,000 4,722 1,120

Nodes 230,038 3 3,601 1,489 18,989 1,013 9,143 1,685 611 16,933

Time 898.36 0.52 2,760.38 1,449.85 222.89 1.77 2.31 2.17 6.66 3.83

Cl. Gap 1 1 1 1 0.59 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,380 188,182 568.10 106,940,000 4,722 1,120

Nodes 2,825,981 3 3,833 65,305 66,587 1,565 3,007 5,790 1,061 23,707

Time 8,755.66 0.48 1,613.37 5,141.27 310.41 2.30 1.07 7.13 7.88 8.99

Cl. Gap 1 1 1 1 0.47 1 1 1 1 1

Table A.15: Detailed results for the updated list of MIPLIB problems (1/3). Time limit = none. The row ‘CL

Gap’ refers to the

gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods
were able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization:
0 for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with
a feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names mas76 misc03 misc06 misc07 mitre mod008 mod010 mod011 nw04 p0033

LP Obj. 38,893.90 1,910 12,841.70 1,415 114,741 290.93 6,532.08 -62,122,000 16,310.70 2,520.57

True Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Fin. by all 1 1 1 1 1 1 1 1 1 1

Random Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,851.10 2,810 115,155 307 6,548 -54,600,000 16,862 3,089

Nodes 2,306,195 1,179 527 82,081 288,265 10,307 27,055 517,237 259 4,859

Time 693.85 0.50 0.70 52.66 1,606.37 1.49 47.67 4,072.82 10.63 0.30

Cl. Gap 1 1 1.02 1 1 1 1 0.99 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 2,097,725 629 551 24,005 986 9,091 532 49,533 1,737 6,265

Time 760.55 0.32 0.77 15.67 29.70 1.45 3.70 410.90 44.66 0.35

Cl. Gap 1 1 1 1 1 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 783,139 579 56 32,873 617 4,605 96 19,617 355 745

Time 1,491.35 2.65 0.58 250.44 48.30 2.82 2.47 5,422.18 61.96 0.10

Cl. Gap 1 1 1 1 1 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 597,109 371 55 25,551 709 3,333 31 18,283 233 363

Time 1,466.68 2.78 1.19 581.55 137.07 1.75 3.28 6,409.24 81.40 0.06

Cl. Gap 1 1 1 1 1 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 621,181 641 62 19,179 1,900 2,927 83 25,873 1,201 1,145

Time 477.96 1.89 0.53 59.32 128.88 1.22 3.23 2,715.15 116.54 0.13

Cl. Gap 1 1 1 1 1 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 1,722,679 1,865 161 97,197 470 6,365 123 46,907 235 291

Time 2,232.96 1.90 0.50 153.05 24.88 2.94 1.51 544.07 10.78 0.05

Cl. Gap 1 1 1 1 1 1 1 1 1 1

Table A.16: Detailed results for the updated list of MIPLIB problems (2/3). Time limit = none. The row ‘Cl. Gap’ refers to the
gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods
were able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization:
0 for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with
a feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names p0201 pkl pp08aCUTS qiu rentacar rgn stein27 steindb vpml vpm2

LP Obj. 6,875 0 5,480.61 -931.64 28,806,100 48.80 13 22 15.42 9.89

True Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Fin. by all 1 1 1 1 1 1 1 1 1 1

Random Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,400,000 82.20 18 30 20 13.75

Nodes 649 1,400,487 172,918,239 411,879 41 5,947 4,283 63,115 14,838,614 25,017,647

Time 0.44 585.92 793,141 2,523.43 4.48 0.81 0.58 19.91 17,681.30 27,319.80

Cl. Gap 1 1 1 1 1.03 1 1 1 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 4,747 927,663 63,144,303 337,813 26 4,147 4,681 86,199 8,953,981 20,513,193

Time 2.36 365.08 161,744 2,058.33 3.44 0.56 0.63 25.79 7,629.32 19,579.40

Cl. Gap 1 1 1 1 1 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 173 257,925 1,744,935 16,865 26 2,735 3,239 44,219 621,984 640,044

Time 1.15 957.74 17,663.10 1,610.02 24.15 1.02 1.76 146.05 735.40 2,188.64

Cl. Gap 1 1 1 1 1 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 186 306,805 1,561,719 49,693 26 2,849 2,141 24,835 465,770 644,925

Time 3.69 1,041.17 17,645.50 7,136.80 31.84 1.73 3.49 276.55 954.07 2,692.21

Cl. Gap 1 1 1 1 1 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 359 366,151 2,668,423 14,923 21 2,701 3,975 50,335 649,531 4,837,431

Time 1.49 344.92 4,815.89 476.17 17.96 0.75 1.39 69.08 431.22 11,571.10

Cl. Gap 1 1 1 1 1 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 612 1,545,753 7,272,423 116,593 36 3,401 4,141 50,013 6,606,414 10,639,147

Time 1.43 2,187.65 22,281.40 1,074.32 4.26 1.01 2.42 76.64 10,218.50 36,031.50

Cl. Gap 1 1 1 1 1 1 1 1 1 1
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Table A.17: Detailed results for the updated list of MIPLIB problems (3/3). Time limit = none. The row ‘Cl. Gap’ refers to the
gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods
were able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the termination status of the optimization:
0 for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness, 4 for another stopping criterion with
a feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names aflow30a air03 air04 air05 cap6000 demulti egout khb05250 1152lav Iseu

LP Obj. 983.17 338,864 55,535.40 25,877.60 -2,451,540 183,976 149.59 95,919,500 4,656.36 834.68

True Obj. 1,158 340,160 56,137 26,374 -2,451,200 188,182 568.10 106,940,000 4,722 1,120

Fin. by all 1 1 1 1 1 1 1 1 1 1

Random Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,450,000 188,188 568.10 107,000,000 4,722 1,120

Nodes 58,369 0 50,847 29,149 180 641 3 5 45,433 185

Time 256.88 0.59 3,956.43 1,839.59 4.06 1.58 0.01 0.41 324.38 0.13

Cl. Gap 1 1 1 1 4.53 1 1 1.01 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,350 188,188 568.10 106,940,000 4,722 1,120

Nodes 35,205 0 46,139 38,793 60 125 3 3 29,545 97

Time 203.06 0.60 4,403.65 2,607.30 1.30 0.71 0.01 0.42 227.48 0.11

Cl. Gap 1 1 1 1 0.56 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,350 188,182 568.10 106,940,000 4,722 1,120

Nodes 115,987 0 365 487 20 8,135 7 9 187 223

Time 2,043.61 0.59 3,488.17 1,844.01 0.87 33.28 0.02 0.46 4.74 0.22

Cl. Gap 1 1 1 1 0.56 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,180 188,186 568.10 106,940,000 4,722 1,120

Nodes 31,323 0 231 211 49 40 7 5 169 133

Time 1,158.81 0.60 10,229.90 3,941.68 1.53 0.77 0.02 0.42 18.73 0.27

Cl. Gap 1 1 1 1 1.06 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,350 188,187 568.10 106,940,000 4,722 1,120

Nodes 84,014 0 336,711 78,761 20 429 7 7 459 99

Time 590.75 0.59 57,934.10 17,733.40 0.93 1.67 0.02 0.45 6.45 0.15

Cl. Gap 1 1 1 1 0.56 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 1,158 340,160 56,137 26,374 -2,451,350 188,195 568.10 106,940,000 4,722 1,120

Nodes 42,389 0 553 5,785 20 111 5 7 799 75

Time 296.91 0.60 237.80 969.80 0.74 0.87 0.02 0.44 7.27 0.17

Closed gap 1 1 1 1 0.56 1 1 1 1 1

Table A.18: Detailed results for the updated list of MIPLIB problems (1/3). Time limit = none and CPLEX’s cuts and heuristics
applied. The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row
‘Fin. by all’ indicates whether all methods were able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the
termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness,
4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names mas76 misc03 misc06 misc07 mitre mod008 mod010 mod011 nw04 p0033

LP Obj. 38,893.90 1,910 12,841.70 1,415 114,741 290.93 6,532.08 -62,122,000 16,310.70 2,520.57

True Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Fin. by all 1 1 1 1 1 1 1 1 1 1

Random Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,600,000 16,862 3,089

Nodes 2,869,383 1,009 7 55,815 15 1,589 1,505 58,297 255 1

Time 1,004.72 0.93 0.55 48.61 4.33 0.47 3.96 3,726.60 46.53 0.01

Cl. Gap 1 1 1 1 1 1 1 0.99 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 1,742,607 279 11 13,707 29 1,537 39 4,027 337 1

Time 518.99 0.47 0.56 13.28 4.27 0.47 0.65 333.87 51.31 0.01

Cl. Gap 1 1 1 1 1 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 400,115 455 7 26,769 20 783 13 160,639 39 1

Time 311.09 1.99 0.59 222.85 4.26 0.47 0.64 34,024.60 34.68 0.01

Cl. Gap 1 1 1 1 1 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 355,507 301 7 17,299 20 423 11 19,789 55 1

Time 394.68 3.60 0.61 410.78 4.44 0.52 0.91 6,564.28 47.72 0.01

Cl. Gap 1 1 1 1 1 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 561,667 305 9 19,231 15 1,755 115 64,870 1,213 1

Time 188.54 1.02 0.61 61.48 4.30 0.78 1.24 7,436.06 143.11 0.01

Cl. Gap 1 1 1 1 1 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 564,679 1,979 9 110,751 10 993 99 5,064 55 1

Time 307.45 3.43 0.56 212.24 4.05 0.67 1.03 541.92 34.02 0.01

Closed gap 1 1 1 1 1 1 1 1 1 1

Table A.19: Detailed results for the updated list of MIPLIB problems (2/3). Time limit = none and CPLEX’s cuts and heuristics
applied. The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row
‘Fin. by all’ indicates whether all methods were able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the
termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness,
4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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Problem names p0201 pkl pp08aCUTS qiu rentacar rgn stein27 steindb vpml vpm2

LP Obj. 6,875 0 5,480.61 -931.64 28,806,100 48.80 13 22 15.42 9.89

True Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Fin. by all 1 1 1 1 1 1 1 1 1 1

Random Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,400,000 82.20 18 30 20 13.75

Nodes 40 861,991 4,965 462,433 9 2,605 4,499 61,825 0 5,869

Time 0.73 265 8.08 3,565.69 12.75 0.60 0.78 22.17 0.02 4.95

Cl. Gap 1 1 1 1 1.03 1 1 1 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 57 892,187 5,157 265,859 7 2,233 4,633 82,377 0 5,721

Time 0.83 272.01 7.98 1,999.22 12.93 0.51 0.80 27.61 0.01 5.15

Cl. Gap 1 1 1 1 1 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 67 243,581 12,497 12,541 7 3,007 3,499 39,787 0 5,781

Time 1.31 430.17 68.16 913.26 14.27 1.80 1.79 90.07 0.01 14.19

Cl. Gap 1 1 1 1 1 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 67 284,851 7,523 27,779 7 1,489 2,153 24,949 0 3,847

Time 2.60 651.97 70.38 3,074.14 14.23 0.82 3.46 244.19 0.02 18.59

Cl. Gap 1 1 1 1 1 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 113 308,491 9,515 26,277 11 2,271 4,231 53,623 0 3,197

Time 1.13 153.21 22.80 745.02 14.98 0.83 1.58 58.58 0.01 4.18

Cl. Gap 1 1 1 1 1 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0
Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 43 897,129 3,131 25,065 7 1,619 4,449 54,541 0 10,207

Time 0.88 651.99 8.18 363.04 13.03 0.65 2.78 69.59 0.01 18.03

Closed gap 1 1 1 1 1 1 1 1 1 1

Table A.20: Detailed results for the updated list of MIPLIB problems (3/3). Time limit = none and CPLEX’s cuts and heuristics
applied. The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row
‘Fin. by all’ indicates whether all methods were able to solve this problem to optimality. For each method, the ‘Fin.” rows indicate the
termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness, 3 for unfeasibility or unboundedness,
4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.
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A.4 Online learning of branching decisions: complete experi-
mental results

The next tables report the detailed optimization results presented in Section 4.5.3.

Tables A.21 through A.30 report the detailed optimization times obtained with the com-
peting branching heuristics on the considered MIPLIB problems. Tables A.31 through A.40
report the corresponding numbers of nodes processed by B&B before the optimization termi-

nates (either because optimality is proved or because the time budget is exhausted) for the
same MIPLIB problems.

We refer the reader to Section 4.5.3 of the main document for an analysis and a clearer
presentation of the results.



Random seed

Prob. name 0 1 2 3 4 ) 6 7 8 9
10teams 725 363 1,355 1 1,156 3,505 290 332 326 240
aflow30a 925 763 786 888 782 774 879 955 651 668
aflow40b 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
air03 1 1 1 1 1 1 1 1 1 1
air04 866 7,200 1,598 4,572 7,200 7,200 1,670 7,200 6,309 7,200
air05 3,964 3,098 3,602 3,035 3,334 3,017 3,496 2,786 3,617 2,426
cap6000 0 0 0 0 0 0 0 0 0 0
demulti 1 1 1 1 1 1 1 1 1 1
egout 0 0 0 0 0 0 0 0 0 0
fiber 11 100 9 10 18 7 11 13 9 15
fixnet6 8 8 8 4 8 6 7 6 8 6
harp2 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
khb05250 1 1 1 1 1 1 1 1 1 1
1152]lav 24 23 21 28 23 26 18 17 12 15
Iseu 0 0 0 0 0 0 0 0 0 0
mas74 4,560 3,894 3,890 3,886 3,864 3,887 3,879 5,407 3,888 3,865
mas76 350 347 510 346 568 350 349 346 569 350
misc03 4 4 4 4 4 4 4 4 4 4
misc06 0 0 0 1 0 0 0 0 0 0
misc07 393 475 470 487 525 402 508 506 432 506
mitre 5 4 5) 5) 5) 6 b} ) 4 3
mod008 0 0 0 0 0 0 0 0 0 0

Table A.21: Strong branching optimization times: detailed optimization results for the considered MIPLIB problems and for each
random seed (1/2). The table reports the optimization times (in seconds) taken by B&B before the optimization terminates. A value
of 7,200 indicates that the problem has not been solved within the provided time limit.
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 1 1 1 1 1 1 1 1 1 1
mod011 1,986 1,213 1,555 2,022 2,453 2,332 2,264 2,250 2,258 1,803
modglob 1 1 1 1 1 1 1 1 1 1
nw04 70 84 90 85 111 75 96 103 65 63
opt1217 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
p0033 0 0 0 0 0 0 0 0 0 0
p0201 2 3 2 3 2 3 3 6 2 3
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 1,418 69 52 4,594 2,407 576 160 2,831 2,388 2,651
pkl 638 593 526 435 425 737 599 710 521 615
pp08a 6 ) 6 6 7 7 ) 6 6 )
pp08aCUTS 14 14 17 14 14 17 14 14 17 14
qiu 3,615 4,195 4,859 3,729 4,176 3,746 3,064 3,905 2,722 4,086
rentacar 14 14 15 16 14 15 15 14 14 15
rgn 0 0 0 0 0 0 0 0 0 0
setlch 1 1 1 1 1 1 1 1 1 1
stein27 4 4 4 4 4 4 4 4 3 4
stein4b 197 224 216 197 195 198 251 197 193 217
tr12-30 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 11 16 11 11 12 11 12 11 11 11

Table A.22: Strong branching optimization times: detailed optimization results for the considered MIPLIB problems and for each
random seed (2/2). The table reports the optimization times (in seconds) taken by B&B before the optimization terminates. A value
of 7,200 indicates that the problem has not been solved within the provided time limit.
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Random seed

Prob. name 0 1 2 3 4 ) 6 7 8 9
10teams 52 28 42 1 172 26 191 200 113 40
aflow30a 435 494 298 649 196 388 542 355 409 352
aflow40b 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
air03 1 1 1 1 1 1 1 1 1 1
air04 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
air05 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
cap6000 0 0 0 0 0 0 0 0 0 0
demulti 1 1 1 1 1 1 1 1 1 1
egout 0 0 0 0 0 0 0 0 0 0
fiber 4 39 2 3 4 6 3 4 5 5
fixnet6 3,444 700 1,429 591 1,456 5,319 483 1,560 1,724 999
harp2 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
khb05250 1 1 1 1 1 1 1 1 1 1
1152]lav 4 4 7 7 7 7 7 6 7 7
Iseu 0 0 0 0 0 0 0 0 0 0
mas74 4,782 2,883 2,901 3,708 2,870 2,886 3,879 3,592 3,871 3,872
mas76 140 140 140 140 144 144 140 140 140 144
misc03 1 1 1 1 1 1 1 1 1 1
misc06 0 0 1 1 0 0 0 0 0 0
misc07 70 61 57 62 58 77 57 91 53 75
mitre 5 4 5) 5) 5) 6 b} ) 4 3
mod008 1 0 0 1 0 0 1 0 0 1

Table A.23: Reliability branching optimization times: detailed optimization results for the considered MIPLIB problems and for each
random seed (1/2). The table reports the optimization times (in seconds) taken by B&B before the optimization terminates. A value
of 7,200 indicates that the problem has not been solved within the provided time limit.
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 4 1 1 4 1 1 1 1 1 1
mod011 1,599 900 972 1,593 2,686 1,638 1,746 3,065 2,372 1,709
modglob 1 1 1 1 1 1 1 1 1 1
nw(04 113 124 96 95 148 121 161 149 121 142
opt1217 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
p0033 0 0 0 0 0 0 0 0 0 0
p0201 6 6 5 3 2 5 ) 3 6 4
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 7,200 7,200 3,915 7,200 7,200 7,200 7,200 7,200 7,200 7,200
pkl 202 174 181 193 160 137 164 189 224 224
pp08a 3 4 3 3 3 5 4 3 3 4
pp08aCUTS 3 3 3 3 3 3 4 3 3 3
qiu 603 602 611 493 397 417 703 1,779 1,827 1,793
rentacar 15 15 16 17 15 16 16 15 15 16
rgn 0 0 0 0 0 0 0 0 0 0
setlch 1 1 1 1 1 1 1 1 1 1
stein27 2 2 1 2 2 2 1 2 2 2
stein4b 61 60 60 54 59 58 Y Y 63 Y
tr12-30 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 3 4 3 3 3 3 3 3 3 3

