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Introduction

Field Site

Three methods
1. Search template

2. Maximum likelihood estimation of ERT histograms

3. Simulation-based lithology variation

Resistivity-lithology transform
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Aquifer recharge and recovery (ARR) is the process of enhancing natural
groundwater resources and recovering water for later use by constructing
engineered conveyances—in our case by recharge ponds. Subsurface
lithological heterogeneity can impair attempts at estimating where and how
quicklywater flows through the subsurface.

Here, we explore three separate methods for transforming geophysical data
not collocated with borehole information into lithological data at an ARR
site in order to understand the lithological heterogeneity which dictates
flow. Each method is evaluated in a Bayesian framework for integration into
lithology and flow models.

Discussion

References

• Near Aurora, CO
• Geomorphological setting: unconsolidated fluvial sediments, with many

thin clay fingers.
• 26 recovery wells (blue) around the perimeter, 75-170m apart.
• 25 electrical resistivity tomography (ERT) profiles were collected in and

near the central and southwestern recharge basins.
• ERT measurements are not collocated with the wells in the area

The transformation from resistivity to lithology contains significant
uncertainty, which is amplified when geological data is not collocated with
geophysical data, because of variation with spatial displacement. Few
guidelines exist for the commonly encountered case where geological and
geophysical information are not collocated (for coincidental or logistical
reasons).

In this study, we transform resistivity to lithology using a Bayesian
framework, according to:

𝜙: lithology	or	facies
𝜌:	resistivity	measurements	from	ERT	(ohm-m)

A search template was used to create an
empirical probability distribution. The
template takes a resistivity
measurement from the ERT profile and
pairs it to the nearest two borehole
measurements of lithology, given a
search template of 80m x 80m x 1ft.

The histograms of the 25 ERT
profiles were fitted with a
bimodal normal distribution.
Each parameter was
averaged throughout the 25
lines to create the governing
probability density function,
for use in Bayes’ Theorem
(Figure 6).

Workflow:
1) Lithology was simulated based on the 3D variogram of borehole data at the site,

using sequential indicator simulation (SISIM), a two-point geostatistical
simulation.

2) In the simulated grid, lithology voxels corresponding to the locations of ERT
profiles were extracted, and the ratio of clay:sand was taken.

3) Five new grids were simulated using borehole data and ERT data coded according
to the clay:sand ratio from step 2.

4) Steps 1-3 were repeated 20 times.

In this case, the search template dramatically skews
the empirical probability distribution for a few
reasons, including:
• The population of sand dominates that of clay in

most wells (Figure 4)
• Small amounts of borehole clay may distort the

empirical distribution (see around 750 ohm-m).
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Search criteria were imposed based on
the assumption of horizontal deposition,
which were supported by the horizontal
variogram of well data.

This distribution behaves more conventionally than
that created from the search template. High
uncertainty (standard deviation in this case) of the
sand/gravel facies (Figure 6) disallows the clay
facies from ever reaching P=1.

The dashed graph shows the result of the maximum
likelihood procedure, fitting one bimodal
distribution to the histogram of all resistivity
measurements in the ARR site.Final distribution 

statistics:
𝑃A: 55.6%
𝜇A:		64.3
𝜎A:	36.6

𝑃B: 44.4%
𝜇B:	234.3
𝜎B:	129.3

Similar to the probability distribution produced by
the maximum likelihood method, this distribution
displays a more likely resistivity relationship
between sands/gravels and clays/silts.

With an increase in simulations, the distributions
will become smoother and change slightly.
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Figure 1: Aquifer recharge and recovery

Figure 2: Field site and ERT profiles

Figure 4: Search template histogramFigure 3: Search template schematic

Figure 6: Combined PDF from all ERT profilesFigure 5: Histogram and PDF fit of each ERT profile

Figure 8: Conditional probability from search template

Figure 9: Conditional probability from 
maximum likelihood estimation

Figure 10: Conditional probability from simulated 
lithology variation

Figure 11: Field measurements of resistivity 
from the ARR site (after Parsekian et al., 2014)

Figure 7: SISIM grid realization 

• The search template method does not conform to the sediment resistivities found at the ARR site (Figure 11) or expected values from
relationships such as Archie’s Law.

• The maximum likelihood estimation and simulated variation methods find plausible resistivity probability distributions given site data.
• The maximum likelihood estimation method is the only method of the three not calibrated to borehole lithology.
• The transformation methods described here can be applied to many different geophysical methods.
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Future work

We are incorporating the
probabilistic results from this
work into multiple point
geostatistical (MPS)
simulations (Figure 13),
which will inform flow
simulations. These
simulations utilize training
images and soft data (Figure
12).

Figure 12: Fluvial training image Figure 13: MPS lithology realization 
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