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ABSTRACT

A variety of instrumental effects can corrupt the observable quantities in optical or nulling stellar interferometry.
One such effect is parasitic interference, which can occur inside an interferometric instrument. Because of
diffraction effects related to beam propagation along finite size optics, or parasitic reflections inside transmitting
optics, a coherent crosstalk may occur between the beams and create a parasitic interference pattern superimposed
on the genuine one. We developed an analytical approach to describe the impact of this effect on the observables
of classical and nulling stellar interferometers. Considering classical interferometry, we show that differential
phase and closure phase are both corrupted, depending on the crosstalk level and the residual piston between
the beams. Considering typical specifications of piston correction of ground-based interferometers (≈ 100 nm),
the detection of hot Jupiter-like planets by differential phase implies a tolerance on the parasitic flux to about
5% of the incident intensity. Also, we show that the closure phase relation does not remove this parasitic
contribution. The corresponding corrupted closure phase is not zero for an unresolved source, and depends on
the residual piston. Considering nulling interferometry, we show that parasitic effects modify the transmission
map level, depending on the crosstalk level and the phase shift between primary and secondary beams. In the
extreme case of a pi-phase shift, the crosstalk effect implies a decrease of the final output signal-to-noise ratio.
Numerical simulations, adapted to handle consistently crosstalk, are then performed to estimate this degradation
on a concrete example, the FKSI mission concept.

Keywords: parasitic interference, mid-infrared interferometry, phase, closure phase, hot Jupiter, nulling inter-
ferometry

1. INTRODUCTION

Stellar optical interferometry has substantially evolved in terms of instrument and operation since Fizeau’s idea
to use this technique for measuring the diameter of stars1 . Since Michelson’s interferometer, where separated
mirrors were fixed on the same telescope mounting,2 interferometry with independent telescopes has allowed
access to very long baselines3 and consequently high angular resolution. In parallel, and considered for the first
time by Bracewell4 to detect “nonsolar planets”, nulling interferometry aims at detecting faint off-axis companions
(e.g., planets, exozodiacal disks) orbiting around distant stars. Its principle is to enhance the companion over
star flux ratio by producing a destructive interference on the line-of-sight so that the stellar flux is rejected. By
an appropriate choice of the baseline length, the flux of the off-axis source can be transmitted and thus detected
more easily.
For most of the current classical and nulling interferometers, the beams coming from each telescope, are carried
through tunnels up to a combining device. The beams are often reduced in size for practical reasons. However,
the transport of these beams through multiple optical modules can be problematic. Because of diffraction effects
associated with beam propagation along finite size optics, a coherent cross-talk may occur between beams.
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This cross-talk implies a parasitic interference between the collection and the recombination steps, so that
the “intrinsic” coherence between beams and, consequently, the resulting interferometric observables will be
perturbed. Matter et al.5 studied for the first time the impact of parasitic interference on the measurement of
the complex visibility by a classical two-telescope interferometer. The degradation of the modulus and the phase
of the complex visibility depends on two parameters : the residual piston and the contamination rate between
interferometric beams. This degradation may be significant when considering the detection by differential phase
of close-in extrasolar giant planets. We first extend this study by focussing on the closure phase. This observable
has been proposed for the first time by Segransan et al.6 to observe challenging targets such as giant extrasolar
planets, if more than one interferometric baseline is available. In theory, closure phase entirely removes the
atmospheric and instrumental OPD (Optical Path Difference) effects occuring before the recombination of the
beams, by summing the pair of baselines over a closed loop, so that the phase shifts between the beam pairs
are globally nulled. In our case, we examine the possibility that this observable could be corrupted by parasitic
interference and thus could not allow its effects to be removed.
In a second time, we focus on nulling interferometry, knowing that the rejection rate of the stellar flux is
usually degraded by various instrumental effects causing an instrumental leakage7 , in addition to the geometric
leakage due to the finite size of the central star. The impact of this instrumental leakage on the detection of faint
companions has been considered both experimentally8,9 , and analytically10 , but none of these studies addressed
the coherent cross-talk that may occur between beams within an interferometric instrument. Considering a
Bracewell-like interferometer, we thus study and describe how this instrumental effect perturbs the transmission
map of the interferometer, and transforms the geometric and instrumental leakages.
In Section 2, we briefly remind the formalism developed in Matter et al.5 and apply it to the closure phase
observable. In Section 3, we adapt this formalism to the case of a Bracewell-like interferometer, and derive its
perturbed intensity response and the corresponding null output. Then, in Section 4, we quantify the impact of
the parasitic interference effect on the hot Jupiter-like sources detection, considering both types of interferometer
and their related observables. End-to-end numerical simulations are shown as well. Finally, in Section 5, we
summarize our work and discuss how the general problem of crosstalk is handled in the test beds of the nulling
interferometer projects, or in the design of the next optical interferometers.

2. PARASITIC INTERFERENCE IN CLASSICAL INTERFEROMETRY

2.1 Interferometric framework

To create a model of parasitic interference affecting the interferometric observables, especially the phase and the
closure phase, we use a three-telescope interferometer characterized by a multi-axial scheme and an image plane
recombination. For a general description of the output response of a single baseline interferometer, see also Elias
et al.11 .
First we write the complex amplitudes collected by telescopes 1, 2 and 3, i.e. the three samples of the wavefront,
that we respectively note ψ1, ψ2 and ψ3. We multiply each of them by a real transmission factor noted t1, t2,
and t3, which represents the transmission of electric fields through the instrument.
Let us define ǫ1 to be the main fraction of ψ1 propagating along the path 1, ǫ′12 to be the small fraction
propagating along the path 2, and ǫ′13 to be the small fraction propagating along the path 3. We consider the
same parasitic effect for ψ2, where ǫ2 is the main fraction of ψ2 propagating along the path 2, ǫ′21 = ǫ′12 is the
small fraction propagating along the path 1, and ǫ′23 is the small fraction propagating along the path 3. This
is the same for ψ3, where ǫ3 corresponds to the main fraction of ψ3 propagating along the path 3, ǫ′31 = ǫ′13 is
the small fraction propagating along the path 1, and ǫ′32 = ǫ′23 is the small fraction propagating along the path
2. Fig.1 shows two examples of cross-talk between beams. A possible imbalance of parasitic flux between paths,
not presented in this paper, was considered in the study but appeared to be a second order parameter. All the
cross-talk occuring inside the instrument produces a resulting parasitized pattern in a conjugate of the pupil
plane, located just before the recombination on the detector. This is described in the following equation giving
the complex amplitude preceding the recombination of beams 1 and 2 :

ψpup,12(x, y) = [ǫ1t1ψ1 + ǫ′12t2ψ2 + ǫ′13t3ψ3]P(x−
b12
2
, y) + [ǫ2t2ψ2 + ǫ′12t1ψ1 + ǫ′23t3ψ3]P(x+

b12
2
, y). (1)

Here x and y are the coordinates in the pupil plane. b12 is the distance between the pupils of telescopes 1 and 2,
which are reduced in size at the entrance of the interferometer, D being the diameter of these pupils. P(x, y) =

2



E1

E2

´E1

E1

E2

´E2 ´E1

E1 E1

E2

E2

´E2

e

e

e

e e

e

e

e

Figure 1. Simple scheme describing the different possibilities of beam contamination (or crosstalk). This beam contami-
nation can be produced by a parasitic reflection inside transmitting optics (left figure) or by a beam mixing (right figure).
ǫE1 ans ǫE2 represent the main beams (in electrical field), while ǫ′E1 ans ǫ′E2 corresponds to the secondary beams
reflected inside the optics and/or going though the wrong paths (for example due to diffraction or beam mixing).