Table A.24: Reliability branching optimization times: detailed optimization results for the considered MIPLIB problems and for each
random seed (2/2). The table reports the optimization times (in seconds) taken by B&B before the optimization terminates. A value
of 7,200 indicates that the problem has not been solved within the provided time limit.
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Random seed

Prob. name 0 1 2 3 4 ) 6 7 8 9
10teams 66 9 71 1 22 17 12 24 8 12
aflow30a 461 501 488 660 349 393 488 296 368 280
aflow40b 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
air03 1 1 1 1 1 1 1 1 1 1
air04 103 975 116 166 291 121 251 289 256 243
air05 2,166 525 271 2,420 1,027 1,266 623 428 1,164 2,556
cap6000 0 0 0 0 0 0 0 0 0 0
demulti 4 4 5) 4 5) 4 5 4 6 )
egout 0 0 0 0 0 0 0 0 0 0
fiber 1 2 1 1 2 1 1 2 1 1
fixnet6 11 17 12 17 15 12 17 17 17 9
harp2 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
khb05250 1 1 1 1 1 1 1 1 1 1
1152]lav 5 127 3 8 4 6 10 5 9 6
Iseu 0 0 0 0 0 0 0 0 0 0
mas74 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
mas76 1,214 799 896 1,237 900 732 772 947 896 776
misc03 3 4 3 5 4 4 3 5 6 5
misc06 0 0 0 1 0 0 0 0 0 0
misc07 233 193 161 279 146 274 164 180 169 169
mitre 5 4 5) 5) 6 5 b} ) 4 3
mod008 0 0 0 0 0 0 0 0 0 0

Table A.25: Batch learned branching optimization times: detailed optimization results for the considered MIPLIB problems and for
each random seed (1/2). The table reports the optimization times (in seconds) taken by B&B before the optimization terminates. A

value of 7,200 indicates that the problem has not been solved within the provided time limit.
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 0 0 0 1 1 0 1 1 1 1
mod011 541 403 443 445 362 415 623 453 461 463
modglob 1 1 1 1 1 1 1 1 1 1
nw(04 26 31 38 28 30 26 36 39 31 31
opt1217 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
p0033 0 0 0 0 0 0 0 0 0 0
p0201 1 1 1 1 1 2 2 1 2 2
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 4 2 3 1 4 2 5 3 1 7
pkl 1,170 831 1,266 861 1,038 903 1,133 1,142 1,021 1,520
pp08a 4 4 4 4 3 3 4 4 3 4
pp08aCUTS 3 3 3 2 2 3 3 3 2 3
qiu 862 931 526 867 664 768 600 592 399 571
rentacar 14 14 15 15 14 15 15 14 14 15
rgn 0 0 0 0 0 0 0 0 0 0
setlch 1 1 1 1 1 1 1 1 1 1
stein27 3 3 3 3 3 3 3 3 3 3
stein4b 78 7 81 79 93 74 69 73 74 89
tr12-30 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 5 5 6 6 5 5 5 4 6 6

Table A.26: Batch learned branching optimization times: detailed optimization results for the considered MIPLIB problems and for
each random seed (2/2). The table reports the optimization times (in seconds) taken by B&B before the optimization terminates. A
value of 7,200 indicates that the problem has not been solved within the provided time limit.
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Random seed

Prob. name 0 1 2 3 4 ) 6 7 8 9
10teams 59 19 74 1 39 46 11 52 45 11
aflow30a 202 188 233 152 124 144 144 158 144 219
aflow40b 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
air03 1 1 1 1 1 1 1 1 1 1
air04 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
air05 3,867 3,418 6,816 6,317 5,800 5,003 5,375 5,472 4,597 5,097
cap6000 0 0 0 0 0 0 0 0 0 0
demulti 1 1 1 1 1 1 1 1 1 1
egout 0 0 0 0 0 0 0 0 0 0
fiber 3 11 3 2 4 3 3 4 2 3
fixnet6 6 9 10 3 9 5 7 7 9 5
harp2 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
khb05250 1 1 1 1 1 1 1 1 1 1
1152]lav 5 5 4 3 4 4 4 3 5 5
Iseu 0 0 0 0 0 0 0 0 0 0
mas74 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
mas76 547 496 563 563 912 912 562 455 564 440
misc03 1 1 1 1 1 1 1 1 1 1
misc06 0 0 0 1 0 0 0 0 0 0
misc07 16 16 16 17 16 17 16 17 16 17
mitre 5 4 5) 5) 5) 6 b} ) 4 3
mod008 0 0 0 0 0 0 0 0 0 0

Table A.27: Online learning branching optimization times: detailed optimization results for the considered MIPLIB problems and for
each random seed (1/2). The table reports the optimization times (in seconds) taken by B&B before the optimization terminates. A

value of 7,200 indicates that the problem has not been solved within the provided time limit.
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 0 1 1 1 1 0 1 1 1 1
mod011 497 410 455 567 642 558 718 590 544 574
modglob 0 0 1 0 0 0 0 0 0 1
nw(04 109 118 89 95 66 83 124 117 69 88
opt1217 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
p0033 0 0 0 0 0 0 0 0 0 0
p0201 2 2 2 1 1 2 2 2 2 2
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 4,322 1,201 3,074 7,200 4,226 3,013 3,062 3,450 4,107 7,200
pkl 265 239 292 393 302 313 338 358 307 271
pp08a 3 3 3 3 3 3 3 4 3 3
pp08aCUTS 3 4 4 3 3 4 4 4 4 4
qiu 2,252 2,527 2,502 2,474 2,429 1,745 2,307 2,598 2,396 2,411
rentacar 14 14 15 16 14 15 15 14 14 15
rgn 0 0 0 0 0 0 0 0 0 0
setlch 1 1 1 1 1 1 1 1 1 1
stein27 1 1 1 1 1 1 1 1 1 1
stein4b 28 30 31 28 28 33 32 29 30 29
tr12-30 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 4 2 4 2 2 4 2 4 4 4

Table A.28: Online learning branching optimization times: detailed optimization results for the considered MIPLIB problems and for
each random seed (2/2). The table reports the optimization times (in seconds) taken by B&B before the optimization terminates. A
value of 7,200 indicates that the problem has not been solved within the provided time limit.
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Random seed

Prob. name 0 1 2 3 4 ) 6 7 8 9
10teams 46 19 82 1 47 48 11 55 46 11
aflow30a 180 144 165 154 136 164 185 154 151 210
aflow40b 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
air03 1 1 1 1 1 1 1 1 1 1
air04 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
air05 6,291 4,225 4,284 7,108 5,854 5,645 4,582 6,325 5,393 7,031
cap6000 0 0 0 0 0 0 0 0 0 0
demulti 1 1 1 1 1 1 1 1 1 1
egout 0 0 0 0 0 0 0 0 0 0
fiber 3 11 3 2 4 3 3 4 2 3
fixnet6 4 6 9 4 6 6 6 6 6 4
harp2 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
khb05250 1 1 1 1 1 1 1 1 1 1
1152]lav 5 5 5 3 4 4 4 3 5 5
Iseu 0 0 0 0 0 0 0 0 0 0
mas74 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
mas76 633 986 615 613 638 1,187 1,186 987 1,187 1,045
misc03 1 1 1 1 1 1 1 1 1 1
misc06 0 0 0 1 0 0 0 0 0 0
misc07 17 16 15 18 15 18 16 17 16 16
mitre 5 4 5) 5) 5) 6 b} ) 4 3
mod008 0 0 0 0 0 0 0 0 0 0

Table A.29: Online perpetual learning branching optimization times: detailed optimization results for the considered MIPLIB problems

and for each random seed (1/2).
terminates. A value of 7,200 indicates that the problem has not been solved within the provided time limit.

The table reports the optimization times (in seconds) taken by B&B before the optimization
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 0 1 1 1 1 0 1 1 1 1
mod011 423 342 267 410 421 355 424 521 364 380
modglob 0 0 1 0 0 0 0 0 0 0
nw04 110 110 97 93 66 86 124 114 69 81
opt1217 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
p0033 0 0 0 0 0 0 0 0 0 0
p0201 3 2 2 2 1 2 2 2 2 2
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 3,123 2,420 2,985 3,773 6,399 2,747 7,200 1,720 2,246 3,166
pkl 288 219 244 246 236 249 231 261 239 235
pp08a 3 3 3 3 3 4 3 3 3 3
pp08aCUTS 3 4 4 3 3 4 4 4 4 4
qiu 1,318 1,249 1,402 1,495 1,323 1,548 1,341 1,571 1,504 1,464
rentacar 14 14 15 16 14 15 15 14 14 15
rgn 0 0 0 0 0 0 0 0 0 0
setlch 1 1 1 1 1 1 1 1 1 1
stein27 1 1 1 1 1 1 1 1 1 1
stein4b 29 28 28 26 27 28 28 28 28 28
tr12-30 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 2 3 5 5 3 2 2 3 5 5

Table A.30: Online perpetual learning branching optimization times: detailed optimization results for the considered MIPLIB problems
and for each random seed (2/2). The table reports the optimization times (in seconds) taken by B&B before the optimization
terminates. A value of 7,200 indicates that the problem has not been solved within the provided time limit.
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
10teams 211 100 554 0 470 1,025 91 80 100 60
aflow30a 23,971 20,111 21,515 24,113 18,711 19,267 22,213 23,725 16,493 17,437
aflow40b 18,526 16,468 17,897 17,812 18,000 15,533 16,810 17,886 19,565 16,475
air03 0 0 0 0 0 0 0 0 0 0
air04 67 114 95 166 87 94 113 76 157 94
air05 359 249 361 153 255 249 189 279 361 241
cap6000 0 0 0 0 0 0 0 0 0 0
dcemulti 31 31 31 31 31 31 31 31 31 31
egout 3 3 3 3 3 3 3 3 3 3
fiber 493 4,721 273 465 871 309 515 557 381 575
fixnet6 729 745 767 135 745 457 379 339 745 273
harp2 123,687 123,760 123,658 123,768 116,308 112,598 95,257 107,238 114,844 112,379
khb05250 3 3 3 3 3 3 3 3 3 3
1152]lav 183 197 181 201 191 206 196 236 123 169
Iseu 107 95 99 107 95 117 105 129 123 95
mas74 2,825,401 2,520,219 2,520,219 2,520,219 2,499,433 2,518,417 2,499,433 3,239,257 2,518,417 2,499,433
mas76 310,911 309,689 424,841 309,697 456,823 310,895 310,911 309,697 456,823 310,895
misc03 289 285 289 287 285 291 297 289 269 300
misc06 7 7 10 9 7 7 7 7 7 7
misc07 15,165 17,633 20,189 18,773 22,385 15,041 21,063 19,905 17,999 20,009
mitre 20 0 9 0 10 14 11 20 0 0
mod008 281 241 215 281 241 323 281 241 323 281

Table A.31: Strong branching number of nodes: detailed optimization results for the considered MIPLIB problems and for each
random seed (1/2). The table reports the number of nodes processed by B&B before the optimization terminates. To determine if,
at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a value of 7,200
indicates that the problem has not been solved within the provided time limit).
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 21 17 7 13 17 11 11 23 15 11
mod011 5,779 3,247 4,355 5,441 6,420 6,600 5,831 6,509 6,399 5,697
modglob 71 71 86 82 74 71 71 71 85 86
nw04 88 123 155 125 169 179 159 147 93 139
opt1217 390,267 389,230 382,698 379,904 378,225 391,932 387,309 401,350 397,100 381,622
p0033 0 0 0 0 0 0 0 0 0 0
p0201 65 81 83 65 42 81 87 237 77 87
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 40,563 2,347 2,095 135,909 66,103 16,680 4,359 86,422 67,177 82,367
pkl 284,367 267,361 244,103 202,817 202,099 299,349 267,435 298,037 239,693 270,275
pp08a 1,269 1,197 1,279 1,279 1,303 1,437 1,215 1,299 1,387 1,219
pp08aCUTS 1,381 1,449 1,563 1,381 1,381 1,563 1,449 1,371 1,563 1,371
giu 30,991 30,309 35,919 28,339 34,697 31,073 31,683 33,997 23,105 32,391
rentacar 5 5) b} ) ) 5 ) 5 ) )
rgn 0 819 0 891 0 49 49 0 0 0
setlch 19 19 19 19 19 19 19 19 19 19
stein27 2,117 2,157 2,093 2,171 2,189 2,135 2,115 2,181 2,115 2,169
stein4b 23,189 25,057 24,619 23,373 23,339 23,611 25,187 23,551 22,793 24,795
tr12-30 221,522 223,714 222,754 217,439 224,220 218,883 222,089 219,664 215,561 223,800
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 1,770 2,770 1,690 1,690 2,029 1,770 1,960 1,770 1,690 1,690

Table A.32: Strong branching number of nodes: detailed optimization results for the considered MIPLIB problems and for each
random seed (2/2). The table reports the number of nodes processed by B&B before the optimization terminates. To determine if,
at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a value of 7,200
indicates that the problem has not been solved within the provided time limit).
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
10teams 169 85 143 0 679 76 858 1,860 426 133
aflow30a 49,891 67,953 42,377 77,391 26,645 51,131 63,557 47,031 44,039 47,495
aflow40b 101,718 94,664 99,227 108,641 98,841 97,955 89,130 111,120 113,714 112,081
air03 0 0 0 0 0 0 0 0 0 0
air04 17,047 13,934 12,779 18,136 16,891 11,970 16,520 14,726 12,180 16,328
air05 19,923 29,059 15,860 12,634 16,377 13,764 35,759 23,498 12,951 13,811
cap6000 0 0 0 0 0 0 0 0 0 0
dcmulti 59 59 59 59 59 59 59 59 59 59
egout 3 3 3 3 3 3 3 3 3 3
fiber 490 16,853 89 309 563 1,449 251 741 1,305 697
fixnet6 938,437 209,431 429,955 178,605 387,975 1,285,429 144,945 460,795 506,325 270,121
harp2 473,249 482,744 472,000 532,215 483,414 483,376 466,795 534,081 488,480 482,721
khb05250 3 3 3 3 3 3 3 3 3 3
1152]lav 169 311 623 623 623 623 593 467 623 623
Iseu 201 159 87 181 117 219 147 135 123 101
masT74 6,309,775 5,101,537 5,092,723 5,852,027 5,087,621 5,101,537 5,903,643 5,787,073 5,903,643 5,903,643
mas76 412,445 412,445 412,445 412,445 417,981 417,981 412,445 412,445 412,445 417,981
misc03 293 273 281 249 287 287 305 269 253 287
misc06 7 5 20 5 5 7 7 5 7 7
misc07 22,895 20,089 21,247 18,367 20,613 22,503 20,263 30,161 19,237 25,827
mitre 8 0 9 0 7 10 7 8 0 0
mod008 1,191 637 637 1,191 637 703 1,191 637 703 1,191

Table A.33: Reliability branching number of nodes: detailed optimization results for the considered MIPLIB problems and for each
random seed (1/2). The table reports the number of nodes processed by B&B before the optimization terminates. To determine if,
at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a value of 7,200
indicates that the problem has not been solved within the provided time limit).
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 825 69 31 547 65 51 67 89 53 37
mod011 11,123 6,979 8,791 11,727 19,643 13,375 12,261 22,238 18,037 13,877
modglob 119 119 150 150 127 119 119 119 150 150
nw04 917 1,059 764 715 1,335 1,089 1,291 1,111 953 1,216
opt1217 2,212,674 2,238,835 2,458,968 2,340,720 2,378,320 2,397,980 2,326,890 2,402,908 2,306,149 2,386,198
p0033 0 0 0 0 0 0 0 0 0 0
p0201 1,927 2,325 2,101 495 441 1,661 1,645 469 1,695 1,507
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 290,701 281,108 223,111 284,562 196,323 278,667 258,132 271,985 333,552 224,810
pkl 387,537 318,705 342,101 336,935 304,993 254,095 294,313 306,927 358,031 377,519
pp08a 927 1,449 897 893 925 1,951 1,449 893 1,091 1,441
pp08aCUTS 853 853 849 833 853 853 897 849 853 853
qiu 20,695 20,715 20,643 17,755 15,155 14,977 24,915 63,909 63,677 65,117
rentacar 7 7 7 7 7 7 7 7 7 7
rgn 0 509 0 949 0 89 181 0 0 0
setlch 20 20 20 20 20 20 20 20 20 20
stein27 4,219 4,311 3,907 4,237 4,245 4,051 3,941 4,145 4,145 4,279
stein4b 53,615 54,001 52,283 48,997 53,477 53,137 52,847 53,489 50,933 52,597
tr12-30 942,594 973,305 931,317 913,917 968,784 922,522 921,355 947,224 900,898 935,389
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 1,297 1,497 1,149 1,155 1,069 1,297 1,073 1,297 1,149 1,149