Π(

√
x2+y2

D ), where Π(x, y) is the transmission function of a circular aperture with a uniform transmission of 1
inside and 0 outside. Considering similarly b13 and b23 the distance between the pupils of telescopes 1 and 2, and
2 and 3, respectively, the complex amplitude preceding the recombination of beam 1 with beam 3, and beam 2
with beam 3 is given by:

ψpup,13(x, y) = [ǫ1t1ψ1 + ǫ′12t2ψ2 + ǫ′13t3ψ3]P(x−
b13
2
, y) + [ǫ3t3ψ3 + ǫ′23t2ψ2 + ǫ′13t1ψ1]P(x+

b13
2
, y), (2)

ψpup,23(x, y) = [ǫ2t2ψ2 + ǫ′12t1ψ1 + ǫ′23t3ψ3]P(x−
b23
2
, y) + [ǫ3t3ψ3 + ǫ′13t1ψ1 + ǫ′23t2ψ2]P(x+

b23
2
, y). (3)

Here we assumed that the three pupils are aligned along the x-axis of the pupil plane. From Eqs. 1, 2 and 3,
we discuss how parasitic fringes are formed on the detector.
As we will see later, the complex degree of coherence between the different parasitized beams will become:

< [ǫ1t1ψ1 + ǫ′12t2ψ2 + ǫ′13t3ψ3][ǫ2t2ψ2 + ǫ′12t1ψ1 + ǫ′23t3ψ3]
∗ >,

< [ǫ1t1ψ1 + ǫ′12t2ψ2 + ǫ′13t3ψ3][ǫ3t3ψ3 + ǫ′23t2ψ2 + ǫ′13t1ψ1]
∗ >,

< [ǫ2t2ψ2 + ǫ′12t1ψ1 + ǫ′23t3ψ3][ǫ3t3ψ3 + ǫ′13t1ψ1 + ǫ′23t2ψ2]
∗ >,

instead of the corresponding ’intrinsic’ coherence terms < ψ1ψ
∗
2 >, < ψ1ψ

∗
3 >, and < ψ2ψ

∗
3 >.

2.2 Interference and formation of parasitic fringes

In order to describe the formation of parasitic fringes, we consider the most general case of the observation
of an extended source. The vector α is the angular coordinate in the plane of the sky. The telescopes are
located at γ1, γ2 and γ3, γ being the coordinate in the plane containing the telescopes and counted in units of
wavelength (γ = r

λ ) (see Fig. 1). B12

λ = γ1 − γ2,
B13

λ = γ1 − γ3,
B23

λ = γ2 − γ3, with B12, B13, and B23 the
corresponding baselines, respectively. The electric field emitted by each point of the extended source, located at
α, is represented by its amplitude A(α) and its phase φ(α, t) :

ψS(α) = A(α)ei[ωt+φ(α,t)]dα. (4)

In the plane of the telescopes, the phase shift of the wavefront emitted by each point of the source and measured
on the γ position is ∆Φ = −2πα · γ. Therefore, when considering the contributions of all the emitting points of
the source, each telescope observes a packet of wavefronts (respectively ψ1, ψ2, and ψ3) :

ψ1 =

∫

A(α)ei[ωt+φ(α,t)]ei2πα·γ1dα, (5)

ψ2 =

∫

A(α)ei[ωt+φ(α,t)]ei2πα·γ2dα, (6)

ψ3 =

∫

A(α)ei[ωt+φ(α,t)]ei2πα·γ3dα. (7)
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We can now write the expression of the complex amplitudes in the detector plane by performing the Fourier
transform of Eqs. 1, 2 and 3 with respect to x and y. In the detector plane, where β and η are the conjugate
angular coordinates related to x and y, and P̂(β, η) is the pupil diffraction function, we obtain :

W12(β, η) = (ǫ1t1ψ1 + ǫ′12t2ψ2 + ǫ′13t3ψ3)P̂(β, η)e
−iπbβ

λ + (ǫ2t2ψ2 + ǫ′12t1ψ1 + ǫ′23t3ψ3)P̂(β, η)e
iπbβ

λ = X1 +X2. (8)

W13(β, η) = (ǫ1t1ψ1 + ǫ′12t2ψ2 + ǫ′13t3ψ3)P̂(β, η)e
−iπbβ

λ + (ǫ3t3ψ3 + ǫ′23t2ψ2 + ǫ′13t1ψ1)P̂(β, η)e
iπbβ

λ = X1 +X3. (9)

W23(β, η) = (ǫ2t2ψ2 + ǫ′12t1ψ1 + ǫ′23t3ψ3)P̂(β, η)e
−iπbβ

λ + (ǫ3t3ψ3 + ǫ′13t1ψ1 + ǫ′23t2ψ2)P̂(β, η)e
iπbβ

λ = X2 +X3. (10)

The terms containing ψ1, ψ2 and ψ3 are not affected by the Fourier transform since ψ1, ψ2, and ψ3 can be
considered, in a good approximation, as constant over the aperture telescope area. This assumption is equivalent
to the requirement that the source is not resolved by the telescopes themselves or that the field of view is small.
On the detector, we observe the three following intensity patterns :

I12(β, η) = < |X1|2 > + < |X2|2 > +2Re < X1X
∗
2 >, (11)

I13(β, η) = < |X1|2 > + < |X3|2 > +2Re < X1X
∗
3 >, (12)

I23(β, η) = < |X2|2 > + < |X3|2 > +2Re < X2X
∗
3 > . (13)

The photometric terms, < |X1|2 >, < |X2|2 >, and < |X3|2 > are equal to:

< |X1|
2 > = P̂2(β, η)[(ǫ21t

2
1 + ǫ′212t

2
2 + ǫ′213t

2
3)Ô(0)] + 2ǫ1ǫ

′

12t1t2Re(Ô(γ1 − γ2))