Table A.34: Reliability branching number of nodes: detailed optimization results for the considered MIPLIB problems and for each
random seed (2/2). The table reports the number of nodes processed by B&B before the optimization terminates. To determine if,
at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a value of 7,200
indicates that the problem has not been solved within the provided time limit).
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
10teams 916 29 858 0 201 106 66 215 27 70
aflow30a 58,533 66,893 56,765 76,579 53,181 49,855 61,685 37,127 48,401 37,923
aflow40b 96,655 83,409 81,481 78,570 93,822 89,635 90,406 86,753 96,657 93,032
air03 0 0 0 0 0 0 0 0 0 0
air04 291 4,223 355 353 1,123 197 1,109 1,035 715 327
air05 22,385 2,401 2,409 26,655 8,077 13,895 4,425 4,393 11,947 23,949
cap6000 0 0 0 0 0 0 0 0 0 0
demulti 643 845 1,065 691 1,029 807 919 847 1,253 1,013
egout 3 3 3 3 3 3 3 3 3 3
fiber 37 39 29 39 71 71 47 49 61 27
fixnet6 2,103 3,555 2,067 5,027 3,265 2,373 3,549 3,547 3,547 1,577
harp2 323,700 311,955 362,799 301,929 317,628 322,138 313,877 280,947 286,326 326,986
khb05250 3 3 3 3 3 3 3 3 3 3
1152]lav 647 16,021 235 684 381 529 1,077 659 1,025 527
Iseu 89 79 81 73 103 85 55 60 91 71
masT74 4,449,609 4,122,173 4,753,425 4,162,462 4,152,510 4,156,326 4,734,180 4,152,510 4,156,014 4,753,425
mas76 1,703,949 1,308,977 1,403,103 1,671,361 1,423,877 1,203,693 1,284,023 1,475,395 1,403,103 1,284,023
misc03 1,967 2,257 1,935 2,777 2,467 2,035 2,035 2,729 2,887 2,941
misc06 7 5 10 14 5 7 7 5 7 7
misc07 113,107 98,073 92,913 113,527 84,981 115,257 89,613 93,407 95,355 86,377
mitre 16 0 10 0 17 10 6 11 0 0
mod008 407 265 309 407 265 201 407 265 201 407

Table A.35: Batch learned branching number of nodes: detailed optimization results for the considered MIPLIB problems and for each
random seed (1/2). The table reports the number of nodes processed by B&B before the optimization terminates. To determine if,
at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a value of 7,200
indicates that the problem has not been solved within the provided time limit).
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 13 12 7 25 23 13 13 17 13 23
modO011 3,759 3,361 4,359 4,143 3,735 4,181 4,079 4,040 3,821 3,705
modglob 84 84 92 90 86 84 84 82 87 86
nw04 41 71 147 65 29 59 59 53 55 95
opt1217 1,286,540 1,330,458 1,291,136 1,353,453 1,323,995 1,355,451 1,328,831 1,357,157 1,269,414 1,325,864
p0033 0 0 0 0 0 0 0 0 0 0
p0201 221 203 187 43 65 289 309 69 251 267
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 190 150 211 40 251 80 250 160 58 340
pkl 1,441,723 1,081,771 1,585,061 1,127,951 1,352,205 1,072,369 1,502,559 1,373,567 1,299,899 1,670,309
pp08a 1,089 1,285 1,089 1,089 954 1,009 1,285 1,089 1,115 1,285
pp08aCUTS 507 507 507 543 543 507 507 507 543 507
giu 73,325 88,657 41,299 74,583 55,921 66,277 49,719 46,877 29,269 45,693
rentacar 7 7 7 7 7 7 7 7 7 7
rgn 0 470 0 449 0 83 181 0 0 0
setlch 14 14 14 14 14 14 14 14 14 14
stein27 4,395 4,393 4,277 4,417 4,661 4,441 4,459 4,255 4,027 4,235
stein4b 60,437 58,365 64,285 60,873 59,815 54,821 51,319 55,515 54,819 67,469
tr12-30 418,734 400,744 412,018 451,465 419,794 430,662 423,467 427,947 442,390 424,902
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 1,623 1,987 2,091 2,091 1,577 1,623 1,795 1,565 2,091 2,091

Table A.36: Batch learned branching number of nodes: detailed optimization results for the considered MIPLIB problems and for each
random seed (2/2). The table reports the number of nodes processed by B&B before the optimization terminates. To determine if,
at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a value of 7,200
indicates that the problem has not been solved within the provided time limit).

STTINSHY TVINHNIHHIXH HLHATAINOD *DNINYVHT UHNIINO 7'V

161



Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
10teams 340 57 427 0 171 193 23 281 196 25
aflow30a 45,355 29,549 33,811 32,549 22,833 27,151 29,323 30,629 24,069 33,373
aflow40b 182,707 143,386 161,169 150,425 184,727 160,406 149,374 196,470 195,216 155,724
air03 0 0 0 0 0 0 0 0 0 0
air04 76,363 38,489 64,197 59,956 60,136 60,589 60,871 46,286 50,696 47,845
air05 73,665 69,165 88,098 90,039 94,832 84,977 87,389 96,945 79,511 83,443
cap6000 0 0 0 0 0 0 0 0 0 0
dcmulti 21 21 21 21 21 21 21 21 21 21
egout 3 3 3 3 3 3 3 3 3 3
fiber 381 3,617 213 427 725 311 453 401 381 543
fixnet6 1,017 2,153 2,453 153 2,027 667 1,172 1,172 2,085 331
harp2 653,597 608,991 608,751 635,776 628,475 632,974 608,072 589,834 624,265 624,637
khb05250 3 3 3 3 3 3 3 3 3 3
1152]lav 272 279 239 167 213 217 245 209 289 299
Iseu 137 111 85 95 119 125 87 145 127 129
masT74 5,690,446 5,564,087 5,625,559 5,780,219 5,558,741 5,843,693 5,781,819 5,696,710 5,629,088 5,696,055
mas76 1,896,737 1,730,777 1,965,413 1,965,413 2,584,783 2,584,805 1,965,423 1,596,987 1,965,423 1,576,739
misc03 259 273 309 277 267 305 297 299 299 289
misc06 7 7 10 9 7 7 7 7 7 7
misc07 10,823 10,563 11,101 9,827 11,265 9,791 10,811 10,481 11,263 11,193
mitre 30 0 9 0 10 14 11 17 0 0
mod008 461 363 363 461 363 415 465 363 415 465

Table A.37: Online learning branching number of nodes: detailed optimization results for the considered MIPLIB problems and for
each random seed (1/2). The table reports the number of nodes processed by B&B before the optimization terminates. To determine
if, at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a value of 7,200
indicates that the problem has not been solved within the provided time limit).
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 10 17 9 21 11 15 13 23 19 10
modO011 6,553 4,699 6,799 6,745 8,169 7,921 8,613 6,327 7,837 7,835
modglob 68 68 83 82 79 68 68 68 82 83
nw04 1,047 1,237 813 901 383 785 1,169 1,033 423 803
opt1217 3,033,528 2,824,800 3,059,437 3,050,524 2,832,733 2,796,839 2,907,355 2,839,749 2,815,289 2,643,170
p0033 0 0 0 0 0 0 0 0 0 0
p0201 951 601 751 295 197 775 619 345 579 817
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 191,897 63,551 134,821 266,457 163,751 160,439 138,103 181,331 183,739 309,367
pkl 807,985 741,927 906,195 1,025,529 911,525 921,561 1,002,973 1,009,643 904,315 833,593
pp08a 1,015 1,013 1,007 1,011 1,089 1,129 999 1,144 1,135 999
pp08aCUTS 1,039 1,205 1,231 1,039 1,039 1,231 1,205 1,207 1,379 1,219
giu 289,237 355,985 376,483 377,571 346,415 205,087 313,473 411,161 325,727 337,235
rentacar 5 5) ) ) ) 5 ) ) ) )
rgn 0 577 0 825 0 53 49 0 0 0
setlch 19 19 19 19 19 19 19 19 19 19
stein27 4,389 4,215 4,155 3,777 3,939 4,163 4,241 3,851 4,115 4,061
stein4b 70,329 73,195 77,819 72,435 68,059 82,213 77,583 74,419 72,401 73,219
tr12-30 1,075,950 1,023,556 1,116,385 1,081,820 1,088,009 1,123,411 1,098,694 1,064,005 991,731 1,041,402
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 1,800 923 1,570 957 917 1,800 861 1,800 1,570 1,570

Table A.38: Online learning branching number of nodes: detailed optimization results for the considered MIPLIB problems and for
each random seed (2/2). The table reports the number of nodes processed by B&B before the optimization terminates. To determine
if, at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a value of 7,200
indicates that the problem has not been solved within the provided time limit).
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
10teams 230 57 486 0 218 204 23 303 201 25
aflow30a 38,507 25,194 32,429 33,935 27,499 32,741 35,479 30,557 27,159 38,381
aflow40b 154,289 146,389 173,073 167,729 169,425 162,006 146,245 182,755 168,344 143,815
air03 0 0 0 0 0 0 0 0 0 0
air04 75,604 55,827 62,701 51,585 53,982 45,935 63,091 41,049 38,099 47,101
air05 80,145 72,591 72,259 89,907 79,885 86,009 75,797 85,245 80,909 85,611
cap6000 0 0 0 0 0 0 0 0 0 0
dcmulti 21 21 21 21 21 21 21 21 21 21
egout 3 3 3 3 3 3 3 3 3 3
fiber 425 3,611 216 373 753 313 405 357 395 483
fixnet6 229 1,097 1,679 321 1,097 1,015 1,097 1,099 1,099 243
harp2 660,094 861,048 853,743 661,491 809,722 632,217 646,046 619,399 637,294 655,857
khb05250 3 3 3 3 3 3 3 3 3 3
1152]lav 273 276 273 161 213 227 247 211 297 283
Iseu 131 87 87 95 119 125 115 160 118 129
masT74 5,602,185 5,599,212 5,601,323 5,601,941 5,610,080 5,590,050 5,593,556 5,597,803 5,598,497 5,588,481
mas76 2,083,793 2,921,749 2,059,101 2,059,101 2,124,669 2,881,594 2,881,594 2,921,749 2,881,594 3,040,381
misc03 259 277 297 283 279 305 299 299 299 297
misc06 7 7 10 9 7 7 7 7 7 7
misc07 10,711 10,751 10,635 10,061 11,149 10,301 11,487 10,707 10,833 10,955
mitre 30 0 9 0 10 14 11 17 0 0
mod008 467 367 367 467 367 359 489 367 359 489

Table A.39: Online perpetual learning branching number of nodes: detailed optimization results for the considered MIPLIB problems
and for each random seed (1/2). The table reports the number of nodes processed by B&B before the optimization terminates. To
determine if, at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a
value of 7,200 indicates that the problem has not been solved within the provided time limit).
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Random seed

Prob. name 0 1 2 3 4 5 6 7 8 9
mod010 10 17 9 21 11 15 13 23 19 10
mod011 5,601 3,413 3,741 4,921 5,325 4,477 5,345 5,878 4,645 4,355
modglob 68 68 85 82 70 68 68 68 82 85
nw04 1,125 1,119 993 879 383 845 1,133 981 423 707
opt1217 3,003,949 3,102,807 3,000,605 2,838,296 3,050,352 2,899,494 3,080,053 3,043,389 2,963,036 2,779,932
p0033 0 0 0 0 0 0 0 0 0 0
p0201 951 745 925 353 197 747 623 279 733 805
p0282 0 0 0 0 0 0 0 0 0 0
p0548 0 0 0 0 0 0 0 0 0 0
p2756 139,735 123,383 150,563 158,883 300,005 108,173 330,323 91,649 104,695 157,591
pkl 791,179 661,943 727,101 693,979 725,943 717,445 692,993 753,555 677,729 715,343
pp08a 1,073 1,031 1,105 1,112 1,167 1,175 1,009 1,103 1,119 985
pp08aCUTS 919 1,163 1,147 919 919 1,147 1,163 1,147 1,191 1,191
giu 129,805 122,269 139,421 151,793 132,747 153,049 131,425 149,727 147,079 143,119
rentacar 5 5) b} ) ) 5 ) 5 ) )
rgn 0 609 0 753 0 53 49 0 0 0
setlch 19 19 19 19 19 19 19 19 19 19
stein27 4,123 4,041 3,955 3,805 4,059 4,277 4,127 3,779 4,203 3,847
stein4b 69,257 67,031 68,647 65,203 64,095 68,931 64,859 67,389 63,315 67,999
tr12-30 1,065,077 1,090,952 1,164,260 1,148,385 1,023,133 1,066,605 1,096,171 1,030,625 1,103,400 1,102,236
vpml 0 0 0 0 0 0 0 0 0 0
vpm2 979 1,380 2,471 2,471 1,327 979 845 979 2,471 2,471

Table A.40: Online perpetual learning branching number of nodes: detailed optimization results for the considered MIPLIB problems
and for each random seed (2/2). The table reports the number of nodes processed by B&B before the optimization terminates. To
determine if, at termination, the problem is solved to optimality, check the corresponding table reporting the optimization times (a
value of 7,200 indicates that the problem has not been solved within the provided time limit).
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Appendix B

Machine learning for parallel
branch-and-bound: appendix

B.1 Detailed feature importances results

This appendix reports the detailed feature importances and costs of omission for all variables
developed for this application. The results are given in Tables B.1, B.2, B.3, and B.4 when
the considered output is the number of nodes and in Tables B.5, B.6, B.7, and B.8 when the
considered output is the logarithm of the number of nodes. For an analysis of the tables, we
refer the reader to Section 5.6.2 of the main document.
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Output: #nodes

RE; =0 0 < RE; <50 50 < RE; <100 100 < RE; <150 150 < RE; < 400

# FI MRE COO MRE COO MRE COO MRE COO MRE COO
66 0.2020 0.00 0 100.52 100 171.40 100 348.15 100 992.00 100
63 0.1388 137.42 100 40.19 24 89.48 19 153.77 14 731.56 -3
14 0.0705 0.00 0 25.01 5 71.46 1 126.78 2 721.52 -6
18 0.0629 0.00 0 26.16 6 73.29 3 131.85 4 736.73 -1
62 0.0493 0.00 0 25.53 5 70.98 1 127.22 2 730.60 -3
17 0.0410 0.00 0 24.62 4 71.32 1 126.28 1 730.19 -3

1 0.0325 0.00 0 24.82 4 71.43 1 127.47 2 741.18 1
61 0.0297 0.00 0 26.12 6 74.54 4 135.67 6 736.86 -0
16 0.0277 0.00 0 24.56 4 72.22 2 125.86 1 726.41 -9
60 0.0206 0.00 0 25.01 5 72.23 2 130.13 3 740.92 1
15 0.0191 0.00 0 24.87 4 71.68 1 128.50 2 750.32 5
29 0.0184 0.00 0 24.52 4 70.62 0 128.64 3 751.62 5
65 0.0184 0.17 0 25.03 S 72.51 2 128.59 3 738.93 0
64 0.0174 0.49 0 26.67 7 72.10 2 129.30 3 736.46 -1
34 0.0169 0.00 0 24.13 3 71.49 1 125.12 1 738.19 0
31 0.0167 0.00 0 24.62 4 72.73 2 128.19 2 735.42 -1
38 0.0162 0.00 0 24.56 4 71.49 1 127.95 2 732.52 -2

Table B.1: Feature importances (1/4) as computed by the random forests algorithm and normalized costs of omission when the
considered output is the number of nodes. The features are sorted in descending order of the feature importances computed by the
random forests. The first column indicates the feature number. “FI’ represents the feature importance computed by the random
forests for the given feature. The columns labeled ‘MRE’ and ‘COQ’ represent the mean relative errors (in %) and the corresponding
normalized costs of omission achieved when the corresponding feature is removed from the data. Additionally, several cases are
considered to compute the MREs and COOs, as detailed in Section 5.6.1.
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Output: #nodes

RE; =0 0 < RE; <50 50 < RE; <100 100 < RE; < 150 150 < RE; < 400
# FI MRE COO MRE COO MRE COO MRE COO MRE COO
40 0.0155 0.00 0 26.32 6 73.55 3 135.58 6 755.62 7
46 0.0153 0.00 0 24.65 4 73.00 3 130.72 3 744.47 3
12 0.0143 0.00 0 24.63 4 71.39 1 127.91 2 745.68 3
S 0.0139 0.00 0 24.41 4 71.44 1 128.23 2 738.33 0
9 0.0128 0.00 0 24.24 4 72.01 2 128.07 2 740.63 1
13 0.0106 0.00 0 24.20 4 71.07 1 126.80 2 741.37 1
8 0.0104 0.00 0 24.28 4 73.02 3 128.12 2 740.67 1
2 0.0101 0.00 0 24.56 4 71.82 2 129.53 3 746.00 3
7 0.0099 0.00 0 24.68 4 72.25 2 127.82 2 754.33 6
11 0.0098 0.00 0 24.11 3 70.62 0 127.66 2 747.29 4
35 0.0097 0.00 0 24.29 4 71.50 1 127.99 2 732.77 -2
3 0.0084 0.00 0 24.40 4 71.74 2 129.71 3 738.94 0
26 0.0076 0.00 0 24.40 4 71.95 2 124.44 1 737.89 -0
4 0.0069 0.00 0 24.12 3 71.58 1 127.13 2 740.93 1
6 0.0064 0.00 0 24.61 4 71.26 1 128.02 2 726.78 -4
33 0.0060 0.00 0 24.62 4 71.81 2 129.01 3 747.31 4
10 0.0053 0.00 0 24.24 4 71.16 1 129.07 3 743.51 2

Table B.2: Feature importances (2/4) as computed by the random forests algorithm and normalized costs of omission when the
considered output is the number of nodes. The features are sorted in descending order of the feature importances computed by the
random forests. The first column indicates the feature number. “FI’ represents the feature importance computed by the random
forests for the given feature. The columns labeled ‘MRE’ and ‘COQ’ represent the mean relative errors (in %) and the corresponding
normalized costs of omission achieved when the corresponding feature is removed from the data. Additionally, several cases are
considered to compute the MREs and COOs, as detailed in Section 5.6.1.
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Output: #nodes