+ 2ǫ1ǫ
′

13t1t3Re(Ô(γ1 − γ3)) + 2ǫ′12ǫ
′

23t2t3Re(Ô(γ2 − γ3)), (14)

< |X2|
2 > = P̂2(β, η)[(ǫ22t

2
2 + ǫ′212t

2
1 + ǫ′223t

2
3)Ô(0)] + 2ǫ2ǫ

′

12t1t2Re(Ô(γ2 − γ1))

+ 2ǫ2ǫ
′

23t2t3Re(Ô(γ2 − γ3)) + 2ǫ′12ǫ
′

23t1t3Re(Ô(γ1 − γ3)), (15)

< |X3|
2 > = P̂2(β, η)[(ǫ23t

2
3 + ǫ′213t

2
1 + ǫ′223t

2
2)Ô(0)] + 2ǫ3ǫ

′

13t1t3Re(Ô(γ3 − γ1))

+ 2ǫ3ǫ
′

23t2t3Re(Ô(γ2 − γ3)) + 2ǫ′13ǫ
′

23t1t2Re(Ô(γ1 − γ2)). (16)

Here O(α) = A2(α) is the intensity distribution of the source and Ô(γ1−γ2) =< ψ1ψ
∗
2 >=

∫

O(α)e−i2πα·(γ1−γ2)dα
is its Fourier transform at the spatial frequency (γ1 − γ2), also called the complex degree of mutual coherence,
is : Ô(γ1 − γ2) =< ψ1ψ

∗
2 >=

∫

O(α)e−i2πα·(γ1−γ2)dα. O(α) is a real function and its Fourier transform can

also be noted Ô(γ1 −γ2) = ρ12e
iφ12 (or Ô(γ1 −γ3) = ρ13e

iφ13 , or Ô(γ2 −γ3) = ρ23e
iφ23). However the intrinsic

phase of the source measured by the different baselines is always perturbed by an additive term representing the
atmospheric perturbations and instrumental instabilities occuring before recombination of the beams. Therefore
the phase observable produced by each pair of beams can be written again as:

Φ12 = φ12 + φ12,opd, (17)

Φ13 = φ13 + φ13,opd, (18)

Φ23 = φ23 + φ23,opd, (19)

with, for example, φ12,opd = 2π
λ δ12 = 2π

λ (δ1 − δ2) where δ12 is the OPD between beams 1 and 2. Then, in the
following, we will consider the phase terms Φ12, Φ13, and Φ23, containing the astrophysical contribution and the
instrumental and atmospheric effects occuring before beam recombination.

2.3 Parasitic differential and closure phases

From the general correlation terms < X1X
∗
2 >, < X1X

∗
3 >, and < X2X

∗
3 >, we extract the resulting parasitized

phase terms χ12, χ13, and χ23:
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< X1X
∗

2 > = P̂2(β, η)[(ǫ1ǫ
′

12t
2
1 + ǫ2ǫ

′

12t
2
2 + ǫ′12ǫ

′

23t
2
3)Ô(0) + ǫ1ǫ2t1t2Ô(γ1 − γ2) + ǫ1ǫ

′

23t1t3Ô
∗(γ1 − γ3)

+ ǫ′212t1t2Ô
∗(γ2 − γ1) + ǫ′12ǫ

′

23t2t3Ô
∗(γ2 − γ3)

+ ǫ′13ǫ2t2t3Ô
∗(γ3 − γ2) + ǫ′13ǫ

′

12t3t1Ô
∗(γ3 − γ1)]e

−2iπb
β
λ

= P̂2(β, η)[ρ12 e
iχ12 ] e−2iπb

β
λ = P̂2(β, η)ρ12 e

−i(2πb
β
λ
−χ12), (20)

< X1X
∗

3 > = P̂2(β, η)[(ǫ1ǫ
′

13t
2
1 + ǫ3ǫ

′

13t
2
3 + ǫ′12ǫ

′

23t
2
2)Ô(0) + ǫ1ǫ3t1t3Ô(γ1 − γ3) + ǫ1ǫ

′

23t1t2Ô
∗(γ1 − γ2)

+ ǫ′213t3t1Ô
∗(γ3 − γ1) + ǫ′12ǫ3t2t3Ô

∗(γ2 − γ3)

+ ǫ′12ǫ
′

13t2t1Ô
∗(γ2 − γ1) + ǫ′12ǫ

′

23t3t2Ô
∗(γ2 − γ3)]e

−2iπb
β
λ

= P̂2(β, η)[ρ13 e
iχ13 ] e−2iπb

β
λ = P̂2(β, η)ρ13 e

−i(2πb
β
λ
−χ13), (21)

< X2X
∗

3 > = P̂2(β, η)[(ǫ2ǫ
′

23t
2
2 + ǫ3ǫ

′

23t
2
3 + ǫ′12ǫ

′

13t
2
1)Ô(0) + ǫ2ǫ3t

2
2Ô(γ2 − γ3) + ǫ2ǫ

′

13t1t2Ô
∗(γ2 − γ1)

+ ǫ′223t3t2Ô
∗(γ3 − γ2) + ǫ′12ǫ3t1t3Ô

∗(γ1 − γ3)

+ ǫ′12ǫ
′

23t2t1Ô
∗(γ1 − γ2) + ǫ′23ǫ

′

13t3t1Ô
∗(γ3 − γ1)]e

−2iπb
β
λ

= P̂2(β, η)[ρ23 e
iχ23 ] e−2iπb

β
λ = P̂2(β, η)ρ23 e

−i(2πb
β
λ
−χ23). (22)

The resulting expression of the parasitized phase terms is the following:

χ12 = atan[
α12 sin(Φ12) + α13 sin(Φ13) + α23 sin(Φ23)

β12 cos(Φ12) + β13 cos(Φ13) + β23 cos(Φ23) + βÔ(0)
],

χ13 = atan[
γ13 sin(Φ13) + γ12 sin(Φ12) + γ23 sin(Φ23)

δ13 cos(Φ13) + δ12 cos(Φ12) + δ23 cos(Φ23) + δÔ(0)
], (23)

χ23 = atan[
η23 sin(Φ23) + η12 sin(Φ12) + η13 sin(Φ13)

κ23 cos(Φ23) + κ12 cos(Φ12) + κ13 cos(Φ13) + κÔ(0)
], (24)

with

α12 = (1− ǫ′′212 )t12ρ12, α13 = (ǫ′′23 − ǫ′′13ǫ
′′

12)t12t32ρ13, α23 = (ǫ′′12ǫ
′′

23 − ǫ′′13)t32ρ23.