RE; =0 0 <RE; <50 50 < RE; <100 100 < RE; < 150 150 < RE; < 400
# FI MRE COO MRE COO MRE COO MRE COO MRE COO
19 0.0041 0.00 0 24.04 3 71.51 1 127.04 2 735.96 -1
o8 0.0037 0.00 0 24.01 3 71.38 1 126.67 2 729.51 -3
32 0.0035 0.00 0 24.36 4 71.40 1 128.90 3 735.60 -1
20 0.0031 0.00 0 24.42 4 71.55 1 125.56 1 739.98 1
43 0.0028 0.00 0 24.17 4 71.57 1 128.28 2 739.56 1
44 0.0027 0.00 0 24.53 4 74.45 4 129.75 3 742.78 2
52 0.0021 0.00 0 24.50 4 72.37 2 128.19 2 735.65 -1
29 0.0012 0.00 0 24.58 4 72.37 2 128.68 3 738.24 0
28 0.0011 0.00 0 24.34 4 71.89 2 128.03 2 732.96 -2
42 0.0009 0.00 0 24.58 4 73.08 3 131.07 4 752.62 6
49 0.0008 0.00 0 24.62 4 71.59 1 130.50 3 738.91 0
45 0.0006 0.00 0 24.27 4 70.65 0 126.63 2 724.21 -5
24 0.0005 0.00 0 24.16 3 71.99 2 126.54 2 747.04 4
41 0.0004 0.00 0 24.57 4 71.55 1 128.91 3 743.03 2
39 0.0004 0.00 0 24.72 4 72.26 2 127.84 2 748.47 4
37 0.0002 0.00 0 24.43 4 71.66 1 127.12 2 748.89 4

Table B.3: Feature importances (3/4) as computed by the random forests algorithm and normalized costs of omission when the
considered output is the number of nodes. The features are sorted in descending order of the feature importances computed by the
random forests. The first column indicates the feature number. “FI’ represents the feature importance computed by the random
forests for the given feature. The columns labeled ‘MRE’ and ‘COQ’ represent the mean relative errors (in %) and the corresponding
normalized costs of omission achieved when the corresponding feature is removed from the data. Additionally, several cases are
considered to compute the MREs and COOs, as detailed in Section 5.6.1.
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Output: #nodes

RE; =0 0 <RE; <50 50 < RE; <100 100 < RE; < 150 150 < RE; < 400
# FI MRE COO MRE COO MRE COO MRE COO MRE COO
36 0.0002 0.00 0 24.16 4 71.59 1 129.91 3 739.42 1
22 0.0001 0.00 0 24.33 4 71.86 2 127.50 2 744.12 2
55 0.0001 0.00 0 24.00 3 71.19 1 127.45 2 T47.74 4
30 0.0001 0.00 0 24.52 4 72.08 2 129.60 3 731.41 -3
48 0.0001 0.00 0 24.69 4 71.95 2 127.72 2 747.20 4
o1 0.0000 0.00 0 24.35 4 7177 2 127.39 2 751.37 )
27 0.0000 0.00 0 24.38 4 71.95 2 126.11 1 737.64 -0
21 0.0000 0.00 0 24.27 4 70.28 0 125.53 1 737.86 -0
47 0.0000 0.00 0 24.42 4 71.72 1 129.28 3 734.04 -2
23 0.0000 0.00 0 24.28 4 71.69 1 128.79 3 744.49 3
25 0.0000 0.00 0 24.51 4 72.38 2 130.41 3 749.99 )
50 0.0000 0.00 0 24.32 4 71.21 1 127.00 2 743.11 2
53 0.0000 0.00 0 24.34 4 70.50 0 125.87 1 736.29 -1
54 0.0000 0.00 0 24.43 4 71.21 1 127.36 2 739.12 0
56 0.0000 0.00 0 24.57 4 71.86 2 127.88 2 731.44 -3
o7 0.0000 0.00 0 24.16 4 71.47 1 128.15 2 754.64 7

Table B.4: Feature importances (4/4) as computed by the random forests algorithm and normalized costs of omission when the
considered output is the number of nodes. The features are sorted in descending order of the feature importances computed by the
random forests. The first column indicates the feature number. “FI’ represents the feature importance computed by the random
forests for the given feature. The columns labeled ‘MRE’ and ‘COQ’ represent the mean relative errors (in %) and the corresponding
normalized costs of omission achieved when the corresponding feature is removed from the data. Additionally, several cases are
considered to compute the MREs and COOs, as detailed in Section 5.6.1.
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Output: log #nodes

RE; =0 0<RE; <5 5 < RE; <10 10 < RE; <15 15 < RE; < 400

# FI MRE COO MRE COO MRE COO MRE COO MRE COO
63 0.9001 0.12 24 3.30 79 7.45 100 11.82 -334 19.04 -807
66 0.0577 0.00 0 3.59 100 6.97 -127 11.37 -761 18.83 -944
62 0.0199 0.00 0 2.50 21 7.07 -82 11.94 -222 19.86 -281
18 0.0035 0.00 0 2.51 22 7.06 -84 11.84 -312 19.78 -334
65 0.0019 0.10 20 2.56 26 7.12 -98 11.98 -183 20.01 -187
61 0.0015 0.00 0 2.48 20 7.15 -44 11.93 -225 19.88 -271
40 0.0014 0.00 0 2.45 17 7.08 =77 11.88 =277 19.71 -380
14 0.0014 0.00 0 247 19 7.08 =75 11.88 -274 19.77 -344
17 0.0012 0.00 0 2.42 15 7.09 -71 11.93 -226 19.92 -243
29 0.0012 0.00 0 243 16 7.15 -43 12.06 -100 20.15 -100

1 0.0011 0.00 0 241 15 7.09 =72 11.90 -252 19.87 -279
15 0.0011 0.00 0 241 15 7.11 -62 11.92 -235 19.84 -297
16 0.0008 0.00 0 2.40 14 7.08 =75 12.02 -139 19.89 -261
60 0.0007 0.00 0 2.37 12 7.09 -71 11.94 -222 19.96 -220
64 0.0006 0.50 100 2.79 42 7.30 31 12.00 -163 19.95 -224

7 0.0006 0.00 0 2.40 14 7.12 -96 11.96 -198 19.81 -315
38 0.0004 0.00 0 2.37 12 7.11 -63 11.99 -175 19.85 -289

Table B.5: Feature importances (1/4) as computed by the random forests algorithm and normalized costs of omission when the
considered output is the logarithm of the number of nodes. The features are sorted in descending order of the feature importances
computed by the random forests. The first column indicates the feature number. “FI’ represents the feature importance computed
by the random forests for the given feature. The columns labeled ‘MRE’ and ‘COQ’ represent the mean relative errors (in %) and the
corresponding normalized costs of omission achieved when the corresponding feature is removed from the data. Additionally, several
cases are considered to compute the MREs and COOs, as detailed in Section 5.6.1.
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Output: log #nodes

RE; =0 0<RE; <5 5 < RE; <10 10 < RE; <15 15 < RE; < 400
# FI MRE COO MRE COO MRE COO MRE COO MRE COO
11 0.0004 0.00 0 2.39 13 7.13 -51 12.01 -154 19.88 -273
5 0.0004 0.00 0 2.40 14 7.09 =72 11.95 -209 19.85 -291
35 0.0003 0.00 0 2.37 12 7.08 -78 11.97 -190 19.92 -247
13 0.0003 0.00 0 2.38 12 7.08 =77 11.92 -241 19.95 -224
12 0.0003 0.00 0 2.38 13 7.09 -70 11.93 -228 19.82 -307
3 0.0003 0.00 0 2.35 11 7.09 -72 11.93 -227 19.88 -269
8 0.0003 0.00 0 2.38 12 7.12 -58 11.99 -174 19.87 -274
9 0.0003 0.00 0 2.38 12 7.09 -71 11.91 -249 19.77 -343
34 0.0003 0.00 0 2.37 12 7.10 -66 11.94 -220 19.92 -245
31 0.0003 0.00 0 2.40 14 7.14 -49 12.00 -156 19.81 -314
2 0.0002 0.00 0 2.39 13 7.07 -82 12.00 -164 19.91 -252
o8 0.0002 0.00 0 2.38 13 7.13 -50 12.00 -158 19.93 -239
4 0.0002 0.00 0 2.39 13 7.08 =75 11.95 -210 19.93 -236
52 0.0002 0.00 0 2.39 13 7.09 -69 11.99 -175 19.83 -301
46 0.0002 0.00 0 2.36 11 7.12 -07 11.97 -191 20.00 -194
44 0.0001 0.00 0 2.39 13 7.07 -80 11.90 -253 19.83 -300
19 0.0001 0.00 0 2.38 13 7.11 -63 11.96 -201 19.92 -244

Table B.6: Feature importances (2/4) as computed by the random forests algorithm and normalized costs of omission when the
considered output is the logarithm of the number of nodes. The features are sorted in descending order of the feature importances
computed by the random forests. The first column indicates the feature number. “FI’ represents the feature importance computed
by the random forests for the given feature. The columns labeled ‘MRE’ and ‘COQ’ represent the mean relative errors (in %) and the
corresponding normalized costs of omission achieved when the corresponding feature is removed from the data. Additionally, several
cases are considered to compute the MREs and COOs, as detailed in Section 5.6.1.
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Output: log #nodes

RE; =0 0<RE; <5 5 <RE; <10 10 <RE; <15 15 < RE; < 400

# FI MRE COO MRE COO MRE COO MRE COO MRE COO
43 0.0001 0.00 0 2.37 12 7.12 -08 11.99 -169 20.04 -171
10 0.0001 0.00 0 2.36 11 7.11 -61 11.96 -198 19.88 -269
20 0.0001 0.00 0 2.39 13 7.11 -60 11.98 -176 19.93 -237
33 0.0001 0.00 0 2.36 11 7.11 -62 12.02 -140 19.93 -236
42 0.0001 0.00 0 2.37 11 7.11 -60 12.01 -152 19.92 -243
6 0.0001 0.00 0 2.39 13 7.12 -96 12.02 -142 20.00 -192
32 0.0001 0.00 0 2.36 11 7.10 -69 11.97 -192 19.91 -253
37 0.0000 0.00 0 2.38 12 7.13 -50 12.00 -156 19.93 -237
45 0.0000 0.00 0 2.37 12 7.09 =73 11.93 -228 19.82 -312
39 0.0000 0.00 0 2.39 13 7.11 -61 11.96 -197 19.89 -265
26 0.0000 0.00 0 2.38 13 7.12 -99 11.97 -190 19.95 -223
36 0.0000 0.00 0 2.37 12 7.12 -07 11.97 -193 19.86 -285
41 0.0000 0.00 0 2.38 13 7.12 -99 11.92 -234 19.89 -262
24 0.0000 0.00 0 2.39 13 7.11 -60 11.99 -175 19.88 -271
29 0.0000 0.00 0 2.40 14 7.10 -65 11.99 -166 19.95 -227
49 0.0000 0.00 0 2.38 12 7.10 -67 11.95 -204 19.90 -261

Table B.7: Feature importances (3/4) as computed by the random forests algorithm and normalized costs of omission when the
considered output is the logarithm of the number of nodes. The features are sorted in descending order of the feature importances
computed by the random forests. The first column indicates the feature number. “FI’ represents the feature importance computed
by the random forests for the given feature. The columns labeled ‘MRE’ and ‘COQ’ represent the mean relative errors (in %) and the
corresponding normalized costs of omission achieved when the corresponding feature is removed from the data. Additionally, several
cases are considered to compute the MREs and COOs, as detailed in Section 5.6.1.
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Output: log #nodes

RE; =0 0<RE; <5 5 <RE; <10 10 <RE; <15 15 < RE; < 400
# FI MRE COO MRE COO MRE COO MRE COO MRE COO
21 0.0000 0.00 0 2.39 13 7.06 -84 11.96 -197 19.92 -242
22 0.0000 0.00 0 2.38 12 7.11 -61 11.97 -188 19.95 -224
28 0.0000 0.00 0 2.38 12 7.10 -66 12.00 -162 20.00 -192
95 0.0000 0.00 0 2.38 12 7.13 -94 11.96 -200 19.88 -269
48 0.0000 0.00 0 2.38 12 7.11 -61 11.96 -195 19.95 -225
47 0.0000 0.00 0 2.37 11 7.12 -99 11.95 -205 19.93 -237
30 0.0000 0.00 0 2.38 12 7.11 -63 11.93 -224 19.86 -285
27 0.0000 0.00 0 2.37 12 7.09 -69 11.97 -187 19.84 -294
o1 0.0000 0.00 0 2.38 13 7.11 -63 11.98 -177 19.90 -257
23 0.0000 0.00 0 2.39 13 7.08 -76 11.95 -213 19.92 -244
25 0.0000 0.00 0 2.39 13 7.11 -61 11.93 -224 19.84 -299
50 0.0000 0.00 0 2.37 11 7.09 -70 11.95 -209 19.89 -264
93 0.0000 0.00 0 2.38 13 7.13 -94 12.02 -144 20.00 -197
o4 0.0000 0.00 0 2.38 13 7.12 -07 12.02 -146 19.93 -236
o6 0.0000 0.00 0 2.37 12 7.08 =75 11.94 -220 19.86 -282
57 0.0000 0.00 0 2.38 13 7.11 -64 11.95 -210 19.87 -275

Table B.8: Feature importances (4/4) as computed by the random forests algorithm and normalized costs of omission when the
considered output is the logarithm of the number of nodes. The features are sorted in descending order of the feature importances
computed by the random forests. The first column indicates the feature number. “FI’ represents the feature importance computed
by the random forests for the given feature. The columns labeled ‘MRE’ and ‘COQ’ represent the mean relative errors (in %) and the
corresponding normalized costs of omission achieved when the corresponding feature is removed from the data. Additionally, several
cases are considered to compute the MREs and COOs, as detailed in Section 5.6.1.
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206 APPENDIX B. MACHINE LEARNING FOR PARALLEL B&B: APPENDIX

B.2 Complete experimental results

This appendix contains the detailed experimental results used to draw Figures 5.1 through 5.7
from Chapter 5.

Tables B.9 through B.28 report the experimental results obtained when our test problems
are optimized by a parallel B&B. The number of nodes required to solve each subproblem on
each processor is saved. The mean, standard deviation, minimum, and maximum numbers
of nodes observed on each processor, together with the sum of the number of nodes of each
processor are then computed for each problem, averaged over all problems, and finally reported
in the following tables. Note that, in this case, the number k of generated subproblems is
equal to the number IV of processors. We refer the reader to Section 5.7 for a more detailed
explanation on how the results are obtained.

Tables B.9 through B.13 report the detailed experimental results comparing the two trivial
partitioning strategies (random and balanced) with the default learned partitioning strategy
(score=scoremax, probe size=5,000, and output=#nodes), with and without communication
(see also Figures 5.1 and 5.2). Tables B.14 through B.18 then illustrate the importance
of communication for the default learned partitioning strategy (see Figure 5.3). Next, Ta-
bles B.19 through B.23 report the experimental results when different learning outputs are
considered (#nodes or logarithm of #nodes) and when different scores are used to combine
the predictions of the difficulties of the subproblems during the partitioning procedure (see
also Figures 5.4 and 5.5). Finally, Tables B.24 through B.28 show the experimental results
when different probing sizes are considered to compute the features used to describe the
subproblems (see Figures 5.6 and 5.7).

This appendix omits the analysis and merely reports the obtained results. We refer the
reader to Section 5.7 for a detailed discussion.



Parallelized
Without comm. (c0) Comm. every 10k nodes (c10k)

N baseline random balanced learned random balanced learned
2 9.81e+05 7.27e+05 1.01e+06 5.62e+05 5.31e+05 5.42e+-05 4.82e+05
3 9.81e+05 5.58¢e+05 8.11e4+05 4.03e+05 3.48e+05 3.59e+05 3.30e+05
4 9.81e+05 5.29e+05 8.91e+05 3.27e+05 2.75e+05 2.97e+05 2.39e+05
5 9.81e+05 5.22e+05 8.07e+05 2.86e+05 2.32e+05 2.36e+05 1.78e+05
6 9.81e+05 4.75e405 7.98e+05 2.56e+-05 1.78e+05 2.09e+-05 1.66e+05
7 9.81e+05 4.91e+05 9.59e+4-05 2.28e+05 1.57e+05 2.01e+05 1.48e+05
8 9.81e+05 4.64e+-05 1.18e+06 1.96e+05 1.51e+05 1.81e+05 1.32e+05
9 9.81e+05 4.74e+405 1.08e+06 1.93e+05 1.20e+05 1.60e+05 1.16e+05

10 9.81e+05 4.68e+05 1.06e+06 2.14e+05 1.11e+05 1.49e+05 1.09e+05

11 9.81e+05 4.84e+05 1.02e+06 2.02e+05 1.04e+05 1.40e+05 1.04e+05

12 9.81e+05 4.94e+405 1.04e+06 2.22e+05 9.69e+04 1.24e+05 9.57e+04

13 9.81e+05 6.74e+405 1.05e+06 1.53e+05 1.04e+05 1.23e+05 8.86e+04

14 9.81e+05 6.60e+05 1.05e+06 1.45e+05 9.17e+04 1.09e+05 7.99e+04

15 9.81e+05 6.51e4+05 1.10e+06 1.36e+05 8.62e+04 1.03e+05 7.60e+04

16 9.81e+05 6.29e+05 1.10e+06 1.28e+05 8.11e+04 1.04e+05 6.46e+04

17 9.81e+05 6.14e+4-05 1.06e+06 1.24e+05 7.82e+04 9.48e+-04 6.40e+04

18 9.81e+05 5.93e+05 1.02e+06 1.96e+05 7.32e+04 9.61e4+04 5.82e+04

19 9.81e+05 5.71e+05 1.00e+06 1.92e+05 7.02e+04 9.05e+-04 5.70e+04

20 9.81e+05 5.72e+05 9.74e+405 1.87e+05 6.66e+04 8.45e+04 5.12e+04

21 9.81e+05 5.60e+05 9.44e+4-05 2.06e+-05 6.58e+04 8.59¢e+-04 4.67e+04

22 9.81e+05 5.56e+05 9.19e+4-05 2.06e+05 6.75e+04 8.27e+04 5.14e+404

23 9.81e+05 6.10e+05 9.27e+05 2.06e+05 6.38e+04 7.74e+04 4.54e+04

24 9.81e+05 6.08e+05 9.01e+405 2.06e+-05 6.11e4+04 7.77e+04 4.61e+04

Table B.9: Mean number of nodes: trivial partitioning strategies (random and balanced) vs. default learned partitioning strategy

(score=scoremax, probe size=>5,000, and output=#nodes).
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Parallelized
Without comm. (c0) Comm. every 10k nodes (c10k)

N baseline random balanced learned random balanced learned
2 0 3.50e+05 4.25e+4-05 4.39e+-05 4.89e+-05 4.29e+-05 3.45e+4-05
3 0 3.34e+05 5.07e+05 2.87e+05 4.16e+05 3.92e+05 2.86e+05
4 0 3.07e+05 5.39e+05 2.26e+05 3.82e+405 3.47e+05 2.08e+05
5 0 3.21e+05 6.60e+05 2.14e+05 3.26e+05 3.05e+05 1.64e+05
6 0 3.35e+05 7.04e+05 2.01e+05 2.94e+05 2.70e+05 1.62e+05
7 0 3.69e+-05 9.24e+4-05 1.87e+05 2.78e+05 2.56e+05 1.44e+05
8 0 3.86e+05 1.61e+06 1.61e+05 2.76e+05 2.50e+05 1.39e+05
9 0 4.09e+4-05 1.55e+06 1.62e+05 2.43e+05 2.35e+05 1.31e+05

10 0 3.90e+05 1.48e+06 2.15e+05 2.28e+05 2.37e+05 1.19e+05

11 0 4.32e+05 1.43e+06 1.82e+05 2.15e+05 2.23e+05 1.23e+05

12 0 4.81e+05 1.54e+06 1.96e+05 2.07e+05 2.02e+05 1.11e+05

13 0 1.13e+06 1.50e+06 1.06e+05 2.26e+05 1.96e+05 9.67e+04

14 0 1.10e+06 1.51e+06 1.03e+05 1.99e+05 1.77e+05 8.87e+04

15 0 1.11e+06 1.50e+06 9.69e+-04 1.88e+05 1.73e+05 8.06e+04

16 0 1.08e+06 1.48e+06 8.94e+04 1.84e+05 1.74e+05 7.27e+04

17 0 1.06e+06 1.45e+06 8.76e+04 1.79e+05 1.64e+05 7.16e+04

18 0 1.06e+06 1.42e+06 1.83e+05 1.73e+05 1.63e+05 6.42e+04

19 0 1.04e+06 1.41e+06 1.80e+05 1.72e+05 1.58e+05 6.40e+04

20 0 1.08e+06 1.39e+06 1.78e+05 1.64e+05 1.53e+05 5.23e+04

21 0 1.08¢-+06 1.36e+06 2.03e+05 1.61e+05 1.58e+05 5.23e+04

22 0 1.05e+06 1.34e+06 2.01e+05 1.68e+05 1.54e+05 5.81e+04

23 0 1.29e+06 1.31e+06 1.99e+05 1.64e+05 1.50e+05 5.14e+404

24 0 1.27e+06 1.28e+06 1.95e+05 1.58e+05 1.51e+05 5.79e+04

80¢

Table B.10: Standard deviation of the number of nodes: trivial partitioning strategies (random and balanced) vs. default learned
partitioning strategy (score=scorepax, probe size=>5,000, and output=#nodes).
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Parallelized
Without comm. (c0) Comm. every 10k nodes (c10k)

N baseline random balanced learned random balanced learned
2 9.81e+05 4.80e+-05 7.12e+05 2.52e+05 1.86e+05 2.39e+-05 2.38e+05
3 9.81e+05 2.84e+05 3.08e+05 1.74e+05 5.20e+04 6.23e+04 1.19e+05
4 9.81e+05 2.48e+05 2.85e+05 1.19e+05 2.75e+04 2.83e+04 7.11e+04
5 9.81e+05 2.08e+05 1.24e+05 7.58e+04 1.74e+04 2.17e4+04 1.60e+04
6 9.81e+05 1.40e+05 1.20e+05 4.45e+04 1.55e+04 9.18e+403 9.09e+-03
7 9.81e+05 1.24e+05 1.07e+05 3.61e+04 1.24e+04 6.88e403 7.27e+03
8 9.81e+05 1.00e+05 9.87e+04 2.86e+04 9.40e+-03 6.35e+03 5.87e+03
9 9.81e+05 9.38e+04 9.11e+04 1.66e+04 6.88e+03 7.11e+03 5.32e+03

10 9.81e+05 9.33e+04 7.77e+04 1.61e+04 6.71e403 5.84e+-03 4.73e+03

11 9.81e+05 9.18e+04 7.37e+04 9.23e+03 5.52e+03 4.60e+03 3.53e+03

12 9.81e+05 8.07e+04 7.03e+04 7.70e+03 4.00e+03 4.00e+03 2.67e+03

13 9.81e+05 7.32e+04 6.03e+04 2.53e+04 3.71e403 3.49e+-03 2.58e+03

14 9.81e+05 7.18e+04 5.80e+04 2.52e+04 3.03e+03 2.86e+03 2.52e+03

15 9.81e+05 4.51e+04 4.77e+04 2.32e+04 2.75e+03 2.39e+-03 2.49e+03

16 9.81e+05 2.40e+04 3.66e+04 2.31e+04 2.27e+03 2.30e+03 2.53e+03

17 9.81e+05 2.38e+04 3.61le+04 1.96e+04 1.65e+03 2.52e+-03 2.44e+03

18 9.81e+05 2.20e+04 3.36e+04 7.06e+03 1.54e+03 2.10e+03 2.49e+03

19 9.81e+05 1.80e+04 2.72e+04 6.91e+03 1.24e+03 2.09e+-03 2.30e+03

20 9.81e+05 1.42e+04 2.72e+04 6.66e+03 540 2.10e403 2.02e+03

21 9.81e+05 1.16e+04 2.75e+04 4.77e+03 611 1.87e+03 1.99e+03

22 9.81e+05 1.09e+04 2.65e+04 3.74e+03 609 1.31e+03 1.71e+03

23 9.81e+05 1.09e+04 2.69e+04 3.74e+03 606 1.17e+03 1.79e+03

24 9.81e+05 1.09e+04 2.51e+04 3.69e+-03 463 377 1.62e+03

Table B.11: Minimum number of nodes: trivial partitioning strategies (random and balanced) vs. default learned partitioning strategy

(score=scoremax, probe size=>5,000, and output=#nodes).
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Parallelized
Without comm. (c0) Comm. every 10k nodes (c10k)

N baseline random balanced learned random balanced learned
2 9.81e+05 9.75e+4-05 1.31e+06 8.73e+05 8.77e+05 8.46e+05 7.26e+05
3 9.81e+05 9.08e+05 1.30e+06 7.14e+05 8.11e4+05 7.94e+05 6.45e+05
4 9.81e+05 9.11e+405 1.47e+06 6.09e+05 8.19e+4-05 7.69e+05 5.04e+05
5 9.81e+05 9.71e+05 1.69e+06 5.83e+05 7.72e+05 7.38¢+05 4.21e+05
6 9.81e+05 9.93e+-05 1.93e+06 5.41e+05 7.58e+05 6.76e+05 4.29e+-05
7 9.81e+05 1.13e+06 2.58e+06 5.28e+05 7.64e+05 6.99e+05 3.97e+05
8 9.81e+05 1.18e+06 4.69e+-06 4.76e+05 7.92e+05 7.11e+05 4.03e+05
9 9.81e+05 1.29e+06 4.70e4-06 4.80e+05 7.41e+05 6.71e+05 3.94e+4-05

10 9.81e+05 1.26e+06 4.66e4-06 6.90e+05 7.33e+05 7.12e+05 3.74e+05

11 9.81e+05 1.45e+06 4.68e+06 5.87e+05 7.10e+05 6.96e+05 3.89e+4-05

12 9.81e+05 1.66e+06 5.03e+06 5.86e+05 7.09e+05 6.51e+05 3.56e+05

13 9.81e+05 4.04e+4-06 5.05e+06 3.80e+05 7.56e+05 6.55e+05 3.11e+05

14 9.81e+05 4.07e+06 5.33e+06 3.79e+05 7.11e+05 5.94e+4-05 2.86e+05

15 9.81e+05 4.19e+4-06 5.15e+06 3.72e+05 6.98e+05 5.89e+-05 2.66e+05

16 9.81e+05 4.22e+06 5.22e+06 3.43e+05 7.00e+05 6.17e+05 2.66e+05

17 9.81e+05 4.22e+06 5.22e+06 3.36e+-05 7.00e+05 5.95e+-05 2.66e+05

18 9.81e+05 4.31e+06 5.22e+06 6.56e+05 6.96e+05 5.93e+05 2.45e+05

19 9.81e+05 4.31e+4-06 5.27e+06 6.59e+05 7.07e+05 5.87e+05 2.46e+05

20 9.81e+05 4.62e+06 5.26e+06 6.57e+05 6.96e+05 5.83e+05 1.91e+05

21 9.81e+05 4.62e+-06 5.38e+06 7.55e+05 6.98e+4-05 6.21e+05 2.13e+05

22 9.81e+05 4.59e+4-06 5.38¢e+06 7.60e+05 7.14e+05 6.09e+05 2.23e+05

23 9.81e+05 5.92e+06 5.21e+06 7.52e+05 7.16e+05 6.20e+05 2.03e+05

24 9.81e+05 5.91e+06 5.16e+06 7.43e+05 7.20e+05 6.19e+05 2.32e+05

Table B.12: Maximum number of nodes: trivial partitioning strategies (random and balanced) vs. default learned partitioning strategy

(score=scoremax, probe size=>5,000, and output=#nodes).
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Parallelized
Without comm. (c0) Comm. every 10k nodes (c10k)

N baseline random balanced learned random balanced learned
2 9.81e+05 1.45e+06 2.03e+06 1.12e4-06 1.06e+06 1.08e+06 9.64e+05
3 9.81e+05 1.67e+06 2.43e+06 1.21e+06 1.04e+06 1.08e+06 9.91e+405
4 9.81e+05 2.12e+06 3.57e+06 1.31e+06 1.10e+06 1.19e+06 9.56e+-05
5 9.81e+05 2.61e+06 4.03e+-06 1.43e+06 1.16e+06 1.18e+06 8.91e+05
6 9.81e+05 2.85e+06 4.79e+-06 1.53e+06 1.07e+06 1.26e+06 9.95e+4-05
7 9.81e+05 3.44e+4-06 6.71e4+06 1.60e+06 1.10e+06 1.41e+06 1.04e+06
8 9.81e+05 3.71e+4-06 9.44e4-06 1.53e+06 1.21e+06 1.45e+06 1.02e+06
9 9.81e+05 4.26e+406 9.76e406 1.69e+06 1.08e+06 1.44e+06 1.02e+06

10 9.81e+05 4.68e+-06 1.06e+07 2.06e4-06 1.11e+06 1.49e+06 1.07e+06

11 9.81e+05 5.32e+06 1.12e+07 2.14e4-06 1.15e+06 1.54e+06 1.12e+06

12 9.81e+05 5.93e+06 1.25e+07 2.56e+-06 1.16e+06 1.48e+06 1.12e+06

13 9.81e+05 8.77e+406 1.36e+07 1.99e+06 1.36e+06 1.60e+06 1.12e+06

14 9.81e+05 9.25e4-06 1.47e+07 2.03e4-06 1.28e+06 1.53e+06 1.10e+06

15 9.81e+05 9.77e+406 1.66e+07 2.04e4-06 1.29e+06 1.55e+06 1.11e+06

16 9.81e+05 1.01e+07 1.76e+07 2.04e4-06 1.30e+06 1.67e+06 1.02e+06

17 9.81e+05 1.04e+07 1.81e+07 2.11e+06 1.33e+06 1.61e+06 1.07e+06

18 9.81e+05 1.07e+07 1.83e+07 3.43e+06 1.32e+06 1.73e+06 1.03e+06

19 9.81e+05 1.08e+07 1.90e+07 3.56e+-06 1.33e+06 1.72e+06 1.07e+06

20 9.81e+05 1.14e+07 1.95e+07 3.57e+06 1.33e+06 1.69e+06 1.00e+06

21 9.81e+05 1.18e+07 1.98e+07 4.12e+406 1.38e+06 1.80e+06 9.57e+05

22 9.81e+05 1.22e+07 2.02e+07 4.33e+06 1.49e+06 1.82e+06 1.10e+06

23 9.81e+05 1.40e+07 2.13e+07 4.45e+06 1.47e+06 1.78e+06 1.01e+06

24 9.81e+05 1.46e+07 2.16e+07 4.65e+06 1.47e+06 1.87e+06 1.07e+06

Table B.13: Total number of nodes: trivial partitioning strategies (random and balanced) vs. default learned partitioning strategy

(score=scoremax, probe size=>5,000, and output=#nodes).
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Parallelized: learned partitioning strategy

N baseline c0 clk cbk c10k c20k c50k
2 9.81e+05 5.62e+4-05 4.87e+05 4.84e+05 4.82e+05 4.79e+05 4.83e+05
3 9.81e+05 4.03e+05 3.21e+05 3.24e+05 3.30e+05 3.24e+05 3.27e+05
4 9.81e+05 3.27e+05 2.36e+05 2.36e+05 2.39e+05 2.37e+05 2.43e4-05
5 9.81e+05 2.86e+05 1.70e+-05 1.76e+05 1.78e+05 1.77e+05 1.88e+05
6 9.81e+05 2.56e+05 1.65e+05 1.72e+05 1.66e+4-05 1.72e+05 1.74e+05
7 9.81e+05 2.28e+05 1.45e+05 1.38e+05 1.48e+-05 1.40e+05 1.46e+-05
8 9.81e+05 1.96e+4-05 1.20e+05 1.32e+05 1.32e+05 1.36e+05 1.34e+05
9 9.81e+05 1.93e+-05 1.21e+05 1.25e+05 1.16e+-05 1.24e+05 1.23e+05
10 9.81e+05 2.14e+05 1.10e+05 1.12e+05 1.09e+4-05 1.17e+05 1.19e+05
11 9.81e+05 2.02e+4-05 1.02e+05 1.01e+05 1.04e+05 1.03e+05 1.12e+05
12 9.81e+05 2.22e+05 9.06e+04 9.20e+04 9.57e+04 9.63e+04 1.03e+05
13 9.81e+05 1.53e+05 8.38e+04 8.02e+04 8.86e+04 8.59e+04 9.72e+04
14 9.81e+05 1.45e+05 6.64e+04 7.61e4-04 7.99e+04 8.28e+04 8.49e+04
15 9.81e+05 1.36e+4-05 7.54e+04 7.38e+04 7.60e+04 8.15e+04 7.64e+04
16 9.81e+05 1.28e+-05 6.06e+04 6.04e+04 6.46e+04 6.25e+04 6.76e-+04
17 9.81e+05 1.24e+4-05 5.72e+04 6.00e+04 6.40e+04 6.42e+04 6.68e+04
18 9.81e+05 1.96e+-05 5.14e+04 5.88e+04 5.82e+04 5.86e+04 6.63e+04
19 9.81e+05 1.92e+4-05 4.90e+04 5.33e+04 5.70e+04 6.09e+04 5.91e+04
20 9.81e+05 1.87e+05 4.29e+04 4.69e+04 5.12e+04 5.22e+04 5.24e+04
21 9.81e+05 2.06e+05 4.47e+04 4.89e+-04 4.67e+04 4.86e+-04 5.33e+04
22 9.81e+05 2.06e+05 4.79e+04 4.60e+04 5.14e+04 5.38e+04 5.09e+04
23 9.81e+05 2.06e+05 4.08e+04 4.36e+-04 4.54e+04 4.57e+04 5.13e+04
24 9.81e+05 2.06e+05 4.44e+04 4.48e+-04 4.61e+04 4.80e+04 5.22e+04

Table B.14: Mean number of nodes: default learned partitioning strategy (score=scorepay, probe size=>5,000, and output=#nodes)
for different communication intervals. ‘c0’ indicates no communication and ‘cx’ indicates communication every x nodes (e.g., ‘clk’
indicates communication every 1,000 nodes).
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Parallelized: learned partitioning strategy

N baseline c0 clk chbk c10k c20k c50k
2 0 4.39e+05 3.54e+05 3.48e+05 3.45e+05 3.48e+05 3.47e+05
3 0 2.87e+05 2.97e+05 2.89e+05 2.86e+05 2.91e4-05 2.86e+05
4 0 2.26e+05 2.12e+05 2.09e+05 2.08e+05 2.08e+05 2.03e+05
5 0 2.14e4-05 1.60e+-05 1.71e+05 1.64e+05 1.66e+-05 1.70e+-05
6 0 2.01e+05 1.65e+05 1.73e+05 1.62e+05 1.67e+05 1.63e+05
7 0 1.87e+05 1.50e+-05 1.47e+05 1.44e+05 1.39e+-05 1.43e+05
8 0 1.61e+05 1.34e+05 1.41e+05 1.39e+-05 1.43e+05 1.33e+05
9 0 1.62e+05 1.37e+05 1.34e+05 1.31e+05 1.30e+-05 1.25e+-05
10 0 2.15e+05 1.21e+405 1.22e+4-05 1.19e+05 1.25e+05 1.19e+05
11 0 1.82e+05 1.19e+-05 1.13e+05 1.23e+-05 1.11e+05 1.14e+05
12 0 1.96e+4-05 1.16e+05 1.10e-+05 1.11e+405 1.09e+-05 1.14e+405
13 0 1.06e+05 9.50e+04 9.41e+04 9.67e+04 9.28e+04 9.76e+04
14 0 1.03e+05 8.10e+04 8.57e+04 8.87e+04 8.55e+04 8.76e+04
15 0 9.69e+04 8.74e+04 8.14e+04 8.06e+04 8.35e+04 7.81e+04
16 0 8.94e+04 7.65e+04 7.29e+04 7.27e+04 6.79e+04 6.91e+04
17 0 8.76e+04 6.88e+04 6.64e+04 7.16e+04 6.73e+04 6.84e+04
18 0 1.83e+05 6.33e+04 6.61e+04 6.42e+04 6.22e+04 6.41e+04
19 0 1.80e+-05 5.94e+04 6.32e+04 6.40e+04 6.35e+04 6.09e+04
20 0 1.78e+05 4.87e+04 5.09e+04 5.23e+04 5.04e+04 4.93e+04
21 0 2.03e+05 5.17e+04 5.45e+04 5.23e+04 5.20e+04 5.26e+04
22 0 2.01e4-05 6.06e+04 5.26e+04 5.81e+04 5.79e+04 5.10e+04
23 0 1.99e+-05 4.88e+04 5.04e+04 5.14e+04 5.01e+04 5.09e+04
24 0 1.95e+05 6.00e+04 5.90e+04 5.79e+04 5.85e+04 5.92e+04