β12 = (1 + ǫ′′212 )t12ρ12, β13 = (ǫ′′23 + ǫ′′13ǫ
′′

12)t12t32ρ13, β23 = (ǫ′′12ǫ
′′

23 + ǫ′′13)t32ρ23, β = (ǫ′′12(1 + t212) + ǫ′′13ǫ
′′

23t
2
32)

γ13 = (1− ǫ′′213 )t12t32ρ13, γ12 = (ǫ′′23 − ǫ′′13ǫ
′′

12)t12ρ12, γ23 = (ǫ′′12 − ǫ′′13ǫ
′′

23)t32ρ23.

δ13 = (1 + ǫ′′213 )t12t32ρ13, δ12 = (ǫ′′23 + ǫ′′13ǫ
′′

12)t12ρ12, δ23 = (ǫ′′12 + ǫ′′13ǫ
′′

23)t32ρ23, δ = (ǫ′′13t
2
12 + ǫ′′12ǫ

′′

23 + ǫ′′13t
2
32)

η23 = (1− ǫ′′223 )t32ρ23, η12 = (ǫ′′23ǫ
′′

12 − ǫ′′13)t12ρ12, η13 = (ǫ′′12 − ǫ′′13ǫ
′′

23)t12t32ρ13.

κ23 = (1 + ǫ′′223 )t32ρ23, κ12 = (ǫ′′13 + ǫ′′12ǫ
′′

23)t12ρ12, κ13 = (ǫ′′12 + ǫ′′13ǫ
′′

23)t32t12ρ13, κ = (ǫ′′23 + ǫ′′12ǫ
′′

13t
2
12 + ǫ′′23t

2
32).

(25)

Here t12 = t1
t2

and t32 = t3
t2

are the transmission ratio between beam paths. ǫ” = ǫ′

ǫ represents the percentage of
parasitic contribution (or contamination rate), evaluated with respect to ǫ which is the fraction of the electric

field propagating along the right path. ǫ”2 = ( ǫ
′

ǫ )
2 is the equivalent ratio in terms of flux (or intensity), called

’parasitic flux factor’ in the following. Since the χ terms are defined as parasitized phases, the parasitic phases,
representing the parasitic contributions added to the phase terms Φ12, Φ13, and Φ23, are χ12 − Φ12, χ13 − Φ13,
and χ23 − Φ23, respectively.
In our three-telescope scheme, we assumed a closed loop configuration for the baselines, so that we can define
the closure phase observable ψ by :

ψ = Φ12 +Φ23 − Φ13 (26)

This allows to remove the atmospheric and instrumental effects occuring before recombination since, in this
closed loop configuration, φ12,opd + φ23,opd − φ13,opd = 0. Assuming that the post-recombination instrumental
effects are removed by devices such as the BCD (see e.g. Vannier12 ), then, we would finally have :

ψ = φ12 + φ23 − φ13 (27)
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In presence of parasitic fringes, the phase closure relation applies to the parasitized phase terms χ12, χ13, and
χ23. The parasitized closure phase, denoted as X, is thus given by:

X = χ12 + χ23 − χ13 (28)

Let us explicit this expression to see if the phase closure relation can still allow us to remove the atmospheric
and instrumental contributions contained in Φ12, Φ13, and Φ23, along with the parasitic contribution affecting
them. The parasitized closure phase becomes:

X = atan(X12) + atan(X23)− atan(X13), (29)

with

X12 =
α12 sin(Φ12) + α13 sin(Φ13) + α23 sin(Φ23)

β12 cos(Φ12) + β13 cos(Φ13) + β23 cos(Φ23) + βÔ(0)

X23 =
η23 sin(Φ23) + η12 sin(Φ12) + η13 sin(Φ13)

κ23 cos(Φ23) + κ12 cos(Φ12) + κ13 cos(Φ13) + κÔ(0)

X13 =
γ13 sin(Φ13) + γ12 sin(Φ12) + γ23 sin(Φ23)

δ13 cos(Φ13) + δ12 cos(Φ12) + δ23 cos(Φ23) + δÔ(0)

(30)

Knowing that atan(x)+atan(y) = atan( x+y
1−xy ), we can develop the previous expression of the parasitized closure

phase X to obtain:

X = atan[
X12 +X23 −X13 +X12X23X13

1−X12X23 +X12X13 +X23X13
] (31)

Regarding the dependencies of X12, X23, and X13 on the contamination rates (ǫ′′12, ǫ
′′
13, and ǫ

′′
23) and the cosine

and sine of the phase terms (Φ12, Φ13, and Φ23), it clearly appears that we cannot retrieve the intrinsic closure
phase relation of the astrophysical source, defined by: ψ = φ12 + φ23 − φ13. Especially, the parasitized closure
phase of an unresolved source is not zero and depends on both the different contamination rates and the residual
piston through the φopd terms contained in the phase terms Φ12, Φ23, and Φ13.

2.4 Amplitude of parasitic differential phase

In this section, we remind some of the results described in Matter et al.5 concerning the estimation of the
impact of parasitic interference in the context of the observation of different ”synthetic” stellar systems with
a hot Jupiter, in L band. Table 1 shows the parameters of the different hot Jupiter synthetic spectra used
here. In this context let us consider a stellar system with a planet. We respectively note I∗(λ) and Ipl(λ) the

Table 1. Values of various parameters discriminating each phase spectrum extracted from Barman et al.13 .

Type of star Tint Separation star/planet

spectrum 1 dM5 500K 0.05 AU

spectrum 2 dM5 500K 0.5 AU

spectrum 3 dM5 1000K 0.005 AU

spectrum 4 dM5 1000K 0.1 AU

spectrum 5 G2 500K 0.3 AU

spectrum 6 G2 500K 1 AU

spectrum 7 G2 1000K 0.05 AU

spectrum 8 G2 1000K 1 AU

monochromatic flux of the two components separated by an angular distance αpl. The star appears as a disc
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of constant angular diameter D∗, and the planet appears as a point-like source. The parasitized phase of such a
system, noted χsyst(λ), writes as :

χsyst(λ) = arctan
t12(1− ǫ′′2)[C∗I∗ sin(Φ∗) + Ipl sin(Φ∗ +Φpl)]

ǫ′′(1 + t212)(I∗ + Ipl) + t12(1 + ǫ′′2)[C∗I∗ cos(Φ∗) + Ipl cos(Φ∗ +Φpl)]
. (32)

, with Φpl(λ) = 2πu · αpl and Φ∗(λ) =
2π
λ δ∗, where δ∗ represents the residual piston uncorrected by the fringe

tracking device. The intrinsic visibility of the star is C∗(u). The u-axis is chosen along the interferometric
baseline defined above, and takes the value u = B

λ . We consider the amplitude in L band of the phase signature
from the planet, a syst = max(Φsyst(λ)) − min(Φsyst(λ)), and of the corresponding parasitic phase, a par =
max(χsyst(λ)−Φsyst(λ))−min(χsyst(λ)−Φsyst(λ)). These quantities are calculated for a large range of δ∗ values
and are represented with respect to the parasitic flux factor ǫ′′2 in Fig.2. The λ/500 and λ/30 cases give a very
similar parasitic phase amplitude that can only be distinguished for the spectra 5, 6 and 7. It appears that if
typical fringe specifications are observed, the planet signal (horizontal solid line) always lies above the parasitic
phase amplitude; a hot Jupiter detection, with an intrinsic phase amplitude exceeding by a factor of three the
parasitic one, is thus achieved with a parasitic intensity equal to 5% of the total intensity.