Table B.15: Standard deviation of the number of nodes: default learned partitioning strategy (score=scoremax, probe size=5,000, and
output=#nodes) for different communication intervals. ‘c0’ indicates no communication and ‘cx’ indicates communication every x
nodes (e.g., ‘clk’ indicates communication every 1,000 nodes).
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Parallelized: learned partitioning strategy

N baseline c0 clk cbk c10k c20k c50k
2 9.81e+05 2.52e+4-05 2.37e+05 2.38e+05 2.38e+05 2.33e+05 2.38e+05
3 9.81e+05 1.74e+05 9.99e+04 1.10e+05 1.19e+-05 1.10e+05 1.18e+-05
4 9.81e+05 1.19e+05 7.20e+04 6.98e+04 7.11e+04 7.34e+04 7.44e+04
5 9.81e+05 7.58e+04 1.45e+04 1.49e+4-04 1.60e+04 2.04e+04 2.60e+04
6 9.81e+05 4.45e+04 5.21e+03 7.75e4+03 9.09e+03 1.47e+04 1.95e+04
7 9.81e+05 3.61e+04 2.04e+4-03 4.46e+-03 7.27e+03 9.82e+03 1.73e+04
8 9.81e+05 2.86e+04 2.05e+03 4.57e+403 5.87e+03 7.26e403 1.30e+04
9 9.81e+05 1.66e+04 1.68e+03 3.97e+03 5.32e4-03 6.59e+03 8.49e+03
10 9.81e+05 1.61e+04 1.55e+4-03 3.10e+03 4.73e+03 4.96e+-03 7.80e+03
11 9.81e+05 9.23e+03 1.17e+403 2.56e+03 3.53e+03 4.60e+-03 6.47e+03
12 9.81e+05 7.70e+03 6.08e+02 1.89e+4-03 2.67e+03 3.15e+03 3.94e+03
13 9.81e+05 2.53e+04 6.30e+02 1.87e+03 2.58e+03 3.16e+03 3.30e+03
14 9.81e+05 2.52e+04 5.79e+02 1.80e+03 2.52e4-03 2.96e+03 3.11e+03
15 9.81e+05 2.32e+04 5.90e+02 1.78e+03 2.49e4-03 3.12e+03 3.27e+03
16 9.81e+05 2.31e+04 5.78e+02 1.79e+03 2.53e+03 3.25e+03 3.08e+03
17 9.81e+05 1.96e+04 5.77e4+02 1.74e4-03 2.44e+03 3.21e+03 3.39e+03
18 9.81e+05 7.06e+03 5.72e+02 1.89e+03 2.49e+03 3.16e+03 3.09e+03
19 9.81e+05 6.91e+03 5.49e+402 1.59e4-03 2.30e+03 2.96e+03 2.88e+03
20 9.81e+05 6.66e-+03 4.98e+02 1.36e+03 2.02e4-03 2.25e+03 2.65e+03
21 9.81e+05 4.77e+03 5.09e+02 1.35e4-03 1.99e+-03 2.67e+03 2.64e+03
22 9.81e+05 3.74e+03 5.01e+02 1.30e+03 1.71e+03 2.16e+03 2.17e+03
23 9.81e+05 3.74e+03 5.06e+02 1.34e4-03 1.79e+-03 2.31e+03 2.15e4+03
24 9.81e+05 3.69e+03 4.48e+02 1.12e+403 1.62e+03 1.99e4-03 1.96e+-03

Table B.16: Minimum number of nodes: default learned partitioning strategy (score=scoremax, probe size=5,000, and output=#nodes)
for different communication intervals. ‘c0’ indicates no communication and ‘cx’ indicates communication every x nodes (e.g., ‘c1k’
indicates communication every 1,000 nodes).
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Parallelized: learned partitioning strategy

N baseline c0 clk cbk c10k c20k c50k
2 9.81e+05 8.73e+05 7.37e+05 7.30e+05 7.26e+05 7.25e+05 7.29e+05
3 9.81e+05 7.14e+4-05 6.45e+05 6.41e+05 6.45e+05 6.39e+05 6.39e+05
4 9.81e+05 6.09e-+05 5.21e+05 5.06e+05 5.04e+05 5.15e+05 5.04e4-05
5 9.81e+05 5.83e+05 4.09e+05 4.37e+05 4.21e+05 4.28e+05 4.34e+05
6 9.81e+05 5.41e+05 4.41e+05 4.55e+05 4.29e+05 4.42e405 4.37e+05
7 9.81e+05 5.28e+05 4.21e+05 4.10e+05 3.97e+05 3.98e+05 4.15e+05
8 9.81e+05 4.76e+05 3.92e+05 4.04e+05 4.03e+05 4.14e+05 3.87e+05
9 9.81e+05 4.80e+05 4.12e+05 3.97e+05 3.94e+05 3.83e+05 3.78e+05
10 9.81e+05 6.90e+05 3.82e+05 3.70e+05 3.74e+05 3.86e+05 3.73e+05
11 9.81e+05 5.87e+05 3.87e+05 3.67e+05 3.89e+05 3.62e+05 3.66e+05
12 9.81e+05 5.86e+05 3.88e+05 3.64e+05 3.56e+05 3.63e+05 3.74e+05
13 9.81e+05 3.80e+05 3.13e+05 3.14e+05 3.11e+05 3.02e+05 3.24e+05
14 9.81e+05 3.79e+05 2.70e+05 2.64e+05 2.86e+05 2.78e+05 2.91e+05
15 9.81e+05 3.72e+05 2.83e+05 2.67e+05 2.66e+05 2.76e+05 2.62e4-05
16 9.81e+05 3.43e+05 2.73e+05 2.64e+05 2.66e+05 2.47e+05 2.55e+05
17 9.81e+05 3.36e+05 2.46e+4-05 2.48e+05 2.66e+05 2.48e+05 2.58e+05
18 9.81e+05 6.56e-+05 2.36e+05 2.54e+05 2.45e+05 2.39e+05 2.43e+05
19 9.81e+05 6.59e+05 2.25e+05 2.53e+05 2.46e+4-05 2.47e+05 2.47e+05
20 9.81e+05 6.57e+05 1.81e+05 2.01e+05 1.91e+05 1.82e+05 1.95e+-05
21 9.81e+05 7.55e+05 2.01e+05 2.04e+05 2.13e4+05 2.14e+05 2.09e+05
22 9.81e+05 7.60e+05 2.35e+05 2.15e+05 2.23e+05 2.21e+05 2.13e+05
23 9.81e+05 7.52e+05 1.95e+4-05 1.98e+05 2.03e+05 2.13e+05 2.11e+05
24 9.81e+05 7.43e+05 2.22e4-05 2.37e+05 2.32e+4-05 2.27e+05 2.38e+05

Table B.17: Maximum number of nodes: default learned partitioning strategy (score=scorey,x, probe size=5,000, and output=#nodes)
for different communication intervals. ‘c0’ indicates no communication and ‘cx’ indicates communication every x nodes (e.g., ‘c1k’
indicates communication every 1,000 nodes).
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Parallelized: learned partitioning strategy

N baseline c0 clk cbk c10k c20k c50k
2 9.81e+05 1.12e+06 9.74e+05 9.68e+05 9.64e+05 9.59e+05 9.67e+05
3 9.81e+05 1.21e+06 9.63e+05 9.73e+05 9.91e+05 9.71e+05 9.80e+05
4 9.81e+05 1.31e+06 9.44e+05 9.44e+05 9.56e+05 9.47e+05 9.71e+05
5 9.81e+05 1.43e+-06 8.52e+05 8.80e+05 8.91e+05 8.87e+05 9.39e+05
6 9.81e+05 1.53e+-06 9.88e+05 1.03e4-06 9.95e+05 1.03e4-06 1.04e+06
7 9.81e+05 1.60e+-06 1.01e+06 9.69e+05 1.04e+06 9.83e+05 1.02e+06
8 9.81e+05 1.53e+-06 9.36e+05 1.02e4-06 1.02e+4-06 1.06e4-06 1.04e+06
9 9.81e+05 1.69e+-06 1.06e+-06 1.09e4-06 1.02e+06 1.09e4-06 1.08e+-06
10 9.81e+05 2.06e+06 1.08e+4-06 1.09e+4-06 1.07e+4-06 1.14e4-06 1.16e+06
11 9.81e+05 2.14e4-06 1.09e+-06 1.09e4-06 1.12e+06 1.11e+06 1.20e+-06
12 9.81e+05 2.56e+06 1.07e+4-06 1.08e4-06 1.12e+4-06 1.13e+06 1.21e+406
13 9.81e+05 1.99e+-06 1.06e+-06 1.02e+06 1.12e+06 1.09e4-06 1.23e+4-06
14 9.81e+05 2.03e+06 9.15e+05 1.04e+06 1.10e+-06 1.14e+06 1.17e+4-06
15 9.81e+05 2.04e+06 1.11e+406 1.08e4-06 1.11e+406 1.19e+06 1.12e+406
16 9.81e+05 2.04e4-06 9.55e+05 9.53e+05 1.02e+06 9.87e+05 1.07e+4-06
17 9.81e+05 2.11e+06 9.57e+05 1.00e4-06 1.07e+4-06 1.07e4-06 1.12e+4-06
18 9.81e+05 3.43e+06 9.13e+05 1.04e+06 1.03e+-06 1.04e+06 1.17e+4-06
19 9.81e+05 3.56e+06 9.20e+05 1.00e4-06 1.07e+4-06 1.14e4-06 1.11e+406
20 9.81e+05 3.57e+06 8.37e+05 9.19e+05 1.00e+-06 1.02e+06 1.03e+-06
21 9.81e+05 4.12e+06 9.15e+05 1.01e4-06 9.57e+05 9.98e+05 1.09e+4-06
22 9.81e+05 4.33e+06 1.02e+06 9.91e+05 1.10e+-06 1.15e4-06 1.10e+-06
23 9.81e+05 4.45e+06 9.07e+05 9.73e+05 1.01e+4-06 1.02e4-06 1.15e+06
24 9.81e+05 4.65e+06 1.03e+-06 1.04e+06 1.07e+4-06 1.11e+06 1.21e+06

Table B.18: Total number of nodes: default learned partitioning strategy (score=scorenax, probe size=5,000, and output=#nodes)
for different communication intervals. ‘c0’ indicates no communication and ‘cx’ indicates communication every x nodes (e.g., ‘c1k’
indicates communication every 1,000 nodes).
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Parallelized: learned partitioning strategy

Without comm. (c0)

Comm. every 10k nodes (c10k)

SCOTep,1 SCOT€pax SCOTep,1 SCOT€max
N baseline #nodes log #nodes #nodes log #nodes #nodes log #nodes #nodes log #nodes
2 9.81e+05 9.91e+05 8.91e+05 5.62e+05 6.97e405 5.78e+05 6.34e+05 4.82e+-05 5.15e+05
3 9.81e+05 1.00e+06 9.81e+05 4.03e+4-05 4.81e+05 4.05e+4-05 4.86e+-05 3.30e+-05 2.79e+05
4 9.81e+05 8.69e+-05 8.44e+-05 3.27e4+05 4.74e+4-05 3.09e+-05 3.65e+-05 2.39e+-05 2.40e+05
5 9.81e+05 7.80e+05 7.71e+05 2.86e+05 4.29e+4-05 2.56e+-05 2.97e+05 1.78e+05 2.04e+05
6 9.81e+05 6.90e+-05 8.27e+05 2.56e+05 4.02e+4-05 2.15e+05 2.48e+05 1.66e+05 1.70e+05
7 9.81e+05 6.30e+-05 7.46e+05 2.28e+05 3.63e+-05 1.88e+05 2.17e405 1.48e+05 1.38e+05
8 9.81e+05 5.91e+-05 7.15e+05 1.96e+05 3.26e+05 1.66e+05 2.08e+-05 1.32e+05 1.21e+05
9 9.81e+05 6.16e+05 7.26e+05 1.93e+05 3.06e+4-05 1.72e+05 1.81e+05 1.16e+05 1.14e+-05
10 9.81e+05 6.25e+05 6.87e+05 2.14e+05 2.96e+05 1.63e+05 1.66e+05 1.09e+05 1.06e+05
11 9.81e+05 6.25e+05 6.91e+-05 2.02e+05 2.92e+05 1.42e+05 1.52e+05 1.04e+05 1.06e+05
12 9.81e+05 6.07e+05 6.62e+05 2.22e+05 2.85e+05 1.34e+05 1.46e+05 9.57e+404 9.61e+04
13 9.81e+05 6.45e+05 6.50e+-05 1.53e+05 2.65e+05 1.23e+05 1.36e+05 8.86e+-04 8.15e+04
14 9.81e+05 6.21e+05 6.42e+05 1.45e+05 2.33e+05 1.15e+05 1.30e+05 7.99e+04 7.46e+04
15 9.81e+05 6.16e+05 6.30e+05 1.36e+05 2.39e+05 1.07e+05 1.21e+05 7.60e+04 7.44e+4-04
16 9.81e+05 6.01e+05 6.44e+05 1.28e+05 2.26e+05 9.92e+4-04 1.12e+05 6.46e+4-04 6.62e+04
17 9.81e+05 5.73e+05 6.39e+-05 1.24e+05 2.20e+05 9.56e+4-04 1.06e+05 6.40e+04 6.21e4+04
18 9.81e+05 5.53e+05 6.24e+05 1.96e+05 2.07e+05 9.23e+4-04 1.06e+-05 5.82e+04 6.03e+-04
19 9.81e+05 5.46e+05 6.29e+05 1.92e+05 2.02e+05 8.54e+4-04 9.75e+4-04 5.70e+-04 5.67e+04
20 9.81e+05 5.3be+05 6.14e+05 1.87e+05 2.01e+05 8.23e+4-04 9.44e+04 5.12e+04 5.37e+04
21 9.81e+05 5.20e+05 5.93e+-05 2.06e+05 1.95e+05 8.05e+4-04 9.44e+4-04 4.67e+04 5.16e+04
22 9.81e+05 5.22e+-05 6.09e+-05 2.06e+05 1.89e+05 7.71e+04 8.92e+04 5.14e+4-04 4.87e+04
23 9.81e+05 5.16e+-05 6.00e+-05 2.06e+05 1.87e+05 7.59e+04 8.62e+04 4.54e+04 4.60e+-04
24 9.81e+05 5.12e+4-05 6.08e+-05 2.06e+05 1.79e+05 7.11e+04 8.52e+4-04 4.61e+04 4.22e+04

Table B.19: Mean number of nodes for the learned partitioning strategy: comparison of the scores scorep, and scorepayx, and the

impact of the output predicted by the learning algorithm (either the number of nodes, or the logarithm of the number of nodes).
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Parallelized: learned partitioning strategy

Without comm. (c0) Comm. every 10k nodes (c10k)
SCOT€ha SCOT€max SCOT€ha SCOT€max
N baseline #nodes log #nodes #nodes log #nodes #nodes log #nodes #nodes log #nodes
2 0 2.57e+05 2.95e+05 4.39e+05 4.20e+05 4.78e+05 4.41e+05 3.45e+05 4.55e+05
3 0 6.36e+05 2.55e+05 2.87e+05 3.32e+05 4.46e+05 4.53e+05 2.86e+05 2.49e+05
4 0 6.53e+05 3.45e+05 2.26e+05 3.16e+05 3.83e+05 3.62e+05 2.08e+05 2.54e+05
5 0 5.54e+05 3.71e+05 2.14e+05 3.28e+05 3.58e+05 3.31e+05 1.64e+-05 1.95e+4-05
6 0 5.06e+05 4.68e+05 2.01e+05 3.25e+05 2.87e+05 2.90e+05 1.62e+05 1.76e+4-05
7 0 4.84e+05 5.03e+05 1.87e+4-05 3.13e+05 2.21e+05 2.65e+05 1.44e+05 1.58e+4-05
8 0 4.75e+05 4.82e+05 1.61e+4-05 2.89e+05 2.13e+05 2.72e+05 1.39e+05 1.35e+4-05
9 0 4.70e+05 5.76e+05 1.62e+4-05 2.63e+05 2.16e+05 2.54e+05 1.31e+05 1.29e4-05
10 0 4.55e+05 5.63e+05 2.15e+05 2.53e+05 2.05e+05 2.42e+05 1.19e+05 1.25e+4-05
11 0 5.01e+05 5.43e+05 1.82e4-05 2.60e+05 1.82e+05 2.28e+05 1.23e+05 1.37e+4-05
12 0 4.96e+05 5.41e+05 1.96e+-05 2.48e+05 1.78e+05 2.23e+05 1.11e+05 1.13e+-05
13 0 4.15e+05 5.43e+05 1.06e+4-05 2.42e+05 1.73e+05 2.17e+05 9.67e+04 1.03e+4-05
14 0 4.25e+05 5.26e+05 1.03e+-05 2.22e+05 1.66e+05 2.11e+05 8.87e+04 9.27e+04
15 0 4.59¢e+05 5.09e+05 9.69e+04 2.17e+05 1.59e+-05 1.97e+4-05 8.06e+04 1.04e+4-05
16 0 4.41e+05 5.45e+05 8.94e+04 2.13e+05 1.55e+05 1.89e+-05 7.27e+04 9.10e+04
17 0 4.37e+05 5.61e+05 8.76e+04 2.11e+05 1.54e+05 1.85e+4-05 7.16e+04 8.64e+04
18 0 4.23e+05 5.52e+05 1.83e+4-05 2.03e+05 1.51e+05 1.85e4-05 6.42e+04 8.37e+04
19 0 4.30e+05 5.40e+05 1.80e+-05 1.96e+-05 1.43e+05 1.73e+4-05 6.40e+04 7.85e+04
20 0 4.27e+05 5.34e+05 1.78e+4-05 1.90e+4-05 1.39e+05 1.69e+4-05 5.23e+04 7.62e+04
21 0 3.97e+05 5.17e+05 2.03e+05 1.89e+-05 1.40e+-05 1.72e4-05 5.23e+04 7.49e+04
22 0 4.03e+05 5.51e+05 2.01e+05 1.86e+4-05 1.34e+05 1.66e+4-05 5.81e+04 6.90e+04
23 0 4.05e+05 5.23e+05 1.99e+-05 1.83e+-05 1.38e+05 1.63e+-05 5.14e+04 6.75e+04
24 0 4.09e+05 5.32e+05 1.95e4-05 1.67e+4-05 1.29e+05 1.63e+4-05 5.79e+04 6.02e+04