3. PARASITIC INTERFERENCE IN NULLING INTERFEROMETRY

3.1 Parasitic interference model

To create a model of parasitic interference, we consider the case of a two-telescope pupil plane Bracewell inter-
ferometer. Its intensity response (or transmission map) is derived from the addition of the complex amplitude

of the electric fields, coming from a point-like source located at the
→
θ direction in the sky (see Fig.3), collected

by each telescope and splitted to go either in the destructive or the constructive output, namely E1(
→
θ ) and

E2(
→
θ ). However, we here assume a flux contamination (crosstalk), resulting from secondary reflections inside

the tramsitting optics or mutual contaminations between those two beams, as already described in Matter et

al.5 . This flux contamination results in parasitic interferences. We define ǫ as the main fraction of E1(
→
θ ) (resp.

E2(
→
θ )) propagating along the path 1 (resp. 2). Then, we define ǫ′ as the small fraction of E1(

→
θ ), either reflected

inside the transmitting optics and still following the path 1, or having contaminated E2(
→
θ ) by crosstalk and

following the path 2 (see Fig.1). We assume the same parasitic effect for E2(
→
θ ). All the parasitic reflections

and/or cross talk occuring inside the instrument produces a resulting perturbed pattern in the overlapping pupil

plane. At any point
→
r of this plane, the total electric field is thus given by:

E(
→
θ ,

→
r ) = Π(

r

D
)
[

ǫE1(
→
θ )e

iφ1 + ǫ′E2(
→
θ )e

iφ′

2 + ǫE2(
→
θ )e

iφ2 + ǫ′E1(
→
θ )e

iφ′

1

]

, (33)

where Π( r
D ) is the transmission function of the pupil, r =

√

x2 + y2 is the distance in the pupil plane, D is the
diameter of the pupil, φk and φ′k are the corresponding phase terms of the main part and the secondary part of
the beam k, respectively.

3.2 Perturbed intensity response

From Eq. 33, we derive in the following the perturbed intensity response of the nulling interferometer, noted

R̃λ(
→
θ ), in the presence of cross talk. The expression of the complex electric field Ek(

→
θ ) is Ek(

→
θ ) = Eke

i 2π
λ

→

x k·
→

θ ,

where
→
xk is the position of the telescope k. We thus have:

E(
→
θ ,

→
r ) = Π(

r

D
)[ǫ(E1e

i( 2π
λ

→

x 1·
→

θ+φ1) + E2e
(i 2π

λ

→

x 2·
→

θ+φ2)) + ǫ′(E1e
(i 2π

λ

→

x 1·
→

θ+φ′

1) + E2e
(i 2π

λ

→

x 2·
→

θ+φ′

2))],

= Π(
r

D
)r̃λ(

→
θ ). (34)
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Figure 2. Amplitude, in L band, of the intrinsic phase of a stellar system with a hot Jupiter, asyst (horizontal solid line),
and amplitude in L band of the related parasitic phase, apar (other dashed and dotted lines), plotted with respect to
ǫ′′2. Different values of δ∗ ranging from λ/500 to λ/5 are considered, and each panel is related to a different hot Jupiter
spectrum. The λ/500 and λ/30 cases correspond approximately to the typical specifications that would be respectively
achieved by a spatial and a ground-based fringe tracking device (δ∗ ≈ 2nm and 100nm).
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Figure 3. Geometric configuration of the interferometer and the astrophysical source. The two angular coordinates (θ, α)
give the position in the sky plane. Here, the line-of-sight is assumed to be perpendicular to the interferometer plane.

Then we calculate the perturbed intensity response of the interferometer:

R̃λ(
→
θ ) = r̃λ(

→
θ )r̃

∗
λ(

→
θ ),

= ǫ2[|E1|2 + |E2|2 + 2E1E2 cos((φ1 − φ2) +
2π

λ
(
→
x1 − →

x2)·
→
θ )]

+ ǫǫ′[2|E1|2 cos(φ1 − φ′1) + 2|E2|2 cos(φ2 − φ′2) + 2E1E2(cos(
2π

λ
(
→
x1 − →

x2)·
→
θ +(φ′1 − φ2))

+ cos(
2π

λ
(
→
x1 − →

x2)·
→
θ +(φ1 − φ′2)))]

+ ǫ′2[|E1|2 + |E2|2 + 2E1E2 cos((φ
′
1 − φ′2) +

2π

λ
(
→
x1 − →

x2)·
→
θ )] (35)

Assuming that each beam is divided into two equal parts by the balanced beam splitter, and that they were
collected by two telescopes of unitary size, we have |E1|2 = |E2|2 = 1/2. Following the notations of Fig. 3, we

have (
→
x1 − →

x2)·
→
θ= bθ cos(α). The general expression of the perturbed intensity response then becomes:

R̃λ(θ, α) = ǫ2[1 + cos((φ1 − φ2) + π
bθ

λ
cos(α))]

+ ǫǫ′[cos(φ1 − φ′1) + cos(φ2 − φ′2) + cos(π
bθ

λ
cos(α) + (φ′1 − φ2))

+ cos(π
bθ

λ
cos(α) + (φ1 − φ′2))]

+ ǫ′2[1 + cos((φ′1 − φ′2) + π
bθ

λ
cos(α))] (36)

We clearly see from the expression above that two parasitic contributions are degrading the intrinsic intensity

response of the interferometer, which is ǫ2[1 + cos((φ1 − φ2) +
2π
λ (

→
x1 − →

x2)·
→
θ )]. From this general expression

R̃λ, the phase shift terms between the different beam parts can be simplified if we assume a symmetric design
for the instrument, thus implying symmetric contaminations. In that case, we can simplify the phase shift terms
:

φ1 − φ2 = φ′1 − φ′2

φ1 − φ′1 = φ2 − φ′2 (37)