Table B.20: Standard deviation of the number of nodes for the learned partitioning strategy: comparison of the scores scorep, and
scoremax, and the impact of the output predicted by the learning algorithm (either the number of nodes, or the logarithm of the
number of nodes).
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Parallelized: learned partitioning strategy

Without comm. (c0)

Comm. every 10k nodes (c10k)

SCOTep,1 SCOT€pax SCOTep,1 SCOT€max
N baseline #nodes log #nodes #nodes log #nodes #nodes log #nodes #nodes log #nodes
2 9.81e+05 8.09e+-05 6.82e+-05 2.52e+05 4.00e+-05 2.40e+05 3.23e+05 2.38e+05 1.93e+05
3 9.81e+05 5.38e+05 7.38e+05 1.74e+05 1.93e+05 1.03e+05 9.63e+-04 1.19e+05 9.21e+04
4 9.81e+05 2.98e+-05 4.54e+05 1.19e+05 1.32e+05 6.21e4-04 4.36e+-04 7.11e+04 1.63e+04
5 9.81e+05 2.66e+-05 3.56e+-05 7.58e+04 1.08e+-05 3.07e4-04 2.16e+4-04 1.60e+04 1.53e+04
6 9.81e+05 2.04e+-05 3.48e+05 4.45e+04 8.78e+04 2.15e+4-04 1.49e+4-04 9.09e+4-03 1.39e+04
7 9.81e+05 1.76e+05 2.46e+05 3.61e+04 7.29e+-04 2.09e+04 1.32e+4-04 7.27e+03 7.08e+03
8 9.81e+05 1.73e+05 1.83e+05 2.86e+04 6.92e+-04 1.55e+04 1.28e+4-04 5.87e+03 6.55e+-03
9 9.81e+05 1.68e+05 1.43e+05 1.66e+04 6.20e+-04 1.25e+04 1.02e+4-04 5.32e+03 4.82e+03
10 9.81e+05 1.58e+05 1.41e+05 1.61e+04 6.14e+-04 1.28e+04 1.04e+04 4.73e+03 4.55e+-03
11 9.81e+05 1.57e+05 1.37e+05 9.23e+03 2.63e+04 9.97e+4-03 9.63e+4-03 3.53e+-03 4.21e403
12 9.81e+05 1.56e+05 1.19e+05 7.70e+03 2.60e+04 9.64e+03 9.34e+03 2.67e403 3.93e+4-03
13 9.81e+05 1.72e+05 1.12e+05 2.53e+04 2.43e+04 7.34e+03 8.73e+03 2.58e+4-03 3.14e+4-03
14 9.81e+05 1.66e+05 1.10e+05 2.52e+04 3.35e+04 6.60e+-03 9.11e+03 2.52e+03 3.36e+-03
15 9.81e+05 1.63e+05 1.10e+05 2.32e+04 1.46e+04 6.42e+4-03 7.78e+03 2.49e+03 1.98e+03
16 9.81e+05 1.59e+05 9.85e+-04 2.31e+04 1.44e+04 5.83e+4-03 7.33e+03 2.53e+-03 1.92e+03
17 9.81e+05 1.07e+05 1.00e+05 1.96e+04 1.44e+04 6.17e403 5.68e+4-03 2.44e4-03 1.87e+403
18 9.81e+05 9.95e+4-04 9.75e+4-04 7.06e+03 1.44e+04 5.70e+4-03 6.25e+4-03 2.49e+4-03 1.86e+03
19 9.81e+05 9.21e+4-04 9.71e4-04 6.91e4-03 1.43e+04 5.56e+4-03 6.79e+03 2.30e+4-03 1.76e+03
20 9.81e+05 8.98e+-04 9.71e+04 6.66e+4-03 1.39e+04 4.91e+03 6.53e+4-03 2.02e+03 1.50e+03
21 9.81e+05 8.98e+-04 9.53e+4-04 4.77e4+03 1.31e+04 4.40e+-03 5.78e+03 1.99e+03 1.73e+03
22 9.81e+05 7.42e+04 9.53e+4-04 3.74e+4-03 1.21e+04 4.49e+-03 5.41e+4-03 1.71e+03 1.23e+03
23 9.81e+05 7.42e+04 9.53e+-04 3.74e+03 1.07e+04 4.84e+-03 5.26e+4-03 1.79e+03 988
24 9.81e+05 7.34e+04 9.50e+-04 3.69e+-03 1.07e+04 5.21e403 5.38e+-03 1.62e+03 1.19e+-03

Table B.21: Minimum number of nodes for the learned partitioning strategy: comparison of the scores scorep, and scorepay, and the

impact of the output predicted by the learning algorithm (either the number of nodes, or the logarithm of the number of nodes).
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Parallelized: learned partitioning strategy

Without comm. (c0)

Comm. every 10k nodes (c10k)

SCOTep,1 SCOT€pax SCOTep,1 SCOT€max

N baseline #nodes log #nodes #nodes log #nodes #nodes log #nodes #nodes log #nodes
2 9.81e+05 1.17e4-06 1.10e4-06 8.73e+-05 9.94e+4-05 9.15e+05 9.46e+05 7.26e+05 8.36e+05
3 9.81e+05 1.69e+06 1.23e+06 7.14e+05 8.03e+4-05 9.01e+05 9.47e+05 6.45e+05 5.46e+05
4 9.81e+05 1.77e4-06 1.20e4-06 6.09e+-05 8.00e+-05 8.56e+-05 8.24e+-05 5.04e+-05 5.58e+05
5 9.81e+05 1.67e+06 1.22e4-06 5.83e+05 8.36e+4-05 8.56e+-05 7.64e+05 4.21e+05 4.74e+405
6 9.81e+05 1.56e+06 1.59e+06 5.41e+05 8.50e+-05 7.23e+05 7.08e+05 4.29e+05 4.42e+4-05
7 9.81e+05 1.54e4-06 1.63e+06 5.28e+05 8.60e+-05 5.83e+05 6.78e+05 3.97e+-05 4.14e+05
8 9.81e+05 1.55e+06 1.58e+06 4.76e+05 8.52e+4-05 6.02e+-05 7.25e+05 4.03e+-05 3.54e+05
9 9.81e+05 1.58e+06 1.89e+06 4.80e+-05 8.36e+4-05 6.03e+-05 6.97e+-05 3.94e+05 3.44e+05
10 9.81e+05 1.58e+06 1.89e+06 6.90e+4-05 8.24e+4-05 6.01e+05 6.96e+-05 3.74e+-05 3.38e+-05
11 9.81e+05 1.80e+06 1.85e+06 5.87e+05 8.16e+05 5.36e+05 6.76e+05 3.89e+-05 4.04e+05
12 9.81e+05 1.87e+06 1.90e+06 5.86e+05 8.06e+4-05 5.32e+05 6.59e+-05 3.56e+-05 3.24e+05
13 9.81e+05 1.47e4-06 1.96e+06 3.80e+-05 7.88e+05 5.40e+05 6.70e+05 3.11e+05 3.22e+4-05
14 9.81e+05 1.55e+06 1.88e+06 3.79e+4-05 7.59e+05 5.33e+05 6.75e+-05 2.86e+05 2.79e+05
15 9.81e+05 1.71e+06 1.88e+06 3.72e+4-05 7.60e+05 5.33e+05 6.46e+05 2.66e+-05 3.41e+4-05
16 9.81e+05 1.69e+06 2.08e+-06 3.43e+4-05 7.43e+05 5.24e+05 6.31e+05 2.66e+-05 3.06e+4-05
17 9.81e+05 1.69e+06 2.23e+06 3.36e+-05 7.54e+05 5.27e+05 6.36e+05 2.66e+-05 2.96e+05
18 9.81e+05 1.67e+06 2.24e+06 6.56e+4-05 7.43e+05 5.33e+05 6.45e+05 2.45e+05 2.85e+05
19 9.81e+05 1.73e4-06 2.19e+06 6.59e+4-05 7.23e+05 5.24e+-05 6.23e+05 2.46e+05 2.73e+05
20 9.81e+05 1.71e+4-06 2.19e4-06 6.57e405 6.98e+-05 5.09e+-05 6.17e+05 1.91e+05 2.72e+05
21 9.81e+05 1.61e+06 2.19e+06 7.55e+05 6.90e+4-05 5.20e+05 6.36e+05 2.13e+05 2.71e+05
22 9.81e+05 1.60e+06 2.32e4-06 7.60e+05 6.98e+4-05 5.18e+05 6.29e+05 2.23e+05 2.58e+05
23 9.81e+05 1.61e+4-06 2.16e4-06 7.52e+05 6.90e+4-05 5.33e+05 6.25e+-05 2.03e+05 2.52e+05
24 9.81e+05 1.61e+06 2.28e+06 7.43e+05 6.40e+05 5.14e+4-05 6.37e+05 2.32e+05 2.31e+05

Table B.22: Maximum number of nodes for the learned partitioning strategy: comparison of the scores scorey, and scorepnay, and the

impact of the output predicted by the learning algorithm (either the number of nodes, or the logarithm of the number of nodes).
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Parallelized: learned partitioning strategy

Without comm. (c0)

Comm. every 10k nodes (c10k)

SCOTep,1 SCOT€pax SCOTep,1 SCOT€max
N baseline #nodes log #nodes #nodes log #nodes #nodes log #nodes #nodes log #nodes
2 9.81e+05 1.98e+06 1.78e4-06 1.12e+06 1.39e+06 1.16e4-06 1.27e4-06 9.64e+-05 1.03e+06
3 9.81e+05 3.01e+06 2.94e+06 1.21e+4-06 1.44e+-06 1.21e4-06 1.46e+06 9.91e+05 8.37e+05
4 9.81e+05 3.48e+06 3.38e+4-06 1.31e+06 1.90e+06 1.24e+06 1.46e4-06 9.56e+-05 9.61e+05
5 9.81e+05 3.90e+-06 3.86e4-06 1.43e+06 2.14e+06 1.28e+06 1.48e+06 8.91e+05 1.02e+06
6 9.81e+05 4.14e+-06 4.96e+-06 1.53e+06 2.41e+06 1.29e4-06 1.49e4-06 9.95e+-05 1.02e+4-06
7 9.81e+05 4.41e4-06 5.22e+06 1.60e+06 2.54e+06 1.32e4-06 1.52e4-06 1.04e4-06 9.64e+-05
8 9.81e+05 4.73e+406 5.72e4-06 1.53e+06 2.61e+06 1.33e+06 1.67e+06 1.02e+06 9.71e+05
9 9.81e+05 5.54e+06 6.53e+4-06 1.69e+06 2.76e+06 1.55e+06 1.63e+06 1.02e4-06 1.03e+06
10 9.81e+05 6.25e+06 6.87e+4-06 2.06e+06 2.94e+06 1.63e+06 1.66e+06 1.07e+06 1.04e+-06
11 9.81e+05 6.88e+-06 7.61e+06 2.14e+06 3.14e+4-06 1.56e+06 1.67e+06 1.12e+06 1.13e+06
12 9.81e+05 7.28e+06 7.94e+06 2.56e+06 3.35e+4-06 1.61e+4-06 1.75e+06 1.12e4-06 1.12e+4-06
13 9.81e+05 8.39e+4-06 8.45e+06 1.99e+06 3.38e+-06 1.60e+06 1.77e4-06 1.12e+06 1.03e+06
14 9.81e+05 8.70e4-06 8.98e+-06 2.03e+06 3.23e+4-06 1.60e+06 1.82e4-06 1.10e+06 1.03e+06
15 9.81e+05 9.24e4-06 9.44e4-06 2.04e+06 3.52e+-06 1.60e+06 1.81e+06 1.11e+06 1.09e+06
16 9.81e+05 9.62e+06 1.03e+07 2.04e+06 3.56e+4-06 1.59e+06 1.79e+06 1.02e4-06 1.03e+06
17 9.81e+05 9.74e4-06 1.09e+07 2.11e+06 3.68e+-06 1.62e+06 1.80e+06 1.07e+06 1.03e+06
18 9.81e+05 9.96e+-06 1.12e+4-07 3.43e+-06 3.66e+4-06 1.66e+06 1.90e+06 1.03e+06 1.05e+06
19 9.81e+05 1.04e+07 1.20e+4-07 3.56e+-06 3.76e+4-06 1.62e+06 1.85e+06 1.07e+06 1.04e+-06
20 9.81e+05 1.07e+07 1.23e+07 3.57e+406 3.94e+06 1.65e+06 1.89e+06 1.00e+06 1.04e+06
21 9.81e+05 1.09e+07 1.25e4-07 4.12e+4-06 4.02e+-06 1.69e+06 1.98e+06 9.57e+05 1.04e+-06
22 9.81e+05 1.15e407 1.34e+07 4.33e+-06 4.08e+-06 1.70e4-06 1.96e+06 1.10e4-06 1.03e+06
23 9.81e+05 1.19e+07 1.38e+07 4.45e+4-06 4.21e+06 1.74e4-06 1.98e+06 1.01e4-06 1.01e+06
24 9.81e+05 1.23e+07 1.46e+4-07 4.65e+-06 4.22e+-06 1.71e+06 2.04e4-06 1.07e+06 9.75e+4-05

Table B.23: Total number of nodes for the learned partitioning strategy: comparison of the scores scorep, and scorepa.yx, and the

impact of the output predicted by the learning algorithm (either the number of nodes, or the logarithm of the number of nodes).
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Parallelized: learned partitioning strategy

Without comm. (c0)

Comm. every 10k nodes (c10k)

N baseline probe 50 probe 500 probe 5k probe 50k probe 50 probe 500 probe 5k probe 50k
2 9.81e+405 6.07e+05 6.99e+05 5.62e+05 4.86e+05 4.95e+05 5.24e+05 4.82e+05 4.36e+05
3 9.81e+05 5.38e+05 5.81e+05 4.03e+05 4.00e+4-05 3.55e+05 3.46e+4-05 3.30e+-05 2.85e+05
4 9.81e+05 5.98e+05 4.72e+05 3.27e+05 2.99e+-05 2.84e+05 2.81e+05 2.39e+05 1.97e+4-05
5 9.81e+05 6.15e4-05 3.88e+05 2.86e+05 2.39e+05 2.27e+05 2.08e+05 1.78e+05 1.51e+4-05
6 9.81e+05 6.81e+05 3.74e+-05 2.56e+05 2.07e+05 1.97e+4-05 1.79e+-05 1.66e+4-05 1.18e+-05
7 9.81e+05 6.40e+05 3.33e+05 2.28e+05 1.93e+4-05 1.81e+4-05 1.53e+4-05 1.48e+05 1.15e+05
8 9.81e+05 7.21e+05 2.99e+05 1.96e+-05 1.68e+-05 1.62e+05 1.37e+4-05 1.32e+05 9.89e+04
9 9.81e+05 6.83e+05 2.81e+05 1.93e+05 1.54e+4-05 1.53e+4-05 1.21e+4-05 1.16e+05 8.76e+04

10 9.81e+05 6.83e+05 2.72e+05 2.14e+-05 1.40e+-05 1.44e+05 1.16e+-05 1.09e+-05 7.89e+04

11 9.81e+05 6.46e+05 2.50e+05 2.02e+05 1.33e+4-05 1.21e+4-05 1.09e+4-05 1.04e+4-05 7.16e+04

12 9.81e+05 6.07e+05 2.30e+05 2.22e+05 1.29e+05 1.13e+05 9.71e+04 9.57e+04 6.77e+04

13 9.81e+405 5.79e+05 2.21e+05 1.53e+05 1.14e+05 1.11e+05 9.54e+04 8.86e+04 6.20e+04

14 9.81e+05 5.68e+05 2.11e+05 1.45e+05 1.11e4-05 1.04e+4-05 8.57e+04 7.99e+04 6.06e+04

15 9.81e+05 5.41e+05 2.09e+05 1.36e+05 1.09e+-05 9.93e+04 8.26e+04 7.60e+04 5.88e+04

16 9.81e+05 5.21e+05 2.07e+05 1.28e+05 1.04e+4-05 8.97e+04 8.22e+04 6.46e+04 5.53e+04

17 9.81e+405 5.14e+05 2.04e+-05 1.24e+05 1.01e+05 8.92e+04 7.70e+04 6.40e+04 5.49e+04

18 9.81e+05 5.60e+05 1.99e+-05 1.96e+05 9.59e+04 8.56e+04 7.36e+04 5.82e+04 5.16e+04