From these simplifications, we assume that, after beam mixing or parasitic reflection, any secondary beam has
been identically phase-shifted of ∆φ with respect to the primary beams before recombination. More precisely,
we will consider φk − φ′k = ∆φ. In the following, we explicit the expression of R̃λ with respect to the value of
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the main phase shift between the primary beams φ1 − φ2.
Following the basic principle of nulling interferometry, a relative π-phase shift is applied between the two beams
before recombination, namely φ1 − φ2 = π radians. In addition, instrumental phase perturbation could indeed
occur for instance because of vibrations inside the interferometer arms or imperfect piston correction by the fringe
tracker. Therefore, a variable instrumental phase shift δφ(t) is also affecting the beams in the interferometric
arms. Therefore, at the destructive output of the beam splitter, the phase shifts between the different parts of
the beams are now:

φ1 − φ2 = φ′1 − φ′2 = π + δφ(t)

φ1 − φ′1 = φ2 − φ′2 = ∆φ (38)

The perturbed intensity response thus writes as:

R̃λ(θ, α) = [2(ǫ2 + ǫ′2) + 4ǫǫ′ cos(∆φ)] sin2

(

π
bθ

λ
cos(α) +

δφ

2

)

(39)

Df (p radians)

R
   

   
   

  
l(

q,
a

)

2(e - e )2´

2(e - e )2´
(q a=    pl =    plaq

(q a=    =    0)0 ,

, )

Figure 4. Evolution of the perturbed transmission map, R̃λ(θ, α), at 10 µm, as a function of the phase shift ∆φ be-
tween the primary and secondary beams. No instrumental phase shift is considered here, and two angular positions are
shown: on-axis for the stellar source (solid line), and off-axis (θpl, αpl) for an hypothetical planet (dashed line), assuming

sin2
(

π
bθpl

λ
cos(αpl)

)

≈ 1 for the planet.

From this expression, we clearly see that the effect of the beam contamination on the transmission map
depends on the value of ∆φ (see Fig.4). In the unlikely situation where no phase shift is produced by the con-

tamination process, namely ∆φ = 0, the transmission map becomes : R(λ,
→
θ ) = 2(ǫ+ǫ′)2 sin2

(

π bθ
λ cos(α) + δφ

2

)

.

In this case, the primary and secondary parts of each beam meet in a co-phased way in the overlapping pupil
plane. This is represented by the factor (ǫ + ǫ′)2. In contrast, considering ∆φ = π, the perturbed intensity
response becomes:

R̃λ(θ, α) = 2(ǫ− ǫ′)2 sin2
(

π
bθ

λ
cos(α) +

δφ

2

)

(40)

In this case, we can clearly notice a decrease of the overall level of the transmission map of the interferometer by a
factor (ǫ− ǫ′)2, at the destructive output. The flux coming from the on-axis stellar source is thus better rejected,
while the flux of the off-axis source is less transmitted. This result is not surprising if we refer to the parasitic
interference phenomenon extensively described in Matter et al.5 . For instance, in the case of crosstalk occuring
in a classical interferometer, parasitic interference creates two other fringe patterns in addition to the intrinsic
fringe pattern due to the astrophysical source. One of them can be assimilated to a Young-like fringe pattern,
which is created by two sources perfectly coherent represented by the main part of the beam (noted ǫ) and the
small contribution having contaminated the other path (noted ǫ′). This fringe pattern does not contain any
information about the astrophysical visibility and phase of the source, and artificially increases the proportion of
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coherent flux in the resulting interference pattern, since a part of the incoherent flux of the source was actually
used to form these Young-like fringes. In our case, the apparent improvement of the on-axis source nulling is
thus accompanied by a lower transmission of the flux of the off-axis source. The signal coded in the perturbed
interferogram and forming the transmission map, does not refer anymore to the frequential information of the
whole astrophysical source at B/λ, but also to a contribution from the lower spatial frequencies resulting from
the transfert function of individual apertures. To summarize, a part of the low-frequency energy is mixed with
the high-frequency contributions at B/λ. This mixing generates a confusion in the frequential signature of the
astrophysical object.

3.3 Perturbed null output

The intensity response projected on the plane of the sky forms the transmission map of the interferometer.
We here assume that the final detection is done in an image plane. Therefore, an image similar to that of a
single telescope is formed, except that the contribution of each source is affected by the intensity response of the
interferometer depending on its location. No fringe is formed nor recorded, and the final output generally consists
of the total intensity in the diffraction limited field of view, namely the size of the Airy pattern. Following the
mathematical description of Absil14 , this final output or “null” then writes :

F (λ) = T (λ)

∫ ∫

[Bsky(λ, θ, α)R̃λ(θ, α) +Bbckg(λ, θ, α, t)]P (θ, α)θdθdα, (41)

with T (λ) the wavelength-dependent total transmission of the interferometer, Bsky(λ, θ, α) the brightness distri-
bution of the source in the diffraction-limited field of view, Bbckg(λ, θ, α, t) the time-dependent brightness of the
incoherent background emission (sky thermal emission, telescope, optical train), P (θ, α) the point spread func-
tion of a single telescope, and finally R̃λ(θ, α) the transmission map of the interferometer affected by parasitic
interference. Here, we consider a magnification factor of 1, so that we keep the same angular coordinates in the
focal plane, namely (α, θ).

Let us consider the observation of an extended source, composed of a star partially resolved by the interfer-
ometer and a secondary component (planet, exozodiacal disk, ...). The corresponding brightness distribution on
the sky is:

Bsky(λ, θ, α) = B∗(λ)Π(

√
θ2 + α2

θ∗
) +Bco(λ)f(θ, α). (42)

Π(
√
θ2+α2

θ∗
) is the top-hat function, which is equal to 1 in the angular domain [0, θ∗], where θ∗ is the angular

diameter of the stellar photosphere, and equal to 0 outside. The stellar brightness per square meter per steradian
B∗(λ) is considered to be constant over the stellar surface. Bco(λ) is the brightness of the secondary component,
while f(θ, α) is its distribution on the sky.
Assuming that the stellar angular diameter is small compared to the fringe spacing (θ∗ ≪ λ

b ), and that δφ(t) ≪ 1,
we can simplify the expression of the perturbed transmission map in the angular domain [0, θ∗] as:

R̃θ∗(λ, θ, α) ≈ (2(ǫ2 + ǫ′2) + 4ǫǫ′ cos(∆φ))(π
bθ

λ
cos(α) +

δφ(t)

2
)2. (43)

Then, considering that the finite stellar photosphere of angular radius θ∗ is almost unresolved by one single

telescope, as well as the secondary component of the system, we can assume P (θ, α) = 2J1(π
√
θ2+α2D/λ)

π
√
θ2+α2D/λ)

≈ 1 for

both sources. The final output can then be written as:

F (λ) ≈ B∗(λ)

∫ 2π

0

∫ θ∗

0

[(2(ǫ2 + ǫ′2) + 4ǫǫ′ cos(∆φ))(π
bθ

λ
cos(α) +

δφ(t)

2
)2]θdθdα

+Bco(λ)

∫ ∫

R̃(λ, θ, α)f(θ, α)θdθdα+

∫ ∫

Bbckg(λ, θ, α, t)θdθdα. (44)

This perturbed null output contains, in addition to the secondary component and background signals, the stellar
leakage. This term can be written as :

F∗(λ) ≈ B∗(λ)((ǫ
2 + ǫ′2) + 2ǫǫ′ cos(∆φ))[

π3b2θ4∗
2λ2

+
δφ2(t)

2
πθ2∗],
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where the first term represents the classical geometric stellar leakage, and the second term can be assimilated
to the instrumental leakage, which is related to the instrumental variable phase shift δφ(t). Both terms are
multiplied by the parasitic factor (ǫ2 + ǫ′2) + 2ǫǫ′ cos(∆φ), which modifies the leakage level.

3.4 Noise and bias analysis

In this section, we detail the impact of cross talk on the sensitivity of a nulling interferometer, using the
expression of the perturbed geometric and instrumental leakage expressions derived above. The contribution
of the backgroung emission in the null output is not taken into account in this section since it is independent
from the level of cross talk (see Eq. 41). To estimate the maximum degradation caused by the crosstalk effect, we
place in the case where ∆φ = π, so that we have: (ǫ2+ǫ′2)+2ǫǫ′ cos(∆φ) = (ǫ−ǫ′)2. After detection of the signal
by a rotating interferometer, the geometric leakage is removed since it is not modulated by the rotation of the
interferometer. The remaining bias is then reduced to the part of the instrumental leakage, which is not removed
by the rotation (see Lay10 for more details). To estimate the detection efficiency of a nulling interferometer,
we thus define a ‘signal to noise and bias’ ratio, hereafter noted SNB, taking into account the stellar leakage
photon noise and the instrumental bias. This estimator is the ratio between the useful ‘signal’, i.e. the flux of
the secondary component that should be measured at the destructive output during an integration time ∆t, and
the sum of the instrumental bias and the photon noise, also measured during the same integration time ∆t :

Signal = Bco(λ)∆t

∫ ∫

R̃λ(θ, α)f(θ, α)θdθdα,

Noise =

√

B∗(λ)∆t(ǫ− ǫ′)2(
σ2
δφ

2
πθ2∗ +

π3b2θ4∗
2λ2

),

Bias = B∗(λ)∆t(
σ2
δφ

2
πθ2∗)

σδφ is the standard deviation of the instrumental phase shift error, δφ(t), affecting the beams during the inte-
gration time ∆t. Thus our estimator writes as:

SNB =
Signal

Noise + Bias
(45)

In order to simplify the quantitative study of the problem, we will consider in the following that the total incident
energy is conserved during beam contamination, so that ǫ2 + ǫ′2 = 1. The amplitude of the parasitic effect will
only depends on the flux contamination rate, namely the cross talk level ǫ′2.

3.5 Quantitative estimation

We here calculate the amplitude of the degradation of the ‘signal to noise and bias’ ratio, SNB, as a function
of ǫ′2 when considering the observation of a planetary system. For that we use the expression of SNB given by
Eq. 45, and consider the favourable case, in N band, of a planetary system composed of a hot Jupiter-like planet
orbiting a M5 star at 0.5 AU. The planetary flux corresponds to a ’condensed’ spectrum extracted from Barman
et al.13 , for which the planet has an intrinsic temperature of 500 K. This planetary system is observed by a
typical Bracewell interferometer having a baseline of 20 m, a total transmission of about 1% at 10 µm, and an
instrumental OPD stability of 2 nm rms. The left panel of Fig. 5 represents the evolution of SNB as a function
of the integration time, for different cross talk levels ǫ′2; while the right panel represents the same SNB, but
represented as a function of the cross talk level ǫ′2 and normalized by the intrinsic SNB value, i.e. without any
flux contamination (ǫ′2 = 0%).

In Fig. 5, we clearly see the steady decrease of the ‘signal to noise and bias’ ratio as a function of ǫ′2, given

the dependence of this ratio on the factor
√

(1− 2
√

(1− ǫ′2)ǫ′2). This was expected since the planetary flux

gets less transmitted as the stellar leakage decreases, so that the photon noise of the latter always remains large
enough to perturb the planet signal and to decrease SNBplanet.
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Figure 5. Left panel: Evolution of the ‘signal to noise and bias’ ratio of the planet null (SNB) as a function of the
integration time, for different cross talk levels ǫ′2. Right panel: Evolution of SNB as a function of the cross talk level
ǫ′2; SNB is normalized to the SNB value without any flux contamination. We assumed the same integration time of one
hour.

3.6 Numerical validation

In order to validate the theoretical results of the previous section, we used the GENIEsim simulation software15

, which was designed to simulate various Bracewell-like interferometer projects such as the GENIE instrument at
the VLTI16 . GENIEsim has the advantage to have been extensively validated by cross-checking with performance
estimates done by industrial partners during the GENIE phase A study. It performs end-to-end simulations
of nulling interferometers, including the simulation of astronomical sources (star, circumstellar disk, planets,
background emission), atmospheric turbulence (piston, longitudinal dispersion, wavefront errors, scintillation),
as well as a realistic implementation of closed-loop compensation of phase and intensity perturbations by means
of fringe tracking and wavefront correction systems. The output of the simulator basically consists in time series
of photo-electrons recorded by the detector at the constructive and destructive outputs of the nulling combiner.
The individual signal and noise contributions of the final output GENIEsim are extensively described in Absil
et al.15 and Defrère et al.16 .
In the context of this study, we have adapted GENIEsim to handle cross talk by following the mathematical
description presented above. This was in fact quite straightforward since only the theoretical expression of the
transmission map (Eq. 34) had to be updated. All output signal and noise contributions are then automatically
taking cross talk into account. With GENIEsim, we simulated a Bracewell-like interferometer having the same
characteristics and specifications as the interferometer described in Section 3.5. We estimated the broadband
SNR that would be obtained by such an instrument when observing different types of source, for different values
of crosstalk level. These sources are represented by a 5-Zodi exozodiacal disk orbiting a G0V star 10 pc away,
a hot Jupiter-like exoplanet (see Section 3.5), and a super-Earth exoplanet, namely Gl 581d, orbiting a M2.5V
star 6.26 pc away. Here, we considered significant crosstalk level values up to 5% in order to clearly emphasize
the degradation of the SNR as a function of this parameter. In addition, the crosstalk effect on the remaining
instrumental bias is calibrated in our simulations. As a consequence, the broadband SNR (in N band) shown in
the following only describes the cross talk effect on the different noise contributions. Fig. 6 shows the broadband
SNR for each type of target with respect to the cross talk level (ǫ′2). As expected from Eq. 45, with the bias
term calibrated, the SNR steadily decreases as a function of the cross talk level. For a significant cross talk level
of about 4%, the SNR decreases by about 25%. This decrease is only due to the degradation of the planet/disk
signal by a factor (ǫ − ǫ′)2, as expected from Eq. 40. This effect is partially compensated by the decrease of
shot noise due to the improved geometric stellar rejection. Our simulations are thus in good agreement with the
theoretical expectations and validate our theoretical description of the parasitic interference problem. However,
it is important to remind as well that the significant coherent crosstalk levels considered in our simulations
(up to 5%), does not correspond to realistic values expected or already estimated in the framework of nulling
interferometry testbeds such as PERSEE (see e.g. Jacquinot et al.17 ), which is the demonstration bench of
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Figure 6. Simulated broadband SNR of an Bracewell-like interferometer (see Section 3.5 for a description of its character-
istics) given with respect to the cross talk level (ǫ′2). Three types of source are considered: exozodiacal disk, super-Earth,
and hot Jupiter.

the PEGASE and FKSI projects (see Ollivier et al.18 and Barry et al.19 ), or the Planet Detection Testbed
(see Martin et al.9 ), which is a demonstration bench for the TPF-I project. For instance, incoherent crosstalk
levels of about 10−7 have been estimated from a ZEMAX model of the PERSEE test bed20 . Therefore, the
phenomenon of parasitic interference does not appear to be problematic and significant in the framework of those
current experiments. However, regarding the impact of this phenomenon, a careful attention will anyway have
to be paid on the different possible sources of crosstalk, and especially coherent crosstalk, in the design of future
nulling interferometry experiments.

4. CONCLUSION

In this work we have described the phenomenon of parasitic interference in stellar classical and nulling in-
terferometry. This is the consequence of a coherent crosstalk between beams, occuring through mutual beam
contamination or parasitic reflections inside transmitting optics. Through an analytical approach, we have shown
that this effect degrades the modulus and the phase of the complex visibility of a classical stellar interferometer,
and affects the overall level of the intensity response or transmission map of a nulling interferometer. The two
parameters involved in this degradation are the parasitic flux factor (or crosstalk level), and the residual piston
between beams before recombination.
In classical stellar interferometry, we have shown that the parasitic phase amplitude is very sensitive to a residual
piston between beams. From our feasibility study of hot Jupiter-like planet detection in L band, we concluded
that a detection is possible if the parasitic flux reaches at most 5% of the total incident flux, but only within
the residual piston specifications of current fringe trackers. In parallel, we have shown that the closure phase
is degraded by this phenomenon as well. The closure phase relation is not zero for an unresolved source and
depends on the crosstalk level and the residual piston. This last dependency has to be put in connection with the
current piston dependency effects found in the closure phase measurements of the VLTI-AMBER instrument21 .
A study is planned in order to assess the contribution of parasitic interference phenomenon to this piston effect
degrading the AMBER data.
In nulling interferometry, parasitic interference (or crosstalk effect) results in a flattening of the transmission
map at the destructive output, by a factor (ǫ − ǫ′)2, in the extreme case of a π phase shift between the pri-
mary and secondary beams. In our parasitic interference model, we recall that ǫ2 represents the main fraction
of each beam, whereas ǫ′2 corresponds to the contaminating fraction of each beam, i.e. the crosstalk level or
contamination rate. Because of this flattening of the transmission map, the flux coming from the on-axis stellar
source is thus better rejected, while the flux of the off-axis source is less transmitted. As a consequence, the
stellar and geometric leakages are decreased by the same factor (ǫ − ǫ′)2. However, this is counter-balanced by
the decrease of the astrophysical signal by the amount, implying a degradation of the final null output SNR, by
a factor (ǫ − ǫ′). We then validated our analytical study with numerical simulations of the impact of parasitic
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interference on the null output and SNR delivered by a Bracewell-like interferometer. For that, we adapted
the GENIEsim simulation software to handle crosstalk. Our results shows that the SNR steadily decreases as
a function of the crosstalk level, as expected from our mathematical description. As an exemple, a crosstalk
of about 4% implies a 25% drop of the SNR on each source. However, as previously mentioned, the parasitic
interference phenomenon would appear to be negligible in some current nulling interferometry testbeds such as
PERSEE, where very low incoherent crosstalk levels of the order of 10−7 have been measured.
As a final conclusion, it appears that, up to now, little attention has been paid on the phenomenon of parasitic
interference. This issue has been formalized here in a general multi-axial recombination scheme in classical inter-
ferometry, with special attention on the differential phase and the closure phase, and in a Bracewell-like scheme
in nulling interferometry. For instance, we could see that the detection of astrophysical objects providing weak
signatures in the interferometric phase, such as hot Jupiter-like extrasolar planets, requires careful attention
to various fine instrumental effects such as parasitic interference. This constitutes an important motivation for
optimizing the design of future planet-detecting interferometers like the next ground-based instrument of the
VLTI, MATISSE, or the NASA space nulling interferometer project, FKSI. In the context of the MATISSE
instrument22 , Matter et al.5 proposed different solutions to prevent crosstalk and thus parasitic interference
between beams, especially the separation of the path of each beam by a careful baffling inside the instrument.
Solutions that might be implemented into the design of future interferometric instruments.

REFERENCES

1. H. Fizeau C.R. Acad. Sc. Paris 66, p. 932, 1868.

2. A. A. Michelson, “On the Application of Interference Methods to Astronomical Measurements,” ApJ 51,
pp. 257–+, June 1920.

3. A. Labeyrie, “Interference fringes obtained on VEGA with two optical telescopes,” ApJ 196, pp. L71–L75,
Mar. 1975.

4. R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometer,” Nature 274, p. 780, Aug.
1978.

5. A. Matter, B. Lopez, S. Lagarde, W. C. Danchi, S. Robbe-Dubois, R. G. Petrov, and R. Navarro, “Parasitic
Interference in Long Baseline Optical Interferometry: Requirements for Hot Jupiter-like Planet Detection,”
ApJ 706, pp. 1299–1308, Dec. 2009.

6. D. Segransan, J. Beuzit, X. Delfosse, T. Forveille, M. Mayor, C. Perrier-Bellet, and F. Allard, “How AMBER
will contribute to the search for brown dwarfs and extrasolar giant planets,” in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, P. Léna & A. Quirrenbach, ed., Society of Photo-
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