19 9.81e+05 5.43e+05 1.92e+05 1.92e+05 9.57e+04 8.08e+04 7.01e+04 5.70e+04 4.95e+04

20 9.81e+05 5.25e+05 1.91e+05 1.87e+05 9.89e+04 7.77e+04 6.51e+04 5.12e+04 4.73e+04

21 9.81e+405 5.08e+05 1.83e+05 2.06e+05 9.37e+04 7.43e+04 6.17e+04 4.67e+04 4.74e+04

22 9.81e+05 4.94e+05 1.83e+05 2.06e+05 8.93e+04 7.08e+04 6.05e+04 5.14e+04 4.29e+04

23 9.81e+05 4.85e+05 1.83e+05 2.06e+05 8.66e+04 6.91e+04 5.87e+04 4.54e+04 4.13e+04

24 9.81e+05 4.76e+05 1.83e+05 2.06e+05 8.42e+04 6.59e+04 5.68e+04 4.61e+04 3.96e+04

Table B.24: Mean number of nodes for the learned partitioning strategy: impact of the probing size (i.e., the number of nodes explored

in order to compute the features describing the subproblem). We compare probing budgets of 50, 500, 5¢3, and 5e?.
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Parallelized: learned partitioning strategy

Without comm. (c0) Comm. every 10k nodes (c10k)

N baseline probe 50 probe 500 probe bk probe 50k probe 50 probe 500 probe 5k probe 50k
2 0 2.81e+05 3.29e+05 4.39e+-05 3.01e405 2.77e+05 3.41e+05 3.45e+05 2.88e+05
3 0 3.06e+-05 4.26e+4-05 2.87e+05 2.68e+05 2.16e+-05 3.41e+05 2.86e+05 2.02e+05
4 0 5.07e+05 3.82e+-05 2.26e+05 2.08e+05 2.10e+05 2.60e+-05 2.08e+05 1.90e+05
5 0 6.18e+05 3.45e+4-05 2.14e+05 1.66e+05 1.83e+05 2.22e+05 1.64e+05 1.39e+05
6 0 8.20e+05 3.89e+4-05 2.01e+05 1.31e+05 1.62e+05 2.10e+05 1.62e+05 1.06e+05
7 0 7.64e+05 3.68e+4-05 1.87e+05 1.23e+05 1.59e+05 1.93e+05 1.44e+-05 1.08e+05
8 0 8.39e+05 3.17e405 1.61e+05 9.58e+-04 1.51e+05 1.68e+05 1.39e+05 8.19e+04
9 0 8.11e+05 3.12e+05 1.62e+-05 9.13e+4-04 1.43e+05 1.53e+05 1.31e+05 7.35e+04

10 0 8.56e+05 2.96e+05 2.15e+05 8.92e+-04 1.31e+05 1.49e+05 1.19e+05 6.84e+04

11 0 8.69e+05 2.58e+05 1.82e+05 8.80e+-04 1.18e+05 1.40e+05 1.23e+05 6.53e+04

12 0 8.13e+05 2.43e+05 1.96e+05 8.45e+4-04 1.16e+05 1.20e+05 1.11e+05 6.15e+4-04

13 0 7.89e+05 2.22e+05 1.06e+05 7.15e+04 1.16e+05 1.15e+05 9.67e+04 5.89e+-04

14 0 7.47e+05 2.18e+05 1.03e+05 7.18e+04 1.12e+05 1.08e+05 8.87e+04 5.69e+04

15 0 7.26e+05 2.17e+05 9.69e+-04 7.45e+04 1.08e+05 1.05e+05 8.06e+-04 5.87e+04

16 0 7.08e+05 2.13e+05 8.94e+04 6.92e+04 1.05e+05 1.07e+05 7.27e+04 5.22e+04

17 0 6.94e+-05 2.06e+05 8.76e+04 6.77e+04 1.02e+05 1.00e+05 7.16e+04 5.21e+04

18 0 7.61e+05 2.02e+05 1.83e+05 6.59e+-04 1.03e+05 9.56e+-04 6.42e+04 4.92e+04

19 0 7.45e+05 1.96e+05 1.80e+05 6.75e+04 1.00e+05 9.08e+-04 6.40e+-04 5.02e+04

20 0 7.27e+05 1.96e+05 1.78e+05 6.89e+-04 9.77e404 8.69e+-04 5.23e+04 4.81e+04

21 0 7.15e+05 1.91e+05 2.03e+05 6.66e+-04 9.49e+4-04 8.42e+4-04 5.23e+04 4.94e+04

22 0 7.07e+05 1.90e+05 2.01e+05 6.23e+04 9.28e+4-04 7.98e+04 5.81e+04 4.45e+04

23 0 7.04e+05 1.91e+405 1.99e+05 5.88e+04 9.13e+4-04 8.27e+404 5.14e+04 4.05e+-04

24 0 6.68e+05 1.93e+05 1.95e+05 5.67e+04 8.93e+4-04 8.05e+4-04 5.79e+04 3.65e+04

Table B.25: Standard deviation of the number of nodes for the learned partitioning strategy: impact of the probing size (i.e., the
number of nodes explored in order to compute the features describing the subproblem). We compare probing budgets of 50, 500, 5e?,
and 5e.
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Parallelized: learned partitioning strategy

Without comm. (c0)

Comm. every 10k nodes (c10k)

N baseline probe 50 probe 500 probe 5k probe 50k probe 50 probe 500 probe 5k probe 50k
2 9.81e+405 4.08e+05 4.66e+05 2.52e+05 2.73e+05 3.00e+05 2.83e+05 2.38e+05 2.32e+05
3 9.81e+05 2.77e+05 1.41e+05 1.74e+05 1.61e+4-05 1.64e+4-05 6.27e+04 1.19e+05 1.02e+05
4 9.81e+05 1.96e+-05 1.08e+05 1.19e+-05 9.89e+04 7.62e+04 6.56e+04 7.11e4+04 4.51e+04
) 9.81e+05 1.22e4-05 5.68e+04 7.58e+04 8.46e+04 5.44e+04 2.55e+04 1.60e+-04 4.02e+04
6 9.81e+05 8.99e+04 5.73e+04 4.45e+04 7.37e+04 4.79e+04 2.66e+04 9.09e+03 2.85e+04
7 9.81e+05 9.26e+04 4.35e+04 3.61e+04 6.31e+04 2.42e+04 1.44e+04 7.27e+03 2.60e+04
8 9.81e+05 9.19e+04 3.93e+04 2.86e+-04 5.31e+04 1.53e+04 1.32e+04 5.87e+03 2.30e+04
9 9.81e+05 6.28e+04 3.03e+04 1.66e+-04 4.00e+04 1.17e+04 9.58e+03 5.32e+03 1.06e+-04

10 9.81e+05 5.35e+04 2.97e+4-04 1.61e+04 3.66e+04 8.72e+403 7.31e+03 4.73e+03 9.83e+03

11 9.81e+05 5.29e+04 2.21e4+04 9.23e+03 3.56e+04 6.37e+03 3.04e+03 3.53e+03 8.61e4+03

12 9.81e+05 4.31e+04 1.35e+4-04 7.70e+03 3.54e+04 6.30e+03 2.35e+03 2.67e+03 6.85e+03

13 9.81e+405 4.16e+04 1.25e+-04 2.53e+-04 3.17e+04 7.26e+03 2.42e+03 2.58e+03 5.74e+03

14 9.81e+05 4.10e+04 4.65e+03 2.52e+04 2.87e+04 6.09e+03 1.48e+03 2.52e+03 5.94e+03

15 9.81e+05 4.10e+04 4.41e+03 2.32e+04 2.63e+04 6.05e+03 1.44e+03 2.49e+03 5.22e+03

16 9.81e+05 3.96e+04 4.40e+03 2.31e4+04 2.44e+404 5.72e+03 1.42e+4-03 2.53e+03 4.81e+403

17 9.81e+405 3.96e+04 4.34e+03 1.96e+-04 2.43e+04 5.38e+03 1.42e+03 2.44e+03 4.96e+03

18 9.81e+05 3.96e+04 4.34e+03 7.06e+03 2.17e+04 5.82e+03 1.42e+4-03 2.49e+03 3.43e+03

19 9.81e+05 3.20e+04 4.23e+03 6.91e+03 1.59e+-04 4.04e+-03 1.44e+03 2.30e+03 3.03e+03

20 9.81e+05 2.80e+04 4.07e+03 6.66e+03 1.56e+-04 2.99e+03 1.45e+03 2.02e+03 3.55e+03

21 9.81e+405 2.49e+04 3.49e+03 4.77e+03 1.16e+-04 2.86e+03 1.40e+-03 1.99e+-03 1.76e+4-03

22 9.81e+05 2.26e+04 3.49e+03 3.74e+03 1.12e+4-04 2.28e+03 1.39e+4-03 1.71e403 1.82e+03

23 9.81e+05 2.26e+04 3.48e+03 3.74e+03 1.01e4-04 2.26e+03 1.38e+4-03 1.79e+4-03 1.70e+4-03

24 9.81e+05 2.26e+04 3.48e+03 3.69e+03 9.90e+03 2.21e+03 1.38e+-03 1.62e+03 1.68e+-03

Table B.26: Minimum number of nodes for the learned partitioning strategy: impact of the probing size (i.e., the number of nodes

explored in order to compute the features describing the subproblem). We compare probing budgets of 50, 500, 5¢3, and 5e?.
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Parallelized: learned partitioning strategy

Without comm. (c0)

Comm. every 10k nodes (c10k)

N baseline probe 50 probe 500 probe 5k probe 50k probe 50 probe 500 probe 5k probe 50k
2 9.81e+405 8.06e+05 9.32e+05 8.73e+05 6.98e+05 6.91e405 7.65e+05 7.26e+05 6.39e+05
3 9.81e+05 8.62e+05 9.51e+05 7.14e+05 6.70e4-05 5.74e+05 7.03e+05 6.45e+4-05 4.91e+05
4 9.81e+05 1.28e+-06 8.99e+05 6.09e+05 5.50e+05 5.33e+05 6.23e+05 5.04e+05 4.54e+05
5 9.81e+05 1.60e+06 8.65e+05 5.83e+05 4.67e+05 4.77e+05 5.54e+05 4.21e+05 3.71e+05
6 9.81e+05 2.21e+06 1.01e+06 5.41e+05 4.03e+05 4.52e+05 5.55e+05 4.29e+05 2.91e+05
7 9.81e+05 2.21e+06 1.01e+-06 5.28e+05 3.94e+05 4.32e+05 5.32e+05 3.97e+05 3.11e+05
8 9.81e+05 2.39e+-06 9.24e+-05 4.76e+05 3.24e+4-05 4.26e+05 4.77e+05 4.03e+05 2.60e+05
9 9.81e+05 2.39e+06 9.25e+05 4.80e+05 3.09e+05 4.22e+05 4.49e+-05 3.94e+05 2.30e+05

10 9.81e+05 2.69e+06 8.89e+05 6.90e+05 3.03e+05 3.99e+05 4.50e+05 3.74e+405 2.26e+05

11 9.81e+05 2.81e+06 7.93e+05 5.87e+05 3.10e+05 3.79e+05 4.44e+05 3.89e+05 2.20e+05

12 9.81e+05 2.69e+06 7.87e+05 5.86e+05 3.02e+05 3.93e+05 3.90e+05 3.56e+05 2.13e+05

13 9.81e+405 2.68e+06 7.34e+05 3.80e+05 2.56e+05 3.96e+05 3.78e+05 3.11e405 2.08e+05

14 9.81e+05 2.53e+06 7.39e+05 3.79e+05 2.53e+05 3.82e+05 3.61e+05 2.86e+05 2.08e+05

15 9.81e+05 2.52e+06 7.41e+05 3.72e+05 2.56e+05 3.77e+05 3.70e+05 2.66e+05 2.10e+05

16 9.81e+05 2.52e+06 7.37e+05 3.43e+05 2.54e+05 3.78e+05 3.83e+05 2.66e+05 1.86e+4-05

17 9.81e+405 2.54e+06 7.40e+-05 3.36e+05 2.54e+05 3.68e+05 3.54e+-05 2.66e+05 1.91e+405

18 9.81e+05 2.69e+06 7.41e+05 6.56e+05 2.54e+05 3.83e+05 3.57e+05 2.45e+05 1.85e4-05

19 9.81e+05 2.69e+06 7.41e+05 6.59e+05 2.57e+05 3.76e+05 3.43e+05 2.46e+05 1.91e+4-05

20 9.81e+05 2.66e+06 7.46e+05 6.57e+05 2.52e+05 3.70e+05 3.41e+05 1.91e+4-05 1.91e+05

21 9.81e+405 2.67e+06 7.42e+05 7.55e+05 2.50e+05 3.71e405 3.35e+05 2.13e+05 1.98e+-05

22 9.81e+05 2.67e+06 7.44e+05 7.60e+05 2.49e+05 3.67e+05 3.21e+05 2.23e+05 1.83e+4-05

23 9.81e+05 2.69e+06 7.53e+05 7.52e+05 2.43e+05 3.70e+05 3.44e+05 2.03e+05 1.64e+05

24 9.81e+05 2.69e+06 7.64e+05 7.43e+05 2.38e+05 3.70e+05 3.40e+05 2.32e+05 1.39e+-05

Table B.27: Maximum number of nodes for the learned partitioning strategy: impact of the probing size (i.e., the number of nodes

explored in order to compute the features describing the subproblem). We compare probing budgets of 50, 500, 5¢3, and 5e?.
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Parallelized: learned partitioning strategy

Without comm. (c0)

Comm. every 10k nodes (c10k)

N baseline probe 50 probe 500 probe 5k probe 50k probe 50 probe 500 probe 5k probe 50k
2 9.81e+405 1.21e+06 1.40e+-06 1.12e+06 9.71e+405 9.90e+05 1.05e+4-06 9.64e+-05 8.71e+05
3 9.81e+05 1.61e+4-06 1.74e+4-06 1.21e+4-06 1.20e+06 1.06e+-06 1.04e4-06 9.91e+05 8.55e+05
4 9.81e+05 2.39e+-06 1.89e+-06 1.31e+06 1.20e+-06 1.14e+06 1.12e+06 9.56e+05 7.89e+05
) 9.81e+05 3.07e+06 1.94e+-06 1.43e+06 1.19e+06 1.13e+06 1.04e+4-06 8.91e+05 7.53e+05
6 9.81e+05 4.09e+06 2.25e+06 1.53e+-06 1.24e+06 1.18e+-06 1.08e+-06 9.95e+05 7.11e+05
7 9.81e+05 4.48e+4-06 2.33e+06 1.60e+-06 1.35e+4-06 1.27e4-06 1.07e+4-06 1.04e+4-06 8.04e+405
8 9.81e+05 5.77e+06 2.39e+06 1.53e+-06 1.35e+4-06 1.30e+-06 1.10e+-06 1.02e+06 7.91e+05
9 9.81e+05 6.15e4-06 2.53e+06 1.69e+-06 1.39e4-06 1.38e+4-06 1.09e4-06 1.02e+4-06 7.88e+05

10 9.81e+05 6.81e+4-06 2.72e+4-06 2.06e+06 1.40e+-06 1.43e+-06 1.16e+-06 1.07e+4-06 7.89e+05

11 9.81e+05 7.09e+06 2.75e4-06 2.14e+06 1.46e+06 1.32e4-06 1.20e+06 1.12e4-06 7.86e+05

12 9.81e+05 7.26e+06 2.76e4-06 2.56e+06 1.55e4-06 1.35e4-06 1.16e+06 1.12e+4-06 8.11e+05

13 9.81e+405 7.48e+06 2.87e+06 1.99e+-06 1.48e+-06 1.42e+06 1.24e+06 1.12e+06 8.05e+05

14 9.81e+05 7.91e+06 2.95e+06 2.03e+06 1.55e4-06 1.44e4-06 1.20e+06 1.10e+06 8.47e+05

15 9.81e+05 8.08e+06 3.14e+4-06 2.04e4-06 1.63e+-06 1.47e4-06 1.24e+06 1.11e+06 8.81e+05

16 9.81e+05 8.30e+06 3.27e+06 2.04e+06 1.67e+4-06 1.42e4-06 1.30e+4-06 1.02e+4-06 8.84e+05

17 9.81e+405 8.69e+06 3.41e+4-06 2.11e+4-06 1.72e+06 1.50e+-06 1.28e+-06 1.07e+4-06 9.33e+05

18 9.81e+05 1.00e+-07 3.51e+06 3.43e+06 1.73e+4-06 1.53e+4-06 1.30e+4-06 1.03e+4-06 9.28e+-05

19 9.81e+05 1.03e+-07 3.57e+06 3.56e+06 1.82e+06 1.52e+06 1.30e+-06 1.07e+4-06 9.39e+05

20 9.81e+05 1.04e+4-07 3.73e+06 3.57e+06 1.98e4-06 1.54e4-06 1.27e+4-06 1.00e+4-06 9.44e+05

21 9.81e+405 1.06e+-07 3.75e+06 4.12e+06 1.96e+-06 1.55e+4-06 1.26e+-06 9.57e+05 9.94e+05

22 9.81e+05 1.08e+-07 3.90e+06 4.33e+06 1.96e+4-06 1.54e4-06 1.29e+06 1.10e+06 9.43e+05

23 9.81e+05 1.11e+4-07 4.09e+06 4.45e+06 1.99e4-06 1.58e4-06 1.30e+4-06 1.01e+4-06 9.48e+4-05

24 9.81e+05 1.14e+07 4.23e+06 4.65e+06 2.02e+06 1.57e+4-06 1.31e+06 1.07e+4-06 9.48e+05

Table B.28: Total number of nodes for the learned partitioning strategy: impact of the probing size (i.e., the number of nodes explored

in order to compute the features describing the subproblem). We compare probing budgets of 50, 500, 5¢3, and 5e?.
